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Abstract
The first author’s previous work established Solomon’s WDVV-type relations for
Welschinger’s invariant curve counts in real symplectic fourfolds by lifting geometric
relations over possibly unorientable morphisms. We apply her framework to obtain
WDVV-style relations for the disk invariants of real symplectic sixfolds with some
symmetry, in particular confirming Alcolado’s prediction for P

3 and extending it to
other spaces. These relations reduce the computation of Welschinger’s invariants of
many real symplectic sixfolds to invariants in small degrees and provide lower bounds
for counts of real rational curves with positive-dimensional insertions in some cases.
In the case of P

3, our lower bounds fit perfectly with Kollár’s vanishing results.
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1 Introduction

TheWDVV relation [13,16] for genus 0 Gromov–Witten invariants completely solves
the classical problemof enumerating complex rational curves in the complex projective
space P

n . Invariant counts of real rational J -holomorphic curves with point insertions
in compact real symplectic fourfolds and sixfolds, now known asWelschinger invari-
ants, were defined in [22,23] and interpreted in terms of counts of J -holomorphic
maps from the disk D

2 in [17]. Two WDVV-type relations for Welschinger invariants
in dimension 4 were predicted in [18] and established in [5]. Similarly to the WDVV
relation of [13,16], these relations completely determine Welschinger invariants of
many real symplectic fourfolds from very basic input; see [6]. Methods for computing
Welschinger invariants of the projective space P

3 were introduced in [3,4]. AWDVV-
type relation for counts of real rational curves without real constraints was obtained in
[10]. The existence ofWDVV-type relations forWelschinger invariants in dimension 6
was announced in [18], but without specifying their statements.

The present paper applies the approach of [5] to obtain two relations forWelschinger
invariants of real symplectic sixfolds with symmetry as in Definition 1.2. These rela-
tions yield the two WDVV-type ODEs of Theorem 1.5 for generating functions for
the disk and complex Gromov–Witten invariants. Our ODEs (1.19) and (1.20) in the
case of P

3 agree with the ODEs (4.82) and (4.76), respectively, in [1], but correct their
structure for more general spaces.

Thefirst author showed in [5] that the disk counts of [17] in real symplectic fourfolds
can be viewed as the degrees of relatively oriented pseudocycles from open subspaces
of the moduli spaces Mk,l(B; J ) of real rational J -holomorphic maps constructed
in [9]. She then established Solomon’s relations for Welschinger invariants of real
symplectic fourfolds in [5] by lifting

(R1) a zero-dimensional homology relation on the moduli space RM0,1,2 ≈RP
2 of

stable real genus 0 curves with 1 real marked point and 2 conjugate pairs of
marked points and

(R2) the one-dimensional homology relation on the moduli space RM0,0,3 of stable
real genus 0 curves with 3 conjugate pairs of marked points discovered in [10]
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WDVV-type relations for disk Gromov–Witten invariants in dimension 6 1233

Fig. 1 The relations on stable maps induced via (2.10) by lifting codimension 2 relations from Mτ
1,2

and Mτ
0,3; the curves on the right-hand sides of the two relations are constrained by the hypersurfaces ϒ

inMτ
1,2 and Mτ

0,3

along with suitably chosen bounding cobordismsϒ for them to ̂Mk,l;l∗(B; J ), a cut of
Mk,l(B; J ) along hypersurfaces that obstruct the relative orientability of the forgetful
morphisms

f1,2 : Mk,l(B; J ) −→ RM0,1,2 and f0,3 : Mk,l(B; J ) −→ RM0,0,3. (1.1)

The intersections of the boundary of ̂Mk,l;l∗(B; J ) with ϒ then determine the wall-
crossing effects on the lifted relations in Mk,l(B; J ); see [5, Lemma 3.5].

The WDVV-type relations of Theorem 1.5 for the disk counts of [17] arise from
relations between counts of two- and three-component real curves obtained by lift-
ing (R1) and (R2) exactly as in [5]; see Sect. 2.3. The lifted relations, depicted in
Fig. 1 on page 11, have the exact same form as in [5] and hold without any symmetry
assumption on the target, but for fixed collections of constraints for the curves; see
Proposition 5.5. The counts of curves represented by the individual diagrams in Fig. 1
generally depend on the choices of the constraints. We eliminate this dependance by
averaging these counts over the action of a finite group G of symmetries as in Defini-
tion 1.2, if such a group exists, and then split the averaged counts into invariant counts
of irreducible real and complex curves; see Sect. 2.4 and Propositions 5.6 and 5.7.

Asnoted in [1, Prop. 17], theWDVV-type relations ofTheorem1.5 are very effective
in computing the disk invariants of some real symplectic sixfolds (X , ω, φ). The disk
invariants with only point constraints agree withWelschinger invariants up to sign. As
only some elements of H2(X−Xφ) can be represented by holomorphic curves in a real
projective manifold (X , ω, φ), Theorem 1.5 and Proposition 2.1 lead to lower bounds
for counts of real algebraic curves in some real algebraic threefolds through curve
constraints; see Sect. 2.6. In light of [12], there can be no non-trivial lower bounds of
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1234 X. Chen, A. Zinger

this kind for real lines and conics in P
3. However, Theorem 1.5 and Proposition 2.1

provide such bounds for real cubic curves in all cases not precluded by [12]; they are
shown in boldface in Table 1 on page 17.

Remark 1.1 Two months after the present paper was posted on arXiv, [20] provided
WDVV-type relations for the open GW-invariants constructed in the authors’ earlier
papers based on algebraic considerations. These invariants, which in general count
J -holomorphic multi-disks meeting the given cycles and some auxiliary bordered
chains, reduce to Welschinger real invariants in the setting of [23]. In the presence
of a symmetry as in Definition 1.2, the relations of [20] in turn reduce to those of
Theorem 1.5, which we establish based on self-contained geometric considerations.
As pointed out by a referee, a version of [20] appears as Chapter 3 in S. Tukachinsky’s
thesis [21].

1.1 The real symplectic setting

Let (X , ω, φ) be a compact real symplectic manifold, i.e. ω is a symplectic form
on X and φ is an involution on X so that φ∗ω = −ω. The fixed locus Xφ of φ

is then a Lagrangian submanifold of (X , ω). An automorphism of (X , ω, φ) is a
diffeomorphism ψ of X such that

ψ∗ω = ω and ψ◦φ = φ◦ψ.

We denote by Aut(X , ω, φ) the group of automorphisms of (X , ω, φ). Let

H∗(X) = H∗(X; Q), H∗(X)
φ
± = {β ∈ H∗(X) : φ∗β = ±β

}

,

H∗(X) = H∗(X; Q), H∗(X)
φ
± = {μ ∈ H∗(X) : φ∗μ = ±μ

}

.

For a connected component X

∧φ
of Xφ , we denote by

Aut
(

X , ω, φ; X∧φ) ⊂ Aut(X , ω, φ)

the subgroup of automorphisms of (X , ω, φ) mapping X

∧φ
to itself. Let

H∗(X − X

∧φ
) = H∗(X − X

∧φ; Q),

H∗(X − X

∧φ
)
φ
± = {β ∈ H∗(X − X

∧φ
) : φ∗β = ±β

}

,

H∗(X , X

∧φ
) = H∗(X , X

∧φ; Q),

H∗(X , X

∧φ
)
φ
± = {μ ∈ H∗(X , X

∧φ
) : φ∗μ = ±μ

}

.

Every element of H2(X , X

∧φ; Z) can be represented by a continuous map

f : (	, ∂	
) −→ (X , X

∧φ)

123



WDVV-type relations for disk Gromov–Witten invariants in dimension 6 1235

from a compact oriented surface with boundary; see [7, Lem. 4.3(b)]. The continuous
map ̂f : ̂	−→ X obtained by gluing f with the map φ◦ f from 	 with the opposite
orientation along ∂	 then represents an element [̂f ] of H2(X; Z). It depends only on
the element [ f ] of H2(X , X

∧φ; Z) represented by f ; see [7, Lem. 4.3(c)]. Let

d
X

∧φ : H2
(

X , X

∧φ; Z
) −→ H2(X; Z) −→ H2(X) (1.2)

be the composition of the resulting homomorphism with the obvious homomorphism
to H2(X). We denote by

∂
X

∧φ

;Z2

: H2
(

X , X

∧φ; Z
) −→ H1

(

X

∧φ; Z
) −→ H1

(

X

∧φ; Z2
)

(1.3)

the composition of the boundary homomorphism of the relative exact sequence for
the pair (X , X

∧φ
) with the mod 2 reduction of the coefficients. We call an element

B ∈ H2(X) (X

∧φ
,Z2)-trivial if

∂
X

∧φ

;Z2

(

d−1

X

∧φ (B)
) = {0} ⊂ H1

(

X

∧φ; Z2
)

.

Wedenote byJω the space ofω-compatible (or -tamed) almost complex structures J
on X and by J φ

ω ⊂Jω the subspace of almost complex structures J such that φ∗ J =
−J . Let

c1(X , ω) ≡ c1(T X , J ) ∈ H2(X)

be the first Chern class of T X with respect to some J ∈ Jω; it is independent of such
a choice. For B ∈ H2(X), define


ω(B) = 〈c1(X , ω), B
〉 ∈ Q.

If B is in the image of the second homomorphism in (1.2), then 
ω(B) ∈ Z. If B
is in the image of the composite homomorphism in (1.2) and X

∧φ
is orientable, then


ω(B) ∈ 2Z; see [2, Prop. 4.1].
For J ∈ Jω and B ∈ H2(X), a subset C⊂ X is a genus 0 (or rational) irreducible

degree B J -holomorphic curve if there exists a simple (not multiply covered) J -
holomorphic map

u : P
1 −→ X s.t. C = u(P1), u∗[P1] = B. (1.4)

If in addition μ1, . . . , μl ∈ H∗(X), we denote by

〈μ1, . . . , μl〉XB ∈ Q (1.5)
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1236 X. Chen, A. Zinger

the (complex) GW-invariant of (X , ω) enumerating rational degree B J -holomorphic
curvesC⊂ X through generic representatives of the Poincare duals ofμ1, . . . , μl . This
invariant vanishes unless B lies in the image of the second homomorphism in (1.2).

A curve C⊂ X as in (1.4) is called real if φ(C) = C . In such a case, u in (1.4) can
be chosen so that it intertwines φ with one of the two standard involutions on P

1,

τ : P
1 −→ P

1, τ (z) = 1

z
, or η : P

1 −→ P
1, η(z) = −1

z
,

i.e. either u◦τ = φ◦u or u◦η = φ◦u. We call such maps u (φ, τ )-real and (φ, η)-real,
respectively, and the images of (φ, τ )-real maps (φ, τ )-real curves. For a (φ, τ )-real
curve C ⊂ X , we denote by RC ⊂ Xφ the image of the τ -fixed locus S1 ⊂P

1 under a
(φ, τ )-real map u as in (1.4). The degree B of a (φ, τ )-real map lies in the image of
the composite homomorphism in (1.2) if RC⊂ X

∧φ
.

For a subgroup G of Aut(X , ω, φ; X∧φ), we denote by J φ

ω;G ⊂J φ
ω the subspace of

G-invariant almost complex structures. Let

HG∗ (X − X

∧φ
)
φ
± = {β ∈ H∗(X − X

∧φ
)
φ
± : ψ∗β = β ∀ψ ∈ G

}

,

H∗
G(X , X

∧φ
)
φ
± = {μ ∈ H∗(X , X

∧φ
)
φ
± : ψ∗μ = μ∀ψ ∈ G

}

.

1.2 Disk invariants under symmetries

From now on, suppose that the (real) dimension of X is 6. The tangent bundle of
an orientable connected component X

∧φ
of Xφ is then trivializable and thus admits a

Spin-structure s for any choice of orientation o in X

∧φ
. We call such a pair os≡ (o, s)

anOSpin-structure on X

∧φ
. For B ∈ H2(X) and a tuple (μ1, . . . , μl) of homogeneous

elements of H2∗(X) and H2∗(X , X

∧φ
), let

k = kB(μ1, . . . , μl) ≡ 1

2

(


ω(B) + 2l −
l
∑

i=1

degμi

)

. (1.6)

Under certain conditions on B and μ1, . . . , μl , an OSpin-structure os on X

∧φ
deter-

mines an open GW-invariant

〈

μ1, . . . , μl
〉φ,os

B;X

∧φ ∈ Q (1.7)

of (X , ω, φ) enumerating (φ, τ )-real degree B J -holomorphic curves C ⊂ X with
RC ⊂ X

∧φ
that pass through generic representatives for the preimages of μ1, . . . , μl

under the Poincare duality isomorphisms

PDX : Hp(X) −→ H6−p(X) and PD
X ,X

∧φ : Hp
(

X − X

∧φ) −→ H6−p(X , X

∧φ)

(1.8)
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WDVV-type relations for disk Gromov–Witten invariants in dimension 6 1237

as in [15, Theorems 67.1,70.2] and through k points in X

∧φ
. These conditions are

recalled in the next paragraph. If X

∧φ
is orientable and such curves exist, then 
ω(B)

is even and thus k ∈ Z. The number (1.7) is defined to be 0 if k < 0.
Invariant signed counts (1.7) were first defined in [23] under the assumptions that


ω(B) > 0, μi ∈ H2(X)∪H6(X) ∀ i, (1.9)

i.e. each μi represents a Poincare dual of a “complex” hypersurface or a point, and
either

k > 0 or 0 /∈ ∂
X

∧φ

;Z2

(

d−1

X

∧φ (B)
) ⊂ H1

(

X

∧φ; Z2
); (1.10)

these counts are now known as Welschinger invariants. The interpretation of these
counts in terms of J -holomorphic maps from disks in [17] dropped the first restriction
in (1.9) and later led to Solomon’s observation that the counts (1.7) are also well-

defined with μi ∈ H4(X , X

∧φ
) for some i ; see Sect. 2.1 (a more general version of

this observation is implemented in [19]).
The now standard way to drop the restriction (1.10) under certain topological con-

ditions on (X , φ) is to include counts of (φ, η)-curves; see [8]. Another way to do so

is to count only (φ, τ )-real degree B J -holomorphic curves C ⊂ X with RC ⊂ X

∧φ

such that RC does not vanish in H1(X

∧φ; Z2). While both approaches are suitable for
the purposes of Proposition 5.5, neither appears to lead to splitting formulas as in
Propositions 5.6 and 5.7 by itself. We instead pursue a different approach.

Definition 1.2 Let (X , ω, φ) be a real symplectic manifold and X

∧φ
be a connected

component of Xφ . A finite subgroup G of Aut(X , ω, φ; X∧φ) is an averager for

(X , ω, φ; X∧φ) if G acts trivially on H2(X)
φ
− and some element ψ ∈ G restricts

to an orientation-reversing diffeomorphism of X

∧φ
.

As explained in Sect. 2.2 and summarized by Proposition 1.3, an averager leads
to pairwise cancellations of certain curve counts and yields well-defined counts of
(φ, τ )-curves even if the condition (1.10) does not hold. An averager also leads to the
splitting formulas of Propositions 5.6 and 5.7 and thus to the real WDVV equations
of Theorem 1.5 in Sect. 1.3. An averager for P

3 is generated by a real hyperplane
reflection; see Sect. 2.2.

Proposition 1.3 Suppose (X , ω, φ) is a compact real symplectic sixfold, os is an
OSpin-structure on a connected component X

∧φ
of Xφ , G is an averager for

(X , ω, φ; X∧φ), and J ∈ J φ

ω;G.

(1) For all B ∈ H2(X) and l ∈ Z
≥0, there is a multilinear symmetric functional

〈·, . . . , ·〉φ,os
B;X

∧φ

;G
: H2∗(X)⊕l −→ Q (1.11)
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1238 X. Chen, A. Zinger

enumerating (φ, τ )-real degree B J-holomorphic curves C ⊂ X with RC ⊂ X

∧φ

and satisfying

〈·, . . . , ·〉φ,os
B;X

∧φ

;G
= 0 ∀ B /∈H2(X)

φ
−, (1.12)

〈

μ,μ1, . . . , μl
〉φ,os

B;X

∧φ

;G
= 〈μ, B〉〈μ1, . . . , μl

〉φ,os

B;X

∧φ

;G
∀μ ∈ H2(X).

(1.13)

(2) Let B ∈ H2(X) and l ∈ Z
≥0. If either

B is (X

∧φ
,Z2) − trivial and

1

2

ω(B) ≡ ∣∣{i : μi ∈ H4(X)}∣∣ mod 2

(1.14)
or μi ∈ H2(X)

φ
+⊕H4(X)

φ
− for some i , then

〈

μ1, . . . , μl
〉φ,os

B;X

∧φ

;G
= 0.

Remark 1.4 The OSpin-structure os for an orientation o on X

∧φ
naturally determines

an OSpin-structure os for the opposite orientation o; see [7, Section 1.2]. By the proof
of Proposition 1.3 in Sect. 6.2, the first condition in (1.14) can be replaced by the

existence ofψ ∈ G restricting to an orientation-reversing diffeomorphism of X
∧φ

such
that ψ∗os = os. Such a ψ does not exist in the case of P

3, but does exist in the case of
(P1)3 with the two natural involutions specified in [6, Section 5]. By (1.6), the second
condition in (1.14) means that the number k of real point insertions is even.

As explained at the end of Sect. 2.5, the condition of Definition 1.2 implies that the
natural homomorphisms

ι∗ : H2
(

X − X

∧φ) −→ H2(X) and r : H4(X , X

∧φ) −→ H4(X) (1.15)

restrict to isomorphisms

ιG∗ : HG
2 (X − X

∧φ
)
φ
−

≈−→ H2(X)
φ
− and rG : H4

G(X , X

∧φ
)
φ
+

≈−→ H4(X)
φ
+ , (1.16)

respectively. For homogeneous elements μ1, . . . , μl of H2∗(X), let

μ̃i =

⎧

⎪

⎨

⎪

⎩

r−1
G (μi ), if μi ∈ H4(X)

φ
+;

0, if μi ∈ H4(X)
φ
−;

μi , if μi /∈H4(X).

We define
〈

μ1, . . . , μl
〉φ,os

B;X

∧φ

;G
= 〈μ̃1, . . . , μ̃l

〉φ,os

B;X

∧φ . (1.17)
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The numbers (1.17) depend on the G-invariant subspace

H4
G(X , X

∧φ
)
φ
+ ⊂ H4(X , X

∧φ
)
φ
+

or equivalently on the G-invariant subspace

HG
2 (X − X

∧φ
)
φ
− ⊂ H2(X − X

∧φ
)
φ
−.

However, these numbers do not depend on the choice of an averager G which acts
trivially on H2(X) if the subspace of H4(X) spanned by the cup products of the
elements of H2(X) contains H4(X)

φ
+. In particular, the disk invariants of (P3, ω3, τ3)

provided by Proposition 1.3(1) are independent of the choice of G.

1.3 Main theorem

Let (X , ω, φ) be a connected compact real symplectic sixfold. Define

d : H2(X) −→ H2(X)
φ
−, d(B) = B − φ∗(B),


φ
ω = {(� : H2(X)

φ
− −→Q) : ∣∣{B ∈ H2(X)

φ
− : �(B) �=0, ω(B) < E}∣∣ < ∞ ∀ E ∈ R

}

.

We write an element � of 
φ
ω as

� =
∑

B∈H2(X)
φ
−

�(B)qB

and multiply two such elements as powers series in q with the exponents in H2(X)
φ
−.

Choose a basis μ�
1 , . . . , μ

�
N for

H0(X)⊕H2(X)
φ
−⊕H4(X)

φ
+ ⊕ H6(X) (1.18)

consisting of homogeneous elements. Let (gi j )i, j be the N × N -matrix given by

gi j = 〈μ�
i μ

�
j , [X ]〉

and (gi j )i j be its inverse. For a tuple t≡(t1, . . . , tN ) of formal variables, let

μ
�
t = μ

�
1 t1 + · · · + μ

�
N tN .
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1240 X. Chen, A. Zinger

Suppose in addition that os is an OSpin-structure on a connected component X

∧φ

of Xφ and G is an averager for (X , ω, φ; X∧φ). For B ∈ H2(X), k, l ∈ Z
≥0, and

homogeneous elements μ1, . . . , μl of H2∗(X), define

〈

μ1, . . . , μl
〉φ,os
B,k;G =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

〈μ1, [pt]〉, if (B, k, l) = (0, 1, 1), μ1 ∈ H0(X);
〈μ1, . . . , μl 〉φ,os

B;X

∧φ

;G
, if B �=0, μi /∈H0(X)∀ i, k = kB(μ1, . . . , μl );

0, otherwise.

We extend the GW-functional 〈. . .〉XB and the open GW-functional 〈. . .〉φ,osB,k;G linearly
over the formal variables ti .

We define �
φ
ω ∈ 


φ
ω[[t1, . . . , tN ]] and �

φ,os
ω;G ∈ 


φ
ω[[t1, . . . , tN , u]] by

�φ
ω(t1, . . . , tN ) =

∑

B∈H2(X)
φ
−

l∈Z≥0

(

∑

B′∈H2(X)
d(B′)=B

〈

μ
�
t , . . . , μ

�
t

︸ ︷︷ ︸

l

〉X
B′

)

qB

l! ,

�
φ,os
ω;G (t1, . . . , tN , u) =

∑

B∈H2(X)
φ
−

k,l∈Z≥0

〈

μ
�
t , . . . , μ

�
t

︸ ︷︷ ︸

l

〉φ,os
B,k;G

21−lq Buk

k!l! .

By Gromov’s Compactness Theorem and the assumption that φ∗ω = −ω, the inner
sum in the definition of �

φ
ω has finitely nonzero terms. For the same reason, the

coefficients of the powers of t1, . . . , tN , u in �
φ
ω and �

φ,os
ω;G lie in 


φ
ω.

Theorem 1.5 Suppose (X , ω, φ) is a connected compact real symplectic sixfold, os is
an OSpin-structure on a connected component X

∧φ
of Xφ , and G is an averager for

(X , ω, φ; X∧φ). For all a, b, c = 1, . . . , N,

∑

1≤i, j≤N

(

∂ta∂tb∂ti�
φ
ω

)

gi j
(

∂u∂t j�
φ,os
ω;G
)+ (∂ta∂tb�φ,os

ω;G
)(

∂2u�
φ,os
ω;G
)

= (∂ta∂u�φ,os
ω;G
)(

∂tb∂u�
φ,os
ω;G
)

, (1.19)
∑

1≤i, j≤N

(

∂ta∂tb∂ti�
φ
ω

)

gi j
(

∂tc∂t j�
φ,os
ω;G
)+ (∂ta∂tb�φ,os

ω;G
)(

∂tc∂u�
φ,os
ω;G
)

=
∑

1≤i, j≤N

(

∂ta∂tc∂ti�
φ
ω

)

gi j
(

∂tb∂t j�
φ,os
ω;G
)+ (∂ta∂tc�φ,os

ω;G
)(

∂tb∂u�
φ,os
ω;G
)

. (1.20)

The paper is organized as follows. Sects. 2.1–2.4 outline themain steps in the proofs of
Proposition 1.3 and Theorem 1.5, pointing out the key similarities and differences with
the fourfold case treated in [5]. Section 2.5 discusses the implications of Theorem 1.5
for the computability of the diskGW-invariants of real symplectic sixfolds. Section 2.6
obtains non-trivial lower bounds for counts of real rational curves in P

3, including
with line constraints. The relevant intersection theoretic notation and conventions are
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specified in Sect. 3. Section 4 describes orientations for subspaces of the Deligne–
Mumford spacesMτ

k,l and properties of the hypersurfaces ϒ inMτ

1,2 andM
τ

0,3 that
play a key role in the proof of Theorem 1.5. Section 5 sets up the notation for moduli
spaces of stable maps and their subspaces, states the propositions that are the main
steps in the proof of Theorem 1.5, and deduces this theorem from them. The proofs of
most of these propositions are deferred to Sect. 6.We focus on the geometric situations
when virtual techniques are not needed, but the reasoning fits with all standard VFC
constructions and thus extends to real symplectic threefolds (X , ω, φ) with spherical
classes B such that 
ω(B) = 0.

2 Outline of the proof and applications

2.1 Disk invariants

Let (X , ω, φ) be a real symplectic manifold, X

∧φ
be a connected component of Xφ ,

k, l ∈ Z
≥0, B ∈ H2(X), and J ∈ J φ

ω . We denote byMk,l(B; J ; X∧φ) the moduli space
of (φ, τ )-real rational degree B J -holomorphic maps with k real marked points and l
conjugate pairs of marked points which take the τ -fixed locus S1 ⊂P

1 to X

∧φ
and by

Mk,l(B; J ; X∧φ) be the stable map compactification of this moduli space, respectively.
Let

M
�
k,l

(

B; J ; X∧φ) ⊂ Mk,l
(

B; J ; X∧φ) (2.1)

be the subspace parametrizing (φ, τ )-realmapswhose restrictions to the disksD
2± ⊂P

1

cut out by the τ -fixed locus S1 ⊂P
1 do not represent elements in the kernel of (1.3).

The stable map compactification

M
�
k,l

(

B; J ; X∧φ) ⊂ Mk,l
(

B; J ; X∧φ)

of this subspace is a union of connected components of Mk,l(B; J ; X∧φ) and has
no boundary. The codimension 1 strata of M

�
k,l(B; J ; X∧φ) consist of maps from

two-component domains with a real node. An OSpin-structure os on X

∧φ
induces

an orientation oM ofM�
k,l(B; J ; X∧φ), butMk,l(B; J ; X∧φ) is generally unorientable.

The orientation oM extends through some codimension 1 strata of M
�
k,l(B; J ; X∧φ),

but not others; see Lemmas 5.1 and 5.3 . We call the latter strata bad strata; they are
characterized by the value of εL∗ defined in (5.8) being odd.

If the domain and target of the evaluation morphism

ev : M�
k,l(B; J ; X∧φ) −→ X

∧

k,l ≡(X

∧φ
)k × Xl (2.2)

are of the same dimension, a generic path between two generic points in X

∧

k,l avoids
the images of the bad strata and thus ev has a well-defined degree. This fundamental
insight of [17], formulated in terms of diskmoduli spaces instead of the realmap spaces
introduced in [9], provided a moduli space interpretation of Welschinger invariants
with the potential for applications of techniques of complex GW-theory to study these
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1242 X. Chen, A. Zinger

invariants. In a more standard perspective of symplectic topology, the restriction of ev
to the complement of the bad codimension 1 strata is a codimension 0 pseudocycle;
the degree of ev is simply the degree of this pseudocycle. This perspective on the
insight of [17] provides the intersection-theoretic setting for the proof of Theorem 1.5
in the present paper; see Propostion 5.2. An analogue of this perspective plays a similar
role in [5], which established the WDVV-type relations for real symplectic fourfolds
foreseen in [18].

More generally, suppose that

C = q1 × q2 × · · · × qk × H1 × · · · × Hl ⊂ X

∧

k,l (2.3)

is a generic constraint consisting of q1, . . . , qk ∈ X

∧φ
and oriented submanifolds

H1, . . . , Hl ⊂ X of real codimensions 2, 4, and 6 (we call them divisor, curve, and
point constraints, respectively) so that

dimMk,l
(

B; J ; X∧φ)+ dimC = dim X

∧

k,l . (2.4)

This implies that the intersection

M
�
k,l(B; J ; X∧φ) ev−−→ X

∧

k,l ←−↩ C (2.5)

of the two maps to X

∧

k,l is a finite set of signed points. For a suitable choice of the
orientation oM, a generic path between two generic constraints as in (2.3) avoids the
bad strata of the left-hand side of (2.5) except for the strata consisting of maps that
are constant on a component of the domain which carries only a conjugate pair z±i
of marked points with Hi being a curve class; see the proof of Proposition 5.2 in
Sect. 6.2. This observation, which follows from the reasoning in [17], implies that
the intersection number of (2.5) does not depend on the choices of generic point

constraints in X

∧φ
and X , divisor constraints representing fixed elements of H4(X),

curve constraints representing fixed elements of H2(X − X

∧φ
), and J ∈ J φ

ω .
The intersection number in (2.5) is the open GW-invariant (1.7) informally intro-

duced by J. Solomon after [17] under the assumption that (1.10) holds. If this is the
case, the two spaces in (2.1) are the same. Thus, the superscript � can be dropped
from the left-hand side in (2.5) and the resulting invariants (1.7) count all (φ, τ )-real
degree B curves through the constraint C.

