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Abstract

The first author’s previous work established Solomon’s WDV V-type relations for
Welschinger’s invariant curve counts in real symplectic fourfolds by lifting geometric
relations over possibly unorientable morphisms. We apply her framework to obtain
WDV V-style relations for the disk invariants of real symplectic sixfolds with some
symmetry, in particular confirming Alcolado’s prediction for P? and extending it to
other spaces. These relations reduce the computation of Welschinger’s invariants of
many real symplectic sixfolds to invariants in small degrees and provide lower bounds
for counts of real rational curves with positive-dimensional insertions in some cases.
In the case of P2, our lower bounds fit perfectly with Kollar’s vanishing results.
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1 Introduction

The WDVYV relation [13,16] for genus 0 Gromov—Witten invariants completely solves
the classical problem of enumerating complex rational curves in the complex projective
space P". Invariant counts of real rational J-holomorphic curves with point insertions
in compact real symplectic fourfolds and sixfolds, now known as Welschinger invari-
ants, were defined in [22,23] and interpreted in terms of counts of J-holomorphic
maps from the disk D? in [17]. Two WDV V-type relations for Welschinger invariants
in dimension 4 were predicted in [18] and established in [5]. Similarly to the WDVV
relation of [13,16], these relations completely determine Welschinger invariants of
many real symplectic fourfolds from very basic input; see [6]. Methods for computing
Welschinger invariants of the projective space IP* were introduced in [3,4]. A WDV V-
type relation for counts of real rational curves without real constraints was obtained in
[10]. The existence of WDV V-type relations for Welschinger invariants in dimension 6
was announced in [18], but without specifying their statements.

The present paper applies the approach of [5] to obtain two relations for Welschinger
invariants of real symplectic sixfolds with symmetry as in Definition 1.2. These rela-
tions yield the two WDV V-type ODEs of Theorem 1.5 for generating functions for
the disk and complex Gromov—Witten invariants. Our ODEs (1.19) and (1.20) in the
case of P3 agree with the ODEs (4.82) and (4.76), respectively, in [1], but correct their
structure for more general spaces.

The first author showed in [5] that the disk counts of [ 17] in real symplectic fourfolds
can be viewed as the degrees of relatively oriented pseudocycles from open subspaces
of the moduli spaces My ;(B; J) of real rational J-holomorphic maps constructed
in [9]. She then established Solomon’s relations for Welschinger invariants of real
symplectic fourfolds in [5] by lifting

(R1) a zero-dimensional homology relation on the moduli space RM  » & RP? of
stable real genus O curves with 1 real marked point and 2 conjugate pairs of
marked points and

(R2) the one-dimensional homology relation on the moduli space Rﬂom of stable
real genus 0 curves with 3 conjugate pairs of marked points discovered in [10]
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Fig. 1 The relations on stable maps induced via (2.10) by lifting codimension 2 relations from ﬂ}z
and ﬂ(r) 3; the curves on the right-hand sides of the two relations are constrained by the hypersurfaces T
LT -—T

mn MI,Z and M0’3

along with suitably chosen bounding cobordisms Y for them to 9/5?1(’ 1.1+ (B; J),acutof
M1 (B; J) along hypersurfaces that obstruct the relative orientability of the forgetful
morphisms

flo: M (B; J) — RMo 12 and fo3: M (B; J) — RMoo3. (1.1

The intersections of the boundary of S)/ﬁk, 1.1+ (B; J) with Y then determine the wall-
crossing effects on the lifted relations in ﬁk,l(B ; J); see [5, Lemma 3.5].

The WDV V-type relations of Theorem 1.5 for the disk counts of [17] arise from
relations between counts of two- and three-component real curves obtained by lift-
ing (R1) and (R2) exactly as in [5]; see Sect. 2.3. The lifted relations, depicted in
Fig. 1 on page 11, have the exact same form as in [5] and hold without any symmetry
assumption on the target, but for fixed collections of constraints for the curves; see
Proposition 5.5. The counts of curves represented by the individual diagrams in Fig. 1
generally depend on the choices of the constraints. We eliminate this dependance by
averaging these counts over the action of a finite group G of symmetries as in Defini-
tion 1.2, if such a group exists, and then split the averaged counts into invariant counts
of irreducible real and complex curves; see Sect. 2.4 and Propositions 5.6 and 5.7.

Asnotedin [1, Prop. 17], the WDV V-type relations of Theorem 1.5 are very effective
in computing the disk invariants of some real symplectic sixfolds (X, w, ¢). The disk
invariants with only point constraints agree with Welschinger invariants up to sign. As
only some elements of H>(X — X?) can be represented by holomorphic curves in a real
projective manifold (X, w, ¢), Theorem 1.5 and Proposition 2.1 lead to lower bounds
for counts of real algebraic curves in some real algebraic threefolds through curve
constraints; see Sect. 2.6. In light of [12], there can be no non-trivial lower bounds of
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1234 X. Chen, A. Zinger

this kind for real lines and conics in P3. However, Theorem 1.5 and Proposition 2.1
provide such bounds for real cubic curves in all cases not precluded by [12]; they are
shown in boldface in Table 1 on page 17.

Remark 1.1 Two months after the present paper was posted on arXiv, [20] provided
WDV V-type relations for the open GW-invariants constructed in the authors’ earlier
papers based on algebraic considerations. These invariants, which in general count
J-holomorphic multi-disks meeting the given cycles and some auxiliary bordered
chains, reduce to Welschinger real invariants in the setting of [23]. In the presence
of a symmetry as in Definition 1.2, the relations of [20] in turn reduce to those of
Theorem 1.5, which we establish based on self-contained geometric considerations.
As pointed out by a referee, a version of [20] appears as Chapter 3 in S. Tukachinsky’s
thesis [21].

1.1 The real symplectic setting
Let (X, w, ¢) be a compact real symplectic manifold, i.e. w is a symplectic form
on X and ¢ is an involution on X so that ¢*w = —w. The fixed locus X? of ¢
is then a Lagrangian submanifold of (X, w). An automorphism of (X, w, ¢) is a
diffeomorphism v of X such that

Y*o=w and Yog = Poi.
We denote by Aut(X, w, ¢) the group of automorphisms of (X, w, ¢). Let

Ho(X) = Hi(X:Q), H.(X)% =B € Hu(X): §p = £B},
H*(X) = H*(X;Q), H*X0% = {ne H" (X): ¢*u = p}.

For a connected component §¢ of X?, we denote by
Aut(X, o, ¢; f‘i’) C Aut(X, o, ¢)
the subgroup of automorphisms of (X, w, ¢) mapping ?/) to itself. Let

¢ ¢
HX-X)=HX-X;0Q),
v v
Ho(X - X% = e H(X - X"): .8 = £B}.
Hx. X" = 1 x. X" .
H* X, X" = {n e H* (X, X"): ¢ = £u).
Every element of H» (X, fd); Z) can be represented by a continuous map

£i(z.0%) — (x,X°)
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from a compact oriented surface with boundary; see [7, Lem. 4.3(b)]. The continuous
map f: $ —> X obtained by gluing f with the map ¢o f from X with the opposite
orientation along 0¥ then regresents an element [f] of Hy(X; Z). It depends only on
the element [ f] of Hy(X, X ; Z) represented by f; see [7, Lem. 4.3(c)]. Let

vot HalX. X".2) — mX:2) — HX) (1.2)

be the composition of the resulting homomorphism with the obvious homomorphism
to H>(X). We denote by

Do Hy(x. X% 2) — (X" 2) — m (X" 2) (1.3)
5)

the composition of the boundary homomorphism of the relative exact sequence for
the pair (X, X' ) with the mod 2 reduction of the coefficients. We call an element

B € Hy(X) (X", Z,)-trivial i

- w9
ds0 (DXL(B)) = {0} c Hi(X"; Z»).

/3
We denote by 7, the space of w-compatible (or -tamed) almost complex structures J

on X and by Jf C Jw the subspace of almost complex structures J such that ¢*J =
—J. Let

(X, w) =c(TX,J) € H*(X)

be the first Chern class of 7' X with respect to some J € J,; it is independent of such
a choice. For B € H,(X), define

ty(B) = (c1(X, ), B) € Q.
If B is in the image of the second homomorphism in (1.2), then ¢,(B) € Z. If B
is in the image of the composite homomorphism in (1.2) and X is orientable, then
L, (B) € 27; see [2, Prop. 4.1].
For J € J, and B € H(X), asubset C C X is a genus 0 (or rational) irreducible

degree B J-holomorphic curve if there exists a simple (not multiply covered) J-
holomorphic map

w:P' — X st C=ul, uP'1=B. (1.4)
If in addition w1, ..., u; € H*(X), we denote by

(U1y s )y €Q (1.5)
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1236 X. Chen, A. Zinger

the (complex) GW-invariant of (X, w) enumerating rational degree B J-holomorphic
curves C C X through generic representatives of the Poincare duals of i1, ..., w;. This
invariant vanishes unless B lies in the image of the second homomorphism in (1.2).

A curve C C X asin (1.4) is called real if ¢ (C) = C. In such a case, u in (1.4) can
be chosen so that it intertwines ¢ with one of the two standard involutions on P!,

P — P, 1(x) = or P — P pi@)=-=

NI|>—~

i.e. either uot = ¢ou or uon = ¢ou. We call such maps u (¢, t)-real and (¢, n)-real,
respectively, and the images of (¢, t)-real maps (¢, t)-real curves. For a (¢, t)-real
curve C C X, we denote by RC C X¢ the image of the 7-fixed locus S! C P! under a
(¢, t)-real map u as in (1.4). The degree B of a (¢, t)-real map lies in the image of
the composite homomorphism in (1.2) if RC cx’.

For a subgroup G of Aut(X, w, ¢; §¢)’ we denote by Jf;G C jcf the subspace of
G-invariant almost complex structures. Let

HE(X X2 = (B e Hax = X")8: ypp = pVy € G},
HEX, XM = {pe B (X, X))y = uvy € G,

1.2 Disk invariants under symmetries

From now on, suppose that the (real) dimension of X is 6. The tangent bundle of
an orientable connected component X" of X? is then trivializable and thus admits a
Spin-structure s for any ¢ ch01ce of orientation 0 in X . b We call such a pair 0s= (0, 5)
an OSpin-structure on X .For B € Hy(X) and atuple (i1, ..., i;) of homogeneous
elements of H*(X) and H**(X, X¢), let

1

1
k:kB(/Ll,...,m)EE(EM(B)—i—Zl—Zdegm). (1.6)
i=1

. .. . v
Under certain conditions on B and u1, ..., i, an OSpin-structure os on X deter-
mines an open GW-invariant

(1, )%, € Q (1.7)
B:X

of (X, w, ¢) enumerating (¢, t)-real degree B J-holomorphic curves C C X with
RC C X that pass through generic representatives for the preimages of uy, ..., Wy
under the Poincare duality isomorphisms

PDyx: H,(X) —> H®P(X) and PD ¥ Hy(X — Y¢) — H%P(X,X
X,
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as in [15, Theorems 67.1,70.2] and through k points in Xd). These conditions are

recalled in the next paragraph. If X" is orientable and such curves exist, then £,(B)
is even and thus k € Z. The number (1.7) is defined to be 0 if £ < 0.
Invariant signed counts (1.7) were first defined in [23] under the assumptions that

lo(B) >0, pie  H(X)UH®X) Vi, (1.9)

i.e. each pu; represents a Poincare dual of a “complex” hypersurface or a point, and
either

_ o
k>0 0¢dp (0°L(B)cH(X ;Z); 1.10
> or ¢ %2 ( Yqﬁ( ) C Hi( 2) (1.10)

2
these counts are now known as Welschinger invariants. The interpretation of these
counts in terms of J-holomorphic maps from disks in [17] dropped the first restriction
in (1.9) and later led to Solomon’s observation that the counts (1.7) are also well-
defined with u; € H*(X, f(ﬁ) for some i; see Sect. 2.1 (a more general version of
this observation is implemented in [19]).

The now standard way to drop the restriction (1.10) under certain topological con-
ditions on (X, ¢) is to include counts of (¢, n)-curves; see [8]. Another way to do so
is to count only (¢, t)-real degree B J-holomorphic curves C C X with RC C §¢
such that RC does not vanish in H; (\)f¢; 7). While both approaches are suitable for
the purposes of Proposition 5.5, neither appears to lead to splitting formulas as in
Propositions 5.6 and 5.7 by itself. We instead pursue a different approach.

Definition 1.2 Let (X, w, ¢) be a real symplectic manifold and }d) be a connected
component of X?. A finite subgroup G of Aut(X, w, ¢; fqb) is an averager for
X, w, ¢; fd)) if G acts trivially on Hg(X)f and some element v € G restricts

. . . . . 9
to an orientation-reversing diffeomorphism of X .

As explained in Sect. 2.2 and summarized by Proposition 1.3, an averager leads
to pairwise cancellations of certain curve counts and yields well-defined counts of
(¢, t)-curves even if the condition (1.10) does not hold. An averager also leads to the
splitting formulas of Propositions 5.6 and 5.7 and thus to the real WDVV equations
of Theorem 1.5 in Sect. 1.3. An averager for P> is generated by a real hyperplane
reflection; see Sect. 2.2.

Proposition 1.3 Suppose (X, w, ¢) is a compact real symplectic sixfold, os is an
OSpin-stmcéure on a connected component X of X®, G is an averager for
(X, 0,¢; X"), and J € T? .

(1) Forall B € Hy(X) and | € 729, there is a multilinear symmetric functional

(o), CHPX0® —Q (1.11)
B:X :G
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1238 X. Chen, A. Zinger

enumerating (¢, 7)-real degree B J-holomorphic curves C C X with RC C Xd)

and satisfying

(o 0%, =0 VBEHAX)?, (1.12)
B:X ;G
(o mts e )" = s B, )%, Ve HAX).
B X :G B: X :G
(1.13)

(2) Let B € Hy(X) andl € Z7°. If either

- 1
B is (X¢,Z2) — trivial and zzw(B) = |{i: i € H*(X)}| mod 2
(1.14)
or |k € H2(X)f_EBH4(X)¢_’f0rs0me i, then

</’L17"'5M1>¢ giqﬁ

’ =0.
B:X G

Remark 1.4 The OSpin-structure os for an orientation o on ftb naturally determines
an OSpin-structure os for the opposite orientation 0; see [7, Section 1.2]. By the proof
of Proposition 1.3 in Sect. 6.2, the first condition in (1.14) can be replaced by the

existence of ¥ € G restricting to an orientation-reversing diffeomorphism of qu such
that y*os = 05. Such a v does not exist in the case of P?, but does exist in the case of
(PH3 with the two natural involutions specified in [6, Section 5]. By (1.6), the second
condition in (1.14) means that the number k of real point insertions is even.

As explained at the end of Sect. 2.5, the condition of Definition 1.2 implies that the
natural homomorphisms

i Hy(X = X%) — Hy(X) and r: B4 (X, X") — HY(X) (1.15)
restrict to isomorphisms
G HEX - X" S m(X)? and rg: HAX.XD)? S HA X0, (116)
respectively. For homogeneous elements i1, . . ., yu; of H**(X), let

ret i), if € HY(X)?;

fii =10, if i € H*(X)?;
i if i ¢ HH(X).
We define 0 0
,08 ~ ~\p,05
<I’L17"'5Ml> ~¢ :<M17"'1Ml> ~¢ * (1'17)
B:X ;G B: X
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The numbers (1.17) depend on the G-invariant subspace
N o
HExX, X% c HY X, X")?
or equivalently on the G-invariant subspace
HE (X — XM c Hyx — X2,

However, these numbers do not depend on the choice of an averager G which acts
trivially on H?(X) if the subspace of H*(X) spanned by the cup products of the
elements of H2(X) contains H*(X )'i. In particular, the disk invariants of (P3, w3, 13)
provided by Proposition 1.3(1) are independent of the choice of G.

1.3 Main theorem

Let (X, w, ¢) be a connected compact real symplectic sixfold. Define

0: Hy(X) — Hy(X)?,  0(B) = B — ¢.(B),
A = {(w: HX)? —Q): |{B € H>(X)? : W(B)#0, w(B) < E}| <o VE €R}.

We write an element W of Af) as

U= Z\IJ(B)qB

BeH,(X)?

and multiply two such elements as powers series in g with the exponents in H, (X )"i.
Choose a basis /LT, R /L: for

H' )@ H*(X)? @ H'(X)} & HO(X) (1.18)
consisting of homogeneous elements. Let (g;;);, ; be the N x N-matrix given by
gij = (X ¥, 1x])

and (gij)ij be its inverse. For a tuple t= (71, . .., ty) of formal variables, let

* * *
e =My 1+ -+ uUyin.
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1240 X. Chen, A. Zinger

. . . . v
Suppose in addition that os is an OSpin-structure on a connected component X

of X? and G is an averager for (X, a)éb X(b). For B € H»(X), k,1 € ZZ°, and
homogeneous elements (1, ..., u; of H=*(X), define

(ur, [ptl), if (B,k, 1) = (0,1, 1), uy € H(X);
&, 08 ¢,08 . . 0 : — .
(IS Ml)s,k;c: <M]’””M1>B;§¢:G, if B0, wi ¢ H(X)Vi, k=kp(u1, ..., w);
0, otherwise.

We extend the GW-functional (. . .)g and the open GW-functional (. . .)(Z’ ESG linearly
over the formal variables #;.
We define &) € AD[[r1, ..., ty]]and Q207 € AD[[r1, ..., ty, ull by

BeHy(X)?  B'eHr(X)

B
l

lezz0  ¥BH=B
1-1 B,k
$,05 _ * *\pos 2 q"u
Qw;(; (t,....tn,u) = Z (Mt s Mg )B,k;GT'
~————— il
BeHy(X)? )

k.1ez>0
By Gromov’s Compactness Theorem and the assumption that ¢*w = —w, the inner
sum in the definition of CIDZ, has finitely nonzero terms. For the same reason, the
coefficients of the powers of 71, ..., ty, u in ®% and inc’Gﬁ liein A2,

Theorem 1.5 Suppose (X, w, @) is a connected compact real symplectic sixfold, os is
an OSpin—stgucture on a connected component X of X®, and G is an averager for
X,w,¢; X"). Foralla,b,c=1,..., N,

2 (0, 01,8, 98) 8" (0, 20757) + (30,0, 20602205

1<i,j<N
= (81, 042057 )31, 0 22:57). (1.19)
> (31,04, 0) 8V (9,0, QP 0) + (00,0, 20,6 )01, 0 2057
1<i,j<N
= ) (8,0,0, ©2) 8" (8,8, 20:5) + (81,8, 2%: % )3, 0.2%:57). (1.20)
1<i,j<N

The paper is organized as follows. Sects. 2.1-2.4 outline the main steps in the proofs of
Proposition 1.3 and Theorem 1.5, pointing out the key similarities and differences with
the fourfold case treated in [5]. Section 2.5 discusses the implications of Theorem 1.5
for the computability of the disk GW-invariants of real symplectic sixfolds. Section 2.6
obtains non-trivial lower bounds for counts of real rational curves in 3, including
with line constraints. The relevant intersection theoretic notation and conventions are
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specified in Sect. 3. Section 4 describes orientations for subspaces of the Deligne—
Mumford spaces M,ﬁ ; and properties of the hypersurfaces Y in ﬂb and M’m that
play a key role in the proof of Theorem 1.5. Section 5 sets up the notation for moduli
spaces of stable maps and their subspaces, states the propositions that are the main
steps in the proof of Theorem 1.5, and deduces this theorem from them. The proofs of
most of these propositions are deferred to Sect. 6. We focus on the geometric situations
when virtual techniques are not needed, but the reasoning fits with all standard VFC
constructions and thus extends to real symplectic threefolds (X, w, ¢) with spherical
classes B such that £,(B) = 0.

2 Outline of the proof and applications

2.1 Disk invariants

Let (X, w, ¢) be a real symplectic manifold, sz be a connected component of X%,
k1729 B ¢ H>(X),and J € Jf;.We denote by My ;(B; J; fq)) the moduli space
of (¢, t)-real rational degree B J-holomorphic maps with k real marked points and /
conjugate palrs of marked points which take the r-fixed locus S' Cc P! to X X’ and by
Dﬁk 1(B; J; X ) be the stable map compactification of this moduli space, respectively.
Let

¥ (B J; X°) € M (B: 1 X7) @2.1)

be the subspace parametrizing (¢, )-real maps whose restrictions to the disks ]D)i cP!
cut out by the 7-fixed locus S' C P! do not represent elements in the kernel of (1.3).
The stable map compactification

ﬁ,:,(B; J: Yb) C My (B; J; f‘b)

of this subspace is a union of connected com&onents of (;)ﬁk 1(B; J,; X ) and has
no boundary. The codimension 1 strata of 90, ;(B; J; X ) consist of _maps from
two-component domalns with a real node. An OSpln structure 0s on X induces
an orientation ogy of M} I(B J; X ), but Emk 1(B; J; X ) is generally unorlentable

The orientation ogy extends through some codimension 1 strata of sm,f,(B J; X ),
but not others; see Lemmas 5.1 and 5.3 . We call the latter strata bad strata; they are
characterized by the value of ¢+ defined in (5.8) being odd.

If the domain and target of the evaluation morphism

ev: MY (B: J; X7) — X=X x X! 2.2)

are of the same dimension, a generic path between two generic points in ?k,l avoids
the images of the bad strata and thus ev has a well-defined degree. This fundamental
insight of [17], formulated in terms of disk moduli spaces instead of the real map spaces
introduced in [9], provided a moduli space interpretation of Welschinger invariants
with the potential for applications of techniques of complex GW-theory to study these
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1242 X. Chen, A. Zinger

invariants. In a more standard perspective of symplectic topology, the restriction of ev
to the complement of the bad codimension 1 strata is a codimension 0 pseudocycle;
the degree of ev is simply the degree of this pseudocycle. This perspective on the
insight of [17] provides the intersection-theoretic setting for the proof of Theorem 1.5
in the present paper; see Propostion 5.2. An analogue of this perspective plays a similar
role in [5], which established the WDV V-type relations for real symplectic fourfolds
foreseen in [18].
More generally, suppose that

C=qi xqyx-xqx H x-x H C X, (2.3)
is a generic constraint consisting of g1, ...,qx € §¢ and oriented submanifolds
Hy, ..., H C X of real codimensions 2, 4, and 6 (we call them divisor, curve, and

point constraints, respectively) so that
dim 0, (B: J; X*) + dim € = dim X, . 2.4)
This implies that the intersection
M B: 1 X)L Xy < C 2.5)

of the two maps to \)fk’l is a finite set of signed points. For a suitable choice of the
orientation ogy, a generic path between two generic constraints as in (2.3) avoids the
bad strata of the left-hand side of (2.5) except for the strata consisting of maps that
are constant on a component of the domain which carries only a conjugate pair z;

of marked points with H; being a curve class; see the proof of Proposition 5.2 in
Sect. 6.2. This observation, which follows from the reasoning in [17], implies that
the intersection number of (2.5) does not depend on the choices of generic point

constraints in X(ﬁ and X, divisor constraints representing fixed elements of Hy(X),

curve constraints representing fixed elements of Hy (X — X(p), and J € jff .

