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Microwave response of an Andreev bound state
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We develop a theory for the dynamics of an Andreev bound state (ABS) hosted by a weak link of finite
length for which charging effects are important. Assuming that the charging energy associated with an electron
in the ABS is small compared to the superconducting order parameter in the leads, we derive the linear response
of both the current through the link and charge accumulated in it with respect to the phase and gate voltage
biases. The resulting matrix encapsulates the spectroscopic properties of a weak link embedded in a microwave
resonator. In the low-frequency limit, we obtain the response functions analytically using an effective low-energy
Hamiltonian, which we derive. This Hamiltonian minimally accounts for Coulomb interaction and is suitable for
a phenomenological description of a weak link having a finite length.
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I. INTRODUCTION

Andreev bound states (ABSs) constitute key elements of
the microscopic picture of the Josephson effect [1–3]. In a
conventional superconducting tunnel junction, it is difficult
to isolate a single ABS because the Josephson supercurrent
is mediated by a large number of shallow ABSs. The sit-
uation is different in superconducting weak links based on
atomic contacts or semiconducting nanowires, which recently
emerged as a versatile platform for exploring different facets
of mesoscopic superconductivity. In these systems, in contrast
to tunnel junctions, an appreciable supercurrent may be car-
ried by one or a few ABSs stemming from a small number of
highly transparent transport channels [4–7].

The advent of circuit quantum electrodynamics (cQED)
brought new experimental capabilities for investigating ABS
physics. By coupling the weak link to a microwave resonator,
experiments finely resolved separate ABSs and probed their
spectrum in various limits [8–13]. Time-resolved access to the
system provided by cQED also made it possible to use ABSs
as qubits. In particular, qubits composed of the occupation
of an ABS by zero or two Bogoliubov quasiparticles were
implemented in Refs. [8,10]. The operation of such qubits
was limited by quasiparticle poisoning: the ABS occasion-
ally trapped a single unpaired quasiparticle, making the qubit
leave the computational manifold. Later experiments with
semiconducting nanowires showed that the spin of a trapped
quasiparticle can also be used as a qubit basis [12,14].

The manipulation and readout of Andreev qubits rely on
interaction with microwave-frequency modes and radiation.
A simplest model that describes the microwave properties of
an ABS is that of a short, highly transparent junction with
a single transport channel [15–18]. While this model often
works well for atomic contacts, it is insufficient to adequately
describe crucial features of ABSs in nanowire devices. First,

*pavel.kurilovich@yale.edu

spectroscopic measurements show that ABSs in nanowire
weak links are often situated well within the superconducting
gap at any phase bias applied to the junction [5,11,12]. This
contrasts the ABS behavior in a short junction, where the ABS
necessarily merges with the edge of the quasiparticle contin-
uum at zero phase bias. Second, ABSs in the experiments
[9–11,19] were sensitive to the gate voltage, pointing to a
finite length of the weak links. By the same token, properties
of nanowire devices are sensitive to charging [20,21]. Last
but not least, a “poisoned” ABS hosting a single quasiparticle
might carry supercurrent through a weak link of a finite length
[22]. This aspect is also not present within the short junction
model [2].

All of the above simplifications of the short junction model
come from neglecting the dwell time of a quasiparticle in the
junction region. Usually, the finite dwell time is accounted
for by considering microscopic models in which the length
of the weak link is comparable to the superconducting co-
herence length. While such models add an additional realistic
aspect for describing the microwave properties of the weak
link [11,13], they suffer from being analytically intractable.
This complexity often obscures the salient physics of the sys-
tem. Moreover, Coulomb interaction in the weak link remains
unaccounted for in these models. Is it possible to construct
an analytically tractable model for describing the microwave
properties of a finite-length weak link that would take into
account both a finite dwell time and Coulomb interaction?