2.2 Cancellations under symmetry

If (1.10) does not hold, the spaces

M′
k,l

(

B; J ; X∧φ) ≡ Mk,l
(

B; J ; X∧φ)− M
�
k,l

(

B; J ; X∧φ) and

M
′
k,l

(

B; J ; X∧φ) ≡ Mk,l
(

B; J ; X∧φ)− M
�
k,l

(

B; J ; X∧φ)

may be nonempty. The boundary ofMk,l(B; J ; X∧φ) is contained inM′
k,l(B; J ; X∧φ).
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Let G be an averager for (X , ω, φ; X∧φ) as in Definition 1.2. Suppose J ∈ J φ

ω;G
and C as in (2.3) and (2.4) is G-invariant (see the sentence containing (5.38) for a
formal definition). Each ψ ∈ G induces automorphisms

ψk,l : X∧k,l −→ X

∧

k,l and � : M′
k,l

(

B; J ; X∧φ) −→ M′
k,l

(

B; J ; X∧φ)

by acting on each component of X

∧

k,l and by composing eachmap u : P
1−→ X withψ .

The first induced automorphism preserves the orientation if and only if either k ∈ 2Z

or ψ preserves the orientation of X

∧φ
. The second induced isomorphism preserves the

orientation oM if and only if ψ preserves the orientation of X

∧φ
; see the last paragraph

of the proof of Proposition 1.3 in Sect. 6.2. Since the right vertical arrow in the diagram

M′
k,l(B; J ; X∧φ) ev

� ≈

X

∧

k,l

ψk,l ≈

C

ψ ≈

M′
k,l(B; J ; X∧φ) ev

X

∧

k,l C

(2.6)

is orientation-preserving, it follows that ψ induces a sign-reversing bijection on the

intersection set of the twomaps in (2.6) ifψ reverses the orientation of X

∧φ
and k ∈ 2Z.

The intersection number of these two maps is zero then. Along with the last paragraph
of Sect. 2.1, this implies that the superscript� can be dropped from the left-hand side
in (2.5) and that the resulting invariants (1.7) and (1.17) count all (φ, τ )-real degree B
curves through the constraint C (provided J ∈ J φ

ω;G and C is G-invariant), whether
or not (1.10) holds.

If B is (X

∧φ
,Z2)-trivial, then

M′
k,l

(

B; J ; X∧φ) = Mk,l
(

B; J ; X∧φ).

If k ∈ 2Z, which is equivalent to the last condition in (1.14), the reasoning in the
previous paragraph yields the vanishing of the numbers (1.17) in the first case of
Proposition 1.3(2).

The prototypical example of a real symplectic sixfold is the complex projective
spaceP

3 with the Fubini-Study symplectic formω3 and the anti-symplectic involution

τ3 : P
3 −→ P

3, τ3
([Z0, Z1, Z2, Z3]

) = [Z0, Z1, Z2, Z3
]

.

An averager G in this case is generated by the reflection about a τ3-invariant complex
hyperplane such as

ψ3 : P
3 −→ P

3, ψ3
([Z0, Z1, Z2, Z3]

) = [Z0, Z1, Z2,−Z3
]

. (2.7)
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According to [23, Rem. 2.4(2)], it was observed byG.Mikhalkin in the early 2000s that
even-degree curves passing through collections of points interchanged by such reflec-
tions have opposite signs in the sense of [23]. The resulting vanishing of Welschinger
invariants is precisely the (P3, τ3)-case of the first case of Proposition 1.3(2) with all
μi ∈ H6(P3). Reflections analogous to (2.7) can be readily defined for (P1)3 with
two different conjugations (with fixed loci (S1)3 and S1 × S2).

2.3 Lifting relations fromDeligne–Mumford spaces

Let C be a generic constraint as in (2.3) so that

dimMk,l
(

B; J ; X∧φ)+ dimC = dim X

∧

k,l + 2 . (2.8)

We cut M
�
k,l(B; J ; X∧φ) along all bad strata and obtain an oriented moduli space

̂M
�
k,l(B; J ; X∧φ) with boundary; see Sect. 5.1. The forgetful morphisms (1.1) we

encounter take values in the subspaces Mτ

k′,l ′ of RM0,k′,l ′ of real curves with non-
empty fixed locus. We denote the induced morphisms from the cut moduli spaces
also by fk′,l ′ . Let ϒ ⊂Mτ

k′,l ′ be a co-oriented bordered hypersurface whose boundary
consists of curves with three components and a conjugate pair of nodes.

By the assumptions above, the intersection of the maps

̂M
�
k,l

(

B; J ; X∧φ) ev×fk′,l′−−−−−→ X
∧

k,l × Mτ

k′,l ′ ←−↩ C × ϒ (2.9)

is a one-dimensional manifold with boundary. Thus,

̂M
�
k,l

(

B; J ; X∧φ) · (C × ∂ϒ
) = ± ∂ ̂M

�
k,l

(

B; J ; X∧φ) · (C × ϒ
)

, (2.10)

where · denotes the signed counts of intersection points in Xk,l×Mτ

k′,l ′ . Forϒ ⊂Mτ

k′,l ′
as in Lemmas 4.4 and 4.5, (2.10) translates into the relations between nodal curve
counts in Fig. 1; see Proposition 5.5. Each diagram in this figure represents counts
of curves of the corresponding shape constrained by C; the labels εC(S) /∈ 2Z and
·ϒ under the diagrams on the right-hand side indicate that only intersections of some
strata of two-component maps with ϒ contribute to this relation. These relations are
the direct analogues of the relations of [5, Fig. 1].

2.4 Splitting properties for disk invariants

The nodal curve counts appearing in (2.10) and represented by the diagrams in Fig. 1
in general depend on the components of the constraint C and not just on the homol-
ogy classes represented by these components. However, these counts depend only
on the homology classes if J ∈ J φ

ω;G and C is G-invariant for an averager G for

(X , ω, φ; X∧φ) as in Definition 1.2. The right-hand side of (2.10) then splits into invari-
ant counts (1.17) of irreducible (φ, τ )-real curves exactly as [5] (where an averager is
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not needed) because of the vanishing of the intersection number in (2.6); see Proposi-
tion 5.6. The left-hand side of (2.10) splits into invariant counts (1.17) of irreducible
(φ, τ )-real curves and the complex GW-invariants (1.5); see Proposition 5.7. While
the latter splitting is analogous to the splitting of [5, Prop. 5.3] in the WDVV sense,
its proof involves counts of (φ, τ )-real curves with insertions in H∗(X − X

∧φ
), and not

just in H∗(X).
The left-hand side of (2.10) counts nodal curves with one real component and one

conjugate pair of components; see Fig. 1. They arise from pairs B0, B ′ ∈ H2(X)

such that

B0 + d(B ′) = B ∈ H2(X)

and decompositions {1, . . . , l} = L0�LC. Let

C0 = q1 × · · · × qk ×
∏

i∈L0

Hi ⊂ (X

∧φ
)k × XL0 and C′ =

∏

i∈LC

Hi ⊂ XLC .

We need to determine the signed number NB0,B′(C0,C′) of nodal curves as on the
left-hand side of Fig. 1 so that

• the real component has degree B0 and passes through the constraints C0, and
• one of the conjugate components has degree B ′ and passes through the con-
straints C′ (with some components Hi replaced by φ(Hi )).

By (2.8), this number vanishes unless

(L1) the number of (φ, τ )-real degree B0 curves passing through C0 is finite, and the
number of degree B ′ curves passing through C′ and another curve constraint is
finite, or

(L2) the number of degree B ′ curves passing through C′ is finite, and the number of
(φ, τ )-real degree B0 curves passing through C0 and another curve constraint is
also finite.

In Case (L1), the number of (φ, τ )-real degree B0 curves passing through C0
is simply the corresponding disk GW-invariant (1.17); the G-invariance conditions
ensure that this number is well-defined as in Sect. 2.2. The number NB0,B′(C0,C′) is
then this disk GW-invariant times the number of degree B ′ curves passing through C′
and a curve constraint representing B0; the latter number is just a complex GW-
invariant (1.5).

In Case (L2), suppose G is an averager, J ∈ J φ

ω;G , and C is G-invariant. Let

GB ′ = {g∗B ′ : g ∈ G
}

and AveG(B ′) = 1

|G|
∑

g∈G
g∗B ′ ∈ H∗(X) .

Let C1, . . . ,CN be the curves that pass through C′ and whose degree is in GB ′; they
lie in X − X

∧φ
. Their (standardly signed) number is the sum

∑

B′′∈GB′

〈

(Hi )i∈LC

〉X
B′′ = |GB ′|〈(Hi )i∈LC

〉X
B′
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of the complexGW-invariants (1.5); the equality above holds because the constraintC′
is G-invariant. Thus,

[C1]X + · · ·+ [CN ]X = |GB ′|〈(Hi )i∈LC

〉X
B′AveG(B ′) .

The sum of the numbers NB0,B′′(C0,C′) over all B ′′ ∈ GB ′ is the signed number of
(φ, τ )-real degree B0 curves passing throughC0 andC1∪. . .∪CN .While the homology
class of each curve Ci in X is a specific element B ′′ of GB ′, the usual count (1.7) of
(φ, τ )-real degree B0 curves passing through C0 and Ci depends on the homology
class ofCi in X −X

∧φ
. However,C1∪. . .∪CN is aG-invariant curve constraint because

the tuple C′ is G-invariant. Since the first map in (1.16) is an isomorphism,

[C1]
X−X

∧φ + · · ·+ [CN ]
X−X

∧φ = |GB ′|〈(Hi )i∈LC

〉X
B′
{

ι∗G
}−1(AveG(B ′)

)

.

Therefore,

∑

B′′∈GB′
NB0,B′′(C0,C′) = |GB ′|〈(Hi )i∈LC

〉X
B′
〈

(Hi )i∈L0 ,AveG(B ′)
〉φ,os

B0;X

∧φ

;G

= 〈(Hi )i∈LC

〉X
B′
∑

B′′∈GB′

〈

(Hi )i∈L0 ,AveG(B ′′)
〉φ,os

B0;X

∧φ

;G

by the definition of the disk invariant (1.17). Since G acts trivially on H2(X)
φ
−, B ′′ −

AveG(B ′′) lies in H2(X)
φ
+. Along with the second case of Proposition 1.3(2), this

implies that the constraint AveG(B ′′) can be replaced by B ′′ above.
Theorem 1.5 follows from (2.10) and the splitting properties provided Proposi-

tions 5.6 and 5.7; see Sect. 5.3.

2.5 Computability of disk invariants

The WDVV relation [13,16] for the genus 0 GW-invariants (1.5) is very effective in
determining these invariants from basic low-degree input whenever H2(X) generates
H2∗(X) and 
ω(B) > 0 for all spherical B ∈ H2(X); see [16, Section 10]. A similar
observation concerning the two ODEs of Theorem 1.5 and the disk invariants (1.17)
encoded by the generating function �

φ,os
ω;G is made in [1, Prop. 17]. The latter do

not include invariants with curve constraints that are not G-invariant. We next clar-
ify the condition necessary for the conclusion of [1, Prop. 17] and reduce all disk
invariants (1.7) of real symplectic sixfolds (X , ω, φ) with a choice of a connected
component X

∧φ ⊂ Xφ that admit an averager G as in Definition 1.2 to disk invariants
without curve constraints that are not G-invariant.

The cup product of H∗(X) with H∗(X , X

∧φ
) and the Poincare Duality isomor-

phisms (1.8) induce an intersection homomorphism

H∗(X)
φ
+ ⊗ H∗(X − X

∧φ
)
φ
+ −→ H∗

(

X − X

∧φ)φ

− . (2.11)
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By the reasoning in the next paragraph, the natural homomorphism

Hp(X − X

∧φ
)
φ
+ −→ Hp(X)

φ
+ (2.12)

is an isomorphism for all p ∈ Z. A sufficient condition for the conclusion of [1,
Prop. 17], beyond the complex case, is the surjectivity of the composition

∩: H4(X)
φ
+ ⊗ H4(X)

φ
+ −→ H2

(

X − X

∧φ)φ

− (2.13)

of (2.11) in degree (4, 4) with the inverse of (2.12) for p = 4. This is the case in
particular for (P3, τ3) and (P1)3 with the two natural involutions.

In order to reduce all disk invariants (1.7) to disk invariantswithout curve constraints
that are not G-invariant, it is sufficient to show that insertions in the kernel of the first
homomorphism in (1.15) can be traded for real point insertions; this is achieved by

Proposition 2.1 below. The homology long exact sequence for the pair (X , X − X

∧φ
)

induces an exact sequence

. . . −→ H3(X , X − X

∧φ
)
φ
± −→ H2(X − X

∧φ
)
φ
± −→ H2(X)

φ
± −→ H2(X , X − X

∧φ
)
φ
± −→ . . .

Since the action of φ on the normal bundleN X

∧φ
of X

∧φ
in X is orientation-reversing,

excision and Thom isomorphism give

H3(X , X − X

∧φ
)
φ
− ≈ H0(X

∧φ
) ≈ Z, H3(X , X − X

∧φ
)
φ
+, H2(X , X − X

∧φ
)
φ
± = {0}.

(2.14)
The first homomorphism in (1.15) is thus surjective, and its kernel is generated by the
homology class of a unit sphere S(Np X

∧φ
) in the fiber of N X

∧φ
over any p ∈ X

∧φ
.

An OSpin-structure os≡(o, s) on X

∧φ
includes an orientation o on X

∧φ
. Along with

the symplectic orientation oω of X , o thus determines an orientation o
N X

∧φ of N X

∧φ

via the exact sequence

0 −→ T X

∧φ −→ T X
∣

∣

X

∧φ −→ N X

∧φ −→ 0.

Along with the orientation of the normal bundle N (S(Np X

∧φ
)) of S(Np X

∧φ
) in

Np X

∧φ
by the outward radial direction, o

N X

∧φ determines an orientation o
S(Np X

∧φ

)

of S(Np X

∧φ
) via the exact sequence

0 −→ T
(

S(Np X

∧φ
)
) −→ T (Np X

∧φ
)
∣

∣

S(Np X

∧φ

)
−→ N (S(Np X

∧φ
)
) −→ 0 .
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Proposition 2.1 Suppose (X , ω, φ) is a compact real symplectic sixfold, os is an
OSpin-structure on a connected component X

∧φ
of Xφ , B ∈ H2(X) − {0}, and

μ1, . . . , μl are elements of H2(X), H4(X , X

∧φ
), and H6(X). If

k ≡ 1

2

(


ω(B) + 2l −
l
∑

i=1

degμi

)

− 1

and B satisfy (1.10), then

〈

μ1, . . . , μl ,PD
X ,X

∧φ

([S(Np X

∧φ
)]

X−X

∧φ

)〉φ,os

B;X

∧φ = 2
〈

μ1, . . . , μl
〉φ,os

B;X

∧φ . (2.15)

The motivation behind (2.15) is that a J -holomorphic curve passing though a point
p ∈ Xφ intersects an infinitesimal sphere S(Np X

∧φ
) at two points. By its proof in

Sect. 6.2, (2.15) holds without the restriction (1.10) if the left-hand side is replaced
by the real genus 0 GW-invariant of [8] enumerating (φ, τ )- and (φ, η)-real curves
in (X , ω), provided (X , φ) satisfies suitable topological conditions so that this invariant
is defined. The projective space (P3, τ3) satisfies such conditions.

An element ψ of an averager G for (X , ω, φ; X∧φ) as in Definition 1.2 reverses an
orientation of N X

∧φ
and thus does not fix any nonzero element in the kernel of the

first map in (1.15). Along with the paragraph containing (2.14), this implies that the
first map in (1.16) is an isomorphism. Since the two maps in (1.16) are related by the
PoincareDuality isomorphisms (1.8), the secondmap in (1.16) is also an isomorphism.

2.6 Lower bounds for real curve counts

As only some elements of H2(X − Xφ) can be represented by holomorphic curves in
a real projective manifold (X , ω, φ), Theorem 1.5 and Proposition 2.1 lead to lower
bounds for counts of real algebraic curves in some real algebraic threefolds through
curve constraints. This is explained below.

If H ⊂ X is a (pseudo)cycle transverse to X

∧φ
, then

H

∧φ ≡ H∩X

∧φ = φ(H)∩X

∧φ
(2.16)

inherits an orientation o

∧φ
H from an orientation o

N X

∧φ of N X

∧φ
and the orientation oH

of H via the exact sequence

0 −→ T H

∧φ −→ T H |
H

∧φ −→ N X

∧φ |
H

∧φ −→ 0.

Since φ reverses o
N X

∧φ , the orientation o

∧φ

φ(H) of the intersection (2.16) inherited from

the orientation oφ(H) ≡ φ∗(oH ) of φ(H) is the opposite of o

∧φ
H . It follows that the
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boundaries

∂
(

H − B(NH H

∧φ
)
)

, ∂
(

H − B(Nφ(H)H

∧φ
)
) ⊂ N X

∧φ∣
∣

H

∧φ

of the complements of small tubular neighborhoods B(NH H

∧φ
) of H

∧φ
in H and

B(Nφ(H)H

∧φ
) of H

∧φ
in φ(H) inherit opposite orientations from oH and oφ(H),

respectively. We can thus glue the two complements along their boundaries to form a
(pseudo)cycle

(H , oH )#
(

φ(H), oφ(H)

) ⊂ X − X

∧φ
.

The homology homomorphism induced by the inclusion of X − X

∧φ
into X sends the

element of H∗(X − X

∧φ
) represented by this (pseudo)cycle to [H ]X + φ∗[H ]X .

Suppose H1, H2 ⊂ X are (pseudo)cycles of dimension 4 so that H2 is transverse
to X

∧φ
and H1 is transverse to H2, φ(H2), H

∧φ

2 . In particular,

H1∩H2, H1∩φ(H2) ⊂ X − X

∧φ
.

By the previous paragraph, the homomorphism (2.13) is described by

[H1]X ∩([H2]X + φ∗([H2]X )
) = [H1∩H2

]

X−X
∧φ + [H1∩φ(H2)

]

X−X
∧φ . (2.17)

Suppose that H1, H2, H ′
2⊂ X are (pseudo)cycles of dimension 4 and ϒ is a cobor-

dism between H2 and H ′
2 so that H2, H ′

2, ϒ are transverse to X

∧φ
and H1 is transverse

to H2, H ′
2, H

∧φ

2 , H

∧′φ
2 , ϒ

∧φ
. Thus, H

∧φ

1 ∩ϒ

∧φ
is a finite set of signed points and

∂
(

H1∩ϒ − B(NH1∩ϒ(H

∧φ

1 ∩ϒ

∧φ
)
) = H1∩H ′

2 − H1∩H2 + S(N X

∧φ
)
∣

∣

H

∧φ

1∩ϒ

∧φ

for a small tubular neighborhood B(NH1∩ϒ(H

∧φ

1 ∩ϒ

∧φ
)) of H

∧φ

1 ∩ϒ

∧φ
in H1 ∩ ϒ ; the

equality above respects the orientations for suitable conventions for orienting the
intersections of cycles. Thus,

[

H1∩H2
]

X−X

∧φ = [H1∩H ′
2

]

X−X

∧φ + Lko(H

∧φ

1 , H

∧′φ
2 − H

∧φ

2 )
[

S(Np X

∧φ
)
]

X−X

∧φ ∈ H2(X − X

∧φ
),

(2.18)

where Lko is the linking number with respect to the orientation o in X

∧φ
.

If H1, H2⊂P
3 are generic complex hyperplanes, (2.18) gives

[

H1∩H2
]

P3−RP3
= [H1∩τ3(H2)

]

P3−RP3
± [S(NpRP

3)
]

P3−RP3
∈ H2(P

3 − RP
3) .

By (2.17), the sum of the first two homology classes above does not depend on the
choices of H1 and H2. Thus, only two classes, 
− and 
+, in H2(P

3 − RP
3) can be
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1250 X. Chen, A. Zinger

represented by complex lines and


+ = 
− + [S(NpRP
3)
]

P3−RP3
∈ H2(P

3 − RP
3).

The image of (2.13) in this case is generated by the averaged line class

˜
 ≡ 1

2

([
−] + [
+]) ∈ H2(P
3 − RP

3).

Theorem 1.5 applied to (P3, τ3), an OSpin-structure os on RP
3, and the subgroup

G of Aut(P3, τ3) generated by a real hyperplane reflection ψ3 as in (2.7) determines
all open GW-invariants

〈

˜
aptb
〉τ3,os
d ≡ 〈PDP3−RP3(
), . . . ,PDP3−RP3(
)

︸ ︷︷ ︸

a

,PDP3(pt), . . . ,PDP3(pt)
︸ ︷︷ ︸

b

〉τ3,os
d
;RP3;G

(2.19)
enumerating real degree d holomorphic curves in P

3 that pass through generic repre-
sentatives for a averaged lines˜
, b general points inCP

3−RP
3, and 2d−a−2b general

points in RP
3 from the single number 〈˜
0pt0〉τ3,os1 = ±1 (the sign depends on os).

These numbers in degrees 1–8 are shown in [1, Table 4.2.2]; the degree 1–3 numbers
are reproduced in the third column of our Table 1. Inline with G. Mikhalkin’s observa-
tion in the early 2000s and the first case of Proposition 1.3(2), the numbers (2.19) with
d + a even vanish. The odd-degree a = 0 numbers agree with [3, Table 1] up to sign.
Proposition 2.1 then yields open GW-invariants of (P3, τ3) with arbitrary insertions
in H2(P

3 − RP
3). The fourth column in Table 1 shows all degree 1-3 numbers with

the insertions 
− and 
+. Taking the minimum of the absolute values of the numbers
in each cell in this column, we obtain lower bounds for the numbers of real rational
curves passing through generic complex lines in P

3 − RP
3, points in P

3 − RP
3, and

points in RP
3.

3 Topological preliminaries

For a real vector space or vector bundle V , let λ(V )≡

top
R

V be its top exterior power.
For a manifold M , possibly with nonempty boundary ∂M , we denote by

λ(M) ≡ λ(T M) ≡ 

top
R

T M −→ M

its orientation line bundle. An orientation of M is a homotopy class of trivializations
of λ(M). We identify the two orientations of any point with ±1 in the obvious way.

For submanifolds S′ ⊂ S⊂M , the short exact sequences

0 −→ T S −→ T M |S −→ N S≡ T M |S
T S

−→ 0 and

0 −→ NS S
′ ≡ T S|S′

T S′ −→ N S′ ≡ T M |S′

T S′ −→ N S|S′ ≡ T M |S′

T S|S′
−→ 0
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Table 1 The invariant count 〈˜
aptb〉τ3,osd of τ3-real degree d rational curves in P
3 determined by an OSpin-

structure os on RP
3 through a conjugate pairs of averaged lines ˜
 ≡ (
− + 
+)/2, b conjugate pairs of

points in P
3 − RP

3, and 2d − a − 2b points in RP
3, the analogous counts with a averaged lines replaced

by i lines 
− and a− i lines 
+, the minimum of the absolute values of the latter counts, and the associated
count of complex curves

d cond 〈˜
aptb〉τ3,osd 〈
a−i− 
i+ptb〉τ3,osd min CGW

1 
0pt0 1 1 1 1

1 
0pt1 − 1 −1 1 1

1 
1pt0 0 −1, 1 1 1

1 
2pt0 − 1 0, −2, 0 0 2

2 
0pt0 0 0 0 0

2 
0pt1 0 0 0 0

2 
0pt2 0 0 0 0

2 
1pt0 1 1,1 1 1

2 
1pt1 − 1 −1, −1 1 1

2 
2pt0 0 −2, 0, 2 0 4

2 
2pt1 0 2, 0, −2 0 4

2 
3pt0 − 3 0, −4, −4, 0 0 18

2 
4pt0 0 8, 8, 0, −8, −8 0 92

3 
0pt0 − 1 −1 1 1

3 
0pt1 1 1 1 1

3 
0pt2 − 1 −1 1 1

3 
0pt3 1 1 1 1

3 
1pt0 0 1, −1 1 5

3 
1pt1 0 −1, 1 1 5

3 
2pt0 0 1, −1 1 5

3 
2pt0 5 4, 6, 4 4 30

3 
2pt1 − 3 −2, −4, −2 2 30

3 
2pt2 1 0, 2, 0 0 30

3 
3pt0 0 −14, −6, 6, 14 6 190

3 
3pt1 0 8, 4, −4, −8 4 190

3 
4pt0 − 13 16, −12, −24, −12, 16 12 1312

3 
4pt1 1 −16, 0, 8, 0, −16 0 1312

3 
5pt0 0 16, 48, 24, −24, −48, −16 16 9864

3 
6pt0 − 7 −128, −96, 0, 48, 0, −96, −128 0 80160

The new lower bounds for real rational curves are in boldface

of vector spaces determine isomorphisms

λ(M)
∣

∣

S ≈ λ(S) ⊗ λ(N S) and λ(N S′) ≈ λ(NS S
′) ⊗ λ(N S)

∣

∣

S′ (3.1)
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1252 X. Chen, A. Zinger

of line bundles over S and S′, respectively. A co-orientation of S inM is an orientation
of N S. We define the canonical co-orientation oc∂M of ∂M in M to be given by the
outer normal direction.

If o is an orientation of M and ocS is a co-orientation of S in M , we denote by ocSo
the orientation of S induced by ocS and o via the first isomorphism in (3.1). If M is a
manifold with boundary, let

∂
(

M, o
) ≡ (∂M, ∂o

) ≡ (∂M, oc∂Mo
)

. (3.2)

If S ′ ⊂S is also a submanifold with a co-orientation ocS ′ in S, then the co-orientations
ocS and ocS ′ induce a co-orientation ocS ′ocS of S ′ in Z via the second isomorphism
in (3.1). If S has boundary, let

∂
(S, ocS

) ≡ (∂S, ∂ocS
) ≡ (∂M, oc∂So

c
S
)

.

For a fiber bundle fM : M −→ M′, we denote by TMv ≡ ker dfM its vertical
tangent bundle. The short exact sequence

0 −→ TMv −→ TM dfM−−→ f∗MTM′ −→ 0 (3.3)

of vector bundles determines an isomorphism

λ(M) ≈ f∗Mλ(M′) ⊗ λ(TMv) (3.4)

of line bundles over M. The switch of the ordering of the factors in (3.4) from (3.3)
is motivated by [5, Lemma 3.1(1)] and by the inductive construction of the orien-
tations ok,l on the real Deligne–Mumford moduli spaces Mτ

k,l in Sect. 4.1. If o′ is
an orientation of M′ and ovM is an orientation of TMv , we denote by ovMo′ the
orientation of M induced by ovM and o via (3.4).

Suppose f : Z −→M is a smooth map transverse to a submanifold ϒ ⊂M. The
differential of f then induces an isomorphism from the normal bundle N ( f −1(ϒ))

of the submanifold f −1(ϒ)⊂Z to the normal bundleNϒ ofϒ . The differential of f
thus pulls back a co-orientation ocϒ of ϒ in M to a co-orientation oc

f −1(ϒ)
≡ f ∗ocϒ

of f −1(ϒ) in Z . The next observation is straightforward; see also the first diagram in
Fig. 2.

Lemma 3.1 Suppose fZ : Z −→ Z ′ is a fiber bundle, f ′ : Z ′ −→ M is a smooth
map transverse to a submanifold ϒ ⊂ M, oZ ′ and ovZ are orientations of Z ′ and
TZv , respectively, and ocϒ is a co-orientation of ϒ in M. The orientations { f ′ ◦
fZ }∗ocϒ(ovZoZ ′) and ovZ ( f ′∗ocϒoZ ′) of { f ′ ◦fZ }−1(ϒ) at u ∈ { f ′ ◦fZ }−1(ϒ) are the
same if and only if (rk TZv)(codimϒ) is even.

If oZ , oY are orientations of smooth manifolds Z and Y , respectively, f : Z−→Y
is a smooth map, and u ∈ Z is such that du f is an isomorphism, we define

su( f , oZ ; oY ) =
{

+1, if {du f }∗((oY )u(z)) = (oZ )u;
−1, otherwise.
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If y ∈ Y is a regular value of f and the set f −1(y) is finite, let

∣

∣ f −1(y)
∣

∣

±
oZ ,oY

≡
∑

u∈ f −1(y)

su( f , oZ ; oY ) .