The intersection number in (2.5) is the open GW-invariant (1.7) informally intro-
duced by J. Solomon after [17] under the assumption that (1.10) holds. If this is the
case, the two spaces in (2.1) are the same. Thus, the superscript % can be dropped
from the left-hand side in (2.5) and the resulting invariants (1.7) count all (¢, 7)-real
degree B curves through the constraint C.

2.2 Cancellations under symmetry
If (1.10) does not hold, the spaces
DJT;{,I(B;J;X(p) Eimk,l(B;J;X(b)—SJTI:I(B;J;\)?(P) and
ﬁ;{’,(B; J; §¢) = ﬁk’l(B; J: ?qb) — ﬁ,:,(B; J; f(p)
may be nonempty. The boundary of ﬁk,l(B; J; qu) is contained in ﬁ; (B J; f(b).
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Let G be an averager for (X, w, ¢; X ) as in Definition 1.2. Suppose J € J 4
and C as in (2.3) and (2.4) is G-invariant (see the sentence containing (5.38) for a
formal definition). Each ¢ € G induces automorphisms

Yi,i: \)fk,l — Yk,l and  W: 9 (B; J; id)) — M (B J; YP)

by acting on each component of Xk,l and by composing each map u : P! — X with .
The first induced automorphism preserves the orientation if and only if either k € 27Z

. . ¢ . . .
or Y preserves the orientation of X . The second induced isomorphism preserves the

orientation ogy if and only if ¢ preserves the orientation of fd); see the last paragraph
of the proof of Proposition 1.3 in Sect. 6.2. Since the right vertical arrow in the diagram

0y (B J; X% = Xi ’C
\DJ/% Ilfk,zl% 1//[* (2.6)
M, ,(B; J; X0 Xt >C

is orientation-preserving, it follows that i induces a sign-reversing bijection on the

intersection set of the two maps in (2.6) if ¥ reverses the orientation of Yd) andk € 27.
The intersection number of these two maps is zero then. Along with the last paragraph
of Sect. 2.1, this implies that the superscript % can be dropped from the left-hand side
in (2.5) and that the resulting invariants (1.7) and (1.17) count all (¢, t)-real degree B
curves through the constraint C (provided J € JiG and C is G-invariant), whether
or not (1.10) holds.

If B is (X", Z,)-trivial, then
’ ¢ ¢
k,l(B; J; X ) = E)JYk,l(B; J; X )
If k € 27, which is equivalent to the last condition in (1.14), the reasoning in the
previous paragraph yields the vanishing of the numbers (1.17) in the first case of
Proposition 1.3(2).
The prototypical example of a real symplectic sixfold is the complex projective
space P3 with the Fubini-Study symplectic form w3 and the anti-symplectic involution

73! ]P)?’ — P3a TS([Z()v Zlv ZZ, Z3]) = [Z_()’ Z_]a Z_27 Z_3]

An averager G in this case is generated by the reflection about a r3-invariant complex
hyperplane such as

V3P — P ys((Z0, Z1, 22, Z3)) = (20, Z1, 22, = 23] (2.7)
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According to [23, Rem. 2.4(2)], it was observed by G. Mikhalkin in the early 2000s that
even-degree curves passing through collections of points interchanged by such reflec-
tions have opposite signs in the sense of [23]. The resulting vanishing of Welschinger
invariants is precisely the (P2, 3)-case of the first case of Proposition 1.3(2) with all
ui € H 6(P3). Reflections analogous to (2.7) can be readily defined for (P13 with
two different conjugations (with fixed loci (S 13 and S! x §2).

2.3 Lifting relations from Deligne-Mumford spaces

Let C be a generic constraint as in (2.3) so that
dim 0, (B J; X*) + dim € = dim X, + 2. 2.8)

We cut ﬁ:l(B; J; \)f(p) along all bad strata and obtain an oriented moduli space
9/511:1(3; J; f(p) with boundary; see Sect. 5.1. The forgetful morphisms (1.1) we

encounter take values in the subspaces /V,:/ y of RMg . of real curves with non-
empty fixed locus. We denote the induced morphisms from the cut moduli spaces
also by fxr . Let Y Cm,:/, 1 be a co-oriented bordered hypersurface whose boundary
consists of curves with three components and a conjugate pair of nodes.

By the assumptions above, the intersection of the maps

evXfrr

9/)\1,:1(3; J; fq&) —0 X % M,ﬁ/,,, «>CxTY (2.9)
is a one-dimensional manifold with boundary. Thus,
T (B; J: X7) - (C x 07) = + 990X, (B; J: X7) - (C x ), 2.10)

where - denotes the signed counts of intersection points in Xy ; x ﬂ,@ p-ForY C M,:, v
as in Lemmas 4.4 and 4.5, (2.10) translates into the relations between nodal curve
counts in Fig. 1; see Proposition 5.5. Each diagram in this figure represents counts
of curves of the corresponding shape constrained by C; the labels ec(S) ¢ 2Z and
Y under the diagrams on the right-hand side indicate that only intersections of some
strata of two-component maps with Y contribute to this relation. These relations are
the direct analogues of the relations of [5, Fig. 1].

2.4 Splitting properties for disk invariants

The nodal curve counts appearing in (2.10) and represented by the diagrams in Fig. 1
in general depend on the components of the constraint C and not just on the homol-
ogy classes represented by these components. However, these counts depend only
on the homology classes if J € J (f ¢ and C is G-invariant for an averager G for
X, w, ¢; ?tp) as in Definition 1.2. The right-hand side of (2.10) then splits into invari-
ant counts (1.17) of irreducible (¢, 7)-real curves exactly as [5] (where an averager is
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not needed) because of the vanishing of the intersection number in (2.6); see Proposi-
tion 5.6. The left-hand side of (2.10) splits into invariant counts (1.17) of irreducible
(¢, T)-real curves and the complex GW-invariants (1.5); see Proposition 5.7. While
the latter splitting is analogous to the splitting of [5, Prop. 5.3] in the WDV'V sense,
its proof involves counts of (¢, t)-real curves with insertions in H, (X — fd’), and not
justin H,(X).

The left-hand side of (2.10) counts nodal curves with one real component and one
conjugate pair of components; see Fig. 1. They arise from pairs By, B’ € H»(X)
such that

Bo+3(B) = B € Hx(X)

and decompositions {1, ...,Il} = LoULc. Let

CO =qg1 X - X gk X l_[Hl C (\}Etp)k X XLO and C/ = l—[Hl C XLC.

ielg ieLc

We need to determine the signed number Np, p'(Co, C’) of nodal curves as on the
left-hand side of Fig. 1 so that

o the real component has degree By and passes through the constraints Cyp, and
e one of the conjugate components has degree B’ and passes through the con-
straints C" (with some components H; replaced by ¢ (H;)).

By (2.8), this number vanishes unless

(L1) the number of (¢, t)-real degree By curves passing through Cj is finite, and the
number of degree B’ curves passing through C’ and another curve constraint is
finite, or

(L2) the number of degree B’ curves passing through C' is finite, and the number of
(¢, T)-real degree By curves passing through Cp and another curve constraint is
also finite.

In Case (L1), the number of (¢, t)-real degree By curves passing through Cy
is simply the corresponding disk GW-invariant (1.17); the G-invariance conditions
ensure that this number is well-defined as in Sect. 2.2. The number Np, 5/ (Co, C') is
then this disk GW-invariant times the number of degree B’ curves passing through C’
and a curve constraint representing Bp; the latter number is just a complex GW-
invariant (1.5).

In Case (L2), suppose G is an averager, J € J (Zb G and C is G-invariant. Let

1
GB' ={g.B': g€ G} and Aveg(B) = Gl § g«B € H (X).
geG

Let Cy, ..., Cy be the curves that pass through C’ and whose degree is in G B’; they
liein X — X" . Their (standardly signed) number is the sum

(HieLe)ys = IGB'|((Hierc)y
>
B"eGB’
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of the complex GW-invariants (1.5); the equality above holds because the constraint C'
is G-invariant. Thus,

[Cilx + -+ [Cylx = |GB'|((HieL)y Ave(B) .

The sum of the numbers Np, p»(Co, C') over all B” € G B’ is the signed number of
(¢, tv)-real degree By curves passing through Cp and CU. . UCy. While the homology
class of each curve C; in X is a specific element B” of GB’, the usual count (1.7) of
(¢, T)-real degree By curves passing through Cqy and C; depends on the homology
classof C; in X — x°. However, C1U. . .UCy is a G-invariant curve constraint because
the tuple C’ is G-invariant. Since the first map in (1.16) is an isomorphism,

X -1
[CI]X7\)?¢ +--+ [CN]X,\)??& = |GB/|((H,'),'€LC)B,{L*G} (AVGG(B/)).
Therefore,

X ’
> Ny 57(Co, C) = |GB'|((Hi)ieLe) | (HicLo» Aveg(BH)"°%,
B'eGH' Bo; X ;G

- <(Hi)i€LC)§’ Z«Hi)ieLov AveG(B//)i!?%"’;G

B"€GB' 0;

by the definition of the disk invariant (1.17). Since G acts trivially on HZ(X)"i, B" —
Aveg(B") lies in HQ(X)ﬁ. Along with the second case of Proposition 1.3(2), this
implies that the constraint Aveg (B”) can be replaced by B” above.

Theorem 1.5 follows from (2.10) and the splitting properties provided Proposi-
tions 5.6 and 5.7; see Sect. 5.3.

2.5 Computability of disk invariants

The WDVYV relation [13,16] for the genus 0 GW-invariants (1.5) is very effective in
determining these invariants from basic low-degree input whenever H2(X) generates
H?**(X) and £,,(B) > 0 for all spherical B € Hy(X); see [16, Section 10]. A similar
observation concerning the two ODEs of Theorem 1.5 and the disk invariants (1.17)
encoded by the generating function Qf) 2;5 is made in [1, Prop. 17]. The latter do
not include invariants with curve constraints that are not G-invariant. We next clar-
ify the condition necessary for the conclusion of [1, Prop. 17] and reduce all disk
invariants (1.7) of real symplectic sixfolds (X, w, ¢) with a choice of a connected
component X" c X? that admit an averager G as in Definition 1.2 to disk invariants
without curve constraints that are not G-invariant.

The cup product of H*(X) with H*(X, f(b) and the Poincare Duality isomor-
phisms (1.8) induce an intersection homomorphism

H,(X)? @ Hy (X — X)) — H,(x - X")? @.11)
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By the reasoning in the next paragraph, the natural homomorphism

Hy(X — X" — H,(x)? (2.12)

is an isomorphism for all p € Z. A sufficient condition for the conclusion of [I,
Prop. 17], beyond the complex case, is the surjectivity of the composition

N Hy (0P © Hy(0? — Hy(x — X7)? (2.13)

of (2.11) in degree (4, 4) with the inverse of (2.12) for p = 4. This is the case in
particular for (P3, 73) and (P!)3 with the two natural involutions.

In order to reduce all disk invariants (1.7) to disk invariants without curve constraints
that are not G-invariant, it is sufficient to show that insertions in the kernel of the first
homomorphism in (1.15) can be traded for real point insertions; this is achieved by

Proposition 2.1 below. The homology long exact sequence for the pair (X, X — fd’)
induces an exact sequence

s B XX S B —XD S B! — B(X, X - X))

. . NS L . .
Since the action of ¢ on the normal bundle A’X" of X in X is orientation-reversing,
excision and Thom isomorphism give

Hy(x. X - X ~ Hy X"y~ 2. Hyx, X~ XM)%. mx. x = X" = (0).
(2.14)
The first homomorphism in (1.15) is thus surjective, and its kernel is generated bg the

homology class of a unit sphere S(VN, pfd)) in the fiber of N’ \)f(b overany p € X .

. 0. . . ¢ .
An OSpin-structure 0s = (0, s) on X includes an orientation o on X . Along with
the symplectic orientation o, of X, o thus determines an orientation OJ\/’f(b of N'X

via the exact sequence
Nt N
0—TX —>TX}§¢ — NX — 0.

Along with the orientation of the normal bundle N (S(N, p§¢)) of SV, pfd)) in

N, pfqb by the outward radial direction, 0 -4 determines an orientation o ~d
NX SINGX )
of SV, p\)f(p) via the exact sequence

N 9 N
0— T(SWN,X")) — TW,X )|S(pr¢) — N(SW,X") — 0.
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Proposition 2.1 Suppose (X, w, @) is a compact real symplectic sixfold, os is an
OSpin-structure on a connected component X of X®, B € Hy(X) — {0}, and
Wi, ..., are elements of H*(X), H*(X, x? ), and H(X). If

l
k = %(Zw(B)—i—Zl — Zdegui) —1

i=1
and B satisfy (1.10), then

¢ ¢,08 ¢,08
voos UL PD O ([SVp X - o = 2{U1,. .., - 2.15
(1. PD o (IS, )]x—x¢)>3;x¢ i1 m)B;Xq) (2.15)

The motivation behind (2.15) is that a J-holomorphic curve passing though a point
p € X? intersects an infinitesimal sphere S(V p\)f ) at two points. By its proof in
Sect. 6.2, (2.15) holds without the restriction (1.10) if the left-hand side is replaced
by the real genus 0 GW-invariant of [8] enumerating (¢, t)- and (¢, n)-real curves
in (X, w), provided (X, ¢) satisfies suitable topological conditions so that this invariant
is defined. The projective space (P3, 73) satisfies such conditions.

An element ¥ of an averager G for (X, w, ¢; X(ﬁ) as in Definition 1.2 reverses an
orientation of A’X" and thus does not fix any nonzero element in the kernel of the
first map in (1.15). Along with the paragraph containing (2.14), this implies that the
first map in (1.16) is an isomorphism. Since the two maps in (1.16) are related by the
Poincare Duality isomorphisms (1.8), the second map in (1.16) is also an isomorphism.

2.6 Lower bounds for real curve counts

As only some elements of H>(X — X?) can be represented by holomorphic curves in
a real projective manifold (X, w, ¢), Theorem 1.5 and Proposition 2.1 lead to lower
bounds for counts of real algebraic curves in some real algebraic threefolds through
curve constraints. This is explained below.

If H C X is a (pseudo)cycle transverse to Xd), then
7= nx’ = p)nX’ (2.16)

inherits an orientation 0 from an orientation ON\)fd) of N X and the orientation 0y
of H via the exact sequence

00— Tﬁ¢ — THl|s —>Ny¢|v¢ — 0.
H H

Since ¢ reverses ONX% the orientation 5"’( S(H) of the intersection (2. 16) inherited from

the orientation o0y p) = ¢« (0g) of ¢(H) is the opposite of ¢ 0 . It follows that the
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boundaries

8(H — BNy H")). 3(H — BNy H")) N%"ﬂﬁd)

of the complements of small tubular neighborhoods B (N HH ) of H in H and
B(N¢,(H)H ) of H¢ in ¢(H) inherit opposite orientations from oy and oy),
respectively. We can thus glue the two complements along their boundaries to form a
(pseudo)cycle

(H.on ¢ (H). opn) C X — X°

The homology homomorphism induced by the inclusion of X — \)fd) into X sends the
element of H,(X — X ) represented by this (pseudo)cycle to [H]x + ¢«[H]x.

Suppose Hi, H, C X are (pseudo)cycles of dimension 4 so that H» is transverse
to X and H| is transverse to Hy, ¢ (H3), \ﬁz. In particular,

HiNH,, HiN$(Hy) C X — X° .
By the previous paragraph, the homomorphism (2.13) is described by

[Hi1xN([H2]x + ¢«([H2]x)) = [HmHZ]X,Y¢ + [qu)(HZ)]X,Yd’ . (217

Suppose that Hy, H,, H; C X are (pseudo)cycles of d1mens10n 4 and T is a cobor-
dism between Hz and I—{bz/ so that H2, H2, Y are transverse to X and H| is transverse
to Ha, H2’, H2, H2 Y. Thus, H ﬂT is a finite set of signed points and

) b
I(HINT — BWNu,nr(H,NY")) = HiNH; — HiNH> + SIN'X )‘ﬁd’ﬁ‘b
1

for a small tubular neighborhood B(Ng,ny (ﬁ?ﬂ?tp)) of H(f ﬂ?qb in Hy NT; the
equality above respects the orientations for suitable conventions for orienting the
intersections of cycles. Thus,

b b 0 b o
H|NH, s = |HINH, o +Lko(H,, Hy — H))[SWN,X o € H)(X — X ),
[Hi 2]X_X¢ [Hi Z]X_Xda o(Hy, Hy D[S, )]X—X¢ 2( h 1;)

where Lk, is the linking number with respect to the orientation o in \)f(p.
If Hy, H, CP3 are generic complex hyperplanes, (2.18) gives

[HiNH2]ps_gps = [HINT3(H2) [ps_pps = [SVGRPD |5 gy € Ha (P —RPY)

By (2.17), the sum of the first two homology classes above does not depend on the
choices of Hy and H,. Thus, only two classes, £_ and £, in H> (IP>3 — ]R]P’3) can be
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represented by complex lines and
Uy =0+ [SV,RP) |55 _pps € Ho(P? — RPY).
The image of (2.13) in this case is generated by the averaged line class

U= —([6=1+[£+]) € Ha(P® — RP%).

N =

Theorem 1.5 applied to (P, 73), an OSpin-structure os on RP?, and the subgroup
G of Aut(P3, t3) generated by a real hyperplane reflection 3 as in (2.7) determines
all open GW-invariants

(€pt")77° = (PDpa_gps (£), . .., PDps_gps (£), PDps(py), . . ., PDps (pD) ) s 5

a b
(2.19)

enumerating real degree d holomorphic curves in IP? that pass through generic repre-
sentatives for a averaged lines Z,b general points in CP3 —RP3, and 2d —a —2b general
points in RP? from the single number (Zt)ptoﬁ3 %% = £1 (the sign depends on 0s).
These numbers in degrees 1-8 are shown in [1, Table 4.2.2]; the degree 1-3 numbers
are reproduced in the third column of our Table 1. Inline with G. Mikhalkin’s observa-
tion in the early 2000s and the first case of Proposition 1.3(2), the numbers (2.19) with
d + a even vanish. The odd-degree a = 0 numbers agree with [3, Table 1] up to sign.
Proposition 2.1 then yields open GW-invariants of (P3, 13) with arbitrary insertions
in Hp(P3 — RP3). The fourth column in Table 1 shows all degree 1-3 numbers with
the insertions £_ and ¢ . Taking the minimum of the absolute values of the numbers
in each cell in this column, we obtain lower bounds for the numbers of real rational
curves passing through generic complex lines in P> — RP?, points in P> — RPP?, and
points in RIP3.

3 Topological preliminaries

For a real vector space or vector bundle V, let A(V) = Atﬂgp V be its top exterior power.
For a manifold M, possibly with nonempty boundary d M, we denote by

AMM) = MTM) = A’ TM — M
its orientation line bundle. An orientation of M is a homotopy class of trivializations

of A(M). We identify the two orientations of any point with £1 in the obvious way.
For submanifolds S’ C S C M, the short exact sequences

TM|s
0—TS — TM|s — NS= 7S 0 and
TS|y ™| TM|g
0— S = — NS'= — NSy = 0
N TS N TS NS|s TSIy
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Table1 The invariant count (Z“ ptb );3 0% of 73-real degree d rational curves in PP3 determined by an OSpin-

structure 0s on RIP3 through a conjugate pairs of averaged lines T=(_ + £4)/2, b conjugate pairs of
points in P3 —RP3,and 2d —a — 2b points in RP3, the analogous counts with a averaged lines replaced
by i lines £— and a — i lines £, the minimum of the absolute values of the latter counts, and the associated
count of complex curves

d cond (@pth) 7 (€4t el pth) 0 min CGW
1 Opt? 1 1 1 1
1 Opt! -1 -1 1 1
1 o1pt® 0 —1,1 1 1
1 22pt0 -1 0,—2,0 0 2
2 Opt? 0 0 0 0
2 Opt! 0 0 0 0
2 Opt? 0 0 0 0
2 olpt® 1 1,1 1 1
2 olpd -1 —1,-1 1 1
2 22pt0 0 -2,0,2 0 4
2 £2ptl 0 2,0,—-2 0 4
2 23pt0 -3 0,—4,—4,0 0 18
2 24pt0 0 8,8,0,—8,—38 0 922
3 Opt0 -1 -1 1 1
3 Opt! 1 1 1 1
3 Opt? -1 -1 1 1
3 Op3 1 1 1 1
3 olptd 0 1,—1 1 5
3 olpt! 0 -1,1 1 5
3 22pt0 0 1, -1 1 5
3 2ptd 5 4,6,4 4 30
3 £2pt! -3 —2,—4,-2 2 30
3 £2pt? 1 0,2,0 0 30
3 2ptd 0 —14,-6,6, 14 6 190
3 3pt! 0 8,4,—4,—8 4 190
3 4pt0 —13 16, —12, —24, — 12,16 12 1312
3 4pt! 1 —16,0,8,0,—16 0 1312
3 5ptd 0 16, 48,24, —24, —48, — 16 16 9864
3 £6pt0 -7 — 128, —96, 0,48, 0, —96, — 128 0 80160

The new lower bounds for real rational curves are in boldface

of vector spaces determine isomorphisms

M|~ A(S) @ ANS) and ANS) ~ ANsS) @ ANS)|, G
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of line bundles over S and S, respectively. A co-orientation of S in M is an orientation
of N/'S. We define the canonical co-orientation of,, of 9M in M to be given by the
outer normal direction.

If o is an orientation of M and o is a co-orientation of S in M, we denote by 050
the orientation of § induced by o and o via the first isomorphism in (3.1). If M is a
manifold with boundary, let

d(M,0) = (0M, d0) = (IM, 0§,,0). (3.2

If S’ C S is also a submanifold with a co-orientation og, in S, then the co-orientations
05 and oS, induce a co-orientation 05,05 of 8" in Z via the second isomorphism
in (3.1). If S has boundary, let

(S, 05) = (88, 905) = (0M, 0550%).

For a fiber bundle frq : M —> M/, we denote by T M = ker df v its vertical
tangent bundle. The short exact sequence

0— TM" — TM % = T — 0 (3.3)
of vector bundles determines an isomorphism
AMM) = f (M) @ M(T M) (3.4)

of line bundles over M. The switch of the ordering of the factors in (3.4) from (3.3)
is motivated by [5, Lemma 3.1(1)] and by the inductive construction of the orien-
tations oy ; on the real Deligne-Mumford moduli spaces /\_/11:1 in Sect. 4.1. If 0’ is
an orientation of M’ and Oj\/l is an orientation of 7MYV, we denote by 03\/1 o’ the
orientation of M induced by o'y, and o via (3.4).