Here we answer this question affirmatively and calculate
the microwave response of a finite-length weak link in a
simple phenomenological model that accounts for the dwell
time and charging energy (the latter is assumed to be small
compared to superconducting order parameter in the leads).
To build up the model, we assume that the level spacing in an
isolated weak link region is large compared to the supercon-
ducting order parameter in the leads, δε � �. In that case,
there is only a single ABS in the system. The finite dwell
time, tdw, introduces the energy scale � ≡ h̄/tdw which can
be interpreted as a normal-state linewidth of levels in the
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FIG. 1. Schematic for a minimal model of a finite-length weak
link between two superconductors. A single fermionic level is tunnel
coupled to two superconducting leads. The tunneling rates are �L and
�R for the left and right leads, respectively. � is the superconducting
order parameter in the leads,U is the strength of the on-site Coulomb
interaction. Adjacent gate controls the energy of the level, εg(t ).
Phases of order parameter in the leads are ϕL (t ) and ϕR(t ).

weak link. We consider the case in which this scale may be
comparable to �. The electrodynamics of the ABS in this
regime can be captured by representing the weak link as
a single-level quantum dot coupled to two superconducting
leads by tunnel junctions [23,24] (see Fig. 1). One may view
such a setting as a generalization [25] of the Anderson impu-
rity model [26] with two superconducting reservoirs. Due to
the proximity effect, the level in the dot turns into an ABS
whose energy depends not only on the phase difference across
the weak link but also on the voltage applied to an adjacent
gate. Keeping in mind quasiparticle poisoning [8,10], we find
the microwave response in states with both even and odd
fermion parity.

A. Summary of results

Below we summarize our main results. In Sec. III, we
find the many-body spectrum of ABS as a function of its
occupancy, gate voltage, and the phase bias applied to the
leads. The main parameters that control these dependencies
are the rates of tunneling between the dot and the leads �L and
�R, the superconducting order parameter �, and the on-site
Coulomb repulsion U . We derive our results assuming that
the repulsion is sufficiently weak, �

�+�
U � �, while the ratio

�/� is arbitrary (� = �L + �R).
In an experimentally relevant limit � ∼ � [27–29], the

continuum of occupied levels outside of the gap gives a
substantial contribution to the phase and gate voltage depen-
dencies of the energy [23]. In the odd states, the energy is fully
determined by the continuum contribution. This contribution
reaches its minimum at ϕ = π ; thus, the weak link is a π

junction when a single quasiparticle occupies the ABS. While
the latter fact is well-known for strongly interacting Anderson
impurities (where the odd state is the ground state), to our
knowledge, the π -junction behavior was not appreciated for
a weakly interacting ABS poisoned by a quasiparticle. An
example of the phase and gate voltage dependencies of the
discrete energy levels is presented in Fig. 3.

In the even fermion parity sector, the ABS forms an An-
dreev pair qubit [16]. For small drive frequencies, h̄ω � �,
the dynamics of this qubit can be described with the help of
an effective low-energy Hamiltonian presented in Sec. IV [see
Eq. (29)]. Our Hamiltonian smoothly interpolates between

the Hamiltonian of a quantum dot weakly coupled to the
superconducting leads (� � �) [30,31] and the Hamiltonian
of a short tunnel junction (� � �) [15–17].

Next, in Sec. V, we investigate the linear electrodynamic
response of a Josephson weak link containing an ABS. Due
to the finite length of the weak link a nonzero charge can be
accumulated in the junction region (in contrast to the atomic
point contact). Therefore the response function has a structure
of a 2 × 2 matrix: current through the weak link and charge
on it respond to the phase and gate biases. We compute this
matrix for many-body states with the different number of
quasiparticles at the ABS. If the drive frequency is small, the
response matrix describes the quasi-static characteristics of
the weak link such as the inverse inductance and quantum
capacitance. At higher frequencies, the response exhibits a
resonance, if the occupancy of the ABS is even (see Fig. 4).

The response functions of the ABS are sensitive to the pres-
ence of Coulomb interaction. The strength of the interactionU
can be deduced from the response functions measured in states
with different occupation of the ABS. In Sec. VI, we identify
a particularly convenient quantity which gives a direct ac-
cess to the magnitude of interaction, χasym = χ [0]+χ[2]

2 − χ [1]
(where the arguments in the square brackets correspond to the
occupation of the ABS with quasiparticles). This quantity is
convenient because χasym vanishes in the absence of interac-
tion, i.e., an occupation rule χ [0]+χ[2]

2 = χ [1] is satisfied at
U = 0.