We abbreviate su( f , oZ ; oY ) and | f −1(y)|±oZ ,oY
as su( f , oZ ) and | f −1(y)|±oZ ,

respectively, whenever the orientation of Y is understood from the context. If o is
an orientation of

λ( f ) ≡ f ∗λ(Y )∗ ⊗ λ(Z) −→ Z,

we define su( f , o) as su( f , oZ ; oY ) for some orientations oZ of TuZ and oY of T f (u)Y
inducing the orientation o of the fiber λu( f ) of λ( f ) at u. If y ∈ Y is a regular value
of f and the set f −1(y) is finite, let

∣

∣ f −1(y)
∣

∣

±
o

≡
∑

u∈ f −1(y)

su( f , o) .

Let fM : M−→M′ be a fiber bundle. If ϒ ⊂M is a submanifold and P ∈ ϒ ,
then the differential dP (fM|ϒ) is an isomorphism if and only if the composition

TPMv ≡ker dP fM −→ TPM −→ TPM
TPϒ

≡NPϒ (3.5)

is. If ocϒ is a co-orientation of ϒ and ovM is an orientation of TMv , we denote by
sP (o

c
ϒo

v
M) ∈ {±1} the sign of (3.5) with respect to ocϒ and ovM. By [5, Lemma 3.1(1)],

sP (o
c
ϒo

v
M) is the sign sP (fM|ϒ, ocϒo

v
M) of fM at P with respect to the orienta-

tion ocϒo
v
M of

λ
(

fM|ϒ
) ≈ λ
(

TMv
)⊗ λ(Nϒ)∗

induced by ocϒ and ovM via the first isomorphism in (3.1) and (3.4). If in addition
f ′ : M′ −→ Y is a smooth map such that dfM(P) f ′ is an isomorphism, o′ is an
orientation of M′, and oY is an orientation of Y , then

sP
(

f ′◦fM|ϒ, ocϒ(ovMo′); oY
) = sP

(

ocϒo
v
M
)

sfM(P)

(

f ′, o′; oY
)

. (3.6)

Suppose that fZ : Z−→Z ′ is another fiber bundle, the diagram

Z f

fZ

M
fM

Z ′ f ′
M′
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1254 X. Chen, A. Zinger

of smooth maps commutes, and ovZ and ovM are orientations on TZv and TMv ,
respectively. If u ∈ Z is such that the restriction

du f : TuZv ≡ker dufZ −→ T f (u)Mv (3.7)

is an isomorphism, we define su( f , ovZ , ovM) to be +1 if this isomorphism is
orientation-preserving with respect to the orientations ovZ and ovM and to be −1 oth-
erwise.

For continuous maps f : Z −→ Y and g : ϒ −→ Y between manifolds with
boundary, define

M f ,g ≡ Z f×gϒ = {(u, P) ∈ Z×ϒ − (∂Z)×(∂ϒ) : f (u) = g(P)
}

,

f ×Y g : M f ,g −→ Y , f ×Y g(u, P) = f (u) = g(P).

We call two such maps f and g strongly transverse if they are smooth and the maps f
and f |∂Z are transverse to the maps g and g|∂ϒ . The space M f ,g is then a smooth
manifold and

dimM f ,g + dim Y = dimZ + dimϒ ,

∂M f ,g = (Z − ∂Z) f×g (∂ϒ) � (∂Z) f×g
(

ϒ − ∂ϒ
)

. (3.8)

If oZ , oϒ , and oY are orientations of Z , ϒ , and Y , respectively, and (u, P) ∈ M f ,g is
such that the homomorphism

TuZ⊕TPϒ −→ T f (u)Y = Tg(P)Y , (v,w) −→ du f (v) + dPg(w), (3.9)

is an isomorphism, we define su,P ( f , oZ , g, oϒ ; oY ) to be +1 if this isomorphism is
orientation-preserving with respect to oZ ⊕oϒ and oY and to be −1 otherwise. If f
and g are transverse and the set M f ,g is finite, let

∣

∣M f ,g
∣

∣

±
oZ ,oϒ ;oY =

∑

(u,P)∈M f ,g

su,P ( f , oZ , g, oϒ ; oY ) .

We abbreviate su,P ( f , oZ , g, oϒ ; oY ) and |M f ,g|±oZ ,oϒ ;oY as su,P ( f , oZ , g, oϒ) and
|M f ,g|±oZ ,oϒ

, respectively, whenever the orientation of Y is understood from the con-
text.

Suppose that Z , X , M are smooth manifolds, ϒ ⊂M is a submanifold, and

f = ( f1, f2) : Z −→ Y ≡ X × M and g = (g1, g2) : ϒ −→ X × M

are smooth maps so that g2 is the inclusion. Let oZ and oX be orientations onZ and X ,
respectively, and ocϒ be a co-orientation of ϒ in M. For (u, P) ∈ M f ,g such that the
homomorphism (3.9) is an isomorphism, we define su,P ( f , oZ , g, ocϒ ; oX ) to be +1
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if the top exterior power 

top
R

of this isomorphism lies in the homotopy class of
isomorphisms



top
R

(

TuZ⊕TPϒ
) ≈ 


top
R

(

TuZ
)⊗ 


top
R

(

TPϒ
)

≈ 

top
R

(

T f1(u)X
)⊗ 


top
R

(

TPM
) ≈ 


top
R

(

T f1(u)X⊕TPM
)

determined by (oZ )u , (oX ) f1(u), and (ocϒ)P and to be −1 otherwise. If f and g are
transverse and the set M f ,g is finite, let

∣

∣M f ,g
∣

∣

±
oZ ,ocϒ ;oX

≡
∑

(u,P)∈M f ,g

su,P ( f , oZ , g, ocϒ ; oX ) .

Similarly to the above, we drop the orientation oX of X from the just introduced
notation if it is understood from the context.

Suppose e1 : Z1 −→ X ′ and e2 : Z2 −→ X ′ are strongly transverse maps from
manifolds with boundary. Thus,

Z ≡ Me1,e2 ≡ {(u1, u2) ∈ Z1 × Z2 − (∂Z1) × (∂Z2) : e1(u1) = e2(u2)
} ⊂ Z1 × Z2

is a smooth submanifold. For each u≡(u1, u2) ∈ Z , the short exact sequence

0 −→ TuZ −→ Tu1Z1⊕Tu2Z2 −→ Te1(u1)X
′ = Te2(u2)X

′ −→ 0,

(v1, v2) −→ du2e2(v2) − du1e1(v1),

of vector spaces induces an isomorphism

λu(Z) ⊗ λ
(

Te2(u2)X
′) ≈ λu1(Z1) ⊗ λu2(Z2) .

Orientations o1, o2, and o′ of Z1, Z2, and X ′, respectively, determine an orientation
((o1)e1·e2(o2))o′ ofZ via these isomorphisms. We abbreviate this orientation as (o1)e1·
e2(o2) whenever the orientation of X ′ is implied by the context.

Suppose in addition that f1 : Z1−→ X1 and f2 : Z2−→ X2 are smooth maps; see
the second diagram of Fig. 2. For all p1 ∈ X1 and p2 ∈ X2,

{

( f1, f2)|Me1,e2

}−1
(p1, p2) = Me1| f −1

1 (p1)
,e2| f −1

2 (p2)
. (3.10)

The next observation is straightforward.

Lemma 3.2 Suppose Z1,Z2, X ′, X1, X2 and e1, e2, f1, f2 are as above and in the
second diagram of Fig. 2 with

dimZ1 + dimZ2 = dim X ′ + dim X1 + dim X2

and o1, o2, o′, o′
1, o

′
2 are orientations of Z1,Z2, X ′, X1, X2, respectively. If e1 and e2

are strongly transverse, p1 ∈ X1 is a regular value of f1, p2 ∈ X2 is a regular value
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Fig. 2 The maps of Lemmas 3.1 and 3.2

of f2, and the differential of ( f1, f2)|Me1,e2
at some point (u1, u2) of the space (3.10)

is an isomorphism, then

s(u1,u2)
(

( f1, f2)|Me1,e2
, ((o1)e1 ·e2(o2))o′ ; o′

1⊕o′
2

)

= (−1)εsu1,u2
(

e1| f −1
1 (p1)

, ( f ∗
1 o

′
1)o1, e2| f −1

2 (p2)
, ( f ∗

2 o
′
2)o2; o′),

where ε = (dim X ′)(dimZ1 + dim X2) + (dimZ1)(dimZ2 + dim X2).

Let Y be a smooth manifold, possibly with boundary. For a continuous map f :
Z−→Y , let

�( f ) =
⋂

K⊂Z cmpt

f (Z − K )

be the limit set of f . A Z2-pseudocycle into Y is a continuous map f : Z−→Y from
a manifold, possibly with boundary, so that the closure of f (Z) in Y is compact and
there exists a smooth map h : Z ′ −→Y such that

dimZ ′ ≤ dimZ − 2, �( f ) ⊂ h(Z ′), f (∂Z) ⊂ (∂Y )∪h(Z ′) .

The codimension of such a Z2-pseudocycle is dim Y − dimZ . A continuous map
˜f : ˜Z−→Y is bordered Z2-pseudocycle with boundary f : Z−→Y if the closure
of ˜f (˜Z) in Y is compact,

Z ⊂ ∂ ˜Z, ˜f |Z = f ,

and there exists a smooth map˜h : ˜Z ′ −→Y such that

dim ˜Z ′ ≤ dim ˜Z − 2, �(˜f ) ⊂˜h(˜Z ′), ˜f
(

∂ ˜Z − Z) ⊂ (∂Y )∪˜h(˜Z ′) .

If ˜Z is one-dimensional, then ˜Z is compact and ˜f (∂ ˜Z − Z)⊂∂Y .
Two bordered Z2-pseudocycles ˜f1 : ˜Z1 −→ Y and ˜f2 : ˜Z2 −→ Y as above are

transverse if

• the maps ˜f1 and ˜f2 are strongly transverse and
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• there exist smooth maps˜h1 : ˜Z ′
1−→Y and˜h2 : ˜Z ′

2−→Y such that˜h1 is transverse
to ˜f2 and ˜f2|∂ ˜Z2

,˜h2 is transverse to ˜f1 and ˜f1|∂ ˜Z1
, and

dim ˜Z ′
1 ≤ dim ˜Z1 − 2, dim ˜Z ′

2 ≤ dim ˜Z2 − 2, �(˜f1) ⊂˜h1(˜Z ′
1), �(˜f2)⊂˜h2(˜Z ′

2).

In such a case,

˜f1×Y ˜f2 : M
˜f1,˜f2 −→ Y

is a bordered Z2-pseudocycle with boundary (3.8).
A Steenrod pseudocycle into Y is a Z2-pseudocycle f : Z −→ Y along with an

orientation o of λ( f ). A pseudocycle into Y is a Z2-pseudocycle f : Z −→Y along
with an orientation o of Z . A bordered Z2-pseudocycle ˜f : ˜Z−→Y with boundary f
and an orientation õ of ˜Z is a bordered pseudocycle with boundary ( f , o) if ∂ õ = o.
If ( f , o) is a codimension 0 Steenrod pseudocycle, then the number

deg( f , o) ≡
∑

u∈ f −1(y)

su( f , o) ∈ Z (3.11)

is well-defined for a generic choice of y ∈ Y and is independent of such a choice. We
call (3.11) the degree of ( f , o). If ( f , o) is a codimension 0 pseudocycle and oY is
an orientation of Y , then the number

deg( f , o; oY ) ≡
∑

u∈ f −1(y)

su( f , o; oY ) ∈ Z

is well-defined for a generic choice of y ∈ Y and is independent of such a choice.
We call this number the degree of ( f , o) with respect oY . If the orientation oY is
understood from the context, we again drop it from the notation.

4 Moduli spaces of stable curves

4.1 Main stratum and orientations

For l ∈ Z
≥0, let [l] = {1, . . . , l}. For a finite set L with |L|≥3, we denote by M0,L

the Deligne–Mumford moduli space of stable rational curves with L-marked points.
Let M0,L ⊂ M0,L be the main stratum of M0,L , i.e. the subspace parametrizing
smooth curves. For l ∈ Z

+ with l≥3, we writeM0,l andM0,l instead ofM0,[l] and
M0,[l], respectively.

Note.We use the notions of marked stable rational curve and stable genus 0 map in
the standard way, e.g. as in Definitions D.3.1 and 5.1.1, respectively, in [14]. Thus, the
former is a connected nodal curve	 of arithmetic genus 0with distinctmarked smooth
points so that its automorphism group as a marked curve is finite (which implies trivial
in this case). The last condition means that every irreducible component of	 contains
at least three special points, i.e.marked or nodal points. The latter is a continuousmap u
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from a connected nodal curve 	 of arithmetic genus 0 with distinct marked smooth
points so that its automorphism group as a marked map is finite. If u is J -holomorphic
on each component, the last condition means that every irreducible component of 	
on which u is constant contains at least three special points.

For finite sets K , L with |K |+2|L|≥3, we denote byMτ

K ,L the Deligne–Mumford
moduli space of stable real genus 0 curves

C ≡ (	, (xi )i∈K , (z+i , z−i )i∈L , σ
)

(4.1)

with K -marked real points, L-marked conjugate pairs of points, and an anti-
holomorphic involution σ with separating fixed locus. This space is a smoothmanifold
of dimension |K |+2|L|−3, without boundary if K �=∅ and with boundary if K = ∅.
The boundary of Mτ

0,L parametrizes the curves with no irreducible component fixed

by the involution; the fixed locus of the involution on a curve in ∂Mτ

0,L is a single

node. The main stratum Mτ
K ,L of Mτ

K ,L is the quotient of

{(

(xi )i∈K , (z+i , z−i )i∈L
) : xi ∈ S1, z±i ∈ P

1 − S1, z+i = τ(z−i ),

xi �= x j , z
+
i �= z+j , z

−
j ∀ i �= j

}

by the natural action of the subgroup PSLτ
2C ⊂ PSL2C of automorphisms of P

1

commuting with τ . For k, l ∈ Z
≥0 with k + 2l ≥3, we write Mτ

k,l and Mτ
k,l instead

of Mτ

[k],[l] and Mτ[k],[l], respectively.
If |K | + 2|L|≥4 and i ∈ K , let

fRK ,L;i : Mτ

K ,L −→ Mτ

K−{i},L (4.2)

be the forgetful morphism dropping the i-th real marked point. The restriction of fRK ,L;i
to the preimage of Mτ

K−{i},L is an S1-fiber bundle. The associated short exact
sequence (3.3) induces an isomorphism

λ
(Mτ

K ,L

) ≈ fR ∗
K ,Lλ
(Mτ

K−{i},L
)∣

∣Mτ
K ,L

⊗ (ker dfRK ,L;i
)∣

∣Mτ
K ,L

. (4.3)

If |K | + 2|L|≥5 and i ∈ L , we similarly denote by

fK ,L;i : Mτ

K ,L −→ Mτ

K ,L−{i} (4.4)

the forgetful morphism dropping the i-th conjugate pair of marked points. The restric-
tion of fK ,L;i to Mτ

K ,L is a dense open subset of a P
1-fiber bundle and thus induces

an isomorphism

λ
(Mτ

K ,L

) ≈ f ∗
K ,L;iλ

(Mτ
K ,L−{i}

)∣

∣Mτ
K ,L

⊗ λ
(

ker dfK ,L;i
)∣

∣Mτ
K ,L

. (4.5)

123



WDVV-type relations for disk Gromov–Witten invariants in dimension 6 1259

For each C ∈ Mτ
K ,L as in (4.1),

ker dCfK ,L;i ≈ Tz+i
P
1

is canonically oriented by the complex orientation of the fiber P
1 at z+i . We denote

the resulting orientation of the last factor in (4.5) by o+
i . For k, l, i ∈ Z

≥0 satisfying
the appropriate conditions, we write fk,l;i and fRk,l;i instead of fR[k],[l];i and f[k],[l];i ,
respectively.

Suppose L contains a distinguished element 0 and C ∈ Mτ
K ,L is as in (4.1) with

	 = P
1. Let D

2+ ⊂ C ⊂ P
1 be the disk cut out by the fixed locus S1 of τ which

contains z+0 . We orient S1 ⊂ D
2+ ⊂ C in the standard way (this is the opposite of the

boundary orientation of D
2+ as defined in Sect. 3). If |K | + 2|L| ≥ 4 and i ∈ K , this

determines an orientation oRi of the fiber

ker dCfRK ,L;i ≈ Txi S
1

of the last factor in (4.3) over fRK ,L;i (C). This orientation extends over the subspace

Mτ ;�
K ,L;i ⊂ Mτ

K ,L

consisting of curves C as in (4.1) such that the real marked point xi of C lies on the
same irreducible component of 	 as the marked point z+0 . If L is a nonempty subset
of Z

+ containing 1, we take its distinguished element 0 to be 1 ∈ L . For k, l ∈ Z
+

with k + 2l≥4 and i ∈ [k], we writeMτ ;�
k,l;i instead of Mτ ;�

[k],[l];i .
We now define an orientation ok,l on Mτ

k,l with k ∈ Z
≥0, l ∈ Z

+, and k + l ≥ 3

inductively. The space Mτ
1,1 = Mτ

1,1 is a single point; we take o1,1 ≡ +1 to be its

orientation as a plus point. We identify the one-dimensional space Mτ

0,2 with [0,∞]
via the cross ratio

ϕ0,2 : Mτ

0,2 −→ [0,∞], ϕ
([(z+1 , z−1 ), (z+2 , z−2 )]) = z+2 − z−1

z−2 − z−1
: z

+
2 − z+1
z−2 − z+1

= |1 − z+1 /z−2 |2
|z+1 − z+2 |2 ; (4.6)

see Fig. 3. This identification determines an orientation o0,2 on Mτ

0,2. If k + 2l ≥
4 and k ≥ 1, we take ok,l so that the isomorphism (4.3) with (K , L, i) replaced
by ([k], [l], k) is compatible with the orientations ok,l , ok−1,l , and oRk on the three line
bundles involved. If k + 2l ≥ 5 and l ≥ 2, we take ok,l so that the isomorphism (4.5)
with (K , L, i) replaced by ([k], [l], l) is compatible with the orientations ok,l , ok,l−1,
and o+

l . By a direct check, the orientations on Mτ
1,2 induced from Mτ

0,2 via (4.3)
and Mτ

1,1 via (4.5) are the same. Since the fibers of fk,l;l |Mτ
k,l

are even-dimensional,
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Fig. 3 The structure ofMτ
0,2

it follows that the orientation ok,l onMτ
k,l is well-defined for all l ∈ Z

+ and k ∈ Z
≥0

with k + 2l≥3.
For L∗ ⊂[l] and C ∈ Mτ

k,l as in (4.1), let

δcL∗(C) = ∣∣{i ∈ [l] − L∗ : z+i /∈D
2+
}∣

∣+ 2Z ∈ Z2.

In particular, δc[l](C) = 0. The functions δL∗ is locally constant on Mτ
k,l . We denote

by ok,l;L∗ the orientation on Mτ
k,l which equals ok,l at C if and only if δcL∗(C) = 0.

The next statement is straightforward.

Lemma 4.1 The orientations ok,l;L∗ on Mτ
k,l with k, l ∈ Z

≥0 and 1 ∈ L∗ ⊂ [l] such
that k + 2l≥3 satisfy the following properties:

(oM1) the isomorphism (4.3)with (K , L, i) replaced by ([k+1], [l], k+1) respects
the orientations ok+1,l;L∗ , ok,l;L∗ , and oRk+1;

(oM2) the isomorphism (4.5)with (K , L, i) replaced by ([k], [l+1], l+1) respects
the orientations ok,l+1;L∗∪{l+1}, ok,l;L∗ , and o+

l+1;
(oM3) the interchange of two real points xi and x j reverses ok,l;L∗ ;
(oM4) if i, j ∈ [l], 1 ∈ L ′ ⊂ L∗∪{i, j}, L∗ ⊂ L ′ ∪{i, j}, |L∗| = |L ′| if 1 /∈ {i, j},

C ∈ Mτ
k,l , and the marked points z+i and z+j are not separated by the fixed

locus S1 of C, then the interchange of the conjugate pairs (z+i , z−i ) and
(z+j , z

−
j ) respects the orientations ok,l;L∗ at C and ok,l;L ′ at its image under

the interchange;
(oM5) the interchange of the points in a conjugate pair (z+i , z−i ) with i ∈ [l] − L∗;

preserves ok,l;L∗ ;
(oM6) the interchange of the points in a conjugate pair (z+i , z−i ) with i ∈ L∗ − {1}

reverses ok,l;L∗ ;
(oM7) the interchange of the points in the conjugate pair (z+1 , z−1 ) preserves ok,l;L∗

if and only if k + l − |L∗| /∈2Z.

Suppose K , L are finite sets so that |K | + 2|L|≥ 3, K is ordered, and L contains
a distinguished element 0. Let L∗ ⊂L . We then identify K with [|K |] as ordered sets
and (L, 0) with ([|L|], 1) as pointed sets. Let L ′ ⊂[|L|] be the image of L∗ under the
latter identification. We denote by oK ,L;L∗ the orientation on Mτ

K ,L obtained from
the orientation ok,l;L ′ on Mτ

k,l via these identifications. By Lemma 4.1(oM4), the
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orientation oK ,L;L∗ does not depend on the choice of identification of (L, 0) with
([|L|], 1) as pointed sets. If K ⊂Z, we take K to be ordered as a subset of Z.

4.2 Codimension 1 strata and degrees

The codimension1 strataofMτ

k,l−∂Mτ

k,l correspond to the sets {(K1, L1), (K2, L2)}
such that

[k] = K1�K2, [l] = L1�L2, |K1| + 2|L1| ≥ 2, |K2| + 2|L2| ≥ 2 .

The open stratum S corresponding to such a set parametrizes marked curves C as
in (4.1) so that the underlying surface 	 consists of two real irreducible components
with one of them carrying the real marked points xi with i ∈ K1 and the conjugate
pairs of marked points (z+i , z−i ) with i ∈ L1 and the other component carrying the
other marked points. A closed codimension 1 stratum S is the closure of such an open
stratum S. Thus,

S ≈ Mτ{0}�K1,L1
× Mτ{0}�K2,L2

, S ≈ Mτ

{0}�K1,L1
× Mτ

{0}�K2,L2
, (4.7)

with the real marked point x0 corresponding to the node on each of the two irreducible
components.

Let l ∈ Z
+. If S is a codimension 1 stratum ofMτ

k,l −∂Mτ

k,l and C ∈ S, we denote
by P

1
1 the irreducible component of C containing the marked points z±1 , by P

1
2 the other

irreducible component, and by S11 ⊂ P
1
1 and S12 ⊂ P

1
2 the fixed loci of the involutions

on these components. For r = 1, 2, we then take

Kr ≡ Kr (S) and Lr ≡ Lr (S)

in (4.7) to be the set of real marked points and the set of conjugate pairs of marked
points, respectively, carried by P

1
r . Let δR(S) ∈ {0, 1} be the parity of the permutation

[k] −→ K1(S)�K2(S) = [k]

respecting the orders on the subsets K1(S), K2(S)⊂Z. For L∗ ⊂[l] and r = 1, 2, we
define

L∗
r (S) = Lr (S)∩L∗ ⊂ [l].

An orientation ocS;C of the normal bundleNCS of S inMτ

k,l at C ∈ S determines a
direction of degeneration of elements of Mτ

k,l to C. The orientation ok,l;L∗ on Mτ
k,l

limits to an orientation ok,l;L∗;C of λC(Mτ

k,l) obtained by approaching C from this
direction. Along with ocS;C , ok,l;L∗;C determines an orientation ∂ocS;Cok,l;L∗;C of λC(S)
via the first isomorphism in (3.1). If in addition L∗

1(S), L
∗
2(S) �=∅, let i∗1 ∈ L∗

1(S) and
i∗2 ∈ L∗

2(S) be the smallest elements of the two sets. The two directions of degeneration
of elements ofMτ

k,l to C are then distinguished by whether the marked points z+i∗1 , z
+
i∗2
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of the degenerating elements lie on the same disk D
2 cut out by the fixed locus S1 or

not. We denote by oc;+S;C the orientation of NCS which corresponds to the direction of

degeneration forwhich z+i∗1 , z
+
i∗2
lie on the samediskD

2 and by oc;−S;C the opposite orienta-
tion. Let o±

k,l;L∗;C and o±
S;L∗;C be the orientations of λC(Mτ

k,l) and λC(S), respectively,
induced by oc;±S;C as above. We denote by oS;L∗ the orientation on S obtained via the
first identification in (4.7) from the orientations o{0}�K1,L1;L∗

1(S)
on Mτ{0}�K1,L1

with
i∗1 ∈ L1 as the distinguished point and o{0}�K2,L2;L∗

2(S)
onMτ{0}�K2,L2

and i∗2 ∈ L2 as
the distinguished point.

Lemma 4.2 Suppose k, l ∈ Z
≥0 with k + 2l ≥ 3, 1 ∈ L∗ ⊂ [l], and S ⊂ Mτ

k,l is
a codimension 1 disk bubbling stratum S with L∗

2(S) �= ∅. The orientations oS;L∗ ,
o+
S;L∗ , and o−

S;L∗ on λ(S) satisfy

oS;L∗ =
{

o+
S;L∗ iff δR(S)∼=k + 1 mod 2;

o−
S;L∗ iff δR(S)∼=|K1(S)| + |L2(S) − L∗

2(S)|.

Proof For r = 1, 2, let

Lr = Lr (S), L∗
r = L∗

r (S), Kr = Kr (S).

If |L∗| = l = 2 and k = 0, S = S1 = S2 is a point and oS;L∗ = +1. The claim in this
case thus holds by the definition of the orientations o0,2;[2] = o0,2 on Mτ

0,2 and oc;±S;C
on N S. Since the orientation o0,l;[l] ≡o0,l with l≥3 (resp. o1,l;[l] ≡o1,l with l≥2) is
obtained from the orientations o0,l−1;[l−1] (resp. o1,l−1;[l−1]) and o+

l , it follows that
the claim holds whenever L∗ = [l] and k = 0.

Let C ∈ S be as in (4.1). Suppose |L∗| < l and k = 0. Let lc1 and l
c
2 be the numbers

of the marked points z−i of C with i ∈ [l] − L∗ on the same disk as z+i∗1 ≡ z+1 and on

the same disk as z+i∗2 , respectively. By definition,

o1,L1;L∗
1

∣

∣M1
= (−1)l

c
1o1,L1;L1

∣

∣M1
, o+

S;L∗ = (−1)l
c
1+lc2o+

S;[l],

o1,L2;L∗
2

∣

∣M2
= (−1)l

c
2o1,L2;L2

∣

∣M2
, o−

S;L∗ = (−1)l
c
1+(|L2−L∗

2|−lc2)o−
S;[l] .

Thus, the claim in this case follows from the L∗ = [l] case above.
Suppose k > 0, S′ ⊂Mτ

0,l is the image of S under the forgetful morphism

f : Mτ
k,l −→ Mτ

0,l

dropping all real marked points, C′ = f(C), and (C′
1, C′

2) ∈ M′
1 × M′

2 is the corre-
sponding pair of marked irreducible components (with 1 real marked point each). The
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orientation oS;L∗ on TCS is obtained via isomorphisms

(

TCS, oS;L∗
) ≈ (TC′

1
M′

1, o1,L1;L∗
1

)⊕
⊕

i∈K1

TxiS
1
1 ⊕ (TC′

2
M′

2, o1,L2;L∗
2

)⊕
⊕

i∈K2

TxiS
1
2

≈ (TC′
1
M′

1, o1,L1;L∗
1

)⊕(TC′
2
M′

2, o1,L2;L∗
2

)⊕
⊕

i∈K1

TxiS
1
1⊕
⊕

i∈K2

TxiS
1
2

≈ (TC′ S′, oS′;L∗
)⊕
⊕

i∈K1

TxiS
1
1⊕
⊕

i∈K2

TxiS
1
2

(4.8)
from the standard orientations on S11 and S12 determined by the marked points z+1
and z+i∗2 . The second isomorphism above is orientation-preserving because the dimen-

sion of TC′
2
M′

2 is even.