Suppose f: Z—> M is a smooth map transverse to a submanifold Y C M. The
differential of f then induces an isomorphism from the normal bundle N'(f~1(Y))
of the submanifold f~!(T) C Z to the normal bundle N'Y of Y. The differential of f

thus pulls back a co-orientation 0% of T in M to a co-orientation o;,l = fro%

of £~1(T) in Z. The next observation is straightforward; see also the first diagram in
Fig. 2.

Lemma 3.1 Suppose §z : Z —> Z' is a fiber bundle, f': Z' —> M is a smooth
map transverse to a submanifold Y C M, oz and o%; are orientations of Z' and
T ZY, respectively, and 0% is a co-orientation of Y in M. The orientations {f'o
fz) oS (0% 02) and 0% (f*0S0z) of {f'ofz) ' (X) atu € {f'ofz} () are the
same if and only if (tk T Z?)(codim Y') is even.

If 0z, oy are orientations of smooth manifolds Z and Y, respectively, f: Z—Y
is a smooth map, and u € Z is such that d,, f is an isomorphism, we define

+1, if {duf}*((oY)u(z)) = (02)u;

su(f,0z;0y) = .
! —1, otherwise.
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If y € Y is a regular value of f and the set f~!(y) is finite, let

+

7O, = D sulfi0zs0p).
uef=1(y)

We abbreviate s,(f,0z;0y) and [f~'(0IE, ,, as s,(f,0z) and |~ (n)IE

0z,0y 0z’
respectively, whenever the orientation of Y is understood from the context. If o is

an orientation of
AMf) = A er2) — Z,

we define s, (f, 0) as s, (f, 0.z; oy) for some orientations 0 z of 7, Z and oy of Ty ()Y
inducing the orientation o of the fiber A,,(f) of A(f) atu. If y € Y is a regular value
of f and the set £~ !(y) is finite, let

T OE = Y su(f. 0.
ue f=1(y)

Let foq: M —> M’ be a fiber bundle. If Y C M is a submanifold and P € T,
then the differential dp (f 4|y ) is an isomorphism if and only if the composition

Te M _ oy (3.5)

TpM'=kerdpfpg — TpM —> =
TpY

is. If 0% is a co-orientation of Y and 01/}\/1 is an orientation of 7MY, we denote by
SP(OCTO-I;\A) € {£1} thesign of (3.5) vyith respect to 0% and o'y . By [5, Lemma 3.1(1)],
sP(ogr‘oﬁvt) is the sign sp (faqly, OCTUI/)\/I) of faoq at P with respect to the orienta-
tion 0%.0'  of

A(Fmlr) = A(TM) @ MNT)*
induced by 0% and o'y via the first isomorphism in (3.1) and (3.4). If in addition

f'+ M" — Y is a smooth map such that dj,,(p) f’ is an isomorphism, o" is an
orientation of M’, and oy is an orientation of Y, then

sp(f ofmlr. 05 (040 0y) = sp (0504 )siup) (f 05 0v) . (3.6)

Suppose that fz : Z— Z’ is another fiber bundle, the diagram

z ! M
le J/fM
L
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of smooth maps commutes, and 0% and o', ; are orientations on 7Z" and T M",
respectively. If u € Z is such that the restriction

d,f: T, 2" =kerd,fz — Tf(,,,)./\/lv 3.7

is an isomorphism, we define s,(f, 0%, ojw) to be 41 if this isomorphism is
orientation-preserving with respect to the orientations 0% and 0y, and to be —1 oth-
erwise.

For continuous maps f : Z2 — Y and g : T —> Y between manifolds with
boundary, define

My =ZpxY = [, P) € ZxT — 0Z)x (1) fu) = g(P)},
fxyg:Mpg—>Y, fxygu, P)= fu)=g(P).

We call two such maps f and g strongly transverse if they are smooth and the maps f
and f|yz are transverse to the maps g and g|sy. The space My , is then a smooth
manifold and

dimMys o +dimY =dimZ +dim T,
IMpg=(2-02) ;xg@TIL@BZ) pxo(T —3Y). (3.8)

If oz, oy, and oy are orientations of Z, T, and Y, respectively, and (u, P) € My g is
such that the homomorphism

T,Z®TpY — Truw)Y =TypY, (v,w) — d,f(v) +dpg(w), 3.9)

is an isomorphism, we define 5, p(f, 0z, g, 0v; oy) to be +1 if this isomorphism is
orientation-preserving with respect to oz @ o~y and oy and to be —1 otherwise. If f
and g are transverse and the set My , is finite, let

Myl = Y sup(f.0z.8.07500).

oz.ovioy
,PYeEM ¢

+
oz 0xi0y S s, p(f,0z,g8,0y)and

(Mg g |Uiz’ o+ fespectively, whenever the orientation of ¥ is understood from the con-
text.

Suppose that Z, X, M are smooth manifolds, Y C M is a submanifold, and

We abbreviate 5, p(f, 0z, g, 0v; oy) and [M 4|

f=(fi,f):Z2—Y=XxM and g=(g1,82): T — XxM

are smooth maps so that g5 is the inclusion. Let 0 z and ox be orientations on Z and X,
respectively, and o5, be a co-orientation of Y in M. For (u, P) € My , such that the
homomorphism (3.9) is an isomorphism, we define s, p(f, 0z, g, 0%; ox) tobe +1
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if the top exterior power Atﬂgp of this isomorphism lies in the homotopy class of
isomorphisms
top ~ A top top
AR (TuZOTpY) ~ A" (TuZ) ® A" (TpY)
~ AR (TrwX) ® AR (Tr M) ~ ARY (T w X ©Tp M)

determined by (0z)y, (0x) f;w)» and (05) p and to be —1 otherwise. If f and g are
transverse and the set My , is finite, let

|Mfsg|j: = Zsu,P(fv 02,8,0%§0x)~

0z,09;0x
(u,PYeMy o

Similarly to the above, we drop the orientation oy of X from the just introduced
notation if it is understood from the context.

Suppose e; : Z; —> X' and ey : Z, —> X’ are strongly transverse maps from
manifolds with boundary. Thus,

Z =M, = {(u1,u2) € Z1 x 25— (321) x (322): e1(u1) = e2(ua)} C 21 x 2,
is a smooth submanifold. For each u = (u1, u) € Z, the short exact sequence

0— T2 — T, 21072 — ToyupX' = Toyun X' — 0,
(v1, v2) —> dy,e2(v2) — dye1(vi),
of vector spaces induces an isomorphism

)m (Z) & )\(Tez(uz)x/) ~ )\ul (Zl) & )\uz (ZZ) -

Orientations 01, 07, and o’ of Z|, Z;, and X', respectively, determine an orientation
((01)e;-¢x(02)) o Of Z via these isomorphisms. We abbreviate this orientation as (01),, -
«,(02) whenever the orientation of X " is implied by the context.

Suppose in addition that f;: Z; — X and f>: Z, —> X» are smooth maps; see
the second diagram of Fig. 2. For all p; € X1 and p> € X>,

{(fis Mo} (p1s p2) = M, (3.10)
1:€2

et el sty
The next observation is straightforward.

Lemma 3.2 Suppose Z1, 2>, X', X1, X and ey, ey, f1, f>» are as above and in the
second diagram of Fig. 2 with

dim Z; + dim 2, = dim X’ + dim X; + dim X»

and 0y, 03,0, 0, 05 are orientations of 21, Z2, X', X1, X2, respectively. If e and e;
are strongly transverse, p1 € X is a regular value of f1, p» € X3 is a regular value
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fiH(pr)© /31 X1

z i’ /el l X, 1)(2
| | ] |
z- M 5 (o) ™~ 2, L X

Fig.2 The maps of Lemmas 3.1 and 3.2

of f>, and the differential of (f1, f>) |Me, ., at some point (uy, uz) of the space (3.10)
is an isomorphism, then

Suy,un) ((fl ’ f2) |Mel_g2 P ((01)61 '82(02))0/; 0/1 690/2)

= (_1)65141,142 (el|ffl(Pl)’ (fl*o/l)ol’ e2|f271(p2)’ (f2*0/2)02; 0/)1

where ¢ = (dim X')(dim Z; + dim X,) + (dim Z;)(dim Z; + dim X»).

Let Y be a smooth manifold, possibly with boundary. For a continuous map f :
Z—Y, let

QnH= (VJfE-K

K CZ cmpt
be the limit set of f. A Z;-pseudocycle into Y is a continuous map f: Z — Y from

a manifold, possibly with boundary, so that the closure of f(Z) in Y is compact and
there exists a smooth map 4 : Z’— Y such that

dim 2’ < dim Z — 2, Q(f) C h(Z), fOZ2) c BY)UR(Z).
The codimension of such a Z;-pseudocycle is dimY — dim Z. A continuous map
f: Z—>Y is bordered Z,-pseudocycle with boundary f: Z — Y if the closure
of f(2)inY is compact,
£coZ,  flz=1,
and there exists a smooth map h: Z'—> Y such that
dmZ <dimZ -2, Qf)chZ), fBZ-2)c@Y)URZ).
If Z is one-dimensional, then Zis compact and f (85 —Z)CoY.

Two bordered Z,-pseudocycles fi: Z; —> Y and f : Z; —> Y as above are
transverse if

e the maps f] and fi are strongly transverse and
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e there exist smooth maps ﬁl : gi — Y and i[z : Z~é —> Y such that El is transverse
to f» and f2|8§2’ h» is transverse to f] and f1|a§1’ and

dim 2| <dim 2, -2, dimZ} <dimZ, -2, Q) chi(Z). Qf)chiZ,).
In such a case,
fixyfa:Mp 75— Y

is a bordered Z;-pseudocycle with boundary (3.8).

A Steenrod pseudocycle into Y is a Zp-pseudocycle f: Z — Y along with an
orientation o of A(f). A pseudocycle into Y is a Z-pseudocycle f: Z —>Y along
with an orientation o of Z. A bordered Z,-pseudocycle f: Z — Y with boundary f
and an orientation 3 of Z is a bordered pseudocycle with boundary (f, 0) if 95 = o.
If (f, o) is a codimension 0 Steenrod pseudocycle, then the number

deg(f.0)= Y su(f.0) €Z (3.11)
uef=1(y)

is well-defined for a generic choice of y € Y and is independent of such a choice. We
call (3.11) the degree of (f, 0). If (f, 0) is a codimension O pseudocycle and oy is
an orientation of Y, then the number

deg(f,0:0r) = Y su(f.0i0y) €Z
uef=1(y)

is well-defined for a generic choice of y € Y and is independent of such a choice.
We call this number the degree of (f, 0) with respect oy. If the orientation oy is
understood from the context, we again drop it from the notation.

4 Moduli spaces of stable curves
4.1 Main stratum and orientations

Forl € ZZ9, let [/] ={1,...,1}. For a finite set L with |L|> 3, we denote by Mo,L
the Deligne-Mumford moduli space of stable rational curves with L-marked points.
Let Mo 1 C /\_/lo,L be the main stratum of Mo,L, i.e. the subspace parametrizing
smooth curves. For [ € Z1 with [ >3, we write /Vo,l and My instead of /Vo,[l] and
Mo (11, respectively.

Note. We use the notions of marked stable rational curve and stable genus 0 map in
the standard way, e.g. as in Definitions D.3.1 and 5.1.1, respectively, in [ 14]. Thus, the
former is a connected nodal curve X of arithmetic genus O with distinct marked smooth
points so that its automorphism group as a marked curve is finite (which implies trivial
in this case). The last condition means that every irreducible component of ¥ contains
atleast three special points, i.e. marked or nodal points. The latter is a continuous map u
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from a connected nodal curve ¥ of arithmetic genus 0 with distinct marked smooth
points so that its automorphism group as a marked map is finite. If « is J-holomorphic
on each component, the last condition means that every irreducible component of ¥
on which u is constant contains at least three special points.

For finite sets K, L with | K |+2|L|> 3, we denote by /\_/l;( 1, the Deligne-Mumford
moduli space of stable real genus 0 curves

C = (2, (iek, (&, 2] ier. 0) 4.1)

with K-marked real points, L-marked conjugate pairs of points, and an anti-
holomorphic involution o with separating fixed locus. This space is a smooth manifold
of dimension | K| +2|L|— 3, without boundary if K # @ and with boundary if K = &.
The boundary of ﬂg’ ; parametrizes the curves with no irreducible component fixed

by the involution; the fixed locus of the involution on a curve in BMS’ 1 1s a single
node. The main stratum M% , of My , is the quotient of

{(Gdiek. @ z7)ier): xi € ST, FeP - =1,

xXi#xj, 5 #2,2 Vi#Ej)

by the natural action of the subgroup PSL;C C PSL,C of automorphisms of P!
commuting with t. For k, [ € 7Z9 with k + 21 > 3, we write /V,Z’l and M,f’l instead
-7 .
of My 1y and My 7, respectively.
If | K|+ 2|L|>4andi € K, let
R . T T
fr.Li Mg — Mg_inL 4.2)
be the forgetful morphism dropping the i-th real marked point. The restriction of f% I

to the preimage of M}@{i}’ ; isan S I_fiber bundle. The associated short exact
sequence (3.3) induces an isomorphism

~ R R
M(Mi.) > kLA ;(—{i},LHM;_L ® (ker de,L;i)’M;(’L . (4.3)

If |K|+2|L|>5and i € L, we similarly denote by
fi L M;(,L - /W;(,L—{i} 4.4)

the forgetful morphism dropping the i-th conjugate pair of marked points. The restric-
tion of fx r.; to ./\/l% 1 18 a dense open subset of a P!-fiber bundle and thus induces
an isomorphism

X(M;(,L) ~ f;vl‘ﬁk(M}(»L*{i})‘M;L & )»(kerde’L;i)’M;‘L . (45)
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For each C € M ; asin (4.1),
kerdch,L;,- ~ ngrPl

is canonically oriented by the complex orientation of the fiber P! at z . We denote
the resulting orientation of the last factor in (4.5) by 0 .Fork,l,i e Z>0 satisfying
the appropriate conditions, we write f;.; and fk,l; ; 1nstead of f[k]’[l] and fiky, 000>
respectively.

Suppose L contains a distinguished element 0 and C € M ; is as in (4.1) with
T =PL Let D2 C C C P! be the disk cut out by the fixed locus S! of T which
contains Zo We orient S' C ]D)2 C C in the standard way (this is the opposite of the
boundary orientation of ]D)2 as deﬁned in Sect. 3). If |K| 4+ 2|L|>4 and i € K, this
determines an orientation 01 of the fiber

N
5

kerdefy ;. ~ Ty, S'

of the last factor in (4.3) over f K.L: ;(C). This orientation extends over the subspace
—T% —_—T
Mg i CMg L

consisting of curves C as in (4.1) such that the real marked point x; of C lies on the
same irreducible component of X as the marked point Z(Ji .If L is a nonempty subset
of Z* containing 1, we take its distinguished element 0 to be 1l €L Fork,leZ*
with k +2/>4 and i € [k], we write Mk 1.; instead ofM [,] ;-

We now define an orientation oy ; on Mli,l with k € Z>O, leZt, andk+1>3
inductively. The space Mf’l = ﬂf,l is a single point; we take 0; 1 = 41 to be its
orientation as a plus point. We identify the one-dimensional space /WSQ with [0, o]
via the cross ratio

+ - 4+
L T Ty

902t Mg, — [0,00], o(lzf.2)). (55, 25)]) = 2—L 22 —L
L T T4
1 —zf/z;P,

S 4.6)

F

see Fig. 3. This identification determines an orientation 0p > on m&z. Ifk +20 >
4 and k > 1, we take of; so that the isomorphism (4.3) with (K, L, i) replaced
by ([k], [{], k) is compatible with the orientations o ;, 0x—1,;, and o,iR on the three line
bundles involved. If k 4 2] > 5 and [ > 2, we take o4 ; so that the isomorphism (4.5)
with (K L, i) replaced by ([k], [!],]) is compatible with the orientations ok ;, 0k /—1,
and 01 By a direct check, the orientations on M} 12 induced from MO 5 via (4.3)
and M7 11 via (4.5) are the same. Since the fibers of fk 11 M, are even- d1mens10na1
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Fig.3 The structure of ﬂaz

it follows that the orientation oy ; on M,Z ; 18 well-defined for all / € Zt and k € 7220
with k 4 21> 3.
For L*C[l] and C € M; ; asin (4.1), let

8. =|{i el —L*: z ¢ DA} +2Z € Zo.

In particular, 8 (C) = 0. The functions &7+ is locally constant on M; ,. We denote
by ok .1+ the orlentatlon on M’ k.l which equals o ; at C if and only 1f 8'3* ) =0.
The next statement is stralghtforward

Lemma 4.1 The orientations oy ;1+ on My, with k, € 7ZZ% and 1 € L* C (1] such
that k + 21 >3 satisfy the following properties:

(opm1) theisomorphism (4.3)with (K, L, i) replaced by ([k+ 1], [1], k+1) respects
the orientations o1 j.1*, Ok .L*, and Ah

(0 Am2) the isomorphism (4.5) with (K, L, i) replaced by ([k], [l + 1], 1+ 1) respects
the orientations O |41, 1<yl+1}, Ok,I;1L* and 0;:-1;

(0Mm3) the interchange of two real points x; and x  reverses o j.+;

(om4) ifi, jelll 1 € L'CL*U{i, j}, L* C L'U{i, j}, [L*| = [L'| if 1 ¢{i, j},

C € M} ,, and the marked points z;" and Zj_ are not separated by the fixed

1 . . . + -
locus S* of C, then the interchange of the conjugate pairs (z;,z; ) and
(z;“, z;) respects the orientations oy ;.1 at C and oy ;. at its image under
the interchange;
. . . . . + - \1s %.
(0A15) the interchange of the points in a conjugate pair (z;, z; ) withi € [I] — L*;
preserves Ok |. [+,
. . . . . + - P %
(opm6) the interchange of the points in a conjugate pair (z;", z; ) withi € L* — {1}
reverses Ok j.L*;
(o pmT) the interchange of the points in the conjugate pair (zT, 7| ) preserves o . *
ifand only if k +1 — |L*| ¢27Z.

Suppose K, L are finite sets so that |K| + 2|L| >3, K is ordered, and L contains
a distinguished element 0. Let L* C L. We then identify K with [|K|] as ordered sets
and (L, 0) with ([|L|], 1) as pointed sets. Let L’ C [|L|] be the image of L* under the
latter identification. We denote by ok .7+ the orientation on MT K.L obtained from
the orientation oy ;.;» on M r.; Via these identifications. By Lemma 4.1(o M4), the
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orientation ok 1.7+ does not depend on the choice of identification of (L, 0) with
([1L11, 1) as pointed sets. If K C Z, we take K to be ordered as a subset of Z.

4.2 Codimension 1 strata and degrees

The codimension 1 strata of/\_/t,ﬁ,,—aﬂ,ﬁ,l correspond tothesets {(K1, L1), (K2, L2)}
such that

[k] = K1uKy, []=LiULa, |Ki[+2|L1[ =2, |Kz[+2|L2] = 2.

The open stratum S corresponding to such a set parametrizes marked curves C as
in (4.1) so that the underlying surface X consists of two real irreducible components
with one of them carrying the real marked points x; with i € K; and the conjugate
pairs of marked points (zj‘, z; ) with i € L and the other component carrying the
other marked points. A closed codimension 1 stratum S is the closure of such an open
stratum S. Thus,

= =T -—T
S~ Mgk, X Moy, S~ Mok, X Miojuky. L, (4.7)

with the real marked point xo corresponding to the node on each of the two irreducible
components.

Let/ € ZT.If S is a codimension 1 stratum of ﬂ;, - BM,:J andC € S, we denote
by ]P’{ the irreducible component of C containing the marked points zf, by IP’% the other
irreducible component, and by S 11 - ]P){ and S% C IP’% the fixed loci of the involutions
on these components. For r = 1, 2, we then take

K, =K, (S) and L,=L,(S)

in (4.7) to be the set of real marked points and the set of conjugate pairs of marked
points, respectively, carried by IF’}. Let 6r(S) € {0, 1} be the parity of the permutation

[k] — K1(SHUK2(S) = [k]

respecting the orders on the subsets K1 (S), K2(S) CZ. For L*C[l/]andr = 1, 2, we
define

L¥(S) = L.(S)NL* C [1].

An orientation 0§, » of the normal bundle NS of Sin M,: ; atC € § determines a
direction of degeneration of elements of M, to C. The orientation o4 j;.+ on ./\/l,f |
limits to an orientation oy j.7+.c of A¢c (ﬂ,: ;) obtained by approaching C from this
direction. Along with 0. . 0y j; .+;c determines an orientation doc 0 1; 1+ of Ac(S)
via the first isomorphism in (3.1). If in addition LT(S), L5(S) # @, leti € L(S) and
i5 € L5(S) be the smallest elements of the two sets. The two directions of degeneration
of elements of M ; to C are then distinguished by whether the marked points zi*%, ZiE
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of the degenerating elements lie on the same disk D? cut out by the fixed locus S' or
not. We denote by ogf,JC’ the orientation of Az S which corresponds to the direction of

degeneration for which zit , zit lie on the same disk D? and by O?-E the opposite orienta-
1 2 ’
tion. Let o;l;”;c and of;L*;c be the orientations of A¢ (/\/l,:’,) and A¢(S), respectively,

induced by og% as above. We denote by os.7+ the orientation on S obtained via the
first identification in (4.7) from the orientations oy x, 1, Lx(s) On M{T()}u Ki.L with
if € P] as the distinguished point and 0o}k, £,; 3(s) On M{TO}uKz,Lz and ij € L as
the distinguished point.

Lemma4.2 Suppose k,I € ZZ° with k +21 >3, 1 € L* C [I], and S C My, is
a codimension 1 disk bubbling stratum S with L5(S) # @. The orientations os;+,
ofsr,L*, and og. ;. on L(S) satisfy

. of o iffSR(S)=k + 1 mod 2;
S;L* = Z . ~
og.p+ SR ZIKI(S)] + [L2(S) — L3 (S)].

Proof Forr =1, 2, let
Ly = L:(S), Ly =L}(S), K, = K (9).

If|L*=[/=2andk =0,S5 =S = S isapoint and 0., = +1. The claim in this
case thus holds by the definition of the orientations 0 2;[2] = 00,2 on /\/16,2 and og%
on N'S. Since the orientation 0g .[;j =09, with />3 (resp. 0} ;=07 with [ >2) is
obtained from the orientations 0g ;_1.[;—1] (resp. 01,—1:/—1]) and ol+, it follows that
the claim holds whenever L* = [[] and k = 0.