The response functions can be measured experimentally
in a circuit quantum electrodynamics (cQED) architecture by
coupling the weak link to a microwave resonator and mea-
suring the dispersive shift of the latter. We demonstrate how
specific components of the matrix response function χ may
be singled out by tailoring the geometry of the resonator (see
Sec. VII).

Our theory thus provides a guide for analyzing measure-
ments of the microwave response of finite-length nanowire
weak links.

II. MODEL

We consider a weak-link between two superconducting
leads with a solitary ABS. We assume that the linewidth for
a quasiparticle in the weak link, � ≡ h̄/tdw, might be com-
parable to � while the level spacing of the link δε � �.
It is possible to model such a weak link as a quantum dot
tunnel-coupled to two superconducting leads (see Fig. 1 for
the schematics). The Hamiltonian of this system reads

H[εg(t ), ϕi(t )] =
∑
i=L,R

[Hi + HT,i[ϕi(t )]] + Hd [εg(t )]. (1)

The Hamiltonian of the lead i (i = L/R denotes the left/right
lead, respectively) is

Hi=
∫

dr

[∑
σ

ψ
†
σ,i(r)ξ̂ψσ,i(r) + �(ψ↓,i(r)ψ↑,i(r) + H.c.)

]
.

(2)
Here ψσ,i(r) and ψ

†
σ,i(r) are the annihilation and creation

operators of an electron with spin σ =↑ or ↓ in the lead i, ξ̂

is the operator of kinetic energy with the respect to the Fermi
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level, and � is the s-wave superconducting gap, identical
in the two leads. We work in a gauge in which the super-
conducting phases of the leads are attached to the tunneling
amplitudes, cf. Eq. (4). Thus we assume � > 0.

The “quantum dot” is described by

Hd [εg(t )] =
∑

σ

εg(t )d
†
σdσ +U (d†

↑d↑ − 1/2)(d†
↓d↓ − 1/2),

(3)
where εg(t ) is determined by the applied gate voltage, εg(t ) =
−eVg(t ) (e > 0). The latter can have both a static and a dy-
namic part, Vg(t ) = Vg + δVg(t ), where Vg controls the energy
of the fermionic level at the dot and δVg(t ) describes the
external driving. U > 0 is the energy of Coulomb repulsion
at the level. The reference point for the gate voltage is chosen
such that εg = 0 is the charge neutrality point.

Throughout the manuscript we assume that the repulsion
renormalized by tunneling is weak, �

�+�
U � �. The bare

repulsion U = e2/C depends on the self-capacitance of the
dot C. The latter scales linearly with the dot size, but also is
enhanced by the polarizability of the medium hosting the dot,
which includes nearby metallic gates and leads. On the other
hand, the level spacing δε is determined solely by the electron
confinement in the dot. For a tight confinement, we may
expect δε to substantially exceed �

�+�
U , which makes the

condition δε � � compatible with the one for the repulsion
weakness.

The remaining term in Eq. (1) describes the tunneling
between the dot and the lead i and is given by

HT,i[ϕi(t )] = ti
∑

σ

(e
i
2 ϕi (t )d†

σ ψσ,i(0) + H.c.), (4)

where ti is the tunneling amplitude. The superconducting
phase ϕi(t ) has static and dynamic parts, ϕi(t ) = ϕi + δϕi(t ).
The dynamic component of each phase is related to the
dynamic part of the voltage applied to the respective lead,
δVi(t ), via the Josephson relation φ0∂tδϕi(t ) = δVi(t ), where
φ0 = h̄/2e is the reduced flux quantum. It is convenient to
characterize the tunneling between the dot and the leads by
the corresponding tunneling rates �i = πνt2

i , where ν is the
normal-state density of states at the Fermi level in the leads
(per spin species). We also introduce the total tunneling rate
� and the difference of tunneling rates δ�:

� = �L + �R, δ� = �L − �R. (5)

Throughout our work we assume for simplicity that the rates
�L and �R do not depend on the applied gate voltage.