Let ˜C ∈ Mτ
k,l be a smooth marked curve close to C from the direction of degen-

eration determined by oc;±S and ˜C′ = f(˜C). The orientation o±
S;L∗ at C is obtained via

isomorphisms

(

TCS, o±
S;L∗
)⊕(NCS, oc;±S

) ≈ (T
˜CMτ

k,l , ok,l;L∗
) ≈ (T

˜C′Mτ
0,l , o0,l;L∗

)⊕
i=k
⊕

i=1

TxiS
1

≈ (TC′ S′, o±
S′;L∗
)⊕(NC′ S′, oc;±S′

)⊕
i=k
⊕

i=1

TxiS
1

≈ (−1)k
(

TC′ S′, o±
S′;L∗
)⊕

i=k
⊕

i=1

TxiS
1⊕(NCS, oc;±S

)

.

(4.9)
By (4.8), (4.9), and the k = 0 case above, the claim in the general case holds. We note
that the lines TxiS

1 with i ∈ K2 have opposite orientations in (4.8) and (4.9) in the
minus case. ��

For i ∈ [l], we denote by

Si ⊂ Mτ

k,l and Si ⊂ Mτ

k,l

the open codimension 1 stratum parametrizing marked curves consisting of two real
spheres with the marked points z±i on one of them and all other marked points on the
other sphere and its closure, respectively.

If S⊂Mτ

k,l − ∂Mτ

k,l is a closed codimension 1 stratum different from S1, let

fS;1 : S −→ Mτ

K1(S),L1(S) × Mτ

{0}�K2(S),L2(S) (4.10)

denote the composition of the second identification in (4.7) with the forgetful mor-
phism

fRnd : Mτ

{0}�K1(S),L1(S) −→ Mτ

K1(S),L1(S)
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as in (4.2) dropping themarked point x0 corresponding to the node. The vertical tangent
bundle of fS;1|S is a pullback of the vertical tangent bundle of fRnd|Mτ

{0}�K1(S),L1(S)
and

thus inherits an orientation from the orientation oRnd of the latter specified in Sect. 4.1;
we denote the induced orientation also by oRnd. It extends over the subspace

S� ⊂ S ⊂ Mτ

k,l

of curves C so that the marked point x0 of the first component of the image of C
under (4.7) lies on the same irreducible component of the domain as the marked point
corresponding to z+1 .

Let ϒ ⊂ Mτ

k,l be a bordered hypersurface. If k + 2l ≥ 4 and i ∈ [k], we call ϒ

regular with respect to fRk,l;i if ϒ ⊂Mτ ;�
k,l;i , fRk,l;i (ϒ − ϒ) is contained in the strata

of codimension at least 2, i.e. the subspace of Mτ

k−1,l parametrizing curves with at

least two nodes, and fRk,l;i (∂ϒ) is contained in the union of ∂Mτ

k−1,l and the strata of

codimension at least 2. By the last two assumptions, fRk,l;i |ϒ is a Z2-pseudocycle of

codimension 0; see Sect. 3. By the first assumption, the orientation oRi of the last factor
in (4.3) and a co-orientation ocϒ on ϒ induce a relative orientation ocϒo

R

i of fRk,l;i |ϒ .
Let

degRi
(

ϒ, ocϒ
) ≡ deg

(

fRk,l;i |ϒ, ocϒo
R

i

)

be the degree of the Steenrod pseudocycle (fRk,l;i |ϒ, ocϒo
R

i ); see (3.11).

Suppose in addition that S⊂Mτ

k,l − ∂Mτ

k,l is a codimension 1 stratum. We call ϒ

regular with respect to S if ϒ and ∂ϒ are transverse to S inMτ

k,l ,

ϒ∩S ≈ ϒ1 × Mτ

{0}�K2(S),L2(S)

under the second identification in (4.7) for some ϒ1 ⊂Mτ ;�
{0}�K1(S),L1(S);0, fS;1((ϒ −

ϒ)∩S) is contained in the strata of codimension at least 2 of the target of fS;1, and
fS;1(∂ϒ∩S) is contained in the union of the boundary and the strata of codimension
at least 2 of the target of fS;1. By the first and the last two assumptions, fS;1|ϒ∩S is a
Z2-pseudocycle of codimension 0. By the first assumption, a co-orientation ocϒ on ϒ

inMτ

k,l determines a co-orientation

ocϒ∩S ≡ ocϒ
∣

∣

ϒ∩S

on ϒ∩S in S. By the second assumption, ϒ∩S⊂ S�. By the first two assumptions,
S �= S1 if ϒ∩S �=∅ and that ocϒ and the orientation oRnd of the fibers of the restriction
of (4.10) to S specified above induce a relative orientation ocϒ∩So

R

nd of fS;1|ϒ∩S . Let

degS
(

ϒ, ocϒ
) ≡ deg

(

fS;1|ϒ∩S, o
c
ϒo

R

nd

) ≡ deg
(

fS;1|ϒ∩S, o
c
ϒ∩So

R

nd

)

.
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Wecall a bordered hypersurfaceϒ ⊂Mτ

k,l regular ifϒ−ϒ is contained in the strata
of codimension at least 2 andϒ is regular with respect to the forgetful morphism fRk,l;i
for every i ∈ [k] and with respect to every codimension 1 stratum S⊂Mτ

k,l − ∂Mτ

k,l .
For such a hypersurface, ϒ∩S1 = ∅.

4.3 Codimension 2 strata and bordisms

Suppose l≥2 and k+2l≥5. The moduli spaceMτ

k,l contains codimension 2 strata �
that parametrize marked curves C as in (4.1) so that the underlying surface	 consists
of one real component P

1
0 and one pair P

1± of conjugate components; see Fig. 1. We
do not distinguish these strata based on the ordering of the marked points on the fixed
locus S11 ⊂P

1
0 of the involution. For such a stratum �, let

L0(�), LC(�) ⊂ Z
+

be the subsets of the indices of the conjugate pairs of marked points carried by P
1
0 and

P
1−∪P

1+, respectively. In particular,
∣

∣LC(�)
∣

∣ ≥ 2 and
∣

∣L0(�)
∣

∣+ ∣∣LC(�)
∣

∣ = l.

The closure � of � decomposes as

� ≈ Mτ

[k],{0}�L0(�) × M0,{0}�LC(�) . (4.11)

We call a codimension 2 stratum as above primary if the marked point z+1 of the
curves C in � is carried by P

1−∪P
1+.

For a primary codimension 2 stratum� and C ∈ �, we denote by P
1+ the irreducible

component of C carrying the marked point z+1 . If in addition L∗ ⊂[l], let

L∗
0(�) = L0(�)∩L∗ ⊂ [l].

Wedenote by L∗−(�)⊂LC(�) the subset of the indices of themarkedpoints z−i with i ∈
L∗ carried by P

1+. The second factor in (4.11) is canonically oriented (being a complex
manifold). Let o�;L∗ be the orientation on� obtained via the identification (4.11) from
the orientation o[k],{0}�L0(�);{0}�L∗

0(�) on Mτ
[k],{0}�L0(�) times (−1)|L∗−(�)|.

With the identification as above, let

π1, π2 : � −→ Mτ

[k],{0}�L0(�),M0,{0}�LC(�)

be the projections to the two factors. Denote by

LR

� −→ Mτ

[k],{0}�L0(�) and LC

� −→ M0,{0}�LC(�)

the universal tangent line bundles at the first point of the 0-th conjugate pair of marked
points and at the 0-th marked point, respectively. The normal bundle N� consists

123



1266 X. Chen, A. Zinger

of conjugate smoothings of the two nodes of the curves in �. Thus, it is canonically
isomorphic to the complex line bundle

L� ≡ π∗
1LR

� ⊗Cπ2LC

� −→ � .

The next observation is straightforward.

Lemma 4.3 Suppose k, l ∈ Z
≥0 and 1 ∈ L∗ ⊂ [l] are such that k + 2l ≥ 3. Let

�⊂Mτ

k,l be a primary codimension 2 stratum. The orientation o
c
� onN� induced by

the orientations ok,l;L∗ on Mτ
k,l and o�;L∗ on � agrees with the complex orientation

of L� .

The two relations of Theorem 1.5 are proved by applying (2.10) with the hypersur-
facesϒ ⊂Mτ

1,2 andϒ ⊂Mτ

0,3 of Lemmas 4.4 and 4.5 below. These hypersurfaces are
regular, in the sense defined at the end of Sect. 4.2, and in particular are disjoint from
the codimension 1 stratum S1 of the moduli space. All notation for the codimension 1
strata and the degrees is as in Sect. 4.2. Since ok,l = ok,l;[l],

o�;[l] = oc�ok,l (4.12)

in the cases of Lemmas 4.4 and 4.5. Let P± ∈ Mτ

1,2 be the three-component curve
so that z+1 and z±2 lie on the same irreducible component.

Lemma 4.4 [5, Lemma 4.4] There exists an embedded closed path ϒ ⊂Mτ

1,2 with a
co-orientation ocϒ so that ϒ is a regular hypersurface and

∂
(

ϒ, ocϒ
) = (P+, ocP+

)�(P−, ocP−
)

, degR1
(

ϒ, ocϒ
) = 1, degS2

(

ϒ, ocϒ
) = −1 .

(4.13)

The moduli space Mτ

0,3 is a 3-manifold with the boundary

∂Mτ

0,3 = S
++
23 � S

+−
23 � S

−+
23 � S

−−
23 ,

where S
±±
i j ≈ M0,4 ≈ S2 is the closure of the open codimension 1 stratum S±±

i j of

curves consisting of a pair of conjugate spheres with the marked points z±i and z±j
on the same sphere as z+1 ; see [10, Fig. 4] and the first diagram in Fig. 4. There are

four primary codimension 2 strata �±
i , with i = 2, 3, inMτ

0,3. The closed interval �
+
i

(resp. �
−
i ) is the closure of the open codimension 2 stratum �+

i (resp. �−
i ) of curves

consisting of one real sphere and a conjugate pair of spheres so that the real sphere
carries the marked points z±i and the decorations ± of the marked points on each of the
conjugate spheres are the same (resp. different); see the last two diagrams in Fig. 4.
Let

◦
�

+
i = �+

i ∪(�+
i ∩Si ) ⊂ �

+
i

be the complement of the endpoints of �
+
i .
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Fig. 4 Elements of open codimension 1 and 2 strata of Mτ
0,3, with {i, j} = {2, 3} in the first diagram and

{i, j, k} = {1, 2, 3} in the other four

Lemma 4.5 [5, Lemma 4.4]) There exist a bordered surface ϒ ⊂ Mτ

0,3 with a co-

orientation ocϒ and a one-dimensional manifold γ ′ ⊂Mτ

0,3 with a co-orientation oc
γ ′

so thatϒ is transverse to all open strata ofMτ

0,3 not contained in any�
±
i with i = 2, 3,

ϒ is a regular hypersurface, and

∂
(

ϒ, ocϒ
) = ( ◦�

+
2 , o

c
�+
2

)∪( ◦�
+
3 ,−oc

�+
3

)∪( ◦�
−
2 , o

c
�−
2

)∪( ◦�
−
3 ,−oc

�−
3

)∪(γ ′, ocγ ′
)

,

γ ′ ⊂ ∂Mτ

0,3, degS2
(

ϒ, ocϒ
) = 1, degS3

(

ϒ, ocϒ
) = −1. (4.14)

5 Real GW-invariants

We introduce notation for moduli spaces of stable maps to a real symplectic mani-
fold (X , ω, φ) and for their strata in Sect. 5.1. We then formulate three key structural
propositions in Sect. 5.2 and deduce Theorem 1.5 from them in Sect. 5.3. The eval-
uation maps from the moduli spaces of stable maps take values in ordered products
of copies X and Xφ . For the remainder of the paper, we take the default orientations
of these products to be given by the symplectic orientation oω and the orientation o

of X

∧φ
encoded by the OSpin-structure os≡(o, s) on X

∧φ
under consideration.

5.1 Moduli spaces of stable maps

Let (X , ω, φ)be a real symplecticmanifold, X

∧φ
be a topological component of Xφ , and

G be a finite subgroup of Aut(X , ω, φ; X∧φ). For finite sets K , L with |K | + 2|L|≥3,
we denote by Hω,φ

K ,L;G the space of pairs (J , ν) consisting of J ∈ J φ

ω;G and a real G-

invariant perturbation ν of the ∂ J -equation associated withMτ

K ,L as in [9, Section 2].

For k, l ∈ Z
≥0 with k + 2l≥3, we writeHω,φ

k,l;G instead ofHω,φ

[k],[l];G ; the same applies
to all spaces of maps and morphisms defined below.
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For (J , ν) ∈ Hω,φ

K ,L;G , a real genus 0 (J , ν)-map with K -marked real points and
L-marked conjugate pairs of points is a tuple

u = (u : 	−→ X , (xi )i∈K , (z+i , z−i )i∈L , σ
)

(5.1)

such that
C ≡ (	, (xi )i∈K , (z+i , z−i )i∈L , σ

)

(5.2)

is a real genus 0 nodal curve with complex structure j, K -marked real points, and
L-marked conjugate pairs of points and u is a smooth map satisfying

u◦σ = φ◦u, ∂ J u|z ≡ 1

2

(

dzu + J ◦dzu◦j) = ν
(

z, u(z)
) ∀ z ∈ 	.

Amap u is called simple if the restriction of u to each unstable irreducible component
of the domain is simple (i.e. not multiply covered) and no two such restrictions have
the same image. The fixed locus 	σ of σ in (5.2) is either a single point or a tree of
circles (possibly a single circle). We call a map u as in (5.2) Z2-pinchable if K = ∅

and either	σ is a single point or the element of H1(Xφ; Z2) determined by u|	σ is 0.
For an automorphism h of (	, σ ), let

h ·u = (u◦h−1 : 	−→ X , (h(xi ))i∈K , (h(z+i ), h(z−i ))i∈L , σ
)

.

Two tuples as in (5.1) are equivalent if they differ by such a reparametrization h.
Let B ∈ H2(X) and (J , ν) ∈ Hω,φ

K ,L;G . We denote the moduli space of the equiva-
lence classes of stable real genus 0 degree B (J , ν)-maps with K -marked real points
and L-marked conjugate pairs of points as in (5.1) such that

	σ �= ∅ and u
(

	σ
) ⊂ X

∧φ

byMK ,L(B; J , ν; X∧φ). Let

M
∗
K ,L(B; J , ν; X∧φ) ⊂ MK ,L(B; J , ν; X∧φ)
and MK ,L(B; J , ν; X∧φ) ⊂ M

∗
K ,L(B; J , ν; X∧φ)

be the subspace of simple maps and the (virtually) main stratum, i.e. the subspace
consisting of maps as in (5.1) from smooth domains 	, respectively.

The forgetful morphisms (4.2) and (4.4) induce maps

fR ∗
K ,L;i : Hω,φ

K−{i},L;G −→Hω,φ

K ,L;G and f ∗
K ,L;i : Hω,φ

K ,L−{i};G −→Hω,φ

K ,L;G ,
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respectively. For each ν ∈ Hω,φ

K−{i},L;G and ν ∈ Hω,φ

K ,L−{i};G , we also denote by

fRK ,L;i : MK ,L
(

B; J , fR ∗
K ,L;iν; X∧φ) −→ MK−{i},L

(

B; J , ν; X∧φ) and

fK ,L;i : MK ,L
(

B; J , f ∗
K ,L;iν; X∧φ) −→ MK ,L−{i}

(

B; J , ν; X∧φ)
(5.3)

the forgetful morphisms dropping the i-th real marked point and the i-th conjugate
pair of marked points, respectively. The restriction of the second morphism in (5.3)
to

MK ,L
(

B; J , f ∗
K ,L;iν; X∧φ) ⊂ MK ,L

(

B; J , f ∗
K ,;iν; X∧φ)

is a dense open subset of a P
1-fiber bundle. We denote by o+

i the relative orientation
of this restriction induced by the position of the marked point z+i . The restriction of
the first morphism in (5.3) to the preimage of

MK−{i},L
(

B; J , ν; X∧φ) ⊂ MK−{i},L
(

B; J , ν; X∧φ)

is an S1-fiber bundle. If L contains a distinguished element 0, we denote by oRi the
relative orientation of this restriction defined as in Sect. 4.1.

For c ∈ Z
+, a (virtually) codimension c stratum S of MK ,L(B; J , ν; X∧φ) is

a subspace of maps from domains 	 with precisely c nodes and thus with c + 1
irreducible components isomorphic to P

1. It is characterized by the distributions of

• the degree B of the map components u of its elements u as in (5.1),
• the K -marked real points, and
• the l-marked conjugate pairs of points

between the irreducible components of	. There are two types of codimension 1 strata
distinguished by whether the fixed locus	σ of σ consists of a single point or a wedge
of two circles. These two types are known as sphere bubbling and disk bubbling,

respectively. If (1.10) holds, no element (5.1) ofMK ,L(B; J , ν; X∧φ) is Z2-pinchable
and sphere bubbling does not occur.

For each i ∈ K , let

evRi : MK ,L(B; J , ν; X∧φ) −→ Xφ, evRi
([u, (x j ) j∈K , (z+j , z

−
j ) j∈L , σ ]) = u(xi ),

(5.4)
be the evaluation morphism for the i-th real marked point. For each i ∈ L , let

ev+
i : MK ,L(B; J , ν; X∧φ) −→ X , ev+

i

([u, (x j ) j∈K , (z+j , z
−
j ) j∈L , σ ]) = u(z+i ),

(5.5)
be the evaluation morphism for the positive point of the i-th conjugate pair of marked
points. Let

ev≡
∏

i∈K
evRi ×

∏

i∈L
ev+

i : MK ,L(B; J , ν; X∧φ) −→ X

∧

K ,L ≡(X

∧φ
)K × XL (5.6)
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be the total evaluation map. We will use the same notation for the compositions of

these evaluation maps with all obvious maps toMK ,L(B; J , ν; X∧φ).
Suppose k ∈ Z

≥0 and l ∈ Z
+ with k + 2l ≥ 3. Let S be a codimension 1 disk

bubbling stratum of Mk,l(B; J , ν; X∧φ). We call the irreducible component P
1
1 of the

domain 	 of an element u of S carrying the marked points z±1 the first bubble and
the other irreducible component P

1
2 the second bubble. For r = 1, 2, let

Kr (S) ⊂ [k] and Lr (S) ⊂ [l] (5.7)

to be the subsets of the indices of real marked points and conjugate pairs of marked
points, respectively, carried by P

1
r . We denote by Br (S) ∈ H2(X) the degree of the

restriction of the map components u of the elements u of S to P
1
r . In particular,

[k] = K1(S)�K2(S), [l] = L1(S)�L2(S), 
ω(B) = 
ω
(

B1(S)
)+ 
ω

(

B2(S)
)

.

Let

S ⊂ Mk,l(B; J , ν; X∧φ)

be the virtual closure of S, i.e. the subspace of maps u as in (5.1) so that the domain	

can be split at a node into two connected (possibly reducible) surfaces, 	1 and	2, so
that the degree of the restriction of the map component u of u to	1 is B1(S), the real
marked points xi with i ∈ K1(S) lie on 	1, and so do the conjugate pairs of marked
points z±i with i ∈ L1(S).

If in addition 1 ∈ L∗ ⊂[l], let

L∗
1(S) = L1(S)∩L∗, L∗

2(S) = L2(S)∩L∗,

εL∗(S) = 
ω(B2(S))

2
− ∣∣K2(S)

∣

∣− ∣∣L2(S) − L∗
2(S)
∣

∣ .
(5.8)

We denote by

M
�
k,l;L∗(B; J , ν; X∧φ) ⊂ M

∗
k,l(B; J , ν; X∧φ)

the subspace of simple maps that are not Z2-pinchable and

• have no nodes, or
• lie in a codimension 1 disk bubbling stratum S with εL∗(S) ∈ 2Z, or
• have only one conjugate pair of nodes.

Let ̂Mk,l;L∗(B; J , ν; X∧φ) be the space obtained by cutting Mk,l(B; J , ν; X∧φ)
along the closures S of the codimension 1 strata S with εL∗(S) /∈ 2Z. Thus,
̂Mk,l;L∗(B; J , ν; X∧φ) is a manifold with boundary whose boundary double covers S
for each codimension 1 stratum S ofMk,l(B; J , ν; X∧φ) with εL∗(S) /∈2Z. The union
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of these covers and the sphere bubbling strata, if any, form the (virtual) boundary of
̂Mk,l;L∗(B; J , ν; X∧φ). Let

q : ̂Mk,l;L∗(B; J , ν; X∧φ) −→ Mk,l(B; J , ν; X∧φ) (5.9)

be the quotient map and

evRi : ̂Mk,l;L∗(B; J , ν; X∧φ) −→ X

∧φ
, ev+

i : ̂Mk,l;L∗(B; J , ν; X∧φ) −→ X ,

ev : ̂Mk,l;L∗(B; J , ν; X∧φ) −→ X

∧

k,l (5.10)

be the compositions of the evaluation maps in (5.6) with the quotient map q in (5.9).
We denote by

̂M
�
k,l;L∗(B; J , ν; X∧φ) ⊂ ̂Mk,l;L∗(B; J , ν; X∧φ) (5.11)

the subspace of simple maps that are not Z2-pinchable and

• have no nodes, or
• have only one real node, or
• have only one conjugate pair of nodes.

The boundary ∂ ̂M
�
k,l;L∗(B; J , ν; X∧φ) of this subspace consists of double covers ̂S∗ of

the subspaces S∗ of simple maps of the codimension 1 strata S ofMk,l(B; J , ν; X∧φ)
with εL∗(S) /∈2Z.

AnOSpin-structure os on X

∧φ
is a pair (o, s) consisting of an orientation o on X

∧φ
and

a Spin-structure s on the oriented vector bundle (T X

∧φ
, o), i.e. a compatible collection

of homotopy classes of trivializations of (T X

∧φ
, o) over loops in X

∧φ
; see [7, Def. 1.3].

We identify homotopy classes of trivializations for different orientations if they differ
by a compositionwith an isomorphismofR3; this convention identifies Spin-structures
for different orientations of X

∧φ
. For an OSpin-structure os≡(o, s) on X

∧φ
, we denote

by os≡(o, s) the OSpin-structure on X

∧φ
obtained from os by reversing its orientation

component o only. Lemma 5.1 and Proposition 5.2 below follow readily from [17];
see Sect. 6.2.

Lemma 5.1 Suppose (X , ω, φ) is a real symplectic sixfold, X

∧φ
is a connected compo-

nent of Xφ ,

k, l ∈ Z
≥0 with k + 2l ≥ 3, 1 ∈ L∗ ⊂ [l], B ∈ H2(X), (5.12)

G is a finite subgroup ofAut(X , ω, φ; X∧φ), and (J , ν) ∈ Hω,φ

k,l;G is generic. AnOSpin-

structure os on X

∧φ
determines orientations oos;L∗ and ôos;L∗ ofM�

k,l;L∗(B; J , ν; X∧φ)
and ̂M�

k,l;L∗(B; J , ν; X∧φ), respectively, with the following properties:

(oos1) the restrictions of oos;L∗ and ôos;L∗ toMk,l(B; J , ν; X∧φ) are the same;
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(oos2) the restrictions of oos;L∗ and oRk+1oos;L∗ to Mk+1,l(B; J , f ∗
k+1,l;k+1ν; X∧φ)

are the same;

(oos3) the restrictions ofoos;L∗∪{l+1} ando+
l+1oos;L∗ toMk,l+1(B; J , f ∗

k,l+1;l+1ν; X∧φ)
are the same;

(oos4) the interchange of two real points xi and x j reverses oos;L∗ ;
(oos5) if i, j ∈ [l], 1 ∈ L ′ ⊂ L∗ ∪{i, j}, L∗ ⊂ L ′ ∪{i, j}, |L∗| = |L ′| if 1 /∈ {i, j},

u ∈ Mk,l(B; J , ν; X∧φ), and the marked points z+i and z+j are not separated

by the fixed locus S1 of the domain of u, then the interchange of the conjugate
pairs (z+i , z−i ) and (z+j , z

−
j ) respects the orientations oos;L∗ at u and oos;L ′

at its image under the interchange;
(oos6) the interchange of the points in a conjugate pair (z+i , z−i ) with i ∈ [l] − L∗

preserves oos;L∗ ;
(oos7) the interchange of the points in a conjugate pair (z+i , z−i ) with i ∈ L∗ − {1}

reverses oos;L∗ ;
(oos8) the interchange of the points in the conjugate pair (z+1 , z−1 ) preserves oos;L∗

if and only if


ω(B)
/

2 + k + l − |L∗| /∈ 2Z;

(oos9) if k, l = 1 and B = 0, then (evR1 , oos;L∗) is a pseudocycle of degree 1;

(oos10) if os′ is another OSpin-structure on X

∧φ
, u ∈ Mk,l(B; J , ν; X∧φ) is as in (5.1),

and the pullbacks of os′ and os by the restriction of u to the fixed locus of
its domain are the same, then the orientations oos;L∗ and oos′;L∗ at u are
opposite.

Let k, l, L∗, B and (J , ν) be as in Lemma 5.1. For a tuple

h≡(hi : Hi −→ X)i∈[l] (5.13)

of maps, define

fh : Mh ≡
∏

i∈[l]
Hi −→ Xl , fh

(

(yi )i∈[l]
) = (hi (yi )

)

i∈[l],

Z�
k,h;L∗(B; J , ν; X∧φ) = {(u, (yi )i∈[l]

) ∈ M
�
k,l;L∗(B; J , ν; X∧φ)

×Mh : ev+
i (u) = hi (yi )∀ i ∈ [l]} . (5.14)

Let
evk,h;L∗ : Z�

k,h;L∗
(

B; J , ν; X∧φ) −→ (X∧φ)k (5.15)

be the map induced by (5.6). Orientations on Hi determine an orientation oh on Mh.
Along an orientation oM of M�

k,l;L∗(B; J , ν; X∧φ), the orientation oh determines an

orientation oMoh of Z�
k,h;L∗
(

B; J , ν; X∧φ).
If Y is a smooth manifold, a dimension p pseudocycle h : H −→Y determines an

element [h]Y of Hp(Y ; Z); see [24]. If Y = X and B is a homology class in X in the
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complementary dimension, let

h ·XB ≡ 〈PDX ([h]X ), B
〉 ∈ Z

denote the homology intersection product of [h]X with B. If h and B are not of
complementary dimensions, we set h ·XB = 0. For a tuple h of maps from smooth
manifolds as in (5.13), let

codimCh = 1

2

l
∑

i=1

(

dimRX − dimRHi
)

, L∗(h) = {1}∪{i ∈ [l] : dim Hi ∈ {0, 4}},

L∗+(h) = {i ∈ [l] : dim Hi ∈ {0, 4}}, L∗−(h) = {i ∈ [l] : dim Hi = 2
}

. (5.16)

We denote the orientation oos;L∗(h)oh of the domain of (5.15) with L∗ = L∗(h)
by oos;h.

Proposition 5.2 Let (X , ω, φ), X

∧φ
, os, B, and G be as in Lemma 5.1 and l ∈ Z

+.
Suppose h≡(hi )i∈[l] is a tuple of pseudocycles into X of dimensions 0,2,4 in general
position so that

k≡ 
ω(B)

2
+ l − codimCh ≥ max(0, 3 − 2l) . (5.17)

(1) For a generic choice of (J , ν) ∈ Hω,φ

k,l;G, the map (5.15) with the orienta-
tion oos;L∗(h)oh on its domain is a codimension 0 pseudocycle and its degree

〈

(hi )i∈[l]
〉φ,os

B;X

∧φ ≡ deg
(

evk,h;L∗(h), oos;h
)

(5.18)

does not depend on the choice of (J , ν), hi ∈ [hi ]X with i ∈ L∗+(h), or hi ∈
[hi ]

X−X

∧φ with i ∈ L∗−(h).

(2) The number (5.18) is invariant under the permutations of the components hi of h.
(3) The number (5.18) vanishes if [hi ]X ∈ H4(X)

φ
− for some i ∈ L∗+(h) or

[hi ]
X−X

∧φ ∈ H2(X − X

∧φ
)
φ
+ for some i ∈ L∗−(h).

(4) If k + 2l≥5 and i∗ ∈ [l] with dim hi∗ = 4, then

〈

(hi )i∈[l]
〉φ,os

B;X

∧φ = (hi∗ ·X B
)〈

(hi )i∈[l]−{i∗}
〉φ,os

B;X

∧φ . (5.19)

The assumption that the pseudocycles hi are in general position in Proposition 5.2
implies that each two-dimensional pseudocycle hi is in fact a pseudocycle into X−X

∧φ
.