LetC € Sbeasin (4.1). Suppose |L*| < [ and k = 0. Let /{ and [§ be the numbers

of the marked points z; of C with i € [/] — L* on the same disk as z;, =z and on
1

the same disk as zl.t, respectively. By definition,
2

= i + IS+
01,L1;LT|M1 - (_1) Iol,Ll;Ll |M1 s US;L* == (_1) 1 205;[[]1

— (_1)llr+(|L27L2|712')OE; -

15 —
ol,Lz;LE M, = (_1) 201,L2;L2|M2 s OS;L*

Thus, the claim in this case follows from the L* = [/] case above.
Suppose k > 0, S C M, is the image of S under the forgetful morphism

. T T
f. Mk,l — MO,I

dropping all real marked points, C" = §(C), and (C{, C}) € M} x M) is the corre-
sponding pair of marked irreducible components (with 1 real marked point each). The
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orientation og. 7+ on T¢ S is obtained via isomorphisms

(TeS, 05,1+) = (T Mi, 01, Ly:1) @ D TSt @ (Tey M, 01.1y:13) © D TS

iek i€k,
~ 1 1
~ (Tep My o1y ) © (T My, 01,1,:13) @ D TS| © D TS,
i€k ieKy

~ (TS 0g.00) ® @D TSI © P TS
ek iekKy
4.8)
from the standard orientations on Sl1 and S21 determined by the marked points zf’
and z:%. The second isomorphism above is orientation-preserving because the dimen-
sion of T¢; M is even.
Let C € ./\/l,E ; be a smooth marked curve close to C from the direction of degen-
eration determined by og;i and C' = f(C~ ). The orientation oi 1+ at C is obtained via
isomorphisms

i=k
(TS, 0% 1) @ (NES, 05™) ~ (TeM; s oxine) ~ (T MG 1, 001+) DED TS
i=1
i=k
~ (TeS', 05,1 ) &N S o57) DTS
i=1
i=k
~ (-DN(Te S 0., ) DTS & (NS, 05™).
i=1
4.9)
By (4.8), (4.9), and the k = 0 case above, the claim in the general case holds. We note
that the lines 7S I withi € K, have opposite orientations in (4.8) and (4.9) in the
minus case. O

For i € [I], we denote by
—-—T = —-—T
Si CMk,l and Si CMk,l
the open codimension 1 stratum parametrizing marked curves consisting of two real
spheres with the marked points zii on one of them and all other marked points on the

other sphere and its closure, respectively.
< 47 2 4C - . . . <
If SC M, ; — dM,; ; is aclosed codimension 1 stratum different from S, let

= -—T -—T
fs:i1: 8 —> Mg (s).0,5) X M{ojuka(s).La(s) (4.10)

denote the composition of the second identification in (4.7) with the forgetful mor-
phism

R . 557 -—T
faa - Mok, 5).215) — Mk(5).L1(5)
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asin (4.2) dropping the marked point xg corresponding to the node. The vertical tangent

bundle of fs.1|s is a pullback of the vertical tangent bundle of ﬂ%ﬂ Mgk szics 2N
UK (S),L]

thus inherits an orientation from the orientation olfd of the latter specified in Sect. 4.1;
we denote the induced orientation also by olfd. It extends over the subspace

S*¥ S c My,

of curves C so that the marked point xp of the first component of the image of C
under (4.7) lies on the same irreducible component of the domain as the marked point
corresponding to Zil—.

Let T C /V,: ; be a bordered hypersurface. If k + 2/ >4 and i € [k], we call T
regular with respect to fIlRil;i if T C M;ﬁ, f,lRil;i(T — T) is contained in the strata
of codimension at least 2, i.e. the subspace of /71:—1, ; parametrizing curves with at
least two nodes, and f,g ;:;(07) is contained in the union of aﬂ,ﬁ_ 1, and the strata of
codimension at least 2. By the last two assumptions, fﬁ ;.17 s @ Zp-pseudocycle of
codimension O; see Sect. 3. By the first assumption, the orientation o]iR of the last factor

in (4.3) and a co-orientation 05 on Y induce a relative orientation 0. ol.R of f,iR il
Let

deg{-R(T, U%r) = deg(fﬁl;,’ Ir, U%OE'R)

be the degree of the Steenrod pseudocycle (ff ilrs 0% o]iR); see (3.11).
Suppose in addition that § Cm,:y, - aﬂ,ﬁ, ; is a codimension 1 stratum. We call T
regular with respect to S if T and Y are transverse to S in /V,: I

_ —-_—T
TNS~ Y1 X Migyik, (), L2(5)
under the second identification in (4.7) for some Y C/\_/l{ré}*uKl(S),Ll(Sﬁo’ fia ((C -

YT)NS) is contained in the strata of codimension at least 2 of the target of fs:1, and
fs:1(0T NS) is contained in the union of the boundary and the strata of codimension
at least 2 of the target of fs;. By the first and the last two assumptions, fs;1|ynq3 is @
Zs-pseudocycle of codimension 0. By the first assumption, a co-orientation 0. on Y

il . . .
in M, ; determines a co-orientation

O’CrﬂS = 06T|Tm§
on YNS in S. By the second assumption, YNS C S*. By the first two assumptions,

S#£S8if Tﬁgyé @ and that oﬁr and the orientation o]fd of the fibers of the restriction
of (4.10) to S specified above induce a relative orientation 0§ ¢0%; of fs. 1|3 Let

degs(T’ O%r) = deg(fs;l lrrss °’§r°§d) = deg(fS;IHmEv °%ms°§d)~
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We call abordered hypersurface Y C /\_/l,: ; regularif Y — Y is contained in the strata
of codimension at least 2 and Y is regular with respect to the forgetful morphism ff L

for every i € [k] and with respect to every codimension 1 stratum § C /V,f 1= aﬂ,ﬁ B
For such a hypersurface, YNS| = @.

4.3 Codimension 2 strata and bordisms

Suppose [ >2 and k 42/ > 5. The moduli space ﬂ,: ; contains codimension 2 strata I
that parametrize marked curves C as in (4.1) so that the underlying surface X consists
of one real component IP’(l) and one pair IP’;E of conjugate components; see Fig. 1. We
do not distinguish these strata based on the ordering of the marked points on the fixed
locus S 11 CIF’(I) of the involution. For such a stratum I, let

Lo(T), Lc(T) c Z*

be the subsets of the indices of the conjugate pairs of marked points carried by ]P’(l) and
PL U]P’i_, respectively. In particular,

|Lc(M] =2 and  |Lo(M)|+ |LeM)| =1
The closure T of I' decomposes as
T~ My ojuzom * Mo, opuLem) (4.11)
We call a codimension 2 stratum as above primary if the marked point zf’ of the
curves C in T is carried by PL UIP’BF.

For a primary codimension 2 stratum I" and C € I", we denote by IP ﬂr the irreducible
component of C carrying the marked point zf. If in addition L* C [/], let

LET) = Lo(M)NL* C [1].

We denoteby L* (I') C L¢ (') the subset of the indices of the marked points z;” withi €
L* carried by Plr. The second factor in (4.11) is canonically oriented (being a complex
manifold). Let or. 7« be the orientation on I" obtained via the identification (4.11) from
. . . L (T
the orientation ojy (ojuL,(r):(0juLg(r) 00 My (ojur(r) times (= DIE=MI
With the identification as above, let

— — _
7wy, o T — My ojuzery: Mo ojuLe )
be the projections to the two factors. Denote by
LR — M/ and L8 — M
r [k],{O}uLo(T) r 0,{0}uLc (")

the universal tangent line bundles at the first point of the 0-th conjugate pair of marked
points and at the 0-th marked point, respectively. The normal bundle AN'T" consists
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of conjugate smoothings of the two nodes of the curves in I'. Thus, it is canonically
isomorphic to the complex line bundle

Lr = nf‘ﬁ%@cn’zﬁ(g —TI.

The next observation is straightforward.

Lemma 4.3 Suppose k,l € 720 and 1 € L* C [[] are such that k + 21 > 3. Let
- . . . . . .

' C M, ; be a primary codimension 2 stratum. The orientation oy on NT induced by

the orientations o j.1= on /\/l,f ; and or;p« on I agrees with the complex orientation

Ofﬁr.

The two relations of Theorem 1.5 are proved by applying (2.10) with the hypersur-
faces T CM?Z and Y C ﬂfm of Lemmas 4.4 and 4.5 below. These hypersurfaces are
regular, in the sense defined at the end of Sect. 4.2, and in particular are disjoint from
the codimension 1 stratum S} of the moduli space. All notation for the codimension 1
strata and the degrees is as in Sect. 4.2. Since og; = 0k ;;[1],

or;[] = 010k, 4.12)

in the cases of Lemmas 4.4 and 4.5. Let P* ¢ Mi,z be the three-component curve
so that ZT and zzi lie on the same irreducible component.

Lemma 4.4 [5, Lemma 4.4] There exists an embedded closed path T C ./Viz with a
co-orientation 0% so that Y is a regular hypersurface and

(Y, 0%) = (P, 0% )u(P™, 05%-), degIF(T, 0f) =1, degg,(Y,05) =—1.
(4.13)

The moduli space ﬂ(rm is a 3-manifold with the boundary
=T _ott, ot—, o+ o
Moz =523 USy; USy Uy ,

—tt - . . .
where S; i~ Moa~ $2 is the closure of the open codimension 1 stratum Sii of

curves consisting of a pair of conjugate spheres with the marked points zl?JE and zj#
on the same sphere as zf; see [10, Fig. 4] and the first diagram in Fig. 4. There are

four primary codimension 2 strata Fii, withi = 2, 3,1in M(T) 3. The closed interval F?_
(resp. T'; ) is the closure of the open codimension 2 stratum 1"1.Jr (resp. I';") of curves
consisting of one real sphere and a conjugate pair of spheres so that the real sphere
carries the marked points zijE and the decorations * of the marked points on each of the

conjugate spheres are the same (resp. different); see the last two diagrams in Fig. 4.
Let

ot 4 — —
r, =T}u(T, nS) cT,

be the complement of the endpoints of F:r.
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“

N

|

2 o
™

(o?rl-i-
(ot\l
o,

St

Fig.4 Elements of open codimension 1 and 2 strata of ﬂa:;, with {i, j} = {2, 3} in the first diagram and
{i, j, k} = {1, 2, 3} in the other four

Lemma 4.5 [S5, Lemma 4.4]) There exist a bordered surface Y C ﬂéﬁ with a co-

orientation 05 and a one-dimensional manifold y' C M, 5 with a co-orientation 0},

. i . . =t ...
so that Y is transverse to all open strata of My 5 not contained inany I'; withi = 2, 3,
Y is a regular hypersurface, and

O+ O+ o o
(", 0%) = (T, o;;)u(r3 : —o?;)u(r2 : o‘;z,)u(r3 : —o“rs,)u(y’, 05,),

Y CoMgys,  degg(Y.05) =1, degg(T.0%) =—1. (4.14)

5 Real GW-invariants

We introduce notation for moduli spaces of stable maps to a real symplectic mani-
fold (X, w, ¢) and for their strata in Sect. 5.1. We then formulate three key structural
propositions in Sect. 5.2 and deduce Theorem 1.5 from them in Sect. 5.3. The eval-
uation maps from the moduli spaces of stable maps take values in ordered products
of copies X and X?. For the remainder of the paper, we take the default orientations
of these products to be given by the symplectic orientation o, and the orientation o

of \)f(b encoded by the OSpin-structure 0os= (0, ) on Yd) under consideration.
5.1 Moduli spaces of stable maps

Let (X, w, ¢) be areal symplectic manifold, §¢ be a topological component of X?, and
G be a finite subgroup of Aut(X, w, ¢; \)f¢). For finite sets K, L with | K|+ 2|L| >3,
we denote by HK 1. the space of pairs (J, v) consisting of J € jf;G and areal G-
invariant perturbation v of the 9;- equation associated with ﬂ} 1 asin[9, Section 2].

For k, | € Z70 with k + 21 >3, we write Hk G instead ofH [1 .G the same applies
to all spaces of maps and morphisms defined below.
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For (J,v) € H",é"zz,G, areal genus 0 (J, v)-map with K-marked real points and
L-marked conjugate pairs of points is a tuple

u=(u: T — X, (5)iek. @, 27 DieL. 0) (5.1)

such that
C= (%, iek, (&, 2] ieL. 0) (5.2)

is a real genus 0 nodal curve with complex structure j, K-marked real points, and
L-marked conjugate pairs of points and u is a smooth map satisfying

1

uoo = ¢ou, dyul, = (dzu + Jodzuoj) = v(z, u(z)) VzeX.

[\

A map u is called simple if the restriction of u to each unstable irreducible component
of the domain is simple (i.e. not multiply covered) and no two such restrictions have
the same image. The fixed locus X of o in (5.2) is either a single point or a tree of
circles (possibly a single circle). We call a map u as in (5.2) Z;-pinchable if K = @
and either X7 is a single point or the element of Hy (X ¢ 7,) determined by u|xe is 0.
For an automorphism 4 of (X, o), let

hu= (woh™: £ — X, (h(xi)iek, (h(z), h(z NieL, 7).

Two tuples as in (5.1) are equivalent if they differ by such a reparametrization /.

Let B e Hy(X) and (J,v) € HZ"’Z,G. We denote the moduli space of the equiva-

lence classes of stable real genus 0 degree B (J, v)-maps with K -marked real points
and L-marked conjugate pairs of points as in (5.1) such that

7#@ and u(E?)C x?
_ \/¢
by Mg r(B; J,v; X ). Let
— s ¢ — ~¢
My (B J,v; X°) CMk (B; J,v; X)
and Mg r(B; J,v; ?p) C ﬁ;L(B; J,v; ?qb)

be the subspace of simple maps and the (virtually) main stratum, i.e. the subspace
consisting of maps as in (5.1) from smooth domains ¥, respectively.
The forgetful morphisms (4.2) and (4.4) induce maps

Rx .00 ®,¢ * R WoR ®,¢
K,L;i‘Hl(f{i},L;G >Hy'1.c and fK,L;i'HK,Lf{i};G >Hy 1.6
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respectively. For each v € H“,é’ip{i}y L:G andv € H‘,‘é’fizf (G0 We also denote by

B L P (B5 150,05 X7) — D0 (B 7,0 X)) and 53)
fK.Li ﬁK,L(B; J koL X(p) — ﬁK,L_{,'}(B; J, v; Xd’)

the forgetful morphisms dropping the i-th real marked point and the i-th conjugate
pair of marked points, respectively. The restriction of the second morphism in (5.3)
to

Mk L(B; J, g1V X(b) C Mk (B; J, fx..ivs fqb)

is a dense open subset of a P!-fiber bundle. We denote by oi+ the relative orientation

of this restriction induced by the position of the marked point zl.+. The restriction of
the first morphism in (5.3) to the preimage of

Mk iy, (B: I, v; §¢) C ﬁkf{i},L(B§ J,v; §¢)

is an S!-fiber bundle. If L contains a distinguished element 0, we denote by o]l.R the
relative orientation of this restriction defined as in Sect. 4.1.

For ¢ € Z%, a (virtually) codimension ¢ stratum S of ﬁK,L(B; J,v; fq)) is
a subspace of maps from domains ¥ with precisely ¢ nodes and thus with ¢ + 1
irreducible components isomorphic to P!, It is characterized by the distributions of

o the degree B of the map components u of its elements u as in (5.1),
e the K-marked real points, and
e the /-marked conjugate pairs of points

between the irreducible components of X. There are two types of codimension 1 strata
distinguished by whether the fixed locus X of o consists of a single point or a wedge
of two circles. These two types are known as sphere bubbling and disk bubbling,
respectively. If (1.10) holds, no element (5.1) of ﬁk, L(B; J,v; ftp) is Zy-pinchable
and sphere bubbling does not occur.

Foreachi € K, let

— ¢ _
v My (B; J,v; X)) — X?, v (lu, (5))jex, (2 27) jer, 01) = u(x),
54
be the evaluation morphism for the i-th real marked point. For each i € L, let

— ¢ _
vl My 1(B; J,v; X7) — X, evi ([u, () jex, ], 2])jer, o) = u(zh),
(5.5)
be the evaluation morphism for the positive point of the i-th conjugate pair of marked
points. Let

ev= l_[ev]lR xl_[evf: My (B J,v; f(ﬁ) — fK,LE(yqs)K x Xt (5.6
iekK ielL
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be the total evaluation map. We will use the same notation for the compositions of
these evaluation maps with all obvious maps to 97?1(, rL(B; J,v; qu).

Suppose k € ZZ% and [ € ZT with k + 2/ > 3. Let S be a codimension 1 disk
bubbling stratum of DJTk (B J,v; X ¢) We call the irreducible component ]P’l of the
domain ¥ of an element u of S carrying the marked points zl the first bubble and
the other irreducible component IP’l the second bubble. For r = 1, 2, let

K. (S)Clk] and L,(S) Cll] 5.7)

to be the subsets of the indices of real marked points and conjugate pairs of marked
points, respectively, carried by }P’,l. We denote by B, (S) € H>(X) the degree of the
restriction of the map components u of the elements u of S to }P’}. In particular,

[k] = K1(S)UK2(S), [I1=Li(S)UL(S), Lu(B) = Lu(Bi(S)) + Lu(B2A(S)).
Let
Sc ﬁk,l(B; J,v; \)?¢)

be the virtual closure of S, i.e. the subspace of maps u as in (5.1) so that the domain ¥
can be split at a node into two connected (possibly reducible) surfaces, 3| and ¥», so
that the degree of the restriction of the map component u of u to X is B (S), the real
marked points x; with i € K1(S) lie on X1, and so do the conjugate pairs of marked
points z- with i € L1(S).

If in addition 1 € L* C[I], let

L{(S) = Li(S)NL*,  L3(S) = La(S)NL*,
£, (B2(S)) (5.8)

ep(8) = — - |K2(S)| = [L2(S) = L5(S)] .-

We denote by
SJTZI;L*(B; s X% c M, ,(B: J, v X7)

the subspace of simple maps that are not Z;-pinchable and

e have no nodes, or
e lie in a codimension 1 disk bubbling stratum S with e;«(S) € 2Z, or
e have only one conjugate pair of nodes.

Let 93?;( 1L+ (B; J,v; 3(/¢) be the space obtained by cutting ﬁk 1(B; J,v; fqb)
along the closures S of the codimension 1 strata S with e7+(S) ¢ 2Z. Thus,

smk 1L+ (B; J,v; X ) is a manifold with boundary whose boundary double covers S
for each codimension 1 stratum S of imk 1(B; J, v; X ) with 7+ (S) ¢ 2Z. The union
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of these covers and the sphere bubbling strata, if any, form the (virtual) boundary of
93Tk,z;L*(B; J,v; Yb). Let

q: M s;1+(B: J ., v: X% — M1 (B: J, v; X% (5.9
be the quotient map and

eV]lR: ﬁ?k,l;L*(B; J,v; fq&) — 3(/¢, evl.+: ﬁkﬁl;L*(B; J,v; fqb) — X,
ev: My 1+(B; T, v; X7) —> Xp (5.10)

be the compositions of the evaluation maps in (5.6) with the quotient map ¢ in (5.9).
We denote by

T, (Bs J,v; X°) € Dy (B: J, w5 X7 (5.11)

the subspace of simple maps that are not Z;-pinchable and

e have no nodes, or
e have only one real node, or
e have only one conjugate pair of nodes.

The boundary Bﬁﬁk o (BT, v X ) of this subspace consists of double covers S S* of
the subspaces S* of simple maps of the codimension 1 strata S of My ;(B; J, v; X )
with 7+ (S) ¢ 27Z.

An OSpin-structure 0s on }(ﬁ is a pair (o, §) consisting of an orientation o on qu and
a Spin-structure s on the oriented vector bundle (7 X ", 0), i.e. a compatible collection
of homotopy classes of trivializations of (T X ", o) over loops in X ; see [7, Def. 1.3].
We identify homotopy classes of trivializations for different orientations if they differ
by a composition with an isomgrphism of R?; this convention identifies Sp(})n-structures
for different orientations of X . For an OSpin-structure os= (0, s) on X , we denote
by 0s = (0, ) the OSpin-structure on Xd) obtained from os by reversing its orientation
component o only. Lemma 5.1 and Proposition 5.2 below follow readily from [17];
see Sect. 6.2.

Lemma 5.1 Suppose (X, w, ¢) is a real symplectic sixfold, fqb is a connected compo-
nent of X9,

k,1€Z7° with k+21>3, 1eL*C[ll, BeH(X), (5.12)

G is a finite subgroup of Aut(X, w, ¢; Xd)) and (J,v) € H;:’l% is generic An OSpin-
Structure 0$ on X¢ determznes orientations 0,s. 1+ and Gys: 1+ ofﬂﬁk L (B; J,v; X¢)
and Sﬁk 10 (Bs v X ), respectively, with the following properties:

(0051) the restrictions of 045: 1+ and Gos: 1+ 10 My 1 (B; J, v; X ) are the same;
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. 9

(0052) the restrictions of 04s.1+ and Ul&l”ﬂﬁi* to Miy1.1(B; J, fl;k+1,l;k+l‘}; X))
are the same;

.. 9

(0053) therestrictions of 0,5. L*U(I+1) andoﬁrlogs;m to My 1+1(B; J, fl:,l+1;l+1]); X)
are the same;

(00s54) the interchange of two real points x; and x j reverses 0451+,

(00s3) ifi,j €I, 1 € L'C L*U{i, j}, L* C L'U{i, j}, IL*| = |L'| if 1 ¢ {i, j},
u € My (B; J,v; X ), and the marked points zl.+ and zj‘ are not separated
by the fixed locus S' of the domain of w, then the interchange of the conjugate
pairs (z;r, z; ) and (zj, z;) respects the orientations 0es.1+ at W and 0441/
at its image under the interchange;

(0,50) the interchange of the points in a conjugate pair (z?‘, z; ) withi € [I] - L*
preserves 0gg. [+,

(0057) the interchange of the points in a conjugate pair (z;", z; ) withi € L* — {1}
reverses 0gg:L*;

(0058) the interchange of the points in the conjugate pair (zfr, 7] ) preserves 0gg. *
if and only if

to(B)/2+k+1—|L*| ¢2Z;

(0059) ifk,l =1and B =0, then (eVI{R, 00s:L*) IS a pseudocycle of degree 1;

(00510) if 05" is another OSpin-structure on 3(/¢, ue M (B;J,v; \)fd)) isasin (5.1),
and the pullbacks of 0s' and 05 by the restriction of u to the fixed locus of
its domain are the same, then the orientations 0,s.1x and 0441+ at U are
opposite.