In our model, we assume that the capacitance between the
dot and the gate is much larger than the capacitances between
the dot and the superconducting leads. This assumption is
justified if the gate is located sufficiently close to the weak
link. We also neglect the capacitance between the dot and
the ground. In this case, voltage Vg(t ) applied to the gate
is equivalent to voltage −Vg(t ) with respect to the ground
applied simultaneously to both leads, as these two situations
differ by an overall shift of energy. Using this freedom, we
choose ϕL(t ) = −ϕR(t ) = ϕ(t )/2. We discuss how our theory
is modified at an arbitrary ratio between the capacitances to
the gate and to the leads in Appendix E.

Finally, we introduce the operators of the charge
at the dot, Q̂ = −e

∑
σ d

†
σdσ , and of the current flowing

through the weak link, Î = − e
2

d
dt (NR − NL ), where Ni is op-

erator of the number of electrons in lead i. We note that
d
dt Q̂ = e d

dt (NL + NR) due to charge conservation.

III. ENERGY SPECTRUM

We initially assume that the phase bias ϕ and gate voltage
Vg are static and study the many-body energy spectrum of
model defined by Eqs. (1)–(4). For weak Coulomb interaction
there are four discrete energy levels in the spectrum that are
separated from the many-body continuum. We refer to these
states as |0〉, |1↑〉, |1↓〉, and |2〉. The four states correspond to a
different number of Bogoliubov quasiparticles occupying the
ABS: zero, one (with spin up or down), or two, respectively.1

We denote the energies of the states as E [0], E [1], E [2] (states
|1↑〉 and |1↓〉 are spin-degenerate). The energies of the levels,
E [n] ≡ E [n, εg, ϕ], depend on εg = −eVg and phase bias ϕ.

A. Spectrum in the absence of Coulomb interaction

We start with a detailed description of the many-body
spectrum in the absence of Coulomb interaction. We then take
U 	= 0 into account perturbatively. At U = 0, the energies of
the discrete levels can be expressed as (see Appendix A 2)2

E0[n] = Econt + (n − 1)EA,0, (6)

where the subscript 0 indicates that U = 0. Here, Econt is
the energy associated with the continuum states (see later
discussion). EA,0 > 0 is the energy of the ABS which can be
found by solving characteristic equation

det G−1
dd (ε) = 0 (7)

at 0 � ε < �. Here Gdd (ε) is the Green’s function of the dot
at U = 0 (see Appendix A 1 for the derivation):

G−1
dd (ε) = ε

Z (ε)
− εgτz −

∑
i=L,R

��ie
i
2 τzϕiτxe− i

2 τzϕi

√
�2 − ε2

. (8)

In this expression, τx,y,z are Pauli matrices in the Nambu space,

1

Z (ε)
= 1 + �√

�2 − ε2
, (9)

and ϕL = −ϕR = ϕ/2.
Equation (7) for the ABS energy can be solved analytically

in the limit EA,0 � �. The latter condition is satisfied (i)
at any phase bias, if the level at the dot is located close to

1We define quasiparticles with the respect to the lowest energy even
state. For weak enough interaction this state is the ground state of the
system. However, this might not be the case for stronger interactions
in some domain of control parameters, see later discussion and Fig. 3.
Still, for uniformity of narrative we always refer to the lowest energy
even state as the one with no quasiparticles.

2Strictly speaking, there is also a contribution εg to energy of all
states. However, it does not affect the physical properties of the
system—such as the linear response functions—and henceforth we
omit it throughout the text.
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TABLE I. Two cases in which the ABS energy lies deep within
the gap, EA � �. We obtain concise analytical results for these two
cases.

Case (i) Case (ii)

� � �, � � �,
|εg| � �, any ϕ |δ�|, |εg| � �, |π − ϕ| � 1

the Fermi energy, |εg| � �, and is weakly coupled to the
leads, � � �; (ii) when the coupling to the leads is strong,
� � �, provided |δ�|, |εg| � � and |ϕ − π | � 1. For future
reference, we summarize cases (i) and (ii) in Table I. In either
of the cases, we obtain

EA,0 = �

� + �

√
ε2
g + |γ |2, γ = � cos

ϕ

2
+ iδ� sin

ϕ

2
.