By Proposition 5.2(1), the number

〈(

PDX ([hi ]X )
)

i∈L∗+(h),
(

PD
X ,X

∧φ ([hi ]
X−X

∧φ )
)

i∈L∗−(h)

〉φ,os

B;X

∧φ = 〈(hi )i∈[l]
〉φ,os

B;X

∧φ (5.20)
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of real (J , ν)-holomorphic curves meeting the pseudocycles hi and passing through
k general points in X

∧φ
is well-defined, i.e. it depends only on the homology classes

on the left-hand side. Thus, we obtain a well-defined number

〈(μi )i∈[l]〉φ,os
B;X

∧φ ∈ Q (5.21)

if l ∈ Z
+ and

k≡ 
ω(B)

2
+ l − 1

2

∑

i∈[l]
dimμi ≥ max(0, 3 − 2l). (5.22)

Below we drop the conditions on k and l.
We assume that B �= 0 and can be represented by a J -holomorphic map; thus,

〈ω, B〉 �=0. Let H ∈ H2(X; Z) be such φ∗H = −H and 〈H , B〉 �=0; such a class H
can be obtained by slightly deforming ω so that it represents a rational class, taking
a multiple of the deformed class that represents an integral class, and then taking the
anti-invariant part of the multiple. Let l, L∗, and h≡(hi )i∈[l] be as in Proposition 5.2
so that h1 and h2 represent the Poincare dual of H . We define

〈

(hi )i∈[l]−{1,2}
〉φ,os

B;X

∧φ ≡ 1

〈H , B〉2 deg
(

evk,h;L∗(h), oos;h
)

. (5.23)

By (2) and (4) in Proposition 5.2, this definition does not depend on the choice of H ,
agrees with (5.18) in the overlapping cases, determines the numbers (5.21) without
any conditions on l ∈ Z

≥0 or k ∈ Z (if k < 0, we take the number (5.18) to be 0).
By (5.19),

〈

(μi )i∈[l]
〉φ,os

B;X

∧φ = 〈μi∗ , B〉〈(μi )i∈[l]−{i∗}
〉φ,os

B;X

∧φ (5.24)

if B �=0, μi ∈ H2(X)∪H6(X)∪H4(X , X

∧φ
) for all i ∈ [l], and μi∗ ∈ H2(X).

Suppose K , L are finite sets so that |K | + 2|L|≥3, K is ordered, and L contains a
distinguished element 0. Let 0 ∈ L∗ ⊂L .We then identify K with [|K |] as ordered sets
and (L, 0) with ([|L|], 1) as pointed sets. Let L ′ ⊂[|L|] be the image of L∗ under the
latter identification and os be anOSpin-structure on X

∧φ
. For (J , ν) ∈ Hω,φ

K ,L;G generic,

we denote by oos;L∗ the orientation on MK ,L(B; J , ν; X∧φ) obtained from the orien-
tation ok,l;L ′ on Mk,l(B; J , ν; X∧φ) via these identifications. By Lemma 5.1(oos5),
the orientation oos;L∗ does not depend on the choice of identification of (L, 0) with
([|L|], 1) as pointed sets. If in addition μi ∈ H2(X)∪H6(X)∪H4(X , X

∧φ
) for i ∈ L ,

we denote by

〈

(μi )i∈L
〉φ,os

B;X

∧φ ∈ Q

the number (5.24) arising under the above identification of (L, 0) with ([|L|], 1).
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5.2 Structural propositions

We next formulate three propositions which together imply Theorem 1.5. Proposi-
tion 5.5 relates counts of two- and three-component real curves passing through fixed
constraints by lifting the bordisms of Lemmas 4.4 and 4.5. The two relations of Propo-
sition 5.5, depicted in Fig. 1 on page 11, have the exact same form as in [5]. The counts
of curves represented by the individual terms in these relations generally depend on the
choices of the constraints. An averager G as in Definition 1.2 eliminates this depen-
dence for G-invariant constraints and leads to splittings of the two types of counts into
invariant counts of irreducible curves in Propositions 5.6 and 5.7. These two proposi-
tions are the analogues of Propositions 5.7 and 5.3 in [5], but now depend on the use
of an averager G.

We fix a compact real symplectic sixfold (X , ω, φ), an OSpin-structure os on a
connected component X

∧φ
of Xφ , a finite subgroupG ofAut(X , ω, φ; X∧φ), k, k′, l, l ′ ∈

Z
≥0, and L∗ ⊂[l] with

k′ ≤ k, l ′ ≤ l, k′ + 2l ′ ≥ 3, 1 ∈ L∗. (5.25)

Let B ∈ H2(X) and (J , ν) ∈ Hω,φ

k,l;G . There is then a well-defined forgetfulmorphism

fk′,l ′ : Mk,l(B; J , ν; X∧φ) −→ Mτ

k′,l ′ (5.26)

which drops the last k − k′ real marked points and the last l − l ′ conjugate pairs from
the nodal marked curve (5.2) associated with each tuple u as in (5.1) and contracts
the unstable irreducible components of the resulting curve. We also fix a tuple h as
in (5.13) of smooth maps from oriented manifolds and a k-tuple p≡(pi )i∈[k] of points
in X

∧φ
. Let L∗(h)⊂[l] be as in (5.16).

Suppose S is an open codimension 1 disk-bubbling stratum ofMk,l(B; J , ν; X∧φ).
For r = 1, 2, let

Kr (S) ⊂ [k], Lr (S) ⊂ [l], L∗
r (S) ⊂ L∗, εL∗(S) ∈ Z, Br (S) ∈ H2(X)

be as in Sect. 5.1 andS∗ ⊂S be the subspace of simplemaps.WithMh given by (5.14),
define

S∗
h = {(u, (yi )i∈[l]

) ∈ S∗ × Mh : ev+
i (u) = hi (yi )∀ i ∈ [l]}.

The (virtual) normal bundles NS of S inMk,l(B; J , ν; X∧φ) and NS∗
h of S∗

h in

Zk,h
(

B; J , ν; X∧φ) ≡ {(u, (yi )i∈[l]
) ∈ Mk,l(B; J , ν; X∧φ) × Mh : ev+

i (u) = hi (yi )∀ i ∈ [l]}

are canonically isomorphic. Let

evS;h : S∗
h −→ (X∧φ)k (5.27)
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be the map induced by (5.6).
If u ∈ S∗

h , an orientation ocS;u of NuS determines a direction of degeneration of

elements of the main stratum of Z�
k,h;L∗(B; J , ν; X∧φ) to u. The orientation oos;L∗oh

of Z�
k,h;L∗(B; J , ν; X∧φ) limits to an orientation oos;L∗;h;u of Zk,h(B; J , ν; X∧φ) at u

obtained by approaching u from this direction. Along with ocS;u, oos;L∗;h;u determines
an orientation ∂ocS;uoos;L∗;h;u of S∗

h via the first isomorphism in (3.1).

Lemma 5.3 Suppose (X , ω, φ), X

∧φ
, os, k, l, L∗, B, and (J , ν) are as in Lemma 5.1

and h as in (5.13) is a generic tuple of smooth maps from oriented manifolds. If S is

an open codimension 1 disk bubbling stratum ofMk,l(B; J , ν; X∧φ) and u ∈ S∗
h , then

the orientation ∂ocS;uoos;L∗;h;u of S∗
h at u does not depend on the choice of ocS;u if and

only if εL∗(S) /∈2Z.

The orientation oos;L∗oh of

Zk,h(B; J , ν; X∧φ) ≡ {(u′, (yi )i∈[l]
) ∈ Mk,l(B; J , ν; X∧φ)

×Mh : ev+
i (u′) = hi (yi )∀ i ∈ [l]}

extends acrossS∗
h if and only if ∂ocS;uoos;L∗;h;u depends on the choice of ocS;u for every

u ∈ S∗
h . In particular, the first statement of Lemma 5.1 is an immediate consequence

of Lemma 5.3. If Mk,l(B; J , ν; X∧φ) is cut along S and ̂S∗ is the double cover of S∗
in the cut, then ∂ocS;uoos;L∗;h;u is the boundary orientation induced by oos;L∗oh at one
of the copies û of u in

̂S∗
h = {(û′, (yi )i∈[l]

) ∈ ̂S∗ × Mh : ev+
i (̂u′) = hi (yi )∀ i ∈ [l]}; (5.28)

we then denote it by ∂oos;L∗;h;̂u. If εL∗(S) /∈ 2Z, we abbreviate ∂ocS;uoos;L∗;h;u
as ∂oos;L∗;h;u. We denote the orientation ∂oos;L∗(h);h by ∂oos;h.

Remark 5.4 While Lemma 5.3 follows readily from [17, Prop. 5.3], it is also imme-
diately implied by our Lemmas 4.2 and 6.2 (which are also needed to establish
Proposition 5.6 below). Our εL∗(S) equals to s# − 1 in [17, (22)].

If in addition ϒ ⊂Mτ

k′,l ′ , we define

fp;ϒ : ϒ −→ (X∧φ)k × Mτ

k′,l ′ , fp;ϒ(P) = (p, P), (5.29)

S∗
h,p;ϒ = {(u, P) ∈ S∗

h × ϒ : evS;h(u) = p, fk′,l ′(u) = P
}

. (5.30)

Suppose next that � ⊂ Mτ

k′,l ′ is a primary codimension 2 stratum and oc� is its
canonical co-orientation as in Lemma 4.3. We denote by

M�;k,l(B; J , ν; X∧φ) ⊂ f−1
k′,l ′(�) ⊂ Mk,l(B; J , ν; X∧φ)
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the subspace consisting of maps from three-component domains. The domain of every
element u ofM�;k,l(B; J , ν; X∧φ) is stable and thus u is automatically a simple map.
Define

Z�
�;k,h(B; J , ν; X∧φ) = {(u, (yi )i∈[l]

) ∈ Zk,h
(

B; J , ν; X∧φ) : u ∈ M�;k,l(B; J , ν; X∧φ)}

⊂ Z�
k,h;L∗
(

B; J , ν; X∧φ).

Let
ev�;h : Z�

�;k,h(B; J , ν; X∧φ) −→ (X∧φ)k (5.31)

be the map induced by (5.6); it is the restriction of (5.15).
For generic choices of (J , ν) and h,

Z�
�;k,h(B; J , ν; X∧φ) ⊂ Z�

k,h;L∗(B; J , ν; X∧φ) (5.32)

is a smooth submanifold of a smooth manifold with the normal bundle canonically
isomorphic to f∗k′,l ′N�. We denote by

o�;os;h ≡ (f∗k′,l ′o
c
�

)(

oos;h
)

the orientation of the left-hand side in (5.32) determined by f∗k′,l ′o
c
� and the orienta-

tion oos;h of the right-right side in (5.32) with L∗ = L∗(h).

Proposition 5.5 Suppose (X , ω, φ) is a real symplectic sixfold, os is an OSpin-
structure on a connected component X

∧φ
of Xφ , G is a finite subgroup of

Aut(X , ω, φ; X∧φ), l ∈ Z
≥0, and B ∈ H2(X). Let h≡ (hi )i∈[l] be a tuple of pseudo-

cycles into X of dimensions 0,2,4 in general position so that

k≡ 
ω(B)

2
+ l − codimCh − 1 ≥ max(0, 3 − 2l). (5.33)

Let (J , ν) ∈ Hω,φ

k,l;G be generic.

(1) If k ≥ 1, l ≥ 2, and P± ∈ M1,2, ϒ ⊂M1,2, ocP± , and ocϒ are as in Lemma 4.4,
then

∣

∣ev−1
P+;h(p)

∣

∣

±
oP+;os;h

+ ∣∣ev−1
P−;h(p)

∣

∣

±
oP−;os;h

= −2
∑

S

∣

∣S∗
h,p;ϒ
∣

∣

±
∂oos;h,ocϒ

, (5.34)

where the sum on the right-hand side is over all codimension 1 disk bubbling strata
S of Mk,l(B; J , ν; X∧φ) with εL∗(h)(S) /∈2Z and

either 2 ∈ L1(S), 1 ∈ K2(S) or 1 ∈ K1(S), 2 ∈ L2(S). (5.35)
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(2) If l≥3 and �±
2 , �±

3 , ϒ ⊂M0,3, o�±
2
, o�±

3
, and ocϒ are as in Lemma 4.5, then

∣

∣ev−1
�+
2 ;h(p)

∣

∣

±
o
�

+
2 ;h

+ ∣∣ev−1
�−
2 ;h(p)

∣

∣

±
o
�

−
2 ;os;h

− ∣∣ev−1
�+
3 ;h(p)

∣

∣

±
o
�

+
3 ;os;h

− ∣∣ev−1
�−
3 ;h(p)

∣

∣

±
o
�

−
3 ;os;h

= 2
∑

S

∣

∣S∗
h,p;ϒ
∣

∣

±
∂oos;h,ocϒ

,

(5.36)
where the sum on the right-hand side is over all codimension 1 disk bubbling strata
S of Mk,l(B; J , ν; X∧φ) with εL∗(h)(S) /∈2Z and

either 3 ∈ L1(S), 2 ∈ L2(S) or 2 ∈ L1(S), 3 ∈ L2(S). (5.37)

Let G be an averager for (X , ω, φ; X∧φ) as in Definition 1.2. We call a tuple h as
in (5.13) G-invariant if there exists a G-action by orientation-preserving diffeomor-
phisms on each Hi such that

g◦hi = hi ◦g−1. (5.38)

ThePoincare dual of an integermultiple of every element of H∗(X)
φ
± and H∗(X , Xφ)

φ
±

can be represented by a pseudocycle hi satisfying the above condition. Propositions 5.6
and 5.7 below, which split counts of two- and three-component real curves with G-
invariant insertions, thus imply that these counts are in fact well-defined on the G-
invariant cohomology insertions. Ifh is as in Proposition 5.5, L ′ ⊂[l], and B ′ ∈ H2(X),
we define

〈

(hi )i∈L ′
〉X
B′ = 〈(PDX ([hi ]X )

)

i∈L ′
〉X
B′ ,
〈

(hi )i∈L ′
〉φ,os

B′;X

∧φ

;G
= 〈(PDX ([hi ]X )

)

i∈L ′
〉φ,os

B′;X

∧φ

;G
(5.39)

to be the invariant count of rational degree B ′ J -holomorphic curves in X meeting
the pseudocycles hi as in (1.5) and the invariant count of real rational degree B ′ J -
holomorphic curves in X meeting the G-averages of the pseudocycles hi as in (1.17),
respectively.

Suppose S is an open codimension 1 disk bubbling stratum ofMk,l(B; J , ν; X∧φ).
It satisfies exactly one of the following conditions:

(S0) K2(S)∩[k′] = ∅ and L2(S)∩[l ′] = ∅;
(S1) |K2(S)∩[k′]| = 1 and L2(S)∩[l ′] = ∅;
(S2) there exists a codimension 1 stratum S⊂Mτ

k′,l ′ such that fk′,l ′(S)⊂ S.

We call a pair (S, ϒ) consisting of S as above and a (possibly bordered) hypersurface
ϒ ⊂Mτ

k,l admissible if one of the following conditions holds:

(S1ϒ) K2(S)∩[k′] = {i}, L2(S)∩[l ′] = ∅, and ϒ is regular with respect to fRk′,l ′;i ;
(S2ϒ) there exists a codimension 1 stratum S⊂Mτ

k′,l ′ such that fk′,l ′(S)⊂ S and ϒ

is regular with respect to S.

The notions of ϒ being regular with respect to fRk′,l ′;i and S are defined in Sect. 4.2.
If (S, ϒ) is an admissible pair and ocϒ is a co-orientation on ϒ , we denote by
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deg(S, ocϒ) ∈ Z the corresponding degree degRi (ϒ, ocϒ) or degS(ϒ, ocϒ) defined in
Sect. 4.2.

Proposition 5.6 Let (X , ω, φ), os, l, B,h, k,p be as in Proposition 5.5 and G be an
averager for (X , ω, φ; X∧φ) so that h is G-invariant. Suppose k′, l ′ ∈ Z

≥0 satisfy the
conditions in (5.25) and

S ⊂ Mk,l
(

B; J , ν; X∧φ) and ϒ ⊂ Mτ

k′,l ′

form an admissible pair.

(1) If (J , ν) ∈ Hω,φ

k,l;G is generic, then

(

evS;h, fk′,l ′
) : S∗

h −→ (X∧φ)k × Mτ

k′,l ′ and fp;ϒ : ϒ −→ (X∧φ)k × Mτ

k′,l ′

are transverse maps from manifolds of complementary dimensions and the
set S∗

h,p;ϒ is finite.
(2) The set S∗

h,p;ϒ is empty unless εL∗(h)(S) ∈ 2Z or

εL∗(h)(S) = 2
∣

∣

{

i ∈ L2(S) : dim hi = 0
}∣

∣+ 1 . (5.40)

(3) If (5.40) holds and ocϒ is a co-orientation on ϒ , then

∣

∣S∗
h,p;ϒ
∣

∣

±
∂oos;h,ocϒ

= − (−1)dimϒdeg(S, ocϒ)

× 〈(hi )i∈L1(S)

〉φ,os

B1(S);X

∧φ

;G
〈

(hi )i∈L2(S)

〉φ,os

B2(S);X

∧φ

;G
.

(5.41)

The condition (5.40) implies that

∣

∣K1(S)
∣

∣ = 
ω(B1(S))

2
+ ∣∣L1(S)

∣

∣− codimC(hi )i∈L1(S) and

∣

∣K2(S)
∣

∣+ 1 = 
ω(B2(S))

2
+ ∣∣L2(S)

∣

∣− codimC(hi )i∈L2(S),

i.e. the second irreducible component of the maps in S passes through an extra real
point.

If h : H −→ X and h′ : H ′ −→ X are transverse pseudocycles into X , we define

h∩h′ : {(y, y′) ∈ H × H ′ : h(y) = h′(y′)
} −→ X , h∩h′(y, y′) = h(y).

This is a pseudocycle representing PD−1
X (PDX ([h]X )∪PDX ([h′]X )).

Suppose � ⊂Mτ

k′,l ′ is a primary codimension 2 stratum. Let L0(�), LC(�)⊂ [l]
be as in Sect. 4.3. With B and h as in Proposition 5.6, we define

δ�(k) =
{

1, if k′ = k = 1, L0(�) = ∅;
0, otherwise;
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δ�(h) =
{

hi ∩h j , if LC(�) = {i, j}, i �= j;
0, if

∣

∣LC(�)
∣

∣ �=2.

Proposition 5.7 Let (X , ω, φ), os, l, B,h, k,p,G, k′, l ′ be as in Proposition 5.6 with

φ∗
([hi ]X

) = [hi ]X ∀ i ∈ L∗(h) − {1}, φ∗
([hi ]X

) = −[hi ]X ∀ i ∈ [l] − L∗(h).
(5.42)

Suppose �⊂Mτ

k′,l ′ is a primary codimension 2 stratum. If (J , ν) ∈ Hω,φ

k,l;G is generic,

then p is a regular value of (5.31) and the set ev−1
�;h(p) is finite. Furthermore,

∣

∣ev−1
�;h(p)

∣

∣

±
o�;os;h = 2l−l ′δ�(k)

∑

B′∈H2(X)
d(B′)=B

〈

(hi )i∈[l], pt
〉X
B′ + 〈(hi )i∈[l]−LC(�), δ�(h)

〉φ,os

B;X

∧φ

;G

+
∑

B0,B′∈H2(X)−{0}
B0+d(B′)=B

∑

LC(�)⊂L ′⊂[l]−L0(�)

2|L ′−LC(�)|
(

〈

(hi )i∈L ′
〉X
B′
〈

(hi )i∈[l]−L ′ , B ′〉φ,os
B0;X

∧φ

;G

+〈(hi )i∈L ′ , B0
〉X
B′
〈

(hi )i∈[l]−L ′
〉φ,os

B0;X

∧φ

;G

)

.

(5.43)

For dimensional reasons, at most one of the two terms in the last sum in (5.43) is
nonzero for each fixed pair (B0, B ′) of nonzero curve degrees and each fixed subset
L ′ ⊂[l].

5.3 Proofs of Proposition 5.5 and Theorem 1.5

We continue with the notation and assumptions of Proposition 5.5 and just above. For
k′, l ′, and L∗ as in (5.25), we denote by

fk′,l ′ : ̂Mk,l;L∗(B; J , ν; X∧φ) −→ Mτ

k′,l ′

the composition of (5.26) and the quotient map q in (5.9). For a stratum S of
Mk,l(B; J , ν; X∧φ), let

̂S∗ = q−1(S∗) ⊂ ̂Mk,l;L∗(B; J , ν; X∧φ).

With the notation as in (5.11), let

Mh = H1 × . . . × Hl ,

̂Z�
k;h(B; J , ν; X∧φ) = {(u, y1, . . . , yl) ∈ ̂M�

k,l;L∗(h)(B; J , ν; X∧φ) × Mh : ev+
i (u)

= hi (yi ) ∀ i ∈ [l]}.
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For (J , ν) ∈ Hω,φ

k,l;G generic, the orientation ôos;L∗(h) of Lemma 5.1 and the orienta-

tion oh of Mh determine an orientation ôos;h of ̂Z�
k;h
(

B; J , ν; X∧φ). Let

evk;h : ̂Z�
k;h
(

B; J , ν; X∧φ) −→ (X

∧φ
)k

be the map induced by (5.6).
We take (k′, l ′) = (1, 2), (0, 3) and ϒ ⊂Mτ

k′,l ′ to be the bordered compact hyper-
surfaces of Lemmas 4.4 and 4.5 with their co-orientations ocϒ . For a stratum S of

Mk,l(B; J , ν; X∧φ), let

S∗
h,p;ϒ ⊂ S∗ × Mh × ϒ and ̂S∗

h ≡ ̂Z�
k;h
(

B; J , ν; X∧φ)∩(̂S∗ × Mh
)

be as in (5.30) and (5.28), respectively, and

̂S∗
h,p;ϒ = {(û, P) ∈ ̂S∗

h × ϒ : evk;h (̂u) = p, fk′,l ′ (̂u) = P
}

.

We establish the next statement at the end of this section.

Lemma 5.8 With the assumptions as in Proposition 5.5, the map

(

evk;h, fk′,l ′
) : ̂Z�

k;h(B; J , ν; X∧φ) −→ (X
∧φ

)k × Mτ

k′,l ′

is a bordered Z2-pseu docycle of dimension 3k +2 transverse to (5.29). Furthermore,

(

∂ ̂Z�
k;h(B; J , ν; X∧φ))

(evk;h,fk′,l′ )
× fp;ϒ ϒ =

⊔

S
̂S∗
h,p;ϒ, (5.44)

with theunion takenover the codimension1disk bubbling strataS ofMk,l(B; J , ν; X∧φ)
that satisfy (5.40) and either (S1) or (S2) above Proposition 5.6.

Proof of Proposition 5.5 By the first statement of Lemma 5.8 and [5, Lemma 3.5],

∣

∣ ̂Z�
k;h(B; J , ν; X∧φ) (evk;h,fk′,l′ )× fp;ϒ ∂ϒ

∣

∣

±
ôos;h,∂ocϒ

= (−1)dimϒ
∣

∣

(

∂ ̂Z�
k;h(B; J , ν; X∧φ)) (evk;h,fk′,l′ )× fp;ϒ ϒ

∣

∣

±
∂oos;h,ocϒ

,

(5.45)

By [5, Lemma 3.3(1)] and the choice of ϒ , the left-hand side of (5.45) equals to the
left-hand side of (5.34) if (k, l) = (1, 2) and of (5.36) if (k, l) = (0, 3).

The right-hand side of (5.45) is the signed cardinality of (5.44) times (−1)dimϒ

and

∣

∣̂S∗
h,p;ϒ
∣

∣

±
∂ôos;h,ocϒ

= 2
∣

∣S∗
h,p;ϒ
∣

∣

±
∂oos;h,ocϒ
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for each codimension 1 disk bubbling strata S as in (5.44). In our case, ϒ∩S1 = ∅.
If S∗

h,p;ϒ �= ∅ and S satisfies (S2), this implies that S �= S1 and thus S satisfies
the second condition in (5.35) if (k, l) = (1, 2) and one of the conditions in (5.37) if
(k, l) = (0, 3). IfS satisfies (S1), then (k, l) = (1, 2) andS satisfies the first condition
in (5.35). Thus, the right-hand side of (5.45) equals to the right-hand side of (5.34) if
(k, l) = (1, 2) and of (5.36) if (k, l) = (0, 3). ��
Proof of (1.19) For an elementμ ∈ H2p(X), let |μ|≡ p.With N as aboveTheorem1.5,
let
≡(Z≥0)N . For elements λ≡(λ1, . . . , λN ) and α≡(α1, . . . , αN ) of
, we define

|λ| ≡
N
∑

j=1

λ j , ‖λ‖ ≡
N
∑

j=1

λ j |μ�
j |,
(

λ

α

)

≡
N
∏

j=1

(

λ j

α j

)

,

μ�λ ≡ μ
�
1 , . . . , μ

�
1

︸ ︷︷ ︸

λ1

, . . . , μ
�
N , . . . , μ

�
N

︸ ︷︷ ︸

λN

.

The ODE (1.19) is equivalent to

∑

B0,B′∈H2(X)
B0+d(B′)=B

α,β∈
,α+β=λ

2|α|
(

λ

α

)

∑

i, j∈[N ]

〈

μ�
a , μ

�
b , μ

�
i , μ�α

〉X
B′g

i j 〈μ
�
j , μ�β 〉φ,os

B0,k;G

+
∑

B1,B2∈H2(X)
φ
−

B1+B2=B
k1,k2∈Z≥0,k1+k2=k−1

α,β∈
,α+β=λ

(

k − 1

k1

)(

λ

α

)

〈

μ�
a , μ

�
b , μ�α

〉φ,os
B1,k1;G

〈

μ�β
〉φ,os
B2,k2+2;G

=
∑

B1,B2∈H2(X)
φ
−

B1+B2=B
k1,k2∈Z≥0,k1+k2=k−1

α,β∈
,α+β=λ

(

k − 1

k1

)(

λ

α

)

〈

μ�
a , μ�α

〉φ,os
B1,k1+1;G

〈

μ
�
b , μ�β

〉φ,os
B2,k2+1;G

(5.46)

for all B ∈ H2(X)
φ
−, k ∈ Z

+, and λ ∈ 
. All summands above vanish unless


ω(B)/2 − k + |λ| + 1 = |μ�
a | + |μ�

b | + ‖λ‖. (5.47)

We thus need to establish (5.46) under the assumption that (5.47) holds.
We take l = |λ| + 2 and h as in (5.13) to be an l-tuple of G-invariant pseudocycles

in general position so that

PDX
([h1]X

) = μ�
a , PDX

([h2]X
) = μ

�
b ,

∣

∣

{

i ∈ [l] − [2] : PDX
([hi ]X

) = μ
�
j

}∣

∣ = λ j ∀ j ∈ [N ]. (5.48)
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Let L∗(h) ⊂ [l] be as in (5.16). By (5.47), k satisfies (5.33). Since k ≥ 1 and l ≥ 2,
(5.34) applies.

LetAR

1 (resp.A2) be the collection of the codimension1disk bubbling strataS of the

moduli spaceMk,l(B; J , ν; X∧φ)with εL∗(h)(S) /∈2Z that satisfy thefirst (resp. second)
condition in (5.35). Define

(

L ′
1(S), L ′

2(S)
) =
{

(L1(S) − {1, 2}, L2(S)), if S ∈ AR

1 ;
(L1(S) − {1}, L2(S) − {2}), if S ∈ A2.

By Proposition 5.6 and (5.48),

∑

S∈AR
1

∣

∣S∗
h,p;ϒ
∣

∣

±
∂oos;h,ocϒ

=
∑

S∈AR
1

〈

μ�
a , μ

�
b , (hi )i∈L ′

1(S)

〉φ,os

B1(S);X

∧φ

;G
〈

(hi )i∈L ′
2(S)

〉φ,os

B2(S);X

∧φ

;G

=
∑

B1,B2∈H2(X)
φ
−

B1+B2=B
k1,k2∈Z≥0,k1+k2=k−1

α,β∈
,α+β=λ

(

k − 1

k1

)(

λ

α

)

〈

μ�
a , μ

�
b , μ�α

〉φ,os
B1,k1;G

〈

μ�β
〉φ,os
B2,k2+2;G .