Letk, [, L*, B and (J, v) be as in Lemma 5.1. For a tuple
h=(h;: H — X)icp (5.13)
of maps, define

Jn: My = HHi — X' m(Onien) = (hi(yi)),-em,

i€ll]
o N
Z,fh;L*(B; J.ov: X)) = {(u, Gi)iem) € im,f,;L*(B; J,v; X)
xMy:evi (w) = hi(y) Vi € [11}. (5.14)

Let
k

vzt 2 (Bi . v; ftp) — (Y¢) (5.15)

be the map induced by (5.6). Orientations on H; determine an orientation oy, on My,.
Along an orientation ogy of Dﬁfl, L+ (B; J,v; X)), the orientation oy, determines an
orientation osyop of Z,;kh.L* (B; J,v; 3(/¢)

If Y is a smooth manifold, a dimension p pseudocycle h: H —> Y determines an
element [h]y of Hy,(Y; Z); see [24]. If Y = X and B is a homology class in X in the
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complementary dimension, let
h-xB = (PDx([h]x), B) € Z

denote the homology intersection product of [h]x with B. If 7 and B are not of
complementary dimensions, we set #-xB = 0. For a tuple h of maps from smooth
manifolds as in (5.13), let

I
1
codimch = - Z(dime —dimpH;), L*(h) = {1}U{i € [I]: dim H; € {0, 4},
i=l1

Ly ={i el]:dimH; € {0,4}}, L*(h)={i € [I[]:dimH; =2}. (5.16)

We denote the orientation 0gs;7+m)0n of the domain of (5.15) with L* = L*(h)
by 00s;h-

Proposition 5.2 Let (X, w, ¢), Y(ﬁ, 0s, B, and G be as in Lemma 5.1 and | € Z7.
Suppose h= (h;)ic) is a tuple of pseudocycles into X of dimensions 0,2,4 in general

position so that

_ Lo(B)

+ [ — codimch > max(0, 3 — 2/). (5.17)

(1) For a generic choice of (J,v) € H,L:;PG the map (5.15) with the orienta-
1ion 045 1+(h)On ON its domain is a codimension 0 pseudocycle and its degree

((hniem)"”‘% = deg(eVih:L*(h)» Oos:h) (5.18)
B;

does not depend on the choice of (J,v), h; € [hilx withi € Lj_(h), or h; €
[hi] \qu withi € L* (h).
Xf
(2) The number (5.18) is invariant under the permutations of the components h; of h.
(3) The number (5.18) vanishes if [hilx € H4(X)qi for some i € L% (h) or

[h;] X(ﬁ € Hy(X — §¢)(if0r some i € L* (h).
X—
@) Ifk +20>5and i* € [I] with dim h;« = 4, then

(diem)” o = (hie-x B)(hi)iein-—in) o - (5.19)
B;X B;X
The assumption that the pseudocycles /; are in general position in Proposition 5(.}52
implies that each two-dimensional pseudocycle #; is in fact a pseudocycleinto X — X .
By Proposition 5.2(1), the number

¢, ¢
((PDx ([7i13)) ey (PD o] glyers (h))B;O;qs = ((hi)iemB ";(» (5.20)

s
5
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of real (J, v)-holomorphic curves meeting the pseudocycles /; and passing through
k general points in X is well-defined, i.e. it depends only on the homology classes
on the left-hand side. Thus, we obtain a well-defined number

((/Li)ie[l])‘p"fd, =0) (5.21)
B;X
ifl € Z* and () |
k= “’2 +l=3 l;;}dim wi > max(0, 3 — 20). (5.22)

Below we drop the conditions on k and /.

We assume that B # 0 and can be represented by a J-holomorphic map; thus,
(w, BY#0. Let H € H*(X; Z) be such $*H = —H and (H, B) #0; such a class H
can be obtained by slightly deforming w so that it represents a rational class, taking
a multiple of the deformed class that represents an integral class, and then taking the
anti-invariant part of the multiple. Let [, L*, and h= (h;);¢[;; be as in Proposition 5.2
so that /11 and h; represent the Poincare dual of H. We define

1
H.B? deg(eVi,h;L*(h)» Oos:h)- (5.23)

¢,08
(hi)ieln—(1.2})) <y =
((hi)ie )B;X¢
By (2) and (4) in Proposition 5.2, this definition does not depend on the choice of H,
agrees with (5.18) in the overlapping cases, determines the numbers (5.21) without
any conditions on / € ZZ% or k € Z (if k < 0, we take the number (5.18) to be 0).
By (5.19),

<(Mi)ie[l]>¢’(f¢ = (Wi*, B><(Mi)ie[l]—{i*})¢{i¢ (5.24)
B;X B;X

if B#£0, u;i € H*(X)UHS(X)UH*(X, ?"’) foralli € [I], and u;x € H*(X).
Suppose K, L are finite sets so that |[K | + 2|L| >3, K is ordered, and L contains a

distinguished element 0. Let 0 € L* C L. We then identify K with [| K'|] as ordered sets

and (L, 0) with ([|L|], 1) as pointed sets. Let L' C [|L|] be the image of L* under the

latter identification and os be an OSpin-structure on X For (J,v) e HY K. L G generic,
we denote by 044. 7+ the orlentatlon on Mg (B; J,v; X ) obtained from the orien-

tation oy ;.77 on My (B; J, v; X ) via these identifications. By Lemma 5.1(0,55),
the orientation 0,7+ does not depend on the choice of identification of (L, 0) with

([IL]], 1) as pointed sets. If in addition u; € H*(X)UH®(X)UH*(X, f’) fori € L,
we denote by

<(Mi)ieL)¢’av5¢ €Q

B; X
the number (5.24) arising under the above identification of (L, 0) with ([|L]], 1).
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5.2 Structural propositions

We next formulate three propositions which together imply Theorem 1.5. Proposi-
tion 5.5 relates counts of two- and three-component real curves passing through fixed
constraints by lifting the bordisms of Lemmas 4.4 and 4.5. The two relations of Propo-
sition 5.5, depicted in Fig. 1 on page 11, have the exact same form as in [5]. The counts
of curves represented by the individual terms in these relations generally depend on the
choices of the constraints. An averager G as in Definition 1.2 eliminates this depen-
dence for G-invariant constraints and leads to splittings of the two types of counts into
invariant counts of irreducible curves in Propositions 5.6 and 5.7. These two proposi-
tions are the analogues of Propositions 5.7 and 5.3 in [5], but now depend on the use
of an averager G.

We fix a compact real symplectic sixfold (X, w, ¢), an OSpin-structure os on a
connected component X7 of X, afinite subgroup G of Aut(X, w, ¢; X )k K11 €
779, and L* C[1] with

K<k I'<l, K+2' >3, 1lelL* (5.25)

Let B € Hy(X)and (J,v) € ’H;:ld’G There is then a well-defined forgetful morphism

T M (B; J,v; X*) — My, (5.26)

which drops the last kK — k’ real marked points and the last / — [’ conjugate pairs from
the nodal marked curve (5.2) associated with each tuple u as in (5.1) and contracts
the unstable irreducible components of the resulting curve. We also fix a tuple h as
in (5.13) of smooth maps from oriented manifolds and a k-tuple p=(p;);[x] of points
in X”. Let L*(h) C [1] be as in (5.16).

Suppose S is an open codimension 1 disk-bubbling stratum of My ;(B; J, v; fd)).
Forr =1, 2, let
K (S) C k], Ly(S) Clll, Li(S) C L, e1+(S) €Z, B(S) e Hy(X)

be as in Sect. 5.1 and §* C S be the subspace of simple maps. With My, given by (5.14),
define

Si = {(w, Gidiemn) € S* x Mu:evi (w) = hi(y) Vi € [11}.
The (virtual) normal bundles A'S of S in My ;(B; J, v; Xd)) and N'Sy of Sf in
Zen(B; J, v X7) = {(0, i) € Mes (B 1, v; X°) x My evi (@) = hi(y) Vi € [11)
are canonically isomorphic. Let
v¢)k

evsin: S — (X (5.27)
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be the map induced by (5.6).
If u € Sy, an orientation 0§ S of NuS determmes a direction of degeneration of

elements of the main stratum of Zk h:L* (B; J,v; X ) to u. The orientation 0U 5:L*Oh

of Z,:' (B J,v; X ) limits to an orientation 04s: 7*:h:u of Zk w(B; J,v; X )atu
obtained by approaching u from this direction. Along with 0%, 005;£+;h;u determines
an orientation 80% 00s:L*:h:u Of Sf‘l‘ via the first isomorphism in (3.1).

u

Lemma 5.3 Suppose (X, w, @), qu, 0s,k, 1, L*, B, and (J,v) are as in Lemma 5.1
and h as in (5.13) is a generic tuple of smooth maps from oriented manifolds. If S is

an open codimension 1 disk bubbling stratum of ﬁk 1(B; J,v; fqb) andu € S, then
the orientation 9, ¢ ,O0s:L*hiu OfS at u does not depend on the choice of OS if and

only lst*(S)géZZ
The orientation 045, 7+0p of
~¢ . ’ ~¢
Zen(B; J, v X)) = {(0, Oiiemn) € M (B; J,v; X))
xMp:evi () =hi(y)Vi € [1]}

extends across Sy if and only if 9, <., %0s:L%hu depends on the choice of o 3 for every
u € S;. In particular, the first statement of Lemma 5.1 is an immediate consequence

of Lemma 5.3. If E)J?k 1(B; J,v; X ) is cut along S and S* is the double cover of §*
in the cut, then 9, ¢ ,O0s:L*hiu is the boundary orientation induced by 0, 7.+0p at one
of the copies U of uin

Si =@, Oiiem) € S* x My: evii @) = hi(y) Vi € [11}); (5.28)

we then denote it by 0045 1+h:a. If €1+(S) ¢ 27, we abbreviate 80% O0s:L*:h:u
u
as 00,¢; 1+ h;u. We denote the orientation 00, 7.*(h);h bY 900s:h.

Remark 5.4 While Lemma 5.3 follows readily from [17, Prop. 5.3], it is also imme-
diately implied by our Lemmas 4.2 and 6.2 (which are also needed to establish
Proposition 5.6 below). Our &7+ (S) equals to s — 11in[17, (22)].

If in addition Y C Mj, /. we define

P —_—
for: Y — XV x My, fpr(P) =, P), (5.29)
Shpr = {(w, P) € §§ x YT:evsn(w) =p, fi () = P}. (5.30)

Suppose next that I' C ./\_/l,:, p is a primary codimension 2 stratum and of. is its
canonical co-orientation as in Lemma 4.3. We denote by

~¢ _ — ~¢
Mr i (B J,v; X)) C iy (T) € Dy 1(B; T, v; X7)
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the subspace consisting of maps from three-component domains. The domain of every

element u of Mr., ;(B; J, v; X ) is stable and thus u is automatically a simple map.
Define

ZX W(B: J . v; X% = {(w, G)iem) € Zin(B; T, v; f(p): ueMrii(B; J,v; fd’)}

Z,;kh L*(B; J,v; fqb)
Let 5
v 28 n(B 1 v X)) — (X°)F (5.31)
be the map induced by (5.6); it is the restriction of (5.15).
For generic choices of (J, v) and h,
* . Ly® * . Cy?
ZranBs L, v X ) C 20 (B T, v X)) (5.32)

is a smooth submanifold of a smooth manifold with the normal bundle canonically
isomorphic to f7, l’N I". We denote by

Ol:0s:h = (f]t/,l/of") (Oos;h)

the orientation of the left-hand side in (5.32) determined by f;, ;,of and the orienta-
tion 044 Of the right-right side in (5.32) with L* = L*(h).

Proposition 5.5 Suppose (X, w, ) is a real symplectic sixfold, os is an OSpin-
structure on a connected component X of X%, G is a finite subgroup of
Aut(X, w, ¢; X ), 1 € 229 and B € Hy(X). Leth= (h; )iep] be a tuple of pseudo-
cycles into X of dimensions 0,2,4 in general position so that

tw(B)
2

k=

+ ! — codimch — 1 > max(0, 3 — 2/). (5.33)

Let (J,v) € kaf’c be generic.

D) Ifk=1,1>2, and P* ¢ /V],z, T Cmm, O;i, and 0% are as in Lemma 4.4,
then
+
|CV h(p)|oP+ + |eVP h(p)|oP, sh = _22 |Sl>’1<,p;T|aoas;h,0§’ (5.34)

S

where the sum on the rdl)'ght—hand side is over all codimension 1 disk bubbling strata
Sof My 1 (B; J,v; X)) with ep+n)(S) €27 and

either 2 € L1(S), 1 € K2(S) or 1€ Ki(S), 2 € La(S). (5.35)
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+ + AA c .
(2) Ifl>3and 'y, T35, T C Moy, Orzi, 0r3i, and o5 are as in Lemma 4.5, then

-1 + -1 +
|eVr2+;h(p)|°F;r;h + |ev1,2,;h(l))|0r27;05:h

— + — + +
B |eVF;1r;h(p)|°F;r;os;h B |evr;;h(p)|0F§:os;h =2 ; |S§)p;’r’ao°5:h’°£f7

(5.36)
where the sum on the r(lz;ght-hand side is over all codimension 1 disk bubbling strata
Sof My 1(B; J,v; X)) with ep+n)(S) €27 and

either 3 € L1(S), 2 € L2(S) or 2e€ Li(S), 3 € L2(S). (5.37)

Let G be an averager for (X, w, ¢; fd)) as in Definition 1.2. We call a tuple h as
in (5.13) G-invariant if there exists a G-action by orientation-preserving diffeomor-

phisms on each H; such that
goh; = hjog™ L. (5.38)

The Poincare dual of an integer multiple of every element of H*(X )‘i and H*(X, X "’)'i
can be represented by a pseudocycle A; satisfying the above condition. Propositions 5.6
and 5.7 below, which split counts of two- and three-component real curves with G-
invariant insertions, thus imply that these counts are in fact well-defined on the G-
invariant cohomology insertions. If h is as in Proposition 5.5, L’ C [I],and B’ € Hy(X),
we define

((h)ier)y = ((PDx(hilx),p Vs ((hdier) %2y = {(PDxWhilx), )" S
B X ;G B X ;G
(5.39
to be the invariant count of rational degree B’ J-holomorphic curves in X meeting
the pseudocycles k; as in (1.5) and the invariant count of real rational degree B’ J-
holomorphic curves in X meeting the G-averages of the pseudocycles #; as in (1.17),
respectively.
Suppose S is an open codimension 1 disk bubbling stratum of ﬁk’l(B; J,v; §¢).
It satisfies exactly one of the following conditions:

(S0) K2(S)N[K'l =@ and LL,(S)N[I'] = @;
(S1) [K2(S)NK = 1and Lo(S)N[I'1=2;
(82) there exists a codimension 1 stratum S C M,Z/y y such that f 1 (S) CS.

We call a pair (S, T) consisting of S as above and a (possibly bordered) hypersurface
TC /\/l,;, admissible if one of the following conditions holds:

(S1T) K2(S)N[K'] = {i}, L2(S)N[I'] = @, and Y is regular with respect to ff,,l,;i;

(S827) there exists a codimension 1 stratum S Cﬂ,:/’ p such that f (S) C S and T
is regular with respect to S.

The notions of T being regular with respect to f% .; and § are defined in Sect. 4.2.
If (S,7) is an admissible pair and 0% is a co-orientation on Y, we denote by
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deg(S, 05) € Z the corresponding degree deglR(T, 05) or degg(Y, 05) defined in
Sect. 4.2.

Proposition 5.6 Ler (X, w, ¢), 0s, [, B, h, k, p be as in Proposition 5.5 and G be an
averager for (X, w, ¢; X ) so that h is G-invariant. Suppose k', 1" € 7Z=° satisfy the
conditions in (5.25) and

ScC ﬁk,l(B; J,v; f(p) and Y C ﬂ,ﬁ,,,

form an admissible pair.
) If(J,v) e H;:l% is generic, then

YOk T YOk T
(evsm for): Sp — (X7)" x My and fr: ¥ — (X)) x My
are transverse maps from manifolds of complementary dimensions and the
set S;lk,p;T is finite.
(2) The set Sy Y is empty unless ep=m)(S) € 2Z or
erm)(S) =2|{i € Ly(S): dimh; =0} + 1. (5.40)

(3) If (5.40) holds and of; is a co-orientation on Y, then

+ dim Y
|S}f,p§T|aﬂasghqofT =— (=D "deg(S, 0%)
.05 ¢,05
X ((hi)ieL,(S wo \(hiierys X
< i)ieL( )>Bl(3);X ;G< 1Jiela( )>BZ(S);X .G
(5.41)

The condition (5.40) implies that

|K1(S)| = w + |L1(S)| — codimg (hi)ier,(s)  and
L, (B2(S .
|[K2(S)|+ 1= (TZ()) + |L2(S)| — codime (hi)ier, ()

i.e. the second irreducible component of the maps in S passes through an extra real
point.
If h: H—> X and h’': H' — X are transverse pseudocycles into X, we define

hOh': {(y, y)e Hx H: h(y) = h/(y/)} — X, hOR (v, 5) = h().

This is a pseudocycle representing PD;(1 (PDx ([h]x)UPDx ([1']1x)).

Suppose I C ﬂ;yl/ is a primary codimension 2 stratum. Let Lo(I"), Lc(I") C [/]
be as in Sect. 4.3. With B and h as in Proposition 5.6, we define

I, ifk =k=1, Lo(") = &;

Srk) =
r) 0, otherwise;
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hinhj, if Lc(T) = {i, j}, i #j;

e =1, if |Le ()| #2.

Proposition 5.7 Let (X, w, ¢), 05,1, B, h, k,p, G, k', !’ be as in Proposition 5.6 with

¢« ([hilx) = [hilx Vi € L*(h) — {1}, ¢« (lhilx) = —[hilx Vi € [l]— L*(h).
L (5.42)
Suppose I C /\/l,:/’ p 1S a primary codimension 2 stratum. If (J, v) € H;:fG is generic,

then p is a regular value of (5.31) and the set ev;,lh (p) is finite. Furthermore,

|CVF;1h(P)|;t[<_U5_h =250 (k) Z((hi)ie[l]v pt)g/ + ((hiiem-Lem). 5r(h))¢;¢
cos; 5.

B'eH>(X) :G
(B)=B
r_ X ,
+ > 2l L“”‘((h»,-eu),g,((hi>ie[l]_L/,B’)“’ o
Bo,B'€Ha(X)—{0} Le(D)CL/C[11—Lo(I) By X ;G
Byo+0(B')=B
X ,
+H(hi)ier, BO)B/<(hi)ie[l]—L’)¢ % )
Bp: X ;
(5.43)

For dimensional reasons, at most one of the two terms in the last sum in (5.43) is
nonzero for each fixed pair (Bg, B’) of nonzero curve degrees and each fixed subset
L' c[l].

5.3 Proofs of Proposition 5.5 and Theorem 1.5

We continue with the notation and assumptions of Proposition 5.5 and just above. For
k’,I’, and L* as in (5.25), we denote by

N v -7
frr s M= (Bs T, v X)) —> My

the compositi0n¢0f (5.26) and the quotient map ¢ in (5.9). For a stratum S of
My (B; J,v; X ), let

-~

S* =q71(S") C My .1+ (B J, v; 3(/¢).
With the notation as in (5.11), let

My = Hy x...x Hj,
ZXB I v X = () € ML (B T v X)) x My evit (w)
=hi(y) Vi € [11}.
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For (J,v) € ’Hk G generic, the orientation 0,; L*(h) of Lemma 5.1 and the orienta-
tion op of My, determine an orientation 0,s:1 Of Z (B J,v; X ) Let
~¢ k
€Vi:h: Z (BJUX)—)(X)

be the map induced by (5.6). .
We take (', 1) = (1,2),(0,3) and T CM,:, ; to be the bordered compact hyper-
surfaces of Lemmas 4.4 and 4.5 with their co-orientations o%.. For a stratum S of

mk[(B J,v; X ), let

-~

Sppir CS* X My x Y and S=Z2 (BJUX¢)O(S*XM|,)
be as in (5.30) and (5.28), respectively, and
Sipr = {8 P) €8 x T:evien@® = p. fu @) = P}.
We establish the next statement at the end of this section.

Lemma 5.8 With the assumptions as in Proposition 5.5, the map
% ~¢ ~¢ k JR—
(eVichs i) : Zop(B; I, v; X) —> (X)) x My

is a bordered 7Zp-pseu docycle of dimension 3k + 2 transverse to (5.29). Furthermore,

% . . \/¢ _ -~
(027, (B; J,v; X ))(er;h’fW) Xy T = |§|S;;,M, (5.44)

with the union taken over the codimension 1 disk bubbling strata S ofﬁk, 1(B; J,v; Xd))
that satisfy (5.40) and either (S1) or (S2) above Proposition 5.6.

Proof of Proposition 5.5 By the first statement of Lemma 5.8 and [5, Lemma 3.5],

’ en(Bi v X )(erhfk/V)Xfp“faT’

Oos:h, 30T

(5.45)

i +
_ (_l)dlmT|(BZk;h(B; J,v; X )) (evk;h,fk,’l,)x forr T‘Booﬁ;h,aff s
By [5, Lemma 3.3(1)] and the choice of T, the left-hand side of (5.45) equals to the
left-hand side of (5.34) if (k, 1) = (1, 2) and of (5.36) if (k, ) = (0, 3). _

The right-hand side of (5.45) is the signed cardinality of (5.44) times (—1)dimY
and

+ +
‘S;.P;T |3’0\05;h,afr = 2’S;YP;T ’aa‘,s;h,ogr
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for each codimension 1 disk bubbling strata S as in (5.44). In our case, YNS| = @.

If 8* v # @ and S satisfies (52), this implies that § # §; and thus S satisfies
the second condition in (5.35) if (k, /) = (1, 2) and one of the conditions in (5.37) if
(k, 1) = (0, 3).If S satisfies (S1), then (k, [) = (1, 2) and S satisfies the first condition
in (5.35). Thus, the right-hand side of (5.45) equals to the right-hand side of (5.34) if

(k, 1) = (1, 2) and of (5.36) if (k, 1) = (0, 3). O
Proof of (1.19) Foranelement . € H>P(X),let|u|= p. With N as above Theorem 1.5,
letAE(ZZO)N.Forelementskz(kl, ...,Aay)anda=(ayq,...,ay) of A, we define
N N i N oo
A=Y A Idll =D A, ( ) = ]‘[( {),
j=1 j=1 AR
R SR SR A S
Al AN

The ODE (1.19) is equivalent to

A

*x K K * *  KkP\p,0s
3 2""<a> S (u wr nE n*e)pe (¥ Vo kG
By, B'eH>(X) i,j€[N]
Byo+0(B")=B
a,feN,a+p=r

k—1\ /A
* Kk Ja\P.05 *\@,08
+ > ( K >( )(.U«a AR Gl AL il SR
B1.ByeHy(X)?
B1+B>=B
k1, kp€ZZ0 ky+hky=k—1
o, BEN a+B=L

k—1\ /X
= * | ka\$.08 * kP05
= Z ( ki )( )(“a k| PRI TR okl PRI
Bi,BreHry(X)?
B1+B,=B
k1,k €229 ky4+ko=k—1
o,BeN ,a+B=I

(5.46)

forall B € Hy(X )f, k € Zt,and A € A. All summands above vanish unless

Co(B)/2 =k + A+ 1 = X[ + X + 1A (5.47)

We thus need to establish (5.46) under the assumption that (5.47) holds.
We take [ = |A| +2 and h as in (5.13) to be an /-tuple of G-invariant pseudocycles
in general position so that

PDx([hi]x) = nX,  PDx([halx) = ¥,

. (5.48)
I{i € 11— [2]: PDx([hilx) = W] H=21; VjelNl
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Let L*(h) C [/] be as in (5.16). By (5.47), k satisfies (5.33). Since k > 1 and [ > 2,
(5.34) applies.
Let .AR (resp. A3) be the collecnon of the codimension 1 disk bubbling strata S of the

moduli space sznk 1(B; J,v; X ) with ez« ) (S) ¢ 27 that satisfy the first (resp. second)
condition in (5.35). Define

(L1(S) = {1,2}, L2(S)), if S e AR:

LY(S), L5(S)) =
(L1(S), Ly(S)) :(Ll(S)—{l},Lz(S)—{Z})» if S € A

By Proposition 5.6 and (5.48),

28t ogasg = DI ey <o Aienyl7

SEA]R SE.A]R By ?X HE By(S); X HE;
k—1\ /A

= * Kk ka|p.0s *B\b.05

= Z ( ki )(a)Wa s Mp s L >B| ks G(“ )Bz,k2+2;G'
B1.BreHy(X)?