(10)
The prefactor �/(� + �) characterizes the extent to which
the wave function of the ABS is localized at the quantum
dot. If the tunneling between the leads and the dot is weak,
� � �, the wave function is predominantly localized at the
dot and �/(� + �) ≈ 1. In this regime, Eq. (10) repro-
duces the known result for the ABS energy EA,0 [32,33]. For
stronger tunneling, � � �, prefactor �/(� + �) < 1 due to
the spreading of the wave function from the dot into the leads.
If � � �, the support of the wave function is mostly in the
leads. In this case, the system is essentially equivalent to a
short junction. In particular, after approximating the prefactor
in Eq. (10) as �/(� + �) ≈ �/� and neglecting εg under
the square root, Eq. (10) reproduces the energy spectrum of
a short junction [1] with the reflection amplitude r = δ�/�.

Note that, regardless of the ratio between � and �, the
approximate functional form of the dependence of EA,0 on ϕ

in Eq. (10) is similar to that for a short junction,

EA,0 = δ

√
1 − τ sin2(ϕ/2). (11)

There is, however, an important difference: in our model the
level is generally detached from the superconducting gap at
all phase biases, δ < �, whereas for the short junction, δ = �

and EA,0 therefore reaches � at ϕ = 0.
In Eq. (6), Econt is the energy associated with the continuum

[23] of filled single-particle states at ε < −�,

Econt =
∫ −�

−∞

dε

2π i
ln det

[
GA

dd (ε)
[
GR

dd (ε)
]−1]

, (12)

where GR/A
dd (ε) = Gdd (ε ± i0).3 This energy depends on the

gate voltage and phase due to the coupling between the leads
and the dot, Econt ≡ Econt (εg, ϕ). The integral in Eq. (12) is
divergent at the lower limit. However, this divergence does not
influence the observables. Indeed, the integral for the differ-
ence Econt (εg, ϕ) − Econt (0, 0) converges at |ε| ∼ � whereas

3In Eq. (12), we omitted the contribution ∝ EFN , where EF is the
Fermi energy in the leads and N is the number of electrons in the
leads. This contribution does not depend on phase and gate voltage
and thus does not affect response functions.

the divergent contribution Econt (0, 0) does not depend on εg
and ϕ. Energy Econt can be found analytically in the limit of
weak coupling, �, |εg| � � [case (i) of Table I]. We find

Econt (εg, ϕ) − Econt (0, 0) = − 2

π
�

ε2
g

�2

− 4�R�L

�
sin2(ϕ/2) − 4�R�L

�

ε2
g

�2
sin2(ϕ/2). (13)

By extrapolating Eq. (13) to � ∼ � we observe that in this
regime Econt (εg, ϕ) − Econt (0, 0) is of the same order as EA,0

[cf. Eqs. (10) and (13)]. Thus Econt may strongly contribute
to the observable properties of the system, such as the linear
response functions (see Sec. V for discussion of this).

We note that in the absence of Coulomb interaction the
phase dependence of the energy of the odd states, E0[1], is
determined solely by Econt [see Eq. (6)]. Equation (13) thus
demonstrates that the system realizes a π junction in states
|10,↑〉, |10,↓〉, i.e., E0[1] is minimal at ϕ = π .

To conclude the discussion of the noninteracting case, we
note that at U = 0 the ground state of the system always has
even fermion number parity as follows directly from Eq. (6).

B. Spectrum in the presence of weak Coulomb repulsion

Next, we apply the first order perturbation theory in U to
approximately find the energies of the discrete states in the
presence of Coulomb interaction. We start with the states in
the even fermion parity sector, |0〉 and |2〉. At U 	= 0 it is
convenient to parametrize their energies as

E [0] = Eeven − EA, E [2] = Eeven + EA. (14)