The second equality above is obtained by summing over all splittings of B ∈ H2(X)
φ
−

into B1 and B2, of λ ∈ 
 into α and β, each set on the second line in (5.48) into two
subsets of cardinalities α j and β j , of k − 1 real points into sets of cardinalities k1
and k2. The first real marked point of S goes to the B2-invariant above, which also
gains an additional real marked point; see the sentence after Proposition 5.6. Similarly,

∑

S∈A2

∣

∣S∗
h,p;ϒ
∣

∣

±
∂oos;h,ocϒ

= −
∑

S∈A2

〈

μ�
a , (hi )i∈L ′

1(S)

〉φ,os

B1(S);X

∧φ

;G
〈

μ
�
b , (hi )i∈L ′

2(S)

〉φ,os

B2(S);X

∧φ

;G

= −
∑

B1,B2∈H2(X)
φ
−

B1+B2=B
k1,k2∈Z≥0,k1+k2=k−1

α,β∈
,α+β=λ

(

k − 1

k1

)(

λ

α

)

〈

μ�
a , μ�α

〉φ,os
B1,k1+1;G

〈

μ
�
b , μ�β

〉φ,os
B2,k2+1;G .

In this case, the first real marked point of S goes to the B1-invariant above, while the
B2-invariant still gains an additional real marked point. Thus,

RHS of (5.34) = 2
(

RHS of (5.46) − 2nd
∑

on LHS of (5.46)
)

. (5.49)

By Proposition 5.7,

∣

∣ev−1
P±;h(p)

∣

∣

±
oP±;os;h

= 2|λ|δP±(k)
∑

B′∈H2(X)
d(B′)=B

〈

μ�
a , μ

�
b , μ�λ, pt

〉X
B′ + 〈μ�λ, μ�

a μ
�
b

〉φ;os
B;X

∧φ

;G
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+
∑

B0,B′∈H2(X)−{0}
B0+d(B′)=B

α,β∈
,α+β=λ

2|α|
(

λ

α

)(

〈

μ�
a , μ

�
b , μ�α

〉X
B′
〈

μ�β, B ′〉φ,os
B0;X

∧φ

;G

+〈μ�
a , μ

�
b , μ�α, B0

〉X
B′
〈

μ�β
〉φ,os

B0;X

∧φ

;G

)

.

In light of (5.47), the invariants 〈. . .〉φ,os
B0;X

∧φ

;G
can be replaced by the invariants

〈. . .〉φ,osB0;k;G . We note that

[pt]X =
∑

i, j∈[N ]
PDX (μ

�
i )gi j
〈

μ
�
j

〉φ,os
0;1;G, μ�

a μ
�
b =

∑

i, j≤[N ]

〈

μ�
a , μ

�
b , μ

�
i

〉X
0 g

i jμ
�
j ,

1

2
d(B ′) =

∑

i, j∈[N ]

〈

μ
�
i , B ′〉gi jPDX (μ

�
j ), B0 =

∑

i, j∈[N ]
PDX (μ

�
i )gi j
〈

μ
�
j , B0
〉

. (5.50)

By the second case of Proposition 1.3(2), the B ′ relation above, and the divisor relation
for complex GW-invariants,

〈

μ�
a , μ

�
b , μ�α

〉X
B′
〈

μ�β, B ′〉φ,os
B0;k;G =

∑

i, j∈[N ]

〈

μ�
a , μ

�
b , μ�α, μ

�
i

〉X
B′g

i j 〈μ�β, μ
�
j

〉φ,os
B0;k;G .

(5.51)
By the B0 relation above and the divisor relation (5.19),

〈

μ�
a , μ

�
b , μ�α, B0

〉X
B′
〈

μ�β
〉φ,os
B0;k;G =

∑

i, j∈[N ]

〈

μ�
a , μ

�
b , μ�α, μ

�
i

〉X
B′g

i j 〈μ�β, μ
�
j

〉φ,os
B0;k;G .

(5.52)
As noted after Proposition 5.7, at most one of (5.51) and (5.52) is nonzero. Combin-
ing (5.50)-(5.52) with the expression for |ev−1

P±;h(p)|±oP±;os;h , we obtain

LHS of (5.34) = 2
(

1st
∑

on LHS of (5.46)
)

.

Along with (5.49), this gives (5.46). ��
Proof of (1.20) We continue with the notation at the beginning of the proof of (1.19).
For B ∈ H2(X)

φ
−, k ∈ Z

≥0, a, b, c ∈ [N ], and λ ∈ 
, define

�
B,k
a,b;c(λ) =

∑

B0,B′∈H2(X)
B0+d(B′)=B

α,β∈
,α+β=λ

2|α|
(

λ

α

)

∑

i, j∈[N ]

〈

μ�
a , μ

�
b , μ

�
i , μ�α

〉X
B′g

i j 〈μ
�
j , μ�

c , μ�β 〉φ,os
B0,k;G

+
∑

B1,B2∈H2(X)
φ
−

B1+B2=B
k1,k2∈Z≥0,k1+k2=k

α,β∈
,α+β=λ

(

k

k1

)(

λ

α

)

〈

μ�
a , μ

�
b , μ�α

〉φ,os
B1,k1;G

〈

μ�
c , μ�β

〉φ,os
B2,k2+1;G .
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The ODE (1.20) is equivalent to

�
B,k
a,b;c(λ) = �

B,k
a,c;b(λ) (5.53)

for all B ∈ H2(X)
φ
−, k ∈ Z

≥0, and λ ∈ 
. Both sides of (5.53) vanish unless


ω(B)/2 − k + |λ| + 2 = |μ�
a | + |μ�

b | + |μ�
c | + ‖λ‖. (5.54)

We thus need to establish (5.53) under the assumption (5.54) holds.
We take l = |λ| + 3 and h as in (5.13) to be an l-tuple of G-invariant pseudocycles

in general position so that

PDX
([h1]X

) = μ�
a , PDX

([h2]X
) = μ

�
b , PDX

([h3]X
) = μ�

c ,
∣

∣

{

i ∈ [l] − [3] : PDX
([hi ]X

) = μ
�
j

}∣

∣ = λ j ∀ j ∈ [N ]. (5.55)

Let L∗(h)⊂[l] be as in (5.16). By (5.54), k satisfies (5.33). Since l≥3, (5.36) applies.
LetA2 (resp.A3) be the collection of the codimension 1 disk bubbling strataS of the

moduli spaceMk,l(B; J , ν; X∧φ)with εL∗(h)(S) /∈2Z that satisfy thefirst (resp. second)
condition in (5.37). Define

(

L ′
1(S), L ′

2(S)
) =
{

(L1(S) − {1, 3}, L2(S) − {2}), if S ∈ A2;
(L1(S) − {1, 2}, L2(S) − {3}), if S ∈ A3.

By Proposition 5.6 and (5.55),

∑

S∈A2

∣

∣S∗
h,p;ϒ
∣

∣

±
∂oos;h,ocϒ

= −
∑

S∈A2

〈

μ�
a , μ�

c , (hi )i∈L ′
1(S)

〉φ,os

B1(S);X

∧φ

;G
〈

μ
�
b , (hi )i∈L ′

2(S)

〉φ,os

B2(S);X

∧φ

;G

= −
∑

B1,B2∈H2(X)
φ
−

B1+B2=B
k1,k2∈Z≥0,k1+k2=k

α,β∈
,α+β=λ

(

k

k1

)(

λ

α

)

〈

μ�
a , μ�

c , μ�α
〉φ,os
B1,k1;G

〈

μ
�
b , μ�β

〉φ,os
B2,k2+1;G .

The second equality above is obtained by summing over all splittings of B ∈ H2(X)
φ
−

into B1 and B2, of λ ∈ 
 into α and β, each set on the second line in (5.55) into two
subsets of cardinalities α j and β j , of k real points into sets of cardinalities k1 and k2.
The B2-invariant above gains an additional real marked point; see the sentence after
Proposition 5.6. Similarly,

∑

S∈A3

∣

∣S∗
h,p;ϒ
∣

∣

±
∂oos;h,ocϒ

=
∑

S∈A3

〈

μ�
a , μ

�
b , (hi )i∈L ′

1(S)

〉φ,os

B1(S);X

∧φ

;G
〈

μ�
c , (hi )i∈L ′

2(S)

〉φ,os

B2(S);X

∧φ

;G

=
∑

B1,B2∈H2(X)
φ
−

B1+B2=B
k1,k2∈Z≥0,k1+k2=k

α,β∈
,α+β=λ

(

k

k1

)(

λ

α

)

〈

μ�
a , μ

�
b , μ�α

〉φ,os
B1,k1;G

〈

μ�
c , μ�β

〉φ,os
B2,k2+1;G .
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In this case, the B2-invariant still gains an additional real marked point. Thus,

RHS of (5.36) = 2
(

2nd
∑

in �
B,k
a,b;c − 2nd

∑

in �
B,k
a,c;b
)

. (5.56)

By Proposition 5.7,

∣

∣ev−1
�±
2 ;h(p)

∣

∣

±
o
�

±
2 ;os;h

= 〈μ�
b , μ�λ, μ�

a μ�
c

〉φ;os
B;X

∧φ

;G

+
∑

B0,B′∈H2(X)−{0}
B0+d(B′)=B

α,β∈
,α+β=λ

2|α|
(

λ

α

)(

〈

μ�
a , μ�

c , μ�α
〉X
B′
〈

μ
�
b , μ�β, B ′〉φ,os

B0;X

∧φ

;G

+〈μ�
a , μ�

c , μ�α, B0
〉X
B′
〈

μ
�
b , μ�β

〉φ,os

B0;X

∧φ

;G

)

.

The number |ev−1
�±
3 ;h(p)|±o�

±
3 ;os;h

is given by the same expression with b and c inter-

changed. In light of (5.54), the invariants 〈. . .〉φ,os
B0;X

∧φ

;G
can be replaced by the invariants

〈. . .〉φ,osB0;k;G . Combining these statements with (5.50)–(5.52), we obtain

LHS of (5.36) = 2
(

1st
∑

in �
B,k
a,c;b − 1st

∑

in �
B,k
a,b;c
)

.

Along with (5.56), this gives (5.53). ��

Proof of Lemma 5.8 Let L∗ = L∗(h) be as in (5.16). For the purposes of the first
statement of this lemma, it is sufficient to show that

(

ev, fk′,l ′
) : ̂M�

k,l;L∗(B; J , ν) −→ X

∧

k,l × Mτ

k′,l ′ (5.57)

is a bordered Z2–pseudocycle of dimension 3k + 2 codimCh + 2 transverse to

fh;p;ϒ : Mh × ϒ −→ X

∧

k,l × Mτ

k′,l ′ , fh;p;ϒ
(

(yi )i∈[l], P) = (p, (hi (yi ))i∈[l], P
)

.

(5.58)
We omit the proof of this statement since it is a direct adaptation of the proof of [5,
Lemma 5.9]. By the first statement of Lemma 5.8,

(

∂ ̂Z�
k;h(B; J , ν; X∧φ))

(evk;h,fk′,l′ )
× fp;ϒ ϒ =

⊔

S
̂S∗
h,p;ϒ,

with theunion takenover the codimension1diskbubbling strataS ofMk,l(B; J , ν; X∧φ)
that lie in the image of the boundary of ̂Mk,l(B; J , ν; X∧φ) under the projection (5.9).
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For a codimension 1 disk bubbling stratum S of Mk,l(B; J , ν; X∧φ) and r = 1, 2,
let

Kr (S) ⊂ [k], L∗
r (S) ⊂ Lr (S) ⊂ [l], and Br (S) ∈ H2(X)

be as in (5.7) and (5.8). We set

Kr = Kr (S), kr = |Kr |, Lr = Lr (S), lr = |Lr (S)|, L∗
r = L∗

r (S), Br = Br (S).

(5.59)
We note that

k1 + k2 = k, l1 + l2 = l, codimCh = codimC(hi )i∈L1 + codimC(hi )i∈L2;

ω(B1) + 
ω(B2) = 
ω(B) = 2

(

k + codimCh − l + 1
)

.

(5.60)

Suppose that ̂S∗ is a stratum of ∂ ̂M�
k,l;L∗(B; J , ν; X∧φ), i.e.

εL∗(S) ≡ 
ω(B2)

2
− k2 − (l2 − |L∗

2|
)

/∈ 2Z,

and ̂S∗
h,p;ϒ �= ∅. By the definition of L∗ = L∗(h) in (5.16) and the above condition

on εL∗(S),

ω(B2)

2
− k2 − (codimC(hi )i∈L2 − l2

)

/∈ 2Z. (5.61)

Since ̂S∗
h,p;ϒ �= ∅ and ϒ ∩ S1 = ∅, (l1, k1) �= (1, 0). If B2 = 0, l2, |L∗

2| = 1,
and k2 = 0, then εL∗(S) = 0, contrary to the assumption on S above. Suppose
B2 = 0, l2 = 1, and |L∗

2|, k2 = 0. For good choices of ν (still sufficiently generic),
the restriction to ̂S∗ of (5.10) then factors as

̂S∗ −→ Mk+1,l−1
(

B; J , ν1; X∧φ
)× M1,1(0; J , 0) −→ X

∧

k,l−1 × X

∧φ −→ X

∧

k,l .

Thus, ̂S∗
h,p;ϒ = ∅ for generic choices of h and p. Suppose B2 = 0, l2 = 0, and

k2 = 2. For good choices of ν, the restriction to ̂S∗ of (5.10) then factors as

̂S∗ −→ Mk−1,l
(

B; J , ν1; X∧φ
)× M3,0(0; J , 0) −→ X

∧

k−2,l × �
X

∧φ −→ X

∧

k,l ,

where�
X

∧φ ⊂(X

∧φ
)2 is the diagonal. Thus, ̂S∗

h,p;ϒ = ∅ for generic choices of h and p.

We can thus assume that either Br �=0 or 2lr +kr ≥3 for r = 1, 2. For good choices
of ν, the restriction to ̂S∗ of (5.10) then factors as

̂S∗ −→ Mk1+1,l1

(

B1; J , ν1; X

∧φ)× Mk2+1,l2

(

B2; J , ν2; X

∧φ)

−→ Mk1,l1

(

B1; J , ν′
1; X

∧φ)× Mk2,l2

(

B2; J , ν′
2; X

∧φ) −→ X

∧

k1,l1 × X

∧

k2,l2 −→ X

∧

k,l .
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Thus, ̂S∗
h,p;ϒ = ∅ for generic choices of h, p, and (J , ν) unless


ω
(

Br
)+ 2lr + kr ≥ 3kr + 2 codimC(hi )i∈Lr ∀ r = 1, 2.

Along with (5.60), this implies that either


ω(B1) = 2
(

k1 + codimC(hi )i∈L1 − l1
)

,


ω(B2) = 2
(

k2 + codimC(hi )i∈L2 − l2 + 1
)

,

or 
ω(B1) = 2
(

k1 + codimC(hi )i∈L1 − l1 + 1
)

,


ω(B2) = 2
(

k2 + codimC(hi )i∈L2 − l2
)

. (5.62)

In light of (5.61), (5.62) is the case. By the definition of L∗ = L∗(h) in (5.16), the
second equation in (5.62) is equivalent to (5.40). Thus, the union in (5.44) is over the
codimension 1 disk bubbling strata S of Mk,l(B; J , ν; X∧φ) that satisfy (5.40).

If S satisfies (S0) above Proposition 5.6, the restriction to ̂S∗ of the composition
of (5.57) with the projection to the product Xk1,l1 × Mτ

k′,l ′ factors as

̂S∗ −→ Mk1+1,l1

(

B1; J , ν1; X∧φ
)× Mk2+1,l2

(

B2; J , ν2; X∧φ
)

−→ Mk1,l1

(

B1; J , ν′
1; X

∧φ) −→ X

∧

k1,l1 × Mτ

k′,l ′ .

Since the restriction of (5.57) to ̂S∗ is transverse to (5.58) andϒ is a real hypersurface,
(5.62) then implies that ̂S∗

h,p;ϒ = ∅. ��

6 Proofs of structural statements

6.1 Orienting the linearized@-operator

For u as in (5.1), let

Dφ

J ,ν;u : �(u) ≡ {ξ ∈ �(	; u∗T X) : ξ ◦σ = dφ◦ξ}

−→ �0,1(u) ≡ {ζ ∈ �(	; (T ∗	, j)0,1⊗Cu
∗(T X , J )) : ζ ◦dσ = dφ◦ζ}

be the linearization of the {∂ J − ν}-operator on the space of real maps from (	, σ )

with its complex structure j. We define

λu
(

Dφ
J ,ν

) = det Dφ

J ,ν;u.

By [11, Appendix], the projection

λ
(

Dφ
J ,ν

) ≡
⋃

u∈Mk,l (B;J ,ν;X

∧φ

)

{

u} × λu
(

Dφ
J ,ν

) −→ Mk,l(B; J , ν; X∧φ) (6.1)
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is a line orbi-bundle with respect to a natural topology on its domain.
The next statement is a consequence of the orienting construction of [17, Prop. 3.1],

a more systematic perspective of which appears in the proof of [7, Thm. 7.1].

Lemma 6.1 Suppose (X , ω, φ) is a real symplectic sixfold, X

∧φ
is a connected compo-

nent of Xφ , l ∈ Z
+, k ∈ Z

≥0 with k + 2l≥3, B ∈ H2(X), and (J , ν) ∈ Hω,φ

k,l;{1}. An

OSpin-structure os on X

∧φ
determines an orientation oDos on the restriction of λ(D

φ
J ,ν)

toMk,l(B; J , ν; X∧φ) with the following properties:

(oDos1) the interchange of two real points xi and x j preserves oDos;

(oDos2) if u ∈ Mk,l(B; J , ν; X∧φ) and the marked points z+i and z+j are not separated

by the fixed locus S1 of the domain of u, then the interchange of the conjugate
pairs (z+i , z−i ) and (z+j , z

−
j ) preserves o

D
os at u;

(oDos3) the interchange of the points in a conjugate pair (z+i , z−i ) with 1 < i ≤ l
preserves oDos;

(oDos4) the interchange of the points in the conjugate pair (z+1 , z−1 ) preserves oDos if
and only if 
ω(B)/2 is even;

(oDos5) if k, l = 1, B = 0, and ν is small, then oDos is the orientation induced by the
evaluation at x1 and the orientation of X

∧φ
determined by os;

(oDos6) if os′ is anotherOSpin-structure on X

∧φ
, u ∈ Mk,l(B; J , ν; X∧φ) is as in (5.1),

and the pullbacks of os′ and os by the restriction of u to the fixed locus of the
domain are the same, then the orientations oDos and oDos′ at u are opposite.

Proof Let u be as in (5.1). For the purposes of applying [7, Thm. 7.1], we take the
distinguished half-surface D

2⊂P
1 to be the disk so that ∂D

2 is the fixed locus S1 of τ
and z+1 ∈ D

2. An OSpin-structure os on X

∧φ
then determines an orientation oDos on the

line λu(D
φ
J ,ν) varying continuously with u. The first three properties of this lemma

are clear, since oDos does not depend on the marked points, except for the conjugate
pair z±1 which determines D

2. By the CROrient 1os(1) properties in [7, Section 7.2],
oDos satisfies (o

D
os4) and (o

D
os6), respectively. By the CROrient 5a and 6a properties in

[7, Section 7.2], it also satisfies (oDos5). ��

Suppose now that l ∈ Z
+ and S is an open codimension 1 disk bubbling stratum of

Mk,l(B; J , ν; X∧φ). An orientation ocS;u ofNuS determines a direction of degeneration

of elements of Mk,l(B; J , ν; X∧φ) to u. The orientation oDos on (6.1) limits to an
orientation oDos;u of λu(D

φ
J ,ν) by approaching u from this direction. The orientation

oDos;u is called the limiting orientation induced by os and ocS;u in [7, Section 7.3]. If

in addition L∗ ⊂ [l] and L∗
1(S), L∗

2(S) �= ∅, the possible orientations oc;±S;u of NuS
are distinguished as above Lemma 4.2. We denote by oD;±

os;u the limiting orientation of

λu(D
φ
J ,ν) induced by os and oc;±S;u.
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For good choices of ν, there is a natural embedding

S ↪−→ M{0}�K1(S),L1(S)

(

B1(S); J , ν1; X∧φ
)× M{0}�K2(S),L2(S)

(

B2(S); J , ν2; X∧φ
)

.

(6.2)
If |K1(S)| + 2|L1(S)|≥3, there is also a forgetful morphism

fnd : M{0}�K1(S),L1(S)

(

B1(S); J , ν1; X∧φ
) −→ MK1(S),L1(S)

(

B1(S); J , ν′
1; X

∧φ)

(6.3)
dropping the real marked point corresponding to the nodal point nd on the first com-
ponent. If |K2(S)| + 2|L2(S)|≥3, there is then a forgetful morphism

fnd : M{0}�K2(S),L2(S)

(

B2(S); J , ν2; X∧φ
) −→ MK2(S),L2(S)

(

B2(S); J , ν′
2; X

∧φ)

(6.4)
dropping the real marked point corresponding to the nodal point nd on the first com-
ponent.

For an element u ∈ S, we denote by

u1 ∈ M{0}�K1(S),L1(S)

(

B1(S); J , ν1; X∧φ
)

and

u2 ∈ M{0}�K2(S),L2(S)

(

B2(S); J , ν2; X∧φ
)

the pair of maps corresponding to u via (6.2). Let

u′
1 ∈ MK1(S),L1(S)

(

B1(S); J , ν′
1; X

∧φ)
and u′

2 ∈ MK2(S),L2(S)

(

B2(S); J , ν′
2; X

∧φ)

be the images of u1 and u2 under (6.3) and (6.4). For r = 1, 2, the determinants
λur (D

φ
J ,νr

) and λu′
r
(Dφ

J ,ν′
r ;u′

r
) are canonically the same.

For each u ∈ S, the exact sequence

0 −→ Dφ

J ,ν;u −→ Dφ

J ,ν1;u1⊕Dφ

J ,ν2;u2 −→ Tu(nd)X

∧φ −→ 0,
(

ξ1, ξ2
) −→ ξ2(nd) − ξ1(nd), (6.5)

of Fredholm operators determines an isomorphism

λu
(

Dφ
J ,ν

)⊗ λ
(

Tu(nd)X

∧φ) ≈ λu1
(

Dφ
J ,ν1

)⊗ λu2
(

Dφ
J ,ν2

)

. (6.6)

If L∗
1(S), L∗

2(S) �= ∅ with the smallest elements i∗1 and i∗2 , respectively, an

OSpin-structure os on X

∧φ
determines orientations o

D1
os on λu1(D

φ
J ,ν1

) and o
D2
os on

λu2(D
φ
J ,ν2

) via identifications of (L1(S), i∗1 ) with (|L1(S)|, 1) and of (L2(S), i∗2 )
with (|L2(S)|, 1). By the first two statements of Lemma 6.1, these orientations do not
depend on these identification or on identifications of {0}�K1(S)with 1+|K1(S)| and
{0}�K2(S)with 1+|K2(S)|. Combining the orientations oD1

os on λu1(D
φ
J ,ν1

), and oD2
os
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on λu2(D
φ
J ,ν2

), and the orientation on X

∧φ
determined os, we obtain an orientation

oDos;u on λu(D
φ
J ,ν) via (6.6).

Lemma 6.2 Suppose (X , ω, φ), X

∧φ
, os, k, l, B, and (J , ν) are as in Lemma 6.1, S is

a codimension 1 disk bubbling stratum of Mk,l(B; J , ν; X∧φ) with L∗
2(S) �= ∅, and

u ∈ S. The orientations oD;+
os and oDos onλu(D

φ
J ,ν) are the same; the orientations o

D;−
os

and oDos on λu(D
φ
J ,ν) are the same if and only if 
ω(B2(S))/2 is even.

Proof In the terminology of [7, Section 7.4], oDos is the split orientation of Dφ

J ,ν;u.
Thus, the first comparison is a special case of [7, Cor. 7.4(a)]. The second comparison
follows from the first and Lemma 6.1(oDos4). ��

6.2 Proofs of Lemmas 5.1 and 5.3 and Propositions 1.3, 2.1, and 5.2

Let (X , ω, φ), X

∧φ
, os, k, l, L∗, B, and (J , ν) be as in Lemma5.1. The exact sequences

0 −→ ker Dφ

J ,ν;u −→ TuM
∗
k,l(B; J , ν; X∧φ) −→ Tfk,l (u)Mτ

k,l −→ 0

with u ∈ M∗
k,l(B; J , ν; X∧φ) induced by the forgetful morphism fk,l determine an

isomorphism

λ
(

M∗
k,l(B; J , ν; X∧φ)) ≈ λ

(

Dφ
J ,ν

)⊗ f∗k,lλ
(Mτ

k,l

)

(6.7)

of line bundles overM∗
k,l(B; J , ν; X∧φ). By Lemma 6.1, the OSpin-structure os on X

∧φ

induces an orientation oDos on the first factor on the right-hand side above. Along with
the orientation ok,l;L∗ on the second factor defined in Sect. 4.1, it determines an
orientation oos;L∗ on M∗

k,l(B; J , ν; X∧φ) via (6.7).
Proofs of Lemmas 5.1 and 5.3 By Lemmas 4.1 and 6.1, the orientation oos;L∗ above
satisfies all properties listed in Lemma 5.1 wherever it is defined. Every (continuous)
extension of oos;L∗ to subspaces of M�

k,l;L∗(B; J , ν; X∧φ) and ̂M�
k,l;L∗(B; J , ν; X∧φ)

satisfies the same properties. The orientation oos;L∗ automatically extends over all
strata of codimension 2 and higher. By Lemma 5.3, it extends over the codimension 1
strata of M�

k,l;L∗(B; J , ν; X∧φ) and ̂M�
k,l;L∗(B; J , ν; X∧φ) as well. Lemma 5.3 in turn

follows immediately from Lemmas 4.2 and 6.2. ��
Proof of Proposition 5.2 We continue with the notation and assumptions of this propo-
sition and just above and take L∗ = L∗(h) as in (5.16).

(1) Let h : Z −→ Xl be a smooth map from a manifold of dimension
6l − 2 codimCh − 2 that covers �( fh) and

ev+ =
∏

i∈[l]
ev+

i : Mk,l
(

B; J , ν; X∧φ) −→ Xl .
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We denote by

M
�
k,l

(

B; J , ν; X∧φ) ⊂ Mk,l
(

B; J , ν; X∧φ)

the subspace of maps that are not Z2-pinchable. This is a union of topological com-
ponents of the entire moduli space and is thus compact. Let

evk,h : Z�
k,h(B; J , ν; X∧φ)≡{(u, y) ∈ Mk,l(B; J , ν; X∧φ) × Mh : ev+(u) = fh(y)

}

−→ (X∧φ)k,
evk,h : Z�

k,h(B; J , ν; X∧φ)≡{(u, z) ∈ Mk,l(B; J , ν; X∧φ) × Z : ev+(u) = h(z)
}

−→ (X∧φ)k (6.8)

be the maps induced by (5.6). For each stratum S of Mk,l(B; J , ν; X∧φ), let S∗ ⊂ S
be the subspace of simple maps,

Sh = Z�
k,h(B; J , ν; X∧φ)∩(S × Mh

)

, S∗
h = Z�

k,h(B; J , ν; X∧φ)∩(S∗ × Mh
)

,

and c(S) ∈ Z
≥0 be the number of nodes of the domains of the elements of S.

By (5.17) and the reasoning in the proof of [5, Prop. 5.2], the domain of (5.15) is a
smooth manifold of dimension

(


ω(B) + k + 2l
)+ (6l − 2 codimCh

)− 6l = 3k

for a generic choice of (J , ν) ∈ Hω,φ

k,l;G . The orientation orientation oos;L∗ of

M
�
k,l;L∗(B; J , ν; X∧φ) provided by Lemma 5.1 and the orientation oh of Mh determine

an orientation oos;L∗oh on the domain of (5.15). Since the space M
�
k,l(B; J , ν; X∧φ)

is compact,

�
(

evk,h;L∗
∣

∣

Z�
k,l;h(B;J ,ν;X

∧φ

)

) ⊂ evk,h
(Z�

k,h(B; J , ν; X∧φ) − Z�
k,h;L∗(B; J , ν; X∧φ))

∪ evk,h
(Z�

k,h(B; J , ν; X∧φ)) .
(6.9)

In order to show that (5.15) is a dimension 0 pseudocycle, it is thus sufficient to show
that the right-hand side above can be covered by smooth maps from manifolds of
dimension 3k − 2.