B1+B>=B
ki ,ky€ZZ0 k) +hkoy=k—1

o,BeN a+p=I

The second equality above is obtained by summing over all splittings of B € Hz(X )di
into By and Bp, of A € A into « and 8, each set on the second line in (5.48) into two
subsets of cardinalities «; and B;, of kK — 1 real points into sets of cardinalities k1
and kj. The first real marked point of S goes to the B;-invariant above, which also
gains an additional real marked point; see the sentence after Proposition 5.6. Similarly,

Z|Sl>:,p;T}aioM:h,o§= Z(Ma (hi )zeL’(S)> 0; \)?ﬁ (Mb (h; )zeL (S)) ©?

SeAy SeAy BI(S):X G 5s): X G
k—1\ /A
= * | Ha\$.05 *  kp\p.0s
=— Z ( ki )(a)</"'a s )B; ki+1; G</"b 1% >Bz,k2+1;G'
Bi.ByeHy(X)?
B1+B>=B
k1,ko €720 ky+ko=k—1
a,BeN a+p=L

In this case, the first real marked point of S goes to the Bj-invariant above, while the
Bs-invariant still gains an additional real marked point. Thus,

RHS of (5.34) = 2<RHS of (5.46) —2nd ) on LHS of (5.46)). (5.49)

By Proposition 5.7,

A * % A *\$;08
levil [T e =200 pe ()Y (X, 1 * pty, + (0¥, X ) "
B'eH>(X) BiA

?2(B")=B
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A
o2 a)(mf,ufw*“)?(ﬂ*ﬂ B
Bo,B'€ Hy(X)—{0) Bo: X G

Bo+0(B')=B
a,BEN a+B=A
* % ko p\X | kp\b.05
+(l‘l’a ’/Vl‘b s M a’B())B/(M ﬁ) ~¢ )
Bo: X ;

In light of (5.47), the invariants (.. .)¢’°5v¢ can be replaced by the invariants
Bo: X ;G

¢,08
(.. ')Bo;k;G' ‘We note that

ptly = Y PDx (g (k0. uXuy = Y (k. uy. uX)y g uk.

i,j€[N] i,j<[N]

1 .. ..

S0B) = 3 (uX. B)gPDx(u}). Bo= Y PDx(u)g"{u). Bo). (5.50)
i,jelN] i,j€[N]

By the second case of Proposition 1.3(2), the B’ relation above, and the divisor relation
for complex GW-invariants,

* ok  ka\X | ¥ ne.os *x kX *\X il %k *\$,05
(s mp n X X P B o = D (g X )y 8 (WX -
i,j€[N]
(5.51)
By the By relation above and the divisor relation (5.19),

*x k% X kp\p.05 *x k% *\X ijok *\¢,08
(1 1 m* Bol (n*P ) h g = Dy n* u)  (w* P XN G
i,jelN]
(5.52)
As noted after Proposition 5.7, at most one of (5.51) and (5.52) is nonzero. Combin-

ing (5.50)-(5.52) with the expression for |ev;i,h(p)|§Pi‘05.h, we obtain

LHS of (5.34) = 2(1st Y onLHS of (5.46)).

Along with (5.49), this gives (5.46). O

Proof of (1.20) We continue with the notation at the beginning of the proof of (1.19).
For B € Hg(X)‘ﬁ, keZZ a,b,c € [N],and A € A, define

Bk oy laf (* *x Kk Kk ka\X il k Kk . «P\p.0s
wiHy= ) 2 a) Dol * ) g (W XN
By, B’ eHy(X) i,j€IN]
Bo+0(B))=B
a,feN a+F=L

k\ [
* Kk ka\p,08 * | Kkp\P.0S
+ Z (kl)(a)<““’“b’“ )Bl,kl;G<p“C’l’L >Bz,k2+1;G'
B1.BreHy(X)?
B1+B>=B
k1.ky€ZZ0 ki +hky=k
o, BeN a+p=I
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The ODE (1.20) is equivalent to
W 0 = Y0 00 (5.53)
forall B € Hz(X)f, k € ZZ0, and A € A. Both sides of (5.53) vanish unless

Co(B)/2 =k + A +2 = [uX | + X |+ [nX] + 1Al (5.54)

We thus need to establish (5.53) under the assumption (5.54) holds.
We take [ = |A| + 3 and h as in (5.13) to be an /-tuple of G-invariant pseudocycles
in general position so that

PDy ([h1]x) = X, PDx(lh2lx) = u¥. PDx(lhslx) = uX,

* (5.55)
|{i € 11— [31: PDx (Ihilx) = u¥}| = 4; Vj € NI.
Let L*(h) C[/] be as in (5.16). By (5.54), k satisfies (5.33). Since [ > 3, (5.36) applies.

Let A (resp. Aj3) be the collgction of the codimension 1 disk bubbling strata S of the
moduli space ﬁk, 1(B; J,v; X)) withep+m) (S) ¢ 2Z that satisfy the first (resp. second)
condition in (5.37). Define

(L}(S). L)(S)) = (L1(S) — {1, 3}, L2(S) — {2D), %fS € Az;
(L1(S) — {1, 2}, L2(S) — {3D), if S € As.

By Proposition 5.6 and (5.55),

~

+ _ *x Kk ¢,08 * ¢,08
Z|Sﬁ,p§T}8005:h,o§ = - Z(/’va s Me s (hi)ieL’](S)> ~ <l/«b s (hi)ieL’z(S))
SeA, SeA, Bi(8):X :G B:(8):X :G

k(> ¢, * $.08
- Z (M)(a)('u;lk’Mc*7u*a>31(.)/f1:0(ub ’M*ﬂ>32i’k2+1;0'

Bi.BreHr(X)?
B1+By=B
k1.kp€ZZ0 ky+hko=k
o, feA a+p=I

The second equality above is obtained by summing over all splittings of B € Hy(X )‘f
into By and B, of A € A into « and S, each set on the second line in (5.55) into two
subsets of cardinalities r; and B, of k real points into sets of cardinalities k1 and k5.
The B-invariant above gains an additional real marked point; see the sentence after
Proposition 5.6. Similarly,

+ * P, b,
Z|S;:-,P§T|30ns;h,0£r = ) (wk. ) s(hi)ieL’l(S))B Z; ¥ (nE. (hidicrycs)) :s

~0
SeA; SeA; 1(5):X ;G B (S X ;G
k\ (A
— * Kk  da\$.08 * , kp\¢.08
= Z (k1)<a><u‘* sy s )Bl,kl;G<“c K >Bz,k2+1;G'
Bi.BreHy(X)?
B1+B>=B
k1.kpeZZ0 ki +hky=k
o, BeN a+B=I
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In this case, the B;-invariant still gains an additional real marked point. Thus,
RHS of (5.36) = 2(2nd Y inwll —ond > inwlt b) (5.56)

By Proposition 5.7,

* ¢;05
= (u), wW** uk X
B:X ;G

A
+ > 2“'<a>(u$,uf,u*") Ak, w*e By,

Bo, B'€ Hy (X)—{0) Bo; X G

_ +
|evr2i;h(P)|oF2i;

Bo+0(B')=B
o, e, a+B=L
* ¢,08
o i* Bl ¥ )
03 5

The number |ev;i h(p)|f N is given by the same expression with b and c inter-
35 3 105:h

changed. Inlight of (5.54), the invariants (. . .)¢’ oi¢ can be replaced by the invariants
BO;X G
(.. )‘ZOUZ - Combining these statements with (5.50)—(5.52), we obtain

LHS of (5.36) = 2(lst Z in \I/Bk — 1Ist Z in \Ilabc)

Along with (5.56), this gives (5.53). ]

Proofof Lemma 5.8 Let L* = L*(h) be as in (5.16). For the purposes of the first
statement of this lemma, it is sufficient to show that

(ev, fk/,l/): 551:1;“ (B; J,v) — fu X ﬂ,ﬁ/,, (5.57)
is a bordered Z,—pseudocycle of dimension 3k + 2 codimch + 2 transverse to

Jhpir: Mp x T —> Xi1 X M,:/,,/, fopr (ODiemns P) = (P, (hi (vi)iems P)-
(5.58)
We omit the proof of this statement since it is a direct adaptation of the proof of [5,
Lemma 5.9]. By the first statement of Lemma 5.8,

% . . \/¢) _ o~
(azklh(B’ J’ v X ))(evk;h,f,{/ﬁl/) XfP?T T= I_lS:;,p;Y’
S

with the union taken over the codimension 1 disk bubbhng strata S of smk 1(B; J,v; X )
that lie in the image of the boundary of smk 1(B; J,v; X ) under the projection (5.9).
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For a codimension 1 disk bubbling stratum S of ﬁk,l(B; J,v; qu) andr = 1,2,
let

K, (S) C [k], L¥(S) c L,(S) C ], and B,(S) € Hy(X)
be as in (5.7) and (5.8). We set

K, = Kr(S)s kr = |Ky|, Ly = Lr(S)s I = |Lr(8)|9 Lt = L;’f(S), B, = Br(S)
(5.59)
We note that

ki+ky=k, L1+l =I, codimch = codimc(h;)icr, + codimc(h;)ier,;
Lo(B1) 4 Lo(B2) = £y (B) = 2(k 4+ codimch — [ + 1).
(5.60)
(B: J,v: X7). ie.

B =~ S
Suppose that §* is a stratum of 997,/ .

£, (B
8L*(S) = (2 2)

—ky — ( — IL3]) ¢ 2Z.

and S’\;:’pﬁ # &. By the definition of L* = L*(h) in (5.16) and the above condition
on e1+(S),
£u(B2)
2

Since :S’\l’:’p;T #Zand TNS| = @, (1, k) #(1,0.1f B, =0, L, |L}| =1,
and kp = 0, then e7+(S) = 0, contrary to the assumption on S above. Suppose
By =0, = 1, and |L}]|, ko = 0. For good choices of v (still sufficiently generic),
the restriction to S* of (5.10) then factors as

— k2 — (COdim(c(h,')ieLz — 12) ¢ 27. (5.61)

S — Mig1,1-1(B; J, vi; fd)) X DMy 1(0; J,0) —> Xp o1 x X' — X

Thus, 3\1’1‘ pY = & for generic choices of h and p. Suppose B, = 0, [, = 0, and
ko = 2. For good choices of v, the restriction to S* of (5.10) then factors as

S — M_14(B; T, vr; qu) X M3.0(0; J,0) —> Xp_oy X A\fza — Xui,

where A\sz C (qu)2 is the diagonal. Thus, :9\];" pr =9 for generic choices of h and p.

We can thus assume /tllat either B, #0 or 2/, +k, >3 forr = 1, 2. For good choices
of v, the restriction to S* of (5.10) then factors as

& b b
S — My s1.0(Bi: Jovis X)) X Mig15(Ba: J,va; X )

~¢ ~¢ ~ ~ ~
— My, (B1; I, v X)) X My 1, (Bo; I, 053 X ) —> Xiyy X Xigty —> X -
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Thus, 3;*;,1); v =2 for generic choices of h, p, and (J, v) unless

ew(B,) + 2l + ky = 3k, +2codimc (h;)icz, VYr=1,2.
Along with (5.60), this implies that either

Lo(B1) = 2(ki + codime (hj)ier, — 1),
Lo(By) = 2(ky + codime (hj)ier, — b + 1),
or £,(By) = 2(ki + codimg (hj)ier, — 1 + 1),
Lo(B2) = 2(kz + codimg (hi)ier, — 12). (5.62)

In light of (5.61), (5.62) is the case. By the definition of L* = L*(h) in (5.16), the
second equation in (5.62) is equivalent to (5.40). Thus, the union in (5.44) is over the
codimension 1 disk bubbling strata S of imk 1(B; J,v; X ) that satlsfy (5.40).

If S satisfies (S0) above Proposition 5.6, the restriction to S* of the composition
of (5.57) with the projection to the product Xy, ;; X ﬂ,:,’ i factors as

S — My 1.0,(B1s I, vis §¢) X My +1,15(B2s I, v2; Xd))
— M, (Bis . v Yd)) —> \)Zkl,ll X M;r,l,.
Since the restriction of (5.57)to S* is transverse to (5.58) and Y is areal hypersurface,
(5.62) then implies that S* py =9 O
6 Proofs of structural statements
6.1 Orienting the linearized 8-operator
Foru as in (5.1), let

DY T = {& € N(T:1u*TX): oo = dpot)

— I ={¢ e (@ (T2, )" ®@cu*(TX, J)): ¢odo =dgpoc)

be the linearization of the {3 ; — v}-operator on the space of real maps from (X, o)
with its complex structure j. We define

(DY) = det DY

J,v;u”

By [11, Appendix], the projection

(D% ) U {w x 2a(D?) — TuB: 7,0 X)) 6.0)
ueﬁk.l(B;J,v;\)?qs)
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is a line orbi-bundle with respect to a natural topology on its domain.
The next statement is a consequence of the orienting construction of [17, Prop. 3.1],
a more systematic perspective of which appears in the proof of [7, Thm. 7.1].

Lemma 6.1 Suppose (X, w, @) is a real symplectic sixfold, fd) is a connected compo-
nentof X, 1 € 7+, k € ZZO with k +21>3, B € Hy(X), and (J,v) € Hy ). An

OSpin-structure 05 on X determines an orientation 0 s on the restriction of )»(D )

to My 1(B; J,v; X ) with the following properties:

(0D.1) the interchange of two real points x; and x; preserves o2 ;

(oc,D5 2) ifue My (B; J,v; qu) and the marked points zi+ and zj‘ are not separated
by the ﬁxed locus S! of the domain of u, then the interchange of the conjugate
pairs (zl ,z; ) and (z/ 12 ~) preserves 0 s aru;

(0563) the interchange of the pomts ina conjugate pair (z;7,z; ) with 1 < i <1
preserves o2

(00D$4) the interchange of the points in the conjugate pair (zT, z, ) preserves UoDs if
and only if €,(B)/2 is even;

5) ifk,l =1, B=0, and v is small, then 0 is the orientation induced by the
evaluation at x| and the orientation of X° determined by 05

(0 ,0) ifos’ is another OSpin-structure on X¢ ue My (B;J,v; X Yisasin(5.1),
and the pullbacks of os' and 05 by the restrlctlon of u to the fixed locus of the
domain are the same, then the orientations 0 o and o? o Gl W are opposite.

Proof Let u be as in (5.1). For the purposes of applying [7, Thm. 7.1], we take the

distinguished half-surface D*> C P! to be the disk so that dD? is the fixed locus S' of

D

. ¢ . . .
and z}L € D2. An OSpin-structure 05 on X then determines an orientation 0., onthe

line ku(D? o) varying continuously with u. The first three properties of this lemma
are clear since 0 s does not depend on the marked points, except for the conjugate
palr Zl which determmes D2, By the CROrient 10s(1) properties in [7, Section 7.2],

satlsﬁes (0 +4) and (o0 +0), respectlvely By the CROrient 5a and 6a properties in
[7 Sectlon 7.2], it also satisfies (0055) O

Suppose now that/ € Z* and S is an open codimension 1 disk bubbling stratum of
ﬁk,l (B; J,v; X ). Anorientation ofs,u of Ny S determines a direction of degeneration

D

of elements of My ;(B; J V; ?qﬁ) to u. The orientation oy, on (6.1) limits to an

orientation o u of Au(D 7.») by approaching u from this dlrectlon The orientation

D
os;u

in addition L* C [I] and L7}(S), L3(S) # @, the possible orientations O‘CS;;T: of MyS

are distinguished as above Lemma 4.2. We denote by og); Tl the limiting orientation of

] is called the limiting orientation induced by os and 0¢ S.u In [7, Section 7.3]. If

)Lu(D‘fyv) induced by os and ofﬁl

@ Springer
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For good choices of v, there is a natural embedding

o o
S — Mok, S),L1S) (B1(S); . vi3 X ) X Moy (S),12(S) (B2(S); T, va; X).

6.2)
If |[K1(S)| + 2|L1(S)| >3, there is also a forgetful morphism

~ N
fd : Mopuky(S).L1(S) (B1(S): T, w1 X)) —> My, (5),0,5) (B1(S): J. v X))
(6.3)
dropping the real marked point corresponding to the nodal point nd on the first com-
ponent. If |K2(S)| + 2|L2(S)| > 3, there is then a forgetful morphism

e ¢
fad : M0)uk,(S).L2(S) (B2(S); I, v2; X ) —> M), L,5) (B2(S); J, v5; X )
6.4)
dropping the real marked point corresponding to the nodal point nd on the first com-
ponent.
For an element u € S, we denote by

0

u; € Mok, (S),L1S) (Bi1(S): J,vi; X) and
¢

u € MoKy (S), 126S) (B2(S); J, 125 X )

the pair of maps corresponding to u via (6.2). Let

- -
) € Mk, ($),L,8) (BI(S): J.v: X7) and w) € My, (), 1,(5)(B2(S); T, v3: X))

be the images of uy and up under (6.3) and (6.4). For r = 1, 2, the determinants
A, (D T) and Ay (D I ll,) are canonically the same.
For eachu € S the exact sequence

¢ @ N
0—>Djvu—)DJv1u|®DJvzu2—)TM(Hd)X — 0,
(51, &) — &(nd) — £1(nd), (6.5)

of Fredholm operators determines an isomorphism

o
Ja(D],) ® MTugy X) ~ by (DF ) © (D5 ,)- (6.6)

If L7(S), L5(S) # @ with the smallest elements i} and iJ, respectlvely, an
OSpln structure 0s on X determines orientations OUDSI on Ay, (D 7.0 ) and 0052 on

uZ(DJ " ) via identifications of (L{(S), i) with (|L1(S)[, 1) and of (L2(S), i3)
with (|L2(8)| 1). By the first two statements of Lemma 6.1, these orientations do not
depend on these identification or on identifications of {OJuK | (S) with 14 |K{(S)| and

{0JLUK>(S) with 1 4 |K»(S)|. Combining the orientations 022 on du, (D‘}b’vl ), and 022
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on Ay, (D? . ), and the orientation on f(p determined o0s, we obtain an orientation
o05 g On ku(DJ ,) via (6.6).

Lemma 6.2 Suppose (X, w, ¢), ?qb, 0s, k,l, B, and (J, v) are as in Lemma 6.1, S is
a codimension 1 disk bubbling stratum ofi)TTk 1(B; J,v; \)24)) with L3(S) # @, and
u € S. The orientations 0‘?5 and 0P 05, 0n ku(D 7. ,) arethe same; the orientations 055

and 0 s on Au(D ,) are the same if and only if £,(B2(S5))/2 is even.

Proof In the terminology of [7, Section 7.4], 00 , is the split orientation of D? T
Thus, the first comparison is a special case of [7, Cor. 7.4(a)]. The second comparison
follows from the first and Lemma 6. 1(0 «4). O

6.2 Proofs of Lemmas 5.1 and 5.3 and Propositions 1.3, 2.1, and 5.2
Let (X, w, ¢), i(p, 0s,k,l, L*, B,and (J, v) beasin Lemma 5.1. The exact sequences

0 — ker D?’v_ —> Ty (B T, v; fdj) — Ty Mg, — 0

u

with w € M (B; J, v; fqb) induced by the forgetful morphism f; ; determine an
isomorphism

A (B3 T, v; ?p)) ~ ’\(D?,u) ® M Miy) 6.7)

of line bundles over 91 l(B' J,v; Yqb) By Lemma 6.1, the OSpin-structure os on Y¢
induces an orientation o » on the first factor on the right-hand side above. Along with
the orientation oy ;. 1+ on the second factor defined in Sect. 4.1, it determines an
orientation 044: 7+ ON imk 1(B; J,v; X ) via (6.7).

Proofs of Lemmas 5.1 and 5.3 By Lemmas 4.1 and 6.1, the orientation 0,57+ above
satisfies all properties listed in Lemma 5.1 wherever it is defined. Every (continuous)
extension of 044: 7+ to subspaces of DJT,:'I;L* (B; J,v; ?zp) and 9/57:[;“ (B; J,v; X )
satisfies the same properties. The orientation 0,47+ automatically extends over all
strata of codlmensmn 2 and hlgher By Lemma 5.3, it extends over the codimension 1
strata of imle*(B J,v; X ) and Dﬁkl 1(B: J,v; X ) as well. Lemma 5.3 in turn
follows 1mmedlately from Lemmas 4.2 and 6.2. O

Proof of Proposition 5.2 'We continue with the notation and assumptions of this propo-
sition and just above and take L* = L*(h) as in (5.16).

(1) Let h : Z —> X! be a smooth map from a manifold of dimension
6/ — 2 codimch — 2 that covers Q( f,) and

+ = Hev?‘: ﬁk,l(B; J,v; fd)) — x!.
i€ll]
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We denote by
ﬁ:,(B; J,v; yqﬁ) C ﬁk,[(B; J,v; er)

the subspace of maps that are not Z,-pinchable. This is a union of topological com-
ponents of the entire moduli space and is thus compact. Let

— b — b
eVih: Zpn(B:i J v X ) ={(u,y) € M (B: J,v; X)) x Mp:evi () = fu(y)}

’

eVih: foh(B; J, v \X¢)E{(U, z) € My (B J,v; f‘b) x Z:evh(w) =h(z)}
— (X7 (6.8)

be the maps induced by (5.6). For each stratum S of ﬁk)l(B; J,v; ?lp), letS*CS
be the subspace of simple maps,

Sn=ZX0B: 1. v XIS x My), Si = Zpa(B; J, v X)N(S* x M),

and ¢(S) € ZZY be the number of nodes of the domains of the elements of S.
By (5.17) and the reasoning in the proof of [5, Prop. 5.2], the domain of (5.15) is a
smooth manifold of dimension

(£(B) + k +21) + (61 — 2 codimch) — 6/ = 3k

for a generic Ch01ce of (J,v) € Hk G The orientation orientation 04,7+ Of
zm,j‘, 1+ (B J,v; X ) provided by Lemma 5.1 and the orientation op of My, determlne

an orientation 0, 7+0p on the domain of (5.15). Since the space 93”(,( 1(B; J,v; X )
is compact,

¢

Q(evk,h;ﬂ . )) C evi h(Zkh(B I X% - 2B T v X))

U evk’h(Zk’h(B; J,v; Xd))) .