To determine EA and Eeven, we project the interaction
Hamiltonian, Hint = U (d†

↑d↑ − 1/2)(d†
↓d↓ − 1/2), onto the

subspace formed by the unperturbed states |00〉 and |20〉, thus
constructing a characteristic equation. The projection is car-
ried out conveniently is the basis of particle and hole states
that can be obtained from |00〉 and |20〉 by a proper rotation.
We find the following equation for EA (see Appendix B for
details of the derivation):

det

[
ε − H −Uα

(App−Ahh

2 Aph

A�
ph −App−Ahh

2

)]
= 0, (15)

where H is related to the noninteracting Green’s function,
H = EA,0 − Z (EA,0)G−1

dd (EA,0) [see Eqs. (8) and (9)]. Explic-
itly,

H = 1

1 + �√
�2−E2

A,0

⎛
⎝ εg

�√
�2−E2

A,0

γ

�√
�2−E2

A,0

γ � −εg

⎞
⎠ (16)

with γ ≡ γ [ϕ] = � cos(ϕ/2) + iδ� sin(ϕ/2). Functions
Ai j ≡ Ai j[εg, ϕ] are defined as

Ai j = −
∫ −�

−∞

dε

2π i

[
GR

dd (ε) − GA
dd (ε)

]
i j
, (17)

where i, j = p/h are the Nambu indices that correspond to
particles and holes, respectively. The parameter α ≡ α[εg, ϕ]
in Eq. (15) is related to the matrix A via

α = 1 − trA. (18)
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FIG. 2. Functions f (�/�) and g(�/�) that determine how the
energy of the ABS, EA, is renormalized due to a weak Coulomb
interaction [see Eq. (21)]. As it follows from Eqs. (B14) and (B15),
at � � � we may approximate f = − 2

π

�

�
and g = 1

π
− �

�
. In the

opposite limit, � � �, we find f = − 1
π

�

�
and g = − 1

π
( �

�
)2 ln( 2�

e2�
).

It can be explicitly expressed through the bound state energy
EA,0:

1

α
− 1 = �2

�2 − E2
A,0

� + 4�R�L sin2(ϕ/2)√
�2−E2

A,0

� +
√

�2 − E2
A,0

. (19)

At arbitrary �, εg, ϕ equations (15)–(17) for EA can be an-
alyzed numerically. An explicit approximate solution can be
obtained when EA,0 � � (see Table I for relevant parameter
regimes). In this case, we find

EA = �

� + �

√
ε̃2
g + |γ̃ [ϕ]|2, (20)

where

ε̃g =
[
1 + U

�
f
]
εg, γ̃ [ϕ] =

[
1 + U

�
g
]
γ [ϕ]. (21)

Here, functions f ≡ f (�/�) and g ≡ g(�/�) depend only
on the total tunneling rate � and contain no dependence on ϕ

and εg with the considered precision. These functions describe
the renormalization of εg and γ [ϕ] in the expression for EA

by the Coulomb interaction [cf. Eqs. (10) and (20)]. Explicit
expressions for f and g are cumbersome and so are presented
in Appendix B 1. The dependence of f and g on the ratio �/�

in demonstrated in Fig. 2.
We proceed by calculating energy Eeven in Eq. (14). At

U = 0, Eeven ≡ E0[1] = Econt, cf. Eq. (6). The first-order cor-
rection to this expression due to the weak Coulomb interaction
is given by Tr Hint/2, where the trace is computed over the
unperturbed discrete states in the even sector, |00〉 and |20〉.
Practically, it is again more convenient to perform the calcu-
lation in the particle-hole basis (see Appendix B). By finding
the trace we obtain

Eeven = E0[1] −U det

(
A − 1

2

)
+ U

2
α2. (22)

At arbitrary �, εg, and ϕ, the energy Eeven can be computed
numerically using Eqs. (12), (17), and (19). An explicit an-
alytic expression for Eeven can be obtained if EA,0 � � (see

Table I). In this case, we may approximate

App ≈ Ahh ≈ 1 − α

2
, α ≈ �

� + �
, (23)

and neglect |Aph| � App,Ahh. When the tunneling between
the dot and the leads is strong, �/� � 1, the ABS spreads
from the dot into the leads, and α � 1. This dilutes the
effects of interaction. Indeed, using Eq. (23) in Eq. (22)
we estimate Eeven − E0[1] = U�2/4�2 � U . In the opposite
limit, � � �, the ABS is localized at the dot: α ≈ 1 and
Eeven − E0[1] = U/4. We note that in the leading approxima-
tion in EA,0/� parameters α and Ai j are independent of ϕ

and εg [see Eq. (23)]. However, this is only an approximation.
These dependencies may be explicitly quantified in the weak
coupling limit �, |εg| � � [i.e., case (i) of Table I]. However,
the results are cumbersome, we present them in Appendix B 2
[see Eq. (B17)].