The subspace

Z�
k,h(B; J , ν; X∧φ) − Z�

k,h;L∗(B; J , ν; X∧φ) ⊂ M
�
k,l(B; J , ν) × Mh
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consists of the subspaces S∗
h corresponding to the strataS ofMk,l(B; J , ν)with either

c(S)≥2 nodes or εL∗(S) /∈2Z and of the subspaces Sh − S∗
h with c(S)≥1. By (5.17)

and the reasoning in the proof of [5, Prop. 5.2], the subsets evk,h(S∗
h) of (X

∧φ
)k with

c(S) ≥ 2 and evk,h(Sh − S∗
h) with c(S) ≥ 1 can be covered by smooth maps from

manifolds of dimension 3k − 2. The same applies to the last set in (6.9).

Suppose S is a codimension 1 disk bubbling stratum of Mk,l(B; J , ν; X∧φ) with
εL∗(S) /∈2Z. For r = 1, 2, let Kr , kr , Lr , lr , L∗

r , Br be as in (5.59) and hr = (hi )i∈Lr .
Similarly to (5.60),

k1 + k2 = k, l1 + l2 = l, codimCh = codimCh1 + codimCh2;

ω(B1) + 
ω(B2) = 
ω(B) = 2

(

k + codimCh − l
)

.
(6.10)

Similarly to (5.61) and the preceding equation,


ω(B2)

2
− k2 − (l2 − |L∗

2|
)

,

ω(B2)

2
− k2 − (codimCh2 − l2

)

/∈ 2Z. (6.11)

Along with (6.10) and the definition of L∗ = L∗(h) in (5.16), the second equality
in (6.11) gives


ω(B1)

2
− k1 − (codimCh1 − l1

)

,

ω(B1)

2
− k1 − (l1 − |L∗

1∩L∗+(h)|) /∈ 2Z. (6.12)

By the first statement in (6.11) and the second in (6.12),

(

Br , kr , lr , |L∗
r ∩L∗+(h)|) �= (0, 0, 0, 0), (0, 2, 0, 0), (0, 0, 1, 1) ∀ r = 1, 2.

Since the image of hi with i ∈ L∗−(h) is disjoint from X

∧φ
, S∗

h = ∅ if

(

Br , kr , lr , |L∗
r ∩L∗+(h)|) = (0, 0, 1, 0)

and ν is small. Thus, we can thus assume either Br �=0 or kr +2lr ≥3 for each r = 1, 2.
For good choices of ν, the restriction of (6.8) to S∗

h factors as

S∗
h Z�

k1,h1;L∗
1
(B1; J , ν′

1; X

∧φ
) × Z�

k2,h2;L∗
2
(B2; J , ν′

2; X

∧φ
)

evk1,h1;L∗
1

evk2,h2;L∗
2

(X

∧φ
)k1 × (X

∧φ
)k2 (X

∧φ
)k .

Thus, evk,h;L∗(S∗
h) is covered by a smooth map from a manifold of dimension

dimZ�
kr ,hr ;L∗

r
(Br ; J , νr ; X

∧φ
) + dim (X

∧φ
)k3−r = 
ω(Br ) + kr + 2lr − 2 codimChr + 3k3−r

= 
ω(Br ) − 2kr + 2lr − 2 codimChr + 3k
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for r = 1, 2. By (6.10), the second statement in (6.11), and the first in (6.12),


ω(Br ) − 2kr + 2lr − 2 codimChr ≤ −2

for either r = 1 or r = 2. Thus, evk,h;L∗(S∗
h) is covered by a smooth map from a

manifold of dimension 3k − 2 if c(S) ∈ 2Z. This confirms the first statement in (1).
By definition,

deg
(

evk,h;L∗ , oos;h
) = ∣∣ev−1

k,h;L∗(p)
∣

∣

±
oos;h (6.13)

for a generic choice of p ∈ (X

∧φ
)k . Let (Jt , νt )t∈[0,1] be a generic path in Hω,φ

k,l;G
between two generic values pairs (J0, ν0) and (J1, ν1). By the same reasoning as for
the statement that the right-hand side of (6.9) can be covered by smooth maps from
manifolds of dimension 3k − 2, the subsets

{

evk,h(u, y) : t ∈ [0, 1], (u, y) ∈ Z�
k,h(B; Jt , νt ; X

∧φ
) − Z�

k,h;L∗ (B; Jt , νt ; X

∧φ
)
} ⊂ (X

∧φ
)k ,

{

evk,h(u, z) : t ∈ [0, 1], (u, z) ∈ Z�
k,h(B; Jt , νt ; X

∧φ
)
} ⊂ (X

∧φ
)k

can be covered by smooth maps from manifolds of dimension 3k − 1. Since the space

M
�
k,l(B; J , ν; X∧φ) is compact, it follows that the space

˜Zh,p ≡ {(t,u, y) : t ∈ [0, 1], (u, y) ∈ Z�
k,h(B; Jt , νt ; X∧φ), evk,l;h(u, y) = p

}

is a compact one-dimensional manifold with boundary

∂ ˜Zh,p ={evk,h(u, y) : (u, y) ∈ Z�
k,h(B; J0, ν0; X∧φ), evk,l;h(u, y) = p

}

� {evk,h(u, y) : (u, y) ∈ Z�
k,h(B; J1, ν1; X∧φ), evk,l;h(u, y) = p

}

.

(6.14)

The orientations of Lemmas 4.1 and 6.1 and the orientation of [0, 1] determine an
orientation on ˜Zh,p so that (6.14) induces the signs on the first set on the right-hand
side which are opposite to the signs determined by oos;L∗ and os and the signs on the
second set determined by oos;L∗ and os. Thus, ˜Zh,p is an oriented cobordism between
the signed subsets

ev−1
k,h;L∗(p) ⊂ Z�

k,h

(

B; J0, ν0; X∧φ
)

and ev−1
k,h;L∗(p) ⊂ Z�

k,h

(

B; J1, ν1; X∧φ
)

.

This establishes the independence of the signed cardinality in (6.13) of the choice of
generic (J , ν) inHω,φ

k,l;G .
Let i0 ∈ [l] and

˜hi0 : ˜Hi0 −→
{

X , if i0 ∈ L∗+(h);
X − X

∧φ
, if i0 ∈ L∗−(h);
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be a pseudocycle equivalence between two generic pseudocycle representatives,

hi : ˜Hi0 −→
{

X , if i0 ∈ L∗+(h);
X − X

∧φ
, if i0 ∈ L∗−(h); and

h′
i : ˜H ′

i0 −→
{

X , if i0 ∈ L∗+(h);
X − X

∧φ
, if i0 ∈ L∗−(h);

for [hi0 ]X if i0 ∈ L∗+(h) and [hi0 ]
X−X

∧φ if i0 ∈ L∗−(h). We define

h′ ≡ (h′
i )i∈[l], ˜h ≡ (˜hi )i∈[l] by h′

i ,
˜hi = hi if i �= i0.

Let˜h : ˜Z −→ Xl be a smooth map from a manifold of dimension 6l − 2 codimCh− 1
that covers �( f

˜h).
By the same reasoning as for the statement that the right-hand side of (6.9) can be

covered by smooth maps from manifolds of dimension 3k − 2, the subsets

{

evk,˜h(u, y) : (u, y) ∈ Z�
k,˜h(B; J , ν; X∧φ) − Z�

k,˜h;L∗(B; J , ν; X∧φ)} ⊂ (X

∧φ
)k,

{

evk,˜h(u, z) : (u, z) ∈ Z�
k,˜h(B; J , ν; X∧φ)} ⊂ (X

∧φ
)k

can be covered by smooth maps from manifolds of dimension 3k − 1. It follows that
the space

Z
˜h,p ≡ {(u, y) : (u, y) ∈ Z�

k,˜h
(B; J , ν; X∧φ), evk,l;˜h(u, y) = p

}

is a compact one-dimensional manifold with boundary

∂Z
˜h,p ={evk,h(u, y) : (u, y) ∈ Z�

k,h(B; J , ν; X∧φ), evk,l;h(u, y) = p
}

� {evk,h′(u, y) : (u, y) ∈ Z�
k,h′(B; J , ν; X∧φ), evk,l;h′(u, y) = p

}

.

(6.15)

The orientations of Lemmas 4.1 and 6.1 determine an orientation onZ
˜h,p so that (6.15)

induces the signs on the first set on the right-hand side which are opposite to the signs
determined by oos;L∗ and os and the signs on the second set determined by oos;L∗
and os. Thus, Z

˜h,p is an oriented cobordism between the signed subsets

evk,h;L∗(p) ⊂ Z�
k,h

(

B; J , ν; X∧φ) and ev−1
k,h′;L∗(p) ⊂ Z�

k,h′
(

B; J , ν; X∧φ).

This establishes the independence of the signed cardinality in (6.13) of the choices of
hi ∈ [hi ]X with i ∈ L∗+(h), or hi ∈ [hi ]

X−X

∧φ with i ∈ L∗−(h).
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(3) Let i0 ∈ [l], h′ ≡(h′
i )i∈[l] be the tuple of maps obtained from h by replacing the

i0-component with φ◦hi0 , and

�i0 : Mk,l
(

B; J , ν; X∧φ) −→ Mk,l
(

B; J , ν; X∧φ)

be the automorphism induced by the interchange of the points in the conjugate pair
(z+i0 , z

−
i0
). It induces a bijection

�i0;h : ev−1
k,h;L∗(p) −→ ev−1

k,h′;L∗(p).

By (oos6)–(oos8) in Lemma 5.1 and (5.17),

�∗
i0oos;L∗ =

{

−oos;L∗ , if i0 ∈ L∗+(h);
oos;L∗ , if i0 ∈ L∗−(h).

(6.16)

Since the action of φ on X is orientation-reversing, it follows that

∣

∣ev−1
k,h′;L∗(p)

∣

∣

±
oos;h′ =

{

|ev−1
k,h;L∗(p)|±oos;h , if i0 ∈ L∗+(h);

−|ev−1
k,h;L∗(p)|±oos;h , if i0 ∈ L∗−(h).

(6.17)

Along with the independence of the signed cardinality in (6.13) of the choices of
hi ∈ [hi ]X with i ∈ L∗+(h) and hi ∈ [hi ]

X−X

∧φ with i ∈ L∗−(h), this implies (3).

(2) Let i1, i2 ∈ [l], h′ ≡ (h′
i )i∈[l] be the tuple of maps obtained from h by inter-

changing the i1 and i2-components, and

�i1,i2 : Mk,l
(

B; J , ν; X∧φ) −→ Mk,l
(

B; J , ν; X∧φ)

be the automorphism induced by the interchange of the conjugate pairs (z+i1 , z
−
i1
)

and (z+i2 , z
−
i2
). Along with the interchange of the i1 and i2-components of h, it induces

a bijection

�i1,i2;h : ev−1
k,h;L∗(p) −→ ev−1

k,h′;L∗(h′)(p).

By Lemma 5.1(oos5), (6.16) with i0 replaced by i1, and (6.16) with L∗ and i0 replaced
by L∗(h′) and i2, respectively,

� ∗
i1,i2oos;L∗(h′) = oos;L∗ .

Since the interchange of the i1 and i2-components of Mh respects the orientations oh
and oh′ , it follows that

∣

∣ev−1
k,h′;L∗(h′)(p)

∣

∣

±
oos;h′ = ∣∣ev−1

k,h;L∗(p)
∣

∣

±
oos;h .

123



WDVV-type relations for disk Gromov–Witten invariants in dimension 6 1297

This establishes the invariance of the numbers (5.18) under the permutations of the
components hi of h.

(4) Since the proof of this statement is identical to the proof of the last statement
of [5, Prop. 5.2], we omit it. ��
Proof of Proposition 1.3 The functional (1.11) is specified by (1.17); the numbers on
the right-hand side of (1.17) are special cases of the invariants (5.21) arising from
Proposition 5.2(1). Its multilinearity and the vanishing property (1.12) are immediate
from the definition of the invariants (5.21). The symmetry property of (1.11), the
divisor relation (1.13), and the vanishing in the second case in Proposition 1.3(2)
are direct consequences of (2), (4), and (3), respectively, in Proposition 5.2, along
with (5.23).

It remains to establish the vanishing in the first case in (2). Let ψ ∈ G be an
automorphism of (X , ω, φ; X∧φ)which restricts to an orientation-reversing diffeomor-
phism of X

∧φ
, h ≡ (hi )i∈[l] be a G-invariant tuple of pseudocycles, as in Sect. 5.2,

representing (multiples of) Poincare duals of the cohomology classes μ̃i in (1.17),
L∗ = L∗(h) be as in (5.16), and k be as in (1.6). Let

� : Mk,l
(

B; J , ν; X∧φ) −→ Mk,l
(

B; J , ν; X∧φ)

be the automorphism induced by replacing the map component u in each tuple u as
in (5.1) with ψ ◦u. Along with the orientation-preserving action (5.38), it induces a
bijection

�h : ev−1
k,h;L∗(p) −→ ev−1

k,h;L∗(p) (6.18)

for every tuple p = (pi )i∈[k] of G-orbits of points in X

∧φ
.

By the SpinPin 2a property in [7, Section 1.2], there is a natural free action of
H1(X

∧φ; Z2) on the set of OSpin-structures on X

∧φ
which acts transitively on the

set of Spin-structures for a fixed orientation on X

∧φ
. Thus, ψ∗os = μ ·os for some

μ ∈ H1(X

∧φ; Z2). Since the degree B of each element u of Mk,l(B; J , ν; X∧φ) is
(X

∧φ
,Z2)-trivial, the pullbacks of g∗os and os by the restriction of u to the fixed locus

of the domain are the same. Along with Lemma 5.1(oos10), this implies that

�∗oos;L∗ = −oos;L∗ .

Since the action of ψ on Xk is orientation-preserving if and only if k ∈ 2Z, it fol-
lows that the bijection (6.18) respects the signs of each point determined by oos;h
and os if and only if k /∈2Z. Thus,

∣

∣ev−1
k,h;L∗(p)

∣

∣

±
oos;h = (−1)k+1

∣

∣ev−1
k,h;L∗(p)

∣

∣

±
oos;h .

We conclude that the signed cardinality ev−1
k,l;h(p) and the number (1.17) vanish if

k ∈ 2Z. By (1.6), k ∈ 2Z if and only if the last condition in (1.14) holds. ��
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Remark 6.3 With the notation as in (5.14) and just below, let

Zk,h(B; J , ν; X∧φ) = {(u, (yi )i∈[l]
) ∈ Mk,l(B; J , ν; X∧φ) × Mh : ev+

i (u)

= hi (yi )∀ i ∈ [l]}.

If h is G-invariant and k as in (1.6) is zero, (6.18) restricts to a bijection

Zk,h(B; J , ν; X∧φ) − Z�
k,h;L∗(B; J , ν; X∧φ)

−→ Zk,h(B; J , ν; X∧φ) − Z�
k,h;L∗(B; J , ν; X∧φ)

between the sets of Z2-pinchable degree B maps meeting the pseudocycles hi . By
the proof of the last statement of Proposition 1.3, this bijection is sign-reversing.
Thus, the signed cardinality of the above set is zero. It follows that we can define
the numbers (1.17) via (5.20), (5.18), and (6.13) with the domain of the evaluation
map evk,h;L∗ taken to be Zk,h(B; J , ν; X∧φ) if h is G-invariant.

Proof of Proposition 2.1 Let h≡ (hi )i∈[l] be a tuple of pseudocycles into X and X −
X

∧φ
, as appropriate, representing (multiples of) Poincare duals of the cohomology

classesμi , L∗ = L∗(h) be as in (5.16), and p≡(pi )i∈[k] be a k-tuple of general points
in X

∧φ
. In light of Proposition 5.2(4), we can assume that l ∈ Z

+. For a generic choice
of (J , ν) ∈ Hω,φ

k,l;{1}, the space

Zh,p ≡ {(u, (yi )i∈[l]
) ∈ Mk,l(B; J , ν; X∧φ) × Mh :

ev+
i (u) = hi (yi )∀ i ∈ [l], evRi (u) = pi ∀ i ∈ [k]}

is a two-dimensional manifold. The orientations oos;L∗ of Mk,l(B; J , ν; X∧φ), oh
of Mh, and o of X

∧φ
determine an orientation oh,p on Zh,p as the preimage of p

under the restriction of (5.15) to the main stratum of its domain.
With the notation as in (5.3), define

ZR

h,p = {(u, (yi )i∈[l]
) ∈ Mk+1,l(B; J , fR ∗

k+1,l;k+1ν; X∧φ)
× Mh : (fRk+1,l;k+1(u), (yi )i∈[l]

) ∈ Zh,p
}

,

Z+
h,p = {(u, (yi )i∈[l]

) ∈ Mk,l+1(B; J , f∗k,l+1;l+1ν; X∧φ)
× Mh : (fk,l+1;l+1(u), (yi )i∈[l]

) ∈ Zh,p
}

.
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The projections from Zh,p, ZR

h,p, and Z+
h,p to the first factor induce commutative

diagrams

ZR

h,p

fRh,p

πR
1

Mk+1,l(B; J , fR ∗
k+1,l;k+1ν; X∧φ)

fk+1,l;k+1

Z+
h,p

f+h,p

π+
1

Mk,l+1(B; J , f∗k,l+1;l+1ν; X∧φ)

fk,l+1;l+1

Zh,p
π1

Mk,l(B; J , ν; X∧φ) Zh,p
π1

Mk,l(B; J , ν; X∧φ) .

Since πR

1 and π+
1 induce isomorphisms between the vertical tangent bundles of their

domains and targets, they pull back the orientations oRk+1 and o+
k+1 of the fibers

of fk+1,l;k+1 and fk,l+1;l+1 to orientations oR and o+ of the fibers of fRh,p and f+h,p,
respectively.

We denote by oRh,p ≡ oRoh,p the orientation of ZR

h,p induced by oR and oh,p. Let

o+
h,p be the orientation ofZ+

h,p which restricts to o
+oh,p on the subspace of maps from

(P1, τ ) with the marked points z+1 and z+l+1 not separated by the fixed locus S1 ⊂P
1

and to the opposite orientation on the complement of this subspace. In particular, the
orientation o+

h,p is preserved by the interchange of the marked points z+l+1 and z−l+1.
We denote by

evRk+1 : ZR

h,p −→ X

∧φ
and ev+

l+1 : Z+
h,p −→ X

the maps induced by (5.4) and (5.5), respectively.

Let p ∈ X

∧φ
be another general point and Sp ⊂ X−X

∧φ
be a sphere in the fiberNp X

∧φ

of a tubular neighborhood N X

∧φ
of X

∧φ
in X over p. We denote the inclusion of Sp

into X − X

∧φ
by ιSp . By (5.20), (5.18), and (6.13),

〈

μ1, . . . , μl
〉φ,os

B;X

∧φ = ∣∣ev−1
k+1,h;L∗(pp)

∣

∣

±
oos;h ,

〈

μ1, . . . , μl ,PD
X ,X

∧φ

([Sp]
X−X

∧φ

)〉φ,os

B;X

∧φ = ∣∣ev−1
k,hιSp ;L∗(p)

∣

∣

±
oos;hιSp

.
(6.19)

By (oos2), (oos3), (oos5), and (oos6) in Lemma 5.1,

∣

∣ev−1
k+1,h;L∗(pp)

∣

∣

±
oos;h = ∣∣{evRk+1}−1(p)

∣

∣

±
oRh,p

,

∣

∣ev−1
k,hιSp ;L∗(p)

∣

∣

±
oos;hιSp

= ∣∣{ev+
l+1}−1(Sp)

∣

∣

±
o+
h,p,oSp

.
(6.20)

As Sp shrinks to p, the elements of {ev+
l+1}−1(Sp) converge to maps from two-

component domains sending the marked point z+l+1 to p. The restriction of any
such limiting map to one of the components is constant, and this component car-
ries the marked points z±l+1 only. The restriction to the other component represents
an element of {evRk+1}−1(p). We show below that there are precisely two elements of
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{ev+
l+1}−1(Sp) near each element (u, y) of {evRk+1}−1(p) if Sp is sufficiently small.

Furthermore, the signs of these two elements are the same as the sign of (u, y). Along
with (6.19) and (6.20), this implies (2.15).

We denote by ∂r , ∂θ ∈ T1C the outward unit radial vector and the counterclockwise
unit rotation vector so that ∂θ = i∂r .We identify a neighborhood of p in X

∧φ
with TpX

∧φ

and a neighborhood of p in X with TpX

∧φ⊕Np X

∧φ
. Let u be a stable map representative

for an element of {evRk+1}−1(p) so that its map component u takes 1 ∈ P
1 to p and its

marked point z+1 is 0 ∈ C. Since p is a regular value of evRk+1, the differential

TuZh,p⊕R −→ TpX

∧φ
, (ξ, t) −→ ξ(1) + t(∂θu), (6.21)

of evRk+1 at (u, xk+1 = 1) is an isomorphism and d1u is injective. The sign of (u, x1) as
an element of {evRk+1}−1(p) in (6.20) is the sign of the isomorphism (6.21) with respect
to the orientation oh,p on TuZh,p, the standard orientation on R, and the orientation o

on TpX

∧φ
. Since the homomorphism (6.21) is an isomorphism and the differential

TuZh,p⊕R⊕R −→ TpX=TpX

∧φ×Np X

∧φ
, (ξ, t, s) −→ (ξ(1)+t(∂θu), 0

)+s(∂r u),
(6.22)

of ev+
k+1 is injective, the equation

ev+
k+1

(

u′, z+l+1 = (1 + s)eit
) ∈ {0} × Sx (6.23)

has two solutions with u′ ∈ Zh,p near u and small (s, t), one with s < 0 and one with
s > 0, if the radius of Sx is sufficiently small.

If s < 0, the marked points z+1 = 0 and z+l+1 are not separated by the fixed locus
S1 ⊂ P

1 of τ . In this case, the orientation o+
h,p of Z+

h,p at (u′, z+l+1) is the opposite
of the orientation of the left-hand side of (6.22) given by the orientation oh,p and the
standard orientations of the two factors of R (with the first factor corresponding to ∂θ
and the second to ∂r ). Furthermore, dz+k+1

u′(∂r ) points inward from Sx . If s > 0, the

marked points z+1 = 0 and z+l+1 are separated by S1. In this case, the orientation o+
h,p

of Z+
h,p at (u′, z+l+1) is the orientation of the left-hand side of (6.22) given by oh,p

and the standard orientations of the two factors of R. Furthermore, dz+k+1
u′(∂r ) points

outward from Sx . Thus, the sign of (u′, z+l+1) as an element of {ev+
l+1}−1(Sp) in (6.20)

in either case is the sign of the isomorphism (6.21) with respect to the orientation oh,p
on TuZh,p, the standard orientation onR, and the orientation o on TpX

∧φ
. We conclude

that the sign of each of the two solutions of (6.23) as an element of {ev+
l+1}−1(Sp)

in (6.20) is the sign of (u, x1) as an element of {evRk+1}−1(p) in (6.20). ��

6.3 Proof of Proposition 5.6

We continue with the notation in the statement of this proposition and just above. For
finite sets K ′, L ′ with |K ′| + 2|L ′|≤2, we denote by Hω,φ

K ′,L ′;G the set of pairs (J , 0)
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with J ∈ J φ

ω;G . Let L
∗ ≡ L∗(h) be as in (5.16), Kr , Lr , L∗

r , Br for r = 1, 2 be as
in (5.59), and

M� = M
�
k,l;L∗(B; J , ν; X∧φ).

Since (S, ϒ) is admissible, |K1| + 2|L1| ≥ 3 and either K2 �= ∅ or L2 �= ∅. We
assume that there exist ν′

1 ∈ Hω,φ

K1,L1;G and ν2 ∈ Hω,φ

{0}�K2,L2;G so that every S admits
an embedding as in (6.2) with ν1 = f∗{0}�K1,L1;{0}ν

′
1.

The first claim of Proposition 5.6(1) follows from standard transversality argu-
ments, as in the part of the proof of [5, Prop. 5.2] concerning the transversality on the
subspaces of simple maps. The second claim then follows from (5.33). By the proof
of Lemma 5.8,

εL∗(S) − 2
∣

∣

{

i ∈ L2(S) : dim hi = 0
}∣

∣ ∈ {0, 1}

if S∗
h,p;ϒ �=∅; see the second equation in (5.62) and on the following line. This estab-

lishes Proposition 5.6(2). We establish Proposition 5.6(3) below under the assumption
that L∗

2 �= ∅. The L∗
2 = ∅ case then follows by the reasoning in the proof of [5,

Prop. 5.7]. Since L∗
2 �= ∅, the image of S under the forgetful morphism fk,l is con-

tained in a codimension 1 stratum S∨ of Mτ

k,l . By Lemma 5.3, we can also assume
that the orientation ocS ofNS used to define the orientation ∂oos;L∗ ≡∂ocSoos;L∗ of S
is oc;+S in the notation of Lemma 6.2.

For u ∈ S, let

u1 ∈ M1 ≡M{0}�K1,L1

(

B1; J , ν1; X∧φ
)

, u′
1 ∈ M′

1 ≡MK1,L1

(

B1; J , ν′
1; X

∧φ)
,

u2 ∈ M2 ≡M{0}�K2,L2

(

B2; J , ν2; X∧φ
)

, nd ∈ P
1
1,P

1
2, S11 ⊂ P

1
1,

Dφ
u = Dφ

J ,ν;u, Dφ
u1 = Dφ

J ,ν1;u1 = Dφ

J ,ν′
1;u′

1
, Dφ

u2 = Dφ

J ,ν2;u2

be as above Lemma 6.2 and in Sect. 4.2. We denote by

C ≡ fk,l(u) ∈ S∨ ⊂ M≡Mτ

k,l , C1 ≡ f{0}�K1,L1(u1) ∈ M1≡Mτ{0}�K1,L1
,

C′
1 ≡ fK1,L1(u

′
1) ∈ M′

1≡Mτ
K1,L1

, C2 ≡ f{0}�K2,L2(u2) ∈M2≡Mτ{0}�K2,L2

the marked domains of the maps u, u1, u′
1, and u2, respectively.

The exact sequence

0 −→ TuS −→ Tu1M1⊕Tu2M2 −→ Tu(nd)X

∧φ −→ 0,
(

ξ1, ξ2
) −→ ξ2(nd)−ξ1(nd), (6.24)

of vector spaces determines an isomorphism

λu(S) ⊗ λ
(

Tu(nd)X

∧φ) ≈ λu1(M1) ⊗ λu2(M2). (6.25)
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The OSpin-structure os on X

∧φ
determines orientations oos;L∗

1
and oos;L∗

2
of λu′

1
(M′

1)

and λu2(M2) respectively; see Lemma 5.1. The S1-fibration in (6.3) determines a
homotopy class of isomorphisms

λu1(M1) ≈ λu′
1
(M′

1) ⊗ TndS
1
1 . (6.26)

Together with the orientation oRnd on its vertical tangent bundle Tu1M
v
1 = TndS11 , we

obtain an orientation õos;L∗
1;u1 ≡oRndoos;L∗

1;u′
1
of λu1(M1). We denote by oSos;L∗;u the

orientation on λu(S) determined by õos;L∗
1;u1 and oos;L∗

2;u2 via (6.25).
We define δR(S) ∈ {0, 1} as at the beginning of Sect. 4.2. The next lemma is

deduced from Lemmas 4.2 and 6.2 at the end of this section.

Lemma 6.4 Let u ∈ S. The orientations ∂oos;L∗ and oSos;L∗ of λu(S) are opposite if
and only if δR(S) = 0.