(6.9)

In order to show that (5.15) is a dimension 0 pseudocycle, it is thus sufficient to show
that the right-hand side above can be covered by smooth maps from manifolds of
dimension 3k — 2.

The subspace

Z:h(B; s X% - Z,fh.L*(B; I X' c ﬁ,f,(B; J,v) x My
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consists of the subspaces Sy corresponding to the strata S of My (B; J, v) with either
¢(8) =2 nodes or e1+(S) ¢ 27Z and of the subspaces S, — Sy with ¢(S) > 1. By (5.17)

and the reasoning in the proof of [5, Prop. 5.2], the subsets evi n(Sy;) of (fd))k with
¢(S) = 2 and evy h(Sh — ) with ¢(S) > 1 can be covered by smooth maps from
manifolds of dimension 3k — 2. The same applies to the last set in (6.9).

Suppose S is a codimension 1 disk bubbling stratum of ﬁk,l(B; J,v; Yd)) with
erx(S)¢27Z.Forr =1,2,1et K, kr, L,, I, LY, B- beasin (5.59) and h, = (h;);er, .
Similarly to (5.60),

ki+k =k, I1+1)=1, codimch=codimch; + codimchy;

: (6.10)
o (B1) + €0 (B2) = €£y(B) = 2(k + codimch — 7).

Similarly to (5.61) and the preceding equation,

£ (B2)
2

Ly (B2)

—ky — (I — IL3]),

— kz — (codimchy — 1) ¢ 27. (6.11)

Along with (6.10) and the definition of L* = L*(h) in (5.16), the second equality
in (6.11) gives

Lo (B1)

> ki — (Codimchl — 11)7

{,(B
a)(2 D — k1 — (11 — |L’1‘0Li(h)|) ¢ 27. (6.12)
By the first statement in (6.11) and the second in (6.12),

(By, ke, I, ILENLE ()]) # (0,0,0,0), (0,2,0,0), (0,0,1,1)  ¥r=1,2.

Since the image of h; with i € L* (h) is disjoint from §¢, Sp=aif
(Bro ke, L, ILFNLE ()]) = (0,0, 1,0)

and v is small. Thus, we can thus assume either B, #0 or k, +21[,. >3 foreachr = 1, 2.
For good choices of v, the restriction of (6.8) to Sl’: factors as

* * . /. Yo * . /. 9
ShH- klth;LT(Bl’J’ v X)) szz,hz;Lj(Bz’J’UZ’X )
Vi by LY J/ levkz,hz;LE

X"y x X%y Xy,

Thus, evy n; 2+ (Sy) is covered by a smooth map from a manifold of dimension

dimZX, (B J, v X7 +dim (X)) = 0,(B,) + k+ 21, — 2codimch, + 3k,
= 0,(B,) — 2k + 21, — 2 codimch, + 3k
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for r = 1, 2. By (6.10), the second statement in (6.11), and the first in (6.12),
£y(By) — 2k, + 2I, — 2codimch, < —2

for either r = 1 or r = 2. Thus, evy p;7+(S}) is covered by a smooth map from a
manifold of dimension 3k — 2 if ¢(S) € 27Z. This confirms the first statement in (1).

By definition,
+

Oos:h

deg(eVi b+ Oos:h) = [eVjp. 1+ (P)] (6.13)

for a generic choice of p € (fd))k. Let (J:, v¢)re0.1] be a generic path in Hlﬁ’l‘f’c
between two generic values pairs (Jo, vo) and (J1, v1). By the same reasoning as for
the statement that the right-hand side of (6.9) can be covered by smooth maps from
manifolds of dimension 3k — 2, the subsets

— oo b o
{evin@ )11 €0, 11, (Wy) € Zpy(B: Jivs X') = ZX, (B v X} € (XD,

{evin(u,2): 1 €0, 11, (W, 2) € Zpy(B: Jp v X} (X

can be covered by smooth maps from manifolds of dimension 3k — 1. Since the space
ﬁ:l(B; J,v; \)fd)) is compact, it follows that the space

~ o
Zhp={(tuy):1€[0,1], (uy) € ZX (B: Ji,v; X' ), evisn(u,y) = p}

is a compact one-dimensional manifold with boundary

~ ¢
3Znp ={evin(u,y): (w,y) € Z;fh(B: Jo,vo; X, evin(u,y) = p} 6.14)

X0
U {even(uy): (y) € ZX(B: Ji,vi: X'). evign(u,y) = pJ.

The orientationg of Lemmas 4.1 and 6.1 and the orientation of [0, 1] determine an
orientation on Zy p so that (6.14) induces the signs on the first set on the right-hand
side which are opposite to the signs determined by 0,47+ and o0s and the signs on the
second set determined by 0,5,/ + and 0s. Thus, 2y,  is an oriented cobordism between
the signed subsets

_ ¢ — ¢
evk},;L*(p) C Z,fh(B; Jo.vo; X)) and er,L;L* (p) C Z,:‘h(B; Jiv X)),
This establishes the independence of the signed cardinality in (6.13) of the choice of
generic (J, v) in Hf’ﬂ’G.

Letip € [/] and

~ o~ X, ifip € L% (h);
X=X’ ifipe L* (h):
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be a pseudocycle equivalence between two generic pseudocycle representatives,

ifio € L% (h);
ifip € L* (h):
X, ifip € L% (h);
X —X’, ifip e L* (h):

X5
hi: Hyy — X_fd)’
hi: H; —> {
for [h;y]x if ip € L% (h) and [h;,] ¥¢ if ig € L* (h). We define
X7

W= )iy, h= (hidieyy by Kl hi = hy ifi #io.

Leth: Z—> X' be a smooth map from a manifold of dimension 6/ — 2 codimch — 1
that covers Q(f3).

By the same reasoning as for the statement that the right-hand side of (6.9) can be
covered by smooth maps from manifolds of dimension 3k — 2, the subsets

=% b b o
{evin@y): (wy) € Z75(B; J,v; X )_Z:H;L*(B; Jovi X)) (XHF,

feviitu. 22 (.2) € 58 v XD} € (K

can be covered by smooth maps from manifolds of dimension 3k — 1. It follows that
the space

¢
Zip={@y: @y € ZX(B; 1, v: X)), ev 5w, y) = p}

is a compact one-dimensional manifold with boundary

¢
025, ={evin(@.y): y) € ZX(B: /. v X"), evin(u,y) = p} 615)

)
u {evk’h/(u, y): (u,y) € Z,:h,(B; Jov; X)), eviw(u,y) = p}.

The orientations of Lemmas 4.1 and 6.1 determine an orientation on Zﬁ,p so that (6.15)
induces the signs on the first set on the right-hand side which are opposite to the signs
determined by 0,s.7+ and os and the signs on the second set determined by 045, 7.+
and os. Thus, Zﬁ,p is an oriented cobordism between the signed subsets

¢ _ ¢
evih:L+(p) C Z:h(B; J,v; X ) and evk}l,;L*(p) C Z:h,(B; J,v; X )

This establishes the independence of the signed cardinality in (6.13) of the choices of
h; € [hi]lx withi € Lj_(h), or h; € [h;] \)qu with i € L* (h).
X—
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(3)Letip € [I],h = (h;) ie(/] be the tuple of maps obtained from h by replacing the
ip-component with ¢oh;, and

Wio: My (B T, v; fd)) —> My (B J,v; fd))

be the automorphism induced by the interchange of the points in the conjugate pair
(z;g, Zi; ). It induces a bijection

—1 —1
\I’[i();h : er,h;L* (p) i evk,h’;L* (P)

By (0456)—(0558) in Lemma 5.1 and (5.17),

—00s:1%, ifig € L% (h);
\Ili*oos;L* = Posil 1 l.O +( ) (6.16)
0 Oos:L*» if ip € L* (h).
Since the action of ¢ on X is orientation-reversing, it follows that
1 + levih-MIE_ . if ig € L% (h);
Vi@, =1 M ot (6.17)
Y os:h _|er,h;L*(p)|oas;h’ if ip € L* (h).

Along with the independence of the signed cardinality in (6.13) of the choices of
h; € [hi]lx withi € L% (h) and h; € [h;] 3 with i € L* (h), this implies (3).
X—

(2) Let iy,ip € [I], W = (h;.),'e[l] be the tuple of maps obtained from h by inter-
changing the i1 and i;-components, and

Wiy Mt (B: T, v; Yd)) — My (B: T, v; f‘ﬁ)

be the automorphism induced by the interchange of the conjugate pairs (z:, Z;)

and (z;;, Zi_z ). Along with the interchange of the i; and i>-components of h, it induces
a bijection

| -1
lpi],i2;h~ er,h;L* (p) > eryh/;L*(h/)(pl

By Lemma 5.1(0,55), (6.16) with ig replaced by i, and (6.16) with L* and i replaced
by L*(h’) and iy, respectively,

*
‘I"il,izoos;L*(h’) = Ops;L* -

Since the interchange of the i and i>-components of M}, respects the orientations op
and oy, it follows that

+

Oos;h/

+

—1 -1
evk,h/;L*(h’)(p)’ = |er,h;L* (p)|005;h :
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This establishes the invariance of the numbers (5.18) under the permutations of the
components /; of h.

(4) Since the proof of this statement is identical to the proof of the last statement
of [5, Prop. 5.2], we omit it. O

Proof of Proposition 1.3 The functional (1.11) is specified by (1.17); the numbers on
the right-hand side of (1.17) are special cases of the invariants (5.21) arising from
Proposition 5.2(1). Its multilinearity and the vanishing property (1.12) are immediate
from the definition of the invariants (5.21). The symmetry property of (1.11), the
divisor relation (1.13), and the vanishing in the second case in Proposition 1.3(2)
are direct consequences of (2), (4), and (3), respectively, in Proposition 5.2, along
with (5.23).

It remains to establish the vanishing in the first case in (2). Let v € G be an
automorphism of (X, w, ¢; qu) which restricts to an orientation-reversing diffeomor-
phism of X , h = (h;)ig be a G-invariant tuple of pseudocycles, as in Sect. 5.2,
representing (multiples of) Poincare duals of the cohomology classes ft; in (1.17),
L* = L*(h) be as in (5.16), and k be as in (1.6). Let

VB ﬁk,l(B; J,v; }d)) — ﬁk,l(B; J,v; X(ﬁ)

be the automorphism induced by replacing the map component u in each tuple u as
in (5.1) with ¢ ou. Along with the orientation-preserving action (5.38), it induces a
bijection

W evi .+ (P) — evp b ;. (p) (6.18)

for every tuple p = (p;)ic[x) of G-orbits of points in \)fd’

By the SpinPin 2a property in [7, Section 1. 2] there is a natural free action of
H! (X Z5) on the set of OSpin-structures on X which acts transitively on the
set of Spin-structures for a fixed orientation on X ¢. Thus, {¥*0s = u-0s for some
u e Hl(f¢; Zy). Since the degree B of each element u of My ;(B; J, v; f¢) is
(3(/¢, Z,)-trivial, the pullbacks of g*os and 0s by the restriction of u to the fixed locus
of the domain are the same. Along with Lemma 5.1(0,410), this implies that

*
W 045,10 = —0p4;L% -

Since the action of ¥ on X is orientation-preserving if and only if k € 27, it fol-
lows that the bijection (6.18) respects the signs of each point determined by 044;h
and os if and only if k ¢ 27Z. Thus,

Vb @[5 = D evih @]

Oos;h Oos:h

We conclude that the signed cardinality ev,:};h(p) and the number (1.17) vanish if
k € 27Z. By (1.6), k € 27 if and only if the last condition in (1.14) holds. O
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Remark 6.3 With the notation as in (5.14) and just below, let

¢ b
Zin(B; J,v; X)) = {(w, 0iiem) € Mis(B; J,v; X ) x My: ev; ()
= hi(y) Vi € [11}.

If h is G-invariant and k as in (1.6) is zero, (6.18) restricts to a bijection

Zin(B: I, v X7) - Z,:‘h;L*(B; v X7

— Zn(B: v X)) = 2K (B S, v X)

between the sets of Z;-pinchable degree B maps meeting the pseudocycles /;. By
the proof of the last statement of Proposition 1.3, this bijection is sign-reversing.
Thus, the signed cardinality of the above set is zero. It follows that we can define
the numbers (1.17) via (5.20), (5.18), and (6.13) with the domain of the evaluation
map evg h, 1+ taken to be Zx n(B; J, v; X ) if h is G-invariant.

Proof of Proposition 2.1 Let h = (h;);cp be a tuple of pseudocycles into X and X —

X ¢, as appropriate, representing (multiples of) Poincare duals of the cohomology
classes u;, L* = L*(h) be as in (5.16), and p= (p; )i [x] be a k-tuple of general points

inX'.Inli ght of Proposition 5.2(4), we can assume that/ € Z™. For a generic choice
of (J,v) € H;:’l?{l}, the space

¢
Znp = {(w Oidieny) € M (B; J,v; X ) X Mp:
evi (W) = hi(y) Vi € 1], ev{*(w) = p; Vi € [K]}

. . . . . . )
is a two-dimensional manifold. The orientations 04s.7+x of My ;(B; J,v; X ), on

9 . . . .
of My, and o of X determine an orientation opp on Zpp as the preimage of p
under the restriction of (5.15) to the main stratum of its domain.
With the notation as in (5.3), define

¢
ZIHEP = {(U, (yi)ie[l]) € 9:)’tk—i-l,l(B; J, fE—:l,l;k-{-IV; X))
X My: (f%-}-l’l;k-f](u)a Oiiemn) € Znp},
9
Zﬁfp = {(w, O)iern) € Mii41(B: J, fr itV X))
X My: (Fea1341 ), Oiieq) € Znp)-
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The projections from Zy, p, ZR and Z}T p O the first factor induce commutative

. hp’
diagrams
R ”lR R N + JTIJr 9
Zh,p — karl.l(B; J, fk:l,l;kﬂ‘); X)) Zh,p — mk.lJrl(B; J, fz,l+l;l+1‘); X))
ffp fk+l,l;k+ll fﬁ,p fk,l+l;l+ll
T ~¢ m 0
Zhp ———= My (B; J,v; X)) Zpp —— M (B; J,v; X))

Since n}R and nf‘ induce isomorphisms between the vertical tangent bundles of their
domains and targets, they pull back the orientations 01&1 and 0k++1 of the fibers
of fx+1.1:k+1 and g s41./41 to orientations o® and o of the fibers of fﬁp and f;p,
respectively.

We denote by OEP = oRoh .p the orientation of Zlﬂfp induced by oR and op,p- Let
oh P be the orientation of Z which restricts to 0" op, p on the subspace of maps from

(P!, v) with the marked pomts zfr and z,trl not separated by the fixed locus S' c P!
and to the opposite orientation on the complement of this subspace. In particular, the
orientation UIJ:, P is preserved by the interchange of the marked points Zl++1 and 7, ;.

We denote by

R . ZR b4 + .oz
eVit1i Znp —> X and ev) 1 Z

h.p X

the maps induced by (5.4) and (5.5), respectively.

Letp e X b be another general pointand S, C X — X be a sphere in the fiber V,, X
of a tubular nelghborhood NX X of X X7 in X over p. We denote the inclusion of S,
into X — X by ts,. By (5.20), (5.18), and (6.13),

¢,08 —1 +

</"L1 s eeey MI>B.\)Z¢ = ’er+1’h;L* (pp)‘%szh,
d,:oﬁ (6.19)

('U“l’ s K PDX’X"S ([SP]X—\)Z(I)))B-\}?QS - |evk Jheg, s L (p)’oog thig,,

By (0452), (0053), (0555), and (0,56) in Lemma 5.1,
_ +
[e¥ict 1. L*(pp)|oosh [evidi) I(P)LE ,

* (6.20)

_ +
|er his,: L*(P)| |{eV1J:L1} I(Sf’)|0]tp’US

Oos:hig

As S, shrinks to p, the elements of {evltl}_l(S ») converge to maps from two-
component domains sending the marked point thLl to p. The restriction of any
such limiting map to one of the components is constant, and this component car-
ries the marked points zlij only. The restriction to the other component represents

an element of {evf 1 }~1(p). We show below that there are precisely two elements of
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{evfjrl 3! (Sp) near each element (u,y) of {evgrl ylp) if Sp is sufficiently small.
Furthermore, the signs of these two elements are the same as the sign of (u, y). Along
with (6.19) and (6.20), this implies (2.15).

We denote by 9,, dg € T1C the outward unit radial vector and the counterclockwise
unit rotation vector so that 9y = i9,. We 1dent1fy aneighborhood of p in X x’ with T, X X’

and a neighborhood of p in X with T}, X EB./\/ pX . Let u be a stable map representative
for an element of {evk i '(p) so that its map component u takes 1 € P! to p and its

marked point zf“ is 0 € C. Since p is a regular value of evIEH, the differential

TuZhp®R —> T,X'.  (&.1) —> £(1) + 1(dgu0), 6.21)

of eV,iRH at (u, x,4+1 = 1) is an isomorphism and d;u is injective. The sign of (u, x1) as
an element of {evy\, |} 7! (p) in (6.20) is the sign of the isomorphism (6.21) with respect
to the or1entat10n Oh,p 0N Ty Zh p, the standard orientation on R, and the orientation o
onT), X Since the homomorphism (6.21) is an isomorphism and the differential

TuZnp®ROR —> T,X=T, X" xN, X", (6.1.5) —> (E(1)+1(pu), 0)+s5(By10),
(6.22)
of eVZZr1 is injective, the equation

evi (W, g = (1 +5)e') € {0} x S, (6.23)

has two solutions withu’ € Zh,p near u and small (s, 7), one with s < 0 and one with
s > 0, if the radius of S is sufﬁciently small.
If s < 0, the marked points zl = 0and 7, ! +1 are not separated by the fixed locus

S' ¢ P! of . In this case, the orientation oh of Z+p at (w', z; Jrl) is the opposite
of the orientation of the left-hand side of (6. 22) given by the orientation oy p and the
standard orientations of the two factors of R (with the first factor corresponding to dg
and the second to 0,). Furthermore, dzk+ lu’ (9,) points inward from Sy. If s > 0, the
k+
marked points ZT =0 and zfjrl are separated by S'. In this case, the orientation 0;: P
of Z:’ p at (o, zlil) is the orientation of the left-hand side of (6.22) given by op p
and the standard orientations of the two factors of R. Furthermore, dZ;’ lu’ () points
k+
outward from Sy. Thus, the sign of (u’, zltrl) as an element of {evfjr 1 }_1 (Sp) in (6.20)
in either case is the sign of the isomorphism (6.21) with respect to the orlentanon Oh,p

on Ty Zp,p, the standard orientation on R, and the orientation 0 on 7, X . We conclude
that the sign of each of the two solutions of (6.23) as an element of {evl o e 1(S )

in (6.20) is the sign of (u, x1) as an element of {ev&l}’l(p) in (6.20). m]

6.3 Proof of Proposition 5.6

We continue with the notation in the statement of this proposition and just above. For
finite sets K’, L’ with |K'| + 2|L’| <2, we denote by HK, L. the set of pairs (J, 0)
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with J € J% .. Let L* = L*(h) be as in (5.16), K, L,, L¥, B, for r = 1,2 be as
in (5.59), and

M* = ¥ (B: S, v X7,
Since (S, Y) is admissible, |K| + 2|L1| > 3 and either K> # & or L, # . We
assume that there exist v| € Haé’le; G and v € ’H?())’}(Z Ky.Lr:G SO that every S admits
an embedding as in (6.2) with v = ﬂ‘o}uK] L ,{O}I)i.

The first claim of Proposition 5.6(1) follows from standard transversality argu-
ments, as in the part of the proof of [5, Prop. 5.2] concerning the transversality on the
subspaces of simple maps. The second claim then follows from (5.33). By the proof
of Lemma 5.8,

er+(S) —2|{i € La(S): dimh; = 0}| € {0, 1}

if S;‘; pT # &; see the second equation in (5.62) and on the following line. This estab-
lishes Proposition 5.6(2). We establish Proposition 5.6(3) below under the assumption
that L} # @. The L} = o case then follows by the reasoning in the proof of [5,
Prop. 5.7]. Since Lj # @, the image of S under the forgetful morphism f; ; is con-
tained in a codimension 1 stratum S of ﬂ,: ;- By Lemma 5.3, we can also assume
that the orientation o of NS used to define the orientation d0,g: 7+ = 803 0ps:2+ Of S
is og+ in the notation of Lemma 6.2.

Foru € S, let
_ . ¢ ’ ; . ) P
up € My =Mk, (Bis J.vi; X ), up € M) =Mk, 1, (Bi: J, v X ),
¢
u €Ny Egﬁ{O}uKz,Lz(B%J,VZ;X ), nde]P’l,IP’é, Sll CPl,
¢ _ p¢ ¢ _ p? —p? ¢ _ po
Du - DJ,v;u’ Du1 - DJ,ul;ul - Dj,ui;u’l’ Duz - DJ,vz;uz

be as above Lemma 6.2 and in Sect. 4.2. We denote by

C=frim) e S’ C ﬂzﬂ;’l, Cr =fouky, L, () € Mi=Migy ik, 1,5

Ci =fk,.0,(@) € Mi=Mi 1. Co =fouk, 1,W) e Ma=Migy i, 1,

the marked domains of the maps u, uy, u’l, and uy, respectively.
The exact sequence

0 — WS — Ty MOy, M, — Tu(nd)k/gb — 0, (&1.8) — &(nd)—&(nd), (6.24)
of vector spaces determines an isomorphism
v
)Lu(S) ® )\(Tu(nd)X ) ~ )\ul (W]) ® )\uz (SIRZ) (6~25)
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. ¢ . . .
The OSpin-structure 05 on X determines orientations 0. Lx and 0. L of )Lu/l m)

and Ay, (M) respectively; see Lemma 5.1. The S I_fibration in (6.3) determines a
homotopy class of isomorphisms

Doy ) A Ay M) ® TraS| - (6.26)

Together with the orientation ofd on its vertical tangent bundle Ty M} = TqS 11 , wWe

obtain an orientation Eos;LT;ul = og{doos;q;u/] of Ay, (M1). We denote by Ufs;L*;u the
orientation on Ay (S) determined by Eos;L’f;m and 04;7.%:u, via (6.25).

We define dr(S) € {0, 1} as at the beginning of Sect. 4.2. The next lemma is
deduced from Lemmas 4.2 and 6.2 at the end of this section.

Lemma 6.4 Letu € S. The orientations 00441+ and ofs;L* of Mu(S) are opposite if
and only if Sgr(S) = 0.