We take h1 and h2 to be the components of h as in the proof of Proposition 5.2 and

p1 ∈ (X

∧φ
)k1 and p2 ∈ (X

∧φ
)k2

to be the components of p ∈ (X

∧φ
)k defined analogously. Let

Z1 = Z�
{0}�K1,h1;L∗

1
(B1; J , ν1; X∧φ)∩

(

M1 × Mh1
)

,

Z ′
1 = Z�

K1,h1;L∗
1
(B1; J , ν′

1; X

∧φ
)∩(M′

1 × Mh1
)

,

Z2 = Z�
{0}�K2,h2;L∗

2
(B2; J , ν2; X∧φ)∩

(

M2 × Mh2
)

.

We denote by

evh1 : Z1 −→ (X

∧φ
)k1 , ev′

h1 : Z ′
1 −→ (X

∧φ
)k1 , and evh2 : Z2 −→ (X

∧φ
)k2 ,

the maps induced by (5.4). By (5.40), Remark 6.3, and (5.39),

deg
(

ev′
h1 , oos;h1

) = 〈(PDX ([hi ]X )
)

i∈L1(S)

〉φ,os

B1(S);X

∧φ

;G
,

deg
(

evh2 , oos;h2
) = 〈(PDX ([hi ]X )

)

i∈L2(S)

〉φ,os

B2(S);X

∧φ

;G
.

(6.27)

The forgetful morphism (6.3) induces a fibration fZ1 so that the diagram

Z1

fZ1

πZ
M1

fnd

Z ′
1

πZ ′
M′

1
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commutes. Since πZ induces an isomorphism between the vertical tangent bundles
TZv

1 of fZ1 and TM
v
1 of fnd, it pulls back o

R

nd to an orientation o
v
Z1

on the fibers of fZ1 .
The orientations õos;L∗

1
, oos;L∗

1
, and oos;L∗

2
onM1,M

′
1 andM2, respectively, and the

orientations ohi of Hi , determine orientations õos;h1 , oos;h1 , and oos;h2 of Z1,Z ′
1 and

Z2, respectively. Since the dimensions of X and Hi are even, the isomorphism

λu1(Z1) ≈ λu′
1
(Z ′

1) ⊗ TndS
1
1 (6.28)

respects the orientations õos;h1 , oos;h1 , and ovZ1
= π∗

Zo
R

nd.
For ũ ∈ S∗

h , we denote by

ũ1 ∈ Z1, ũ′
1 ∈ Z ′

1, ũ2 ∈ Z2

the images of ũ under the projections induced by the embedding (6.2), the forgetful
morphism (6.3), and the decomposition

Mh ≈ Mh1 × Mh2 .

The exact sequence

0 −→ T̃uS∗
h −→ T̃u1Z1⊕T̃u2Z2 −→ Tu(nd)X

∧φ −→ 0,
(

ξ1, ξ2
) −→ ξ2(nd) − ξ1(nd),

of vector spaces determines an isomorphism

λũ(S∗
h) ⊗ λ

(

Tu(nd)X

∧φ) ≈ λũ1(Z1) ⊗ λũ2(Z2).

Along with the orientations õos;h1 and oos;h2 and the orientation o of X

∧φ
determined

by os, this isomorphism determines an orientation oS;h of S∗
h . Since the dimensions

of X and Hi are even, Lemma 6.4 implies that

∣

∣S∗
h,p;ϒ
∣

∣

±
∂oos;h,ocϒ

= −(−1)δR(S)
∣

∣S∗
h,p;ϒ
∣

∣

±
oS;h,ocϒ

. (6.29)

If S and ϒ satisfy (S1ϒ) above Proposition 5.6 with i ∈ [k] as in (S1ϒ), let

K ′
1 = K ′ − {i}, L ′

1 = L ′, K ′
2 = {i}, L ′

2 = ∅, ϒ1 = ϒ, 0 = i .

If S and ϒ satisfy (S2ϒ) and S⊂Mτ

k′,l ′ as in (S2ϒ), let

K ′
1 = K1(S), L ′

1 = L1(S), K ′
2 = K2(S), L ′

2 = L2(S)

and denote by

π1 : S≈Mτ

{0}�K ′
1,L

′
1
× Mτ

{0}�K ′
2,L

′
2

−→ Mτ

{0}�K ′
1,L

′
1
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the projection to the first component in the second identification in (4.7). In this case,

ϒ∩S ≈ ϒ1 × Mτ

{0}�K ′
2,L

′
2

⊂ Mτ

{0}�K ′
1,L

′
1
× Mτ

{0}�L ′
2,L

′
2

for some ϒ1 ⊂Mτ ;�
{0}�K ′

1,L
′
1;nd. The co-orientation ocϒ∩S on ϒ∩S in S induced by ocϒ

is the pullback by π1 of a co-orientation ocϒ1
on ϒ1 inMτ

{0}�K ′
1,L

′
1
. Let

f{0}�K ′
1,L

′
1

= π1◦fk′,l ′ : S∗
h −→ S −→ Mτ

{0}�K ′
1,L

′
1
.

In both cases,
dimϒ1 = dimϒ + 1 − |K ′

2| − 2|L ′
2| (6.30)

and the forgetful morphism f{0}�K ′
1,L

′
1
factors as

S∗
h ↪−→ Z1 × Z2 −→ Z1

f{0}�K ′
1,L

′
1−−−−−→ Mτ

{0}�K ′
1,L

′
1
.

We define

fM = f{0}�K ′
1,L

′
1;0 : Mτ

{0}�K ′
1,L

′
1

−→ Mτ

K ′
1,L

′
1
.

If S and ϒ satisfy (S2ϒ), (2) and (3) in [5, Lemma 3.3] give

∣

∣S∗
h,p;ϒ
∣

∣

±
oS;h,ocϒ

= −∣∣M(evS;h,fk′,l′ ), fp;ϒ
∣

∣

±
oS;h,π∗

1 o
c
ϒ1

|ϒ∩S

= −(−1)|K ′
2|∣∣M(evS;h,f{0}�K ′

1,L
′
1
), fp;ϒ1

∣

∣

±
oS;h,ocϒ1

;
(6.31)

the signed fiber products in the second and third expressions above are taken with

respect to (X

∧φ
)k × S and (X

∧φ
)k ×Mτ

{0}�K ′
1,L

′
1
, respectively. The first and last expres-

sions in (6.31) are the same if S and ϒ satisfy (S1ϒ). Since the diffeomorphism

(X

∧φ
)k −→ (X

∧φ
)K1 × (X

∧φ
)K2

respecting the ordering of the elements of K1 and K2 has sign (−1)δR(S), the definition
of oS;h and [5, Lemma 3.4] give

∣

∣M(evS;h,f{0}�K ′
1,L

′
1
), fp;ϒ1

∣

∣

±
oS;h,ocϒ1

= (−1)δR(S)
∣

∣M(evh1 ,f{0}�K ′
1,L

′
1
), fp1;ϒ1

∣

∣

±
õos;h1 ,o

c
ϒ1
deg
(

evh2 , oos;h2
)

.
(6.32)

By [5, Lemma 3.3(1)],

∣

∣M(evh1 ,f{0}�K ′
1,L

′
1
), fp1;ϒ1

∣

∣

±
õos;h1 ,o

c
ϒ1

= (−1)dimϒ1 deg
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×(evh1 |f−1
{0}�K ′

1,L
′
1
(ϒ1)

, (f∗{0}�K ′
1,L

′
1
ocϒ1

)̃oos;h1
)

.

By the sentence containing (6.28) and (3.6),

deg
(

evh1 |f−1
{0}�K ′

1,L
′
1
(ϒ1)

, (f∗{0}�K ′
1,L

′
1
ocϒ1

)̃oos;h1
)

= deg
(

fZ1 |f−1
{0}�K ′

1,L
′
1
(ϒ1)

, (f∗{0}�K ′
1,L

′
1
ocϒ1

)ovZ1

)

deg
(

ev′
h1 , oos;h1

)

.

Since ovZ1
= π∗

Zo
R

nd, [5, Lemma 3.2] gives

s̃u
(

fZ1 |f−1
{0}�K ′

1,L
′
1
(ϒ1)

, (f∗{0}�K ′
1,L

′
1
ocϒ1

)ovZ1

) = s̃u
(

f{0}�K ′
1,L

′
1
, π∗

ZoRnd, o
R

nd

)

sf{0}�K ′
1,L

′
1
(̃u)
(

ocϒ1
oRnd
)

= sf{0}�K ′
1,L

′
1
(̃u)
(

ocϒ1
oRnd
)

for a generic ũ ∈ f−1
{0}�K ′

1,L
′
1
(ϒ1).

Combining the last three equations with (6.30), we obtain

∣

∣M(evh1 ,f{0}�K ′
1,L

′
1
), fp1;ϒ1

∣

∣

±
õos;h1 ,o

c
ϒ1

= −(−1)dimϒ+|K ′
2| deg
(

fM|ϒ1 , o
c
ϒ1
oRnd
)

deg
(

ev′
h1 , oos;h1

)

= −(−1)dimϒ+|K ′
2| degS

(

ϒ, ocϒ
)

deg
(

ev′
h1 , oos;h1

)

.

Along with (6.31) and (6.32), this gives

∣

∣S∗
h,p;ϒ
∣

∣

±
oS;h,ocϒ

= (−1)dimϒ+δR(S) degS
(

ϒ, ocϒ
)

deg
(

ev′
h1 , oos;h1

)

deg
(

evh2 , oos;h2
)

.

Combining this equation with (6.29) and (6.27), we obtain (5.41).

Proof of Lemma 6.4 The differential of the forgetful morphism fk,l induces the first
exact square of Fig. 5. The two spaces in the bottom row are oriented by oc;+S and oc;+S∨
with the isomorphism between them being orientation-preserving. These orientations
and the orientations oDos, oos;L∗ , and ok,l;L∗ determine the limiting orientations oD;+

os on
ker Dφ

u , o
+
os;L∗ on TuM�, and o+

k,l;L∗ on TCM, respectively. By (6.7), the middle row
respects these orientations. The middle (resp. right) column respects the orientations
∂oos;L∗ on TuS, o+

os;L∗ on TuM�, and oc;+S on NuS (resp. o+
S∨;L∗ on TuS∨, o+

k,l;L∗

on TCM, and oc;+S∨ on NuS∨). Thus, the top row in the first exact square of Fig. 5

respects the orientations oD;+
os on ker Dφ

u , ∂oos;L∗ on TuS, and o+
S∨;L∗ on TuS∨; see

[5, Lemma 6.3], for example.
The differentials of forgetful morphisms induce the second exact square of Fig. 5.

The two spaces in the top row are oriented by oRnd as in Sect. 4.2 with the isomorphism
between them being orientation-preserving. The first real marked point of u1 is the
node. By (oM1) in Lemma 4.1, the right column thus does not respect the orientations
oRnd on TndS11 , o{0}�K1,L1;L∗

1
on TC1M1, and oK1,L1;L∗

1
on TC′

1
M′

1 because

|K1| + dimM′
1 = 2|K1| + 2|L1| − 3 /∈ 2Z.
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Fig. 5 Commutative squares of vector spaces with exact rows and columns for the proof of Lemma 6.4

By (6.7), the bottom row respects the orientations oDos on ker Dφ
u1 , oos;L∗

1
on Tu′

1
M′

1,

and oK1,L1;L∗
1
on TC′

1
M′

1. By (6.26), the middle column respects the orientations oRnd
on TndS11 , õos;L∗

1
on Tu1M1, and oos;L∗

1
on Tu′

1
M′

1 if and only if |K1| ∈ 2Z because

dimM′
1 = 
ω(B1) + 2|L1| + |K1| and 
ω(B1) ∈ 2Z.
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Thus, the middle row respects the orientations oDos on ker D
φ
u1 , õos;L∗

1
on Tu1M1, and

ok1+1,l1;L∗
1
on TC1M1 if and only if

1 + dim ker Dφ
u1 + |K1| = 1 + 3 + 
ω(B1) + |K1|

is even. The last condition is equivalent to |K1| ∈ 2Z.
The short exact sequences (6.5) and (6.24) and the differential of the forgetful

morphism fk,l induce the third exact square of Fig. 5. By (6.7), the short exact sequence
of the second summands in the middle row respects the orientations oDos on ker Dφ

u2 ,
oos;L∗

2
on Tu2M2, and o{0}�K2,L2;L∗

2
on TC2M2. Along with the conclusion of the

previous paragraph, this implies that themiddle row respects the orientations oDos⊕oDos,
õos;L∗

1
⊕oos;L∗

2
, and o{0}�K1+1,L1;L∗

1
⊕o{0}�K2,L2;L∗

2
because

|K1| + (dim ker Dφ
u2

)(

dimM1
)

= |K1| + (3 + 〈c1(X , ω), B2〉
)(|K1| + 2|L1| − 2

) ∈ 2Z.

By Lemma 6.2, the left column respects the orientations oD;+
os , oDos ⊕oDos, and the

orientation of Tu(nd)X

∧φ
in os. By Lemma 4.2, the non-trivial isomorphism in the right

column respects the orientations o+
S∨;L∗ and o{0}�K1,L1;L∗

1
⊕o{0}�K2,L2;L∗

2
if and only if

δR(S)∼=k+1mod 2. By the definition of oSos;L∗ via (6.25), themiddle column respects

the orientations oSos;L∗ , õos;L∗
1
⊕oos;L∗

2
, and o. Combining these statements with [5,

Lemma 6.3], we conclude that the top row respects the orientations oD;+
os , oSos;L∗ , and

o+
S∨;L∗ if and only if

(

k + 1 + δR(S)
)+ (dimS∨)(dim X

∧φ
) = (k + 1 + δR(S)

)+ 3(k + 2l − 3 − 1)

is even. Comparing this conclusion with the conclusion concerning the top row in the
first exact square of Fig. 5 above, we obtain the claim. ��

6.4 Proof of Proposition 5.7

Let L be a finite set. We denote by Hω
L;G the space of pairs (J , ν′) consisting of

J ∈ J φ

ω;G and a G-invariant Ruan-Tian perturbation ν′ of the ∂ J -equation associated

with M0,L if |L| ≥ 3 and the set of pairs (J , 0) with J ∈ J φ

ω;G otherwise. For

B ′ ∈ H2(X) and ν′ ∈ Hω
L;G , we denote by MC

L (B
′; J , ν′) the moduli space of

(complex) genus 0 degree B ′ (J , ν′)-holomorphic maps from smooth domains with
L-marked points and by

evi : MC

L (B
′; J , ν′) −→ X , i ∈ L,

the evaluation maps at the marked points. For I ⊂ L , let oC;L be the orientation
of MC

L (B
′; J , ν′) obtained by twisting the standard complex orientation by (−1)|I |.
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Define

!I
i : X −→ X , !I

i =
{

idX , if i /∈ I ;
φ, if i ∈ I ;

evI : MC

L (B
′; J , ν′) −→ XL , evI (u) = ((!I

i (evi (u))
)

i∈L
)

. (6.33)

We continue with the notation in the statement of Proposition 5.7 and just
above and take L∗ ≡ L∗(h) as in (5.16). The co-orientation oc� of � in Mτ

k′,l ′
and the orientation oos;L∗ of Lemma 5.1 induce an orientation (f∗k′,l ′o

c
�)oos;L∗ of

M�;k,l(B; J , ν; X∧φ).
Fix a stratum S ⊂ M�;k,l(B; J , ν) of maps that are not Z2-pinchable. Let B0 be

the degree of the restrictions of the maps in S to the real component P
1
0 of the domain

and B ′ be the degree of their restrictions to the component P
1+ of the domain carrying

the marked point z+1 . Since B0 ∈ H2(X)
φ
−, B0 is G-invariant. Denote by L0, LC⊂[l]

the subsets indexing the conjugate pairs of marked points carried by P
1
0 and P

1+,
respectively. Let I ⊂ LC be the subset indexing the conjugate pairs of marked points
(z+i , z−i ) of curves in S with z−i ∈ P

1+. Define

L∗
0 = L0∩L∗, L∗

C
= LC∩L∗, L∗− = I∩L∗, h0 = (hi )i∈L0 , hC = (hi )i∈LC

.

By (5.33) and (5.42),

(


ω(B0) − 2(k + codimCh0 − |L0|)
)

+2
(


ω(B
′) − (codimChC − |LC|)) = 2, (6.34)

[

!I
i ◦hi
]

X =
{

[hi ]X , if i ∈ LC − (I − L∗−);
−[hi ]X , if i ∈ I − L∗− .

(6.35)

For a good choice of ν, there exist νR ∈ Hω,φ

[k],{0}�L0;G , νC ∈ Hω
{0}�LC;G , and a

natural embedding

ιS : S ↪−→ MR ×MC≡M
�
[k],{0}�L0;L∗

0

(

B0; J , νR; X∧φ)× MC{0}�LC

(

B ′; J , νC
)

.

(6.36)
If B0 �= 0, we also assume that there exists ν′

R
∈ Hω,φ

[k],L0;G so that the forgetful
morphism

fnd : MR −→ M′
R

≡M
�
[k],L0;L∗

0

(

B0; J , ν′
R
; X∧φ) (6.37)

dropping the conjugate pair corresponding to the node nd is defined. If B ′ �= 0, we
similarly assume that there exists ν′

C
∈ Hω

LC;G so that the analogous forgetful mor-
phism

fnd : MC −→ M′
C

≡MC

LC

(

B ′; J , ν′
C

)

(6.38)

is defined.
For an element u ∈ S, we denote by u0 ∈ MR and u+ ∈ MC the pair of maps

corresponding to u via (6.36). Let u′
0 ∈ M′

R
and u′+ ∈ M′

C
be the image of u0
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under (6.37) if B0 �= 0 and the image of u+ under (6.38) if B ′ �= 0, respectively. The
exact sequence

0 −→ TuS −→ Tu0MR⊕Tu+MC −→ Tu(nd)X −→ 0,
(

ξ1, ξ2
) −→ ξ2(nd) − ξ1(nd),

of vector spaces determines an isomorphism

λu(S) ⊗ λ
(

Tu(nd)X
) ≈ λu0(MR) ⊗ λu+(MC). (6.39)

By Lemma 5.1, the OSpin-structure os on X

∧φ
determines an orientation oos;L∗

0
of λu0(MR). This orientation, the complex orientation of λ(Tu(nd)X), and the
orientation oC;L∗− of λu+(MC) induce an orientation o�os;L∗;u of λu(˜S) via the iso-
morphism (6.39).

With the notation as in (5.14), let

Sh = Sev× fh Mh, ZR = (MR)ev× fh0
Mh0 , ZC = (MC)evI×hC M fhC

be the spaces cut out by h, h0, and hC, respectively, and

evR : ZR −→ (X

∧φ
)k, evR;nd≡ev0 : ZR −→ X , and evC;nd≡ev0 : ZC −→ X ,

be the induced evaluation maps. The orientations oos;L∗
0
ofMR, oC;L∗− ofMC, and ohi

of Hi determine orientations oos;h0 of ZR and ohC of ZC via the evaluation maps ev
as in (5.10) and evI as in (6.33), respectively.

Lemma 6.5 (1) The orientations (f∗k′,l ′o
c
�)oos;L∗ and o�os;L∗ of λ(S) are the same.

(2) The orientation ohC of ZC at ũ ∈ ZC is the orientation induced by the complex
orientation ofMC

L (B
′; J , ν′) and the orientations ohi of Hi via the intersection of

the smooth maps

ev≡
∏

i∈LC

evi : MC

L (B
′; J , ν′) −→ XLC and

∏

i∈LC

{

!I
i ◦hi
} : MhC −→ XLC

if and only if |I − L∗−| ∈ 2Z.

Proof The first statement holds for the same reasons as [5, Lemma 6.5]. The second
statement holds because the action of φ on X is orientation-reversing. ��

For ũ ∈ Sh, let ũ0 ∈ ZR and ũ+ ∈ ZC be the components of ũ in the corresponding
spaces. The exact sequence

0 −→ T̃uSh −→ T̃u0ZR⊕T̃u+ZC −→ Tu(nd)X −→ 0 (6.40)

of vector spaces determines an isomorphism

λũ(Sh) ⊗ λ
(

Tu(nd)X
) ≈ λũ0(ZR) ⊗ λũ+(ZC).
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Theorientations oos;h0 ofλũ0(ZR) and ohC;L∗− ofλũ+(ZC) and the complex orientation

of λ(Tu(nd)X) determine an orientation o�os;h of Sh via this isomorphism. Since the
dimensions of Hi and X are even, Lemma 6.5(1) implies that

∣

∣ev−1
�;h(p)∩Sh

∣

∣

±
o�;os;h = ∣∣ev−1

�;h(p)∩Sh
∣

∣

±
o�
os;h

. (6.41)

By Lemma 3.2,

∣

∣ev−1
�;h(p)∩Sh

∣

∣

±
o�
os;h

= ∣∣MevR;nd|ev−1
R

(p)
,evC;nd
∣

∣

±
(ev∗

R
ok )oos;h0 ,ohC;L∗−

, (6.42)

where ok is the orientation of (X

∧φ
)k induced by os.

If B0 �=0 (resp. B ′ �=0), we also define

Z ′
R

= (M′
R
)ev×h0 Mh0

(

resp. Z ′
C

= (M′
C
)evI×hC MhC

)

and denote by ũ′
0 ∈ Z ′

R
(resp. ũ′+ ∈ Z ′

C
) the image of ũ0 (resp. ũ+) under the forgetful

morphism
fR : ZR −→ Z ′

R

(

resp. fC : ZC −→ Z ′
C

)

(6.43)

dropping the marked points corresponding to the nodes. Let

ev′
R

: Z ′
R

−→ (X

∧φ
)k

be the evaluation map induced by (5.4).
Since the projections πR and πC in the commutative diagrams

ZR

πR

fR

MR

fnd

ZC

πC

fC

MC

fnd

Z ′
R

π ′
R

M′
R

Z ′
C

π ′
C

M′
C

induce isomorphisms between the vertical tangent bundles of fR, fC, and fnd, they pull
back the orientations o+

nd of the fibers of fnd to orientations o+
R
and o+

C
of the fibers

of fR and fC, respectively. If B0 �= 0, oos;L∗
0
determines an orientation o′

os;h0 of Z ′
R
.

If B ′ �=0, oC;L∗− determines an orientation o′
hC;L∗−

of Z ′
C
. Since the dimensions of X

and Hi are even,

oos;h0 = o+
R
o′
os;h0 = (π∗

R
o+
nd

)

o′
os;h0 and ohC;L∗− = o+

C
o′
hC;L∗− = (π∗

C
o+
nd

)

o′
hC;L∗− ,

(6.44)
whenever B0 �=0 and B ′ �=0, respectively; see Lemma 3.1.

We first consider the case B0, B ′ �=0. By (6.34), we can assume that either


ω(B0) = 2
(

k + codimCh0 − |L0|
)

and 
ω(B
′) = (codimChC − |LC|)+ 1, or

(6.45)
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ω(B0) = 2
(

k + codimCh0 − |L0| + 1
)

and 
ω(B
′) = codimChC − |LC| ; (6.46)

otherwise, either ev′−1
R

(p) = ∅ or Z ′
C

= ∅ for generic h,p.
Suppose that (6.45) is the case. This implies that ev′−1

R
(p) is a finite set of points ũ′

R
.

The fiber of fR over each ũ′
R
is the complement of finitely many points in P

1 − S1.
The restriction of evR;nd to ev−1

R
(p) extends to a smooth map

eR : MR −→ X (6.47)

over the natural compactification MR of ev−1
R

(p). By Lemmas 5.1 and 3.1,

[

eR
]

X = ∣∣ev′−1
R

(p)
∣

∣

±
o′
os;h0

B0 ∈ H2(X).

By (5.39) and the assumption that h is G-invariant,

∣

∣ev′−1
R

(p)
∣

∣

±
o′
os;h0

= 〈(hi )i∈L0

〉φ,os

B0;X

∧φ

;G
.

By (5.39), the evenness of the dimension of MR, Lemma 6.5(2), and (6.35),

∣

∣MevR;nd|ev−1
R

(p)
,evC;nd
∣

∣

±
(ev∗

R
ok )oos;h0 ,ohC;L∗−

= (−1)|I−L∗−|〈eR, (!I
i ◦hi )i∈LC

〉X
B′

= 〈(hi )i∈LC
, eR
〉X
B′ .

(6.48)

Combining the last three equations with (6.41) and (6.42), we obtain

∣

∣ev−1
�;h(p)∩Sh

∣

∣

±
o�;os;h = 〈(hi )i∈LC

, B0
〉X
B′
〈

(hi )i∈[l]−LC

〉φ,os

B0;X

∧φ

;G
. (6.49)

This is the last term in (5.43) with L ′ = LC and a choice of I ⊂ L ′ so that I∩LC(�)

is the subset L∗−(�)⊂[l ′] defined in Sect. 4.3.
Suppose instead that (6.46) is the case. This implies that Z ′

C
is a finite set of

points ũ′
C
. The fiber of fC over each ũ′

C
is the complement of finitely many points

in P
1 − S1. The restriction of evC;nd to ZC extends to a smooth map

eC;B′ : MC;B′ −→ X (6.50)

over the natural compactification MC;B′ of ZC. By Lemma 5.1,

[

eC;B′
]

X = ∣∣Z ′
C

∣

∣

±
o′
hC;L∗−

B ′ ∈ H2(X).

By (5.39), Lemma 6.5(2), and (6.35),

∣

∣Z ′
C

∣

∣

±
o′
hC;L∗−

= (−1)|I−L∗−|〈(!I
i ◦hi )i∈LC

〉X
B′ = 〈(hi )i∈LC

〉X
B′ . (6.51)
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Since h is G-invariant, the number (6.51) does not depend on the choice of B ′ in GB ′
and the sum of the cycles (6.50) over these elements is G-invariant. Along with (5.39)
and Lemmas 5.1 and 3.1, the latter implies that

∑

B′′∈GB′

∣

∣MevR;nd|ev−1
R

(p)
,evC;nd
∣

∣

±
(ev∗

R
ok )oos;h0 ,ohC;L∗−

=
∑

B′′∈GB′

〈

eC;B′′ , (hi )i∈L0

〉φ,os

B0;X

∧φ

;G
,

(6.52)
with the B ′′ summandon the left-hand side corresponding to B ′′ instead of B ′. Combin-
ing the last three equations with (6.41) and (6.42) and the first observation after (6.51),
we obtain

∑

B′′∈GB′

∣

∣ev−1
�;h(p)∩Sh

∣

∣

±
o�;os;h =

∑

B′′∈GB′

〈

(hi )i∈LC

〉X
B′′
〈

(hi )i∈[l]−LC
, B ′′〉φ,os

B0;X

∧φ

;G
. (6.53)

This is the sum of the penultimate terms in (5.43) with L ′ = LC and a choice of I ⊂L ′
so that I∩LC(�) equals L∗−(�) over all B ′′ ∈ GB ′. Summing (6.49) and (6.53) over
all possibilities for S with B0, B ′ �=0, we obtain the (B0, B ′)-sum in (5.43).

We next consider the case B ′ = 0 and thus B0 = B. We can assume that

|LC| = |LC(�)| = 2;

otherwise, either ev′−1
R

(p) = ∅ or ZC = ∅ for generic h,p. Let LC = {i1, i2} and
eC as in (6.50) be the restriction of evC;nd to ZC. By standard properties of (complex)
GW-invariants, Lemma 6.5(2), and (6.35),

[

eC
]

X = (−1)|I−L∗−|〈(!I
i1 ◦hi1)∩(!I

i2 ◦hi2)〉� = δ�(h) ∈ H2∗(X).

Combining this with (6.52), (6.41), and (6.42), we obtain

∣

∣ev−1
�;h(p)∩Sh

∣

∣

±
o�;os;h = 〈(hi )i∈[l]−LC(�), δ�(h)

〉φ,os

B;X

∧φ

;G
.

This is the second term on the right hand side of (5.43).
We finally consider the case B0 = 0 and thus d(B ′) = B. We can assume that

k = k′ = 1 and L0 = ∅; otherwise, either ev−1
R

(p) = ∅ or Z ′
C

= ∅ for generic h,p.
Let eR as in (6.47) be the restriction of evR;nd to ZR. By Lemma 5.1(oos9),

[

eR
]

X = [pt]X ∈ H0(X).

Combining this with (6.48), (6.41), and (6.42), we obtain

∣

∣ev−1
�;h(p)∩Sh

∣

∣

±
o�;os;h = 〈(hi )i∈[l], pt

〉X
B′ .

Summing this over all possibilities for S with B0 = 0, we obtain the first sum on the
right-hand side of (5.43).
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