We take h; and h; to be the components of h as in the proof of Proposition 5.2 and
pre @) and  pre )
to be the components of p € (qu)k defined analogously. Let

* ) .y?

21 = 2k, mys2y (B v X YN(M x Mp,),
* ) .y?

Z| = ZKI,hl;LT(Bl’ J,ovps XOHN (M) x My,),

* 4
22 = 2k i1y (B2 J5 2 XN (M X My ).

We denote by
evh,: 21 — (\)f(b)k', evp, : 21 — (3(/¢)k1, and evp,: Zp —> (\)fd))kz,
the maps induced by (5.4). By (5.40), Remark 6.3, and (5.39),

deg(evill , Oog;hl) = ((PDX([hi]X))iELl(S))q;yjz).\)?ﬁ.G’
1(8); ;

¢,
deg(evna, Oosie) = (PO i1 );cris) ™0 o -

(6.27)

The forgetful morphism (6.3) induces a fibration fz, so that the diagram

nZ

Z ]
le \L lfnd
Z{ Tz g)’t/]
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commutes. Since 7z induces an isomorphism between the vertical tangent bundles
T Z} of z, and TN of fyg, it pulls back o]fd to an orientation o%l on the fibers of f z, .

The orientations 0, L¥> O0s; L% and 0, L3 on 9y, M| and My, respectively, and the
orientations oy, of H;, determine orientations 0,s;h,, 0os:h» and 044:1, of Z1, Z{ and
Z,, respectively. Since the dimensions of X and H; are even, the isomorphism
~ 1
y (Z21) = )Lu/] (Zi) ® Tha S (6.28)

respects the orientations Gy:h,, 0gs:h,» and of =7z oX..

For i € Sp, we denote by
ﬁlezl, ﬁ/IEZ{, ﬁzEZz

the images of U under the projections induced by the embedding (6.2), the forgetful
morphism (6.3), and the decomposition

My ~ My, X My, .
The exact sequence
)
0 — TSy — T3, 21075, 22 — TuayX —> 0, (§1.6) — &(nd) — & (nd),

of vector spaces determines an isomorphism
¢
2 Sp) @ MTumay X ) = A, (21) @ Ay, (£2).

. . . ~ . . ) .
Along with the orientations 04¢:h, and 0441, and the orientation o of X~ determined
by os, this isomorphism determines an orientation 0., of Sy. Since the dimensions
of X and H; are even, Lemma 6.4 implies that

+
US;thCT :

|$;;M|;'E%5;h’ogr = OS] (6.29)
If S and T satisfy (S17) above Proposition 5.6 with i € [k] as in (S17), let
K=K —{i}, Li=L, Ky={}, Lh=2, T1=7_, 0=i.
If S and Y satisfy (S27) and S C My, ; as in (S27Y), let
K| =Ki(S), L,=L(S), K),=KS), L=LyS)
and denote by
T S%M{IO}uKi,L’I x m{ro}uké,yz - /V{ro}ukg,y1
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the projection to the first component in the second identification in (4.7). In this case,

< -—T -—T -—T
TOS > T x Migyxs, ry, © Mok, X Moy 1y

for some Y Cﬂ{t(;}tKi’L/l;nd. The co-orientation 0S¢ on TNS in S induced by o,

is the pullback by 7} of a co-orientation 0%, on Y in M{To}u k.1, Let

. QX M
frojuk,L, = T1ofw s Sy —> S —> Mgk 1 -

In both cases,
dimY; =dim Y + 1 — |K}| — 2|L}| (6.30)

and the forgetful morphism gy, KL, factors as

" f(O)uKi,L’l —
Sh —> Zl X Zz —> Z] E— M{O}I_IK{,L/] .

We define
. -7 -7
fm = Fok) 00 Myoyuk;.L, — Mk -

If S and 7Y satisfy (S27), (2) and (3) in [5, Lemma 3.3] give

+ +
* [
|Sh,P§T | 05:m,05 |M(CVS;h»fk’,l’)»fp;T |0$;h,77|*05r1 lvns

—_ _(_1\IK5I + .
=—(-=1) |M(eVS:h’f(0]uKi,L’1)’fp:Tl °$;hy0£{|’

(6.31)
the signed fiber products in the second and third expressions above are taken with
respect to (fqb)k x § and (fqb)k X ﬂ{ro}u KI.L» respectively. The first and last expres-
sions in (6.31) are the same if S and Y satisfy (S17). Since the diffeomorphism

X' — XNHE x X0k

respecting the ordering of the elements of K| and K> has sign (—1)%® S the definition
of 0s.h and [5, Lemma 3.4] give

+
|M(evs;h’f(0)uKi,L’l)’fP;Tl }os;h‘ofrl (6 32)
_ (_I)SR(S) |M(6Vh1 5

+
{O}uKi,L’I)’fPl;Yl EOE:hl ’U%Ideg(thza Ooﬁ;hz).

By [5, Lemma 3.3(1)],

— (_1)d1m Tl deg
1

+
|M(evhl’f(O]uK{‘L/l)’fPIZTI Oos:hy»0%
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k C ~
(e nar T Fowi. 2 o Josn) -

By the sentence containing (6.28) and (3.6),
* c Y
deg(evi, ey 0" S0 2 % Joosih)

= * c v /
= deg(le |f(7();uK{'L/1(T1)’ (f{O}LIKi,L’l UT1)021) deg(thl, oos;hl)'

. v _ % R .
Since 0% =7z0h [5, Lemma 3.2] gives
* c v Y * R R (s R
silfz, It o Growrg g 0 0%,) = sifi0jk; g T2 Ona Ona) 07,1, @0, Ona)
1"~1

_ (~c R
- sf(o)ukg ‘L/l (u)(oT] Und)

for a generic 0 € f{_()il_lKi,L’l(Tl)'
Combining the last three equations with (6.30), we obtain

— _(_1)dim T‘HK&

|M(6Vh1 | deg(fM Iry s Ofr, 051) deg(eV;” , Uos;hl)

E
'f(O)uK;,L’I)‘fPLTl Uns:hlvﬂ“rl

= (= 1)dim T+ degg (Y, 0%) deg(evy, . Oos:hy )-

Along with (6.31) and (6.32), this gives
i )
|Slf,p;T|os;h,o% = (—1)dimT+5r(5) degs(, 0%) deg(ev{,l, 00s:h; ) deg(evhy: Oos:hy) -

Combining this equation with (6.29) and (6.27), we obtain (5.41).

Proof of Lemma 6.4 The differential of the forgetful morphism fi; induces the first

exact square of Fig. 5. The two spaces in the bottom row are oriented by of§+ and ogj’
with the isomorphism between them being orientation-preserving. These orientations

and the orientations o GDE, 0os:L*,and ok ;. 7+ determine the limiting orientations 044 *on

ker Dﬁ’ s 0;’5‘ L+ On Tuim*, and o,:rl. 1+ On Tc/\_/l, respectively. By (6.7), the middle row
respects these orientations. The middle (resp. right) column respects the orientations
0005: 2+ on TyS, o;;L* on Ty9*, and of§+ on Ny S (resp. UEV;L* on TSV, OZI;L*
on T¢ M, and ogf on NySY). Thus, the top row in the first exact square of Fig. 5
respects the orientations o?f on ker Dﬂ’, 004s: 2+ on TS, and UEV,L* on T, SV; see
[5, Lemma 6.3], for example.

The differentials of forgetful morphisms induce the second exact square of Fig. 5.
The two spaces in the top row are oriented by oi&d as in Sect. 4.2 with the isomorphism
between them being orientation-preserving. The first real marked point of u; is the
node. By (o 0(1) in Lemma 4.1, the right column thus does not respect the orientations
ong on TndSll, 0{0)uKy,Li; L% O Te, M1, and 0k, ;L On Tc{ M| because

K| +dim M| = 2|K)| +2|L;| — 3 ¢ 2Z.
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0 0 0
0 ker D TuS TeSY 0
0 ker D, T * TeM 0
0 NuS NeSY 0
0 0
0 0
0 ThaSt ThaSt 0
0 ker D&, T, Te, M,y 0
0 — ker DY, Ty T, M) 0
0 0 0
0 0 0
0——ker D¢ TuS TcSY 0
0 — ker D&, @ker Dfs, —— T, My @ Ty, My — Te, My @®Te, My —0
0 Ty nty X —=—= Ty(nay X? 0
0 0

Fig.5 Commutative squares of vector spaces with exact rows and columns for the proof of Lemma 6.4

By (6.7), the bottom row respects the orientations aoD5 on ker fol, Ogs;L% ON Tu/l m,

and og, 1, L on TC{ M. By (6.26), the middle column respects the orientations oﬁd

on TpaS1, Eos;L’f on Ty My, and 044,27 on Ty, 90, if and only if | K| € 27 because

dim M| = €,(B1) + 2|L1| + |K1| and £, (B)) € 2Z.
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Thus, the middle row respects the orientations 02, on ker fol . Ops: Ly on Ty, 9y, and

Ok +1,1y;L% ON Te, M if and only if

1 +dimker DY + |K1| = 1 + 3+ £,(B) + |K1|

is even. The last condition is equivalent to |K{| € 27Z.
The short exact sequences (6.5) and (6.24) and the differential of the forgetful
morphism f; ; induce the third exact square of Fig. 5. By (6.7), the short exact sequence

of the second summands in the middle row respects the orientations o, on ker Df,’z,
0o5;25 on Ty, My, and ooyk,,1,;25 0N Te, Ma. Along with the conclusion of the

previous paragraph, this implies that the middle row respects the orientations o2 @oZ. ,
O0s;13 D0os; 13> AN 0(0)K, +1,L,;L% DO(0JuK,, Ly; L3 Decause

|K1| + (dimker DY, ) (dim M)
=K1l + (3 + (c1(X, ), B2)) (IK1] +2|L1| - 2) € 2Z.

By Lemma 6.2, the left column respects the orientations of,);Jr, of,)s (&) oé’s, and the

. . ¢ . s . . .
orientation of 7,(ngyX in 0s. By Lemma 4.2, the non-trivial isomorphism in the right
column respects the orientations ogv_” and oqoyk,,1, :Ls BO(OJUK, La; L if and only if

OR(S) =k+1mod 2. By the definition of ofﬁ_ 1+ via(6.25), the middle column respects
the orientations 0‘055; 1> O0s: L D0os: 1%, and 0. Combining these statements with [5,

Lemma 6.3], we conclude that the top row respects the orientations o OD ;+, N and

os; L*°
o;v‘ 1+ if and only if

(k+1+rS)+ (dim S¥)(dim X”) = (k+1+6r(S)+3(k+21-3-1)

is even. Comparing this conclusion with the conclusion concerning the top row in the
first exact square of Fig. 5 above, we obtain the claim. O

6.4 Proof of Proposition 5.7

Let L be a finite set. We denote by H‘i’; ¢ the space of pairs (J, ') consisting of
JeJ [Zb ¢ and a G-invariant Ruan-Tian perturbation v" of the 9 7-equation associated
with MO,L if [L| > 3 and the set of pairs (J,0) with J € j(f;G otherwise. For
B’ € Hy(X) and v/ € HY.;» we denote by E)JT(E(B/; J, V") the moduli space of
(complex) genus 0 degree B’ (J, v')-holomorphic maps from smooth domains with
L-marked points and by

eVi:Sﬁ(E(B/;J,v/)—>X, iel,

the evaluation maps at the marked points. For I C L, let oc.; be the orientation
of im(E(B’ : J, V') obtained by twisting the standard complex orientation by (—1)!!.
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Define
ol x — X, o! = |\dx. HMiEh
b, ifi e I;
I.9mC/p. / L Iy Iino.
v M (B I, V) — XT, ev' (u) = ((@i (evl(u)))ieL). (6.33)

We continue with the notation in the statement of Proposition 5.7 and ]ust
above and take L* = L*(h) as in (5.16). The co-orientation of. of I" in ./\/lk/ v
and the orlentatlon 0,5:2+ Oof Lemma 5.1 induce an orientation (fk, /97)00s; L+ OF

Mrik,1(B; J,v; x’ )-

Fix a stratum S C Mr.x;(B; J, v) of maps that are not Z,-pinchable. Let By be
the degree of the restrictions of the maps in S to the real component IP’(I) of the domain
and B’ be the degree of their restrictions to the component IP%r of the domain carrying
the marked point zf. Since By € H2(X)qi, By is G-invariant. Denote by Lo, Lc C[!]
the subsets indexing the conjugate pairs of marked points carried by IP(l) and ]P’i_,
respectively. Let I C L¢ be the subset indexing the conjugate pairs of marked points
(zi+, z; ) of curves in S with z;” € IP’L. Define

Ly=LoNL*, L{=LcNL*, L* =INL*, ho= (hi)iery» hc = (hiicLc-
By (5.33) and (5.42),

(£ (Bo) — 2(k 4 codimchg — |Lo|))
+2(£,(B") — (codimche — |Lel)) = 2, (6.34)

hilx, ifi e Lc — (I —L*);
[0fon;], = {ilx Hiele—U=Lo) (6.35)
—[hilx, ifiel—L*.
For a good choice of v, there exist vg € H {0}|_,L0 G VC € H{O}uL G and a
natural embedding

1s: S — Mr xNMc= f)ﬁ[*k'] (O)ULo; L (B(), J,vp; X ) X m{O}uL@ (B J, v(c)

(6.36)
If By # 0, we also assume that there exists v, € Hﬁ(’fLO;G so that the forgetful
morphism

foa: M —> My =X | . (Bo: J.vl: X7 (6.37)

LLo;L§
dropping the conjugate pair corresponding to the node nd is defined. If B’ # 0, we
similarly assume that there exists v € H‘L"C; G so that the analogous forgetful mor-
phism

fa: Me —> M =ME_(B's 1, vg:) (6.38)
is defined.

For an element u € S, we denote by ug € Mpr and uy € Mg the pair of maps
corresponding to u via (6.36). Let u, € My and w/, € M. be the image of up

@ Springer



WDVV-type relations for disk Gromov-Witten invariants in dimension 6 1309

under (6.37) if By # 0 and the image of u under (6.38) if B’ # 0, respectively. The
exact sequence

0 —> TuS —> TuyMr®Tu, Mc —> TuwyX —> 0, (§1,&) — &(nd) — £ (nd),
of vector spaces determines an isomorphism

Ma(S) @ MTunay X) X hug(MR) @ Ay, (Mc). (6.39)

By Lemma 5.1, the OSpin-structure os on §¢ determines an orientation 0. Lk
of Ay,(Mir). This orientation, the complex orientation of A(Z},(HQX), and the
orientation og;z* of Ay, (Mc) induce an orientation 01; s:L*u of Ay(S) via the iso-
morphism (6.39).

With the notation as in (5.14), let

Sh=SevX fi Mn,  Zr = MR)evX fiyy My, Zc = (M) ey Xne M f, .

be the spaces cut out by h, hg, and hc¢, respectively, and

N
evR: Zrp — (X )k, eVR.nd=evo: Zr —> X, and evc.ga=evo: Zc — X,

be the induced evaluation maps. The orientations 0,5 .+ of Mg, o¢; .+ of Mc, and oy,
of H; determine orientations 0,4:n, 0f Zr and oy, of Z¢ via the evaluation maps ev
as in (5.10) and ev/ as in (6.33), respectively.

Lemma 6.5 (1) The orientations (fz,’l,of—)oos;p and Ul;s;L* of M(S) are the same.

(2) The orientation oy of Z¢ at U € Z is the orientation induced by the complex
orientation of 9)?%(3’ ; J, V') and the orientations oy, of H; via the intersection of
the smooth maps

ev= l_[ev,-: ME(B'; J,v') — XEC and H{@{ohi}: My —> XEc
ieLc ieLc

if and only if |I — L* | € 27.

Proof The first statement holds for the same reasons as [5, Lemma 6.5]. The second
statement holds because the action of ¢ on X is orientation-reversing. O

For € &y, letty € Zg and U € Z¢ be the components of W in the corresponding
spaces. The exact sequence

0 — TiSh — TﬁOZR®Tﬁ+Z(C — TyayX — 0 (6.40)
of vector spaces determines an isomorphism

25 (Sn) ® M(Tumay X) ~ Ay (Zr) ® A, (Z0).
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The orientations 0,s;h, Of A, (ZR) and op.. 7+ of Agi, (Z¢) and the complex orientation

of A(T,ma)X) determine an orientation ogs‘h of Sp, via this isomorphism. Since the
dimensions of H; and X are even, Lemma 6.5(1) implies that

_ + _ +
|evrfh(p)msh|%5;h = !evr;lh(p)ﬂShLEsﬁ . (6.41)
By Lemma 3.2,

—1 + _ +
‘evr;h(P)ﬁSh|ogs;h = |Mevmg;nal\evl—{|(p),evc;nd’(e\,ﬁ*{ok)ous;ho’Uh(C;L,i ) (6.42)

where oy, is the orientation of (?q’)k induced by os.
If By #0 (resp. B’ #0), we also define

Zp = Mp)evXngMn,  (resp. Z& = (M) ey ¥ne Mie)
and denote by U, € Z, (resp. W, € Z,) the image of Uy (resp. Ui ) under the forgetful

morphism
fr: Zr — 2 (resp. fc: Zc — 2¢) (6.43)

dropping the marked points corresponding to the nodes. Let
/L ! AN
evp 1 Zp — (X))

be the evaluation map induced by (5.4).
Since the projections g and ¢ in the commutative diagrams

TR c

ZRr MR Zc Mc
R l J/ fnd fc J/ l fnd
TR e
Zp My = M

induce isomorphisms between the vertical tangent bundles of fg, fc, and fpg, they pull
back the orientations on+d of the fibers of fpg to orientations oﬁg and o(JCr of the fibers
of fr and fc, respectively. If By #0, 0,. Lk determines an orientation o/, _ ho of Zp.
If B'#0, oc. .+ determines an orientation 011@; p» of Z.. Since the dimensions of X
and H; are even,

— ot¢’ — (%57 o' I LV (kA
Oos;hp = OR%%5;h) = (nRond)ooﬁ;ho and Ohg:L* = O¢Oho,px = (n(Cond)ohc;L’i ’

(6.44)
whenever By #0 and B’ #0, respectively; see Lemma 3.1.
We first consider the case By, B’ #0. By (6.34), we can assume that either
£, (Bo) = Z(k + codimchgy — |L0|) and £,(B) = (codim@hc — |Lc|) +1, or
(6.45)
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£ (Bo) = 2(k 4 codimchg — |Lo| + 1) and £, (B’) = codimchc — |L¢|; (6.46)

otherwise, either eva_l (p) =Qor Z(E: = & for generic h, p.

Suppose that (6.45) is the case. This implies that eVI’R_1 (p) is a finite set of points W .
The fiber of fr over each W}, is the complement of finitely many points in P! — S'.
The restriction of evRr.pq to evﬂi1 (p) extends to a smooth map

er: Mp — X (6.47)

over the natural compactification MR of evﬂg1 (p)- By Lemmas 5.1 and 3.1,
_ /—1 +
[eR]X = |evg (p)|0/ . By € Hy(X).
os3hg

By (5.39) and the assumption that h is G-invariant,

. = <(hi)ieLo>q;:;¢;G

leviy ' (p)

+
’
0os;h

By (5.39), the evenness of the dimension of MR, Lemma 6.5(2), and (6.35),

+ — (L] 3 ohi)ier VX
|MCVR3“d‘evﬂil(p)’CVC;“d|(5Vﬁ0k)°os;h010hc;yi = ( 1) (eR» (Oi th)zeLC>B/ (648)
X
=((hicLe. er)y -
Combining the last three equations with (6.41) and (6.42), we obtain
_ + X .
’evp;]h(ll)ﬂsh}or_wh = ((hi)ieLc BO>B/<(hi)ie[l]7L@)¢ e - (6.49)

By: X ;G
This is the last term in (5.43) with L’ = L¢ and a choice of I C L’ so that INLc (")
is the subset L* (I") C [I'] defined in Sect. 4.3.
Suppose instead that (6.46) is the case. This implies that Z(. is a finite set of
points U.. The fiber of fc over each U is the complement of finitely many points
in P! — S!. The restriction of eve:nd to Z¢ extends to a smooth map

ec;p’ - M(C;B’ — X (650)

over the natural compactification Mc,p' of Z¢. By Lemma 5.1,
|z |E ’
lec.n]y = |2c], B € Ha(X).
he:L*
By (5.39), Lemma 6.5(2), and (6.35),

|Z</c|j?1 T (_l)ll_Li|<(®iIOhi)ieLC>§/ = ((hi)ieL(c));,. (6.51)
To 2l
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Since h is G-invariant, the number (6.51) does not depend on the choice of B’ in GB’
and the sum of the cycles (6.50) over these elements is G-invariant. Along with (5.39)
and Lemmas 5.1 and 3.1, the latter implies that

+ = Z(e@;B”, (hi)ieLo>Z’o;¢;G’

E M
| eV]R:"‘”cevliil(p)’evc‘"" (eVE0K)0s:hg s Ohg; L .
B"eGB’ B"eGB’ 0

(6.52)
with the B” summand on the left-hand side corresponding to B” instead of B’. Combin-
ing the last three equations with (6.41) and (6.42) and the first observation after (6.51),
we obtain

Z|CVF;1h(P)mSh|fr.oﬁ.h= Z((hi)ieLC)gn((hi)ie[Z]—LC,B”)d)’oid, . (6.53)
B"eGB’ T preGw Bo: X G

This is the sum of the penultimate terms in (5.43) with L' = L¢ and a choice of I C L’
so that INLc(T) equals L* (T") over all B” € GB’. Summing (6.49) and (6.53) over

all possibilities for S with By, B’ #0, we obtain the (By, B’)-sum in (5.43).
We next consider the case B’ = 0 and thus By = B. We can assume that

|[Lc| = [Lc(D)] =25
otherwise, either eV]’R_ 1(p) = @ or Z¢c = & for generic h, p. Let L¢c = {i1, i»} and
ec as in (6.50) be the restriction of evc:pq to Z¢. By standard properties of (complex)
GW-invariants, Lemma 6.5(2), and (6.35),
— [I-L*| 1 . 1 . —
[ec]y = (=D ((®;,0hi))N(O;,0hiy))r = dr(h) € Ha(X).

Combining this with (6.52), (6.41), and (6.42), we obtain

_ + ,
|6Vp;lh(P)ﬂSh|or' W= ((Rdiem-Lem)- 3r(h))¢ oh
0% B:X G

This is the second term on the right hand side of (5.43).
We finally consider the case By = 0 and thus 9(B’) = B. We can assume that

k =k' =1and Ly = @; otherwise, either evﬂgl(p) = @ or Z;. = & for generic h, p.
Let eg as in (6.47) be the restriction of evg.pq to Zr. By Lemma 5.1(0449),

fee] = [pt] € HoC)
Combining this with (6.48), (6.41), and (6.42), we obtain
leve NS5, = (oiei, pY)y -

Summing this over all possibilities for S with By = 0, we obtain the first sum on the
right-hand side of (5.43).
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