Finally, we calculate the energy of the odd states, E [1].
To this end, we note that spin conservation prevents the
Coulomb interaction from coupling the unperturbed states
|10,↑〉 and |10,↓〉. Thus nondegenerate perturbation theory can
be used to find the corrections to their energies, E [1] ≈
E0[1] + 〈10,σ |Hint|10,σ 〉 (note that 〈10,σ |Hint|10,σ 〉 does not
depend on σ ). By computing the matrix element (see
Appendix B), we obtain

E [1] = E0[1] −U det

(
A − 1

2

)
. (24)

When the ABS energy lies deep within the gap, EA,0 � �,
and the coupling to the leads is strong, �/� � 1, we obtain
E [1] − E0[1] ≈ −U�2/4�2 � U . This again points to the
dilution of the on-site repulsion by strong tunneling. For weak
coupling �/� � 1, we find E [1] − E0[1] ≈ −U/4. The de-
pendence of E [1] − E0[1] on ϕ and εg in the weak coupling
limit [case (i) of Table I] is presented in Appendix B 2 [see
Eq. (B16)].

An example of phase and gate-voltage dependence of ener-
gies E [n] obtained numerically with Eqs. (14)–(17), (22), and
(24) is demonstrated in Fig. 3.

A notable feature demonstrated by Fig. 3 is the asymmetry
between the level spacings E [2] − E [1] and E [1] − E [0]. To
characterize this asymmetry, we introduce the difference

Easym = E [2] + E [0]

2
− E [1]. (25)

In the absence of Coulomb interaction Easym = 0, as fol-
lows directly from Eq. (6). Thus the level-spacing asymmetry
(Easym 	= 0) is a direct consequence of Coulomb repulsion
at the ABS. This can be illustrated by considering a simple
case in which the tunneling between the dot and the leads
is turned off (� = 0). Then we find E [1] − E [0] = εg −U/2
and E [2] − E [1] = εg +U/2 and thus Easym = U/2. In the
presence of tunneling, we use Eqs. (14), (22), and (24) and
obtain

Easym = U

2
α2 (26)

with α given by Eq. (19). To highlight the asymmetry in Fig. 3,
in addition to E [1] (solid orange curve) we present (E [0] +
E [2])/2 (dashed gray curve). The mismatch between the two
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FIG. 3. Energies E [n] of states with n quasiparticles at the Andreev bound state as functions of ϕ (a) and εg = −eVg (b); the energies are
calculated with respect to E [0] evaluated at ϕ = 0 and εg = 0. The plots are produced using Eqs. (14)–(17), (22), and (24) with �L = 0.3�,
�R = 0.35�, U = 0.35�. The phase dependence in (a) is plotted for εg = 0. The gate voltage dependence in (b) is plotted for ϕ = π ; note
that εg is computed with respect to the charge-degeneracy point εg = 0. Dashed line shows the half-sum between energies E [0] and E [2]. The
fact that the dashed line does not coincide with E [1] is due to the presence of Coulomb interaction at the resonant level; the difference between
(E [0] + E [2])/2 and E [1] is given by Easym, see Eq. (26). Note that close to ϕ = π and εg = 0 even a weak Coulomb interaction can render
the ground state of the system odd in the electron number.

curves is determined by Easym, see Eq. (25). We note that when
EA,0 � � equation (26) for Easym can be simplified. Then,
using Eq. (23) we obtain an approximate expression for the
asymmetry,

Easym = U

2

(
�

� + �

)2

. (27)

Notably, Easym > 0 (since U > 0). This means that
Coulomb interaction pushes the energy of the odd state down
with respect to the energies of states in the even sector. This
tendency leads to the switch of the ground state parity from
even to odd for sufficiently strong Coulomb repulsion [24].
The energy separation between the even states is minimal at
ϕ = π and εg = 0. In the vicinity of this point, even a weak
interaction can render the odd state to be the ground state of
the system (see Fig. 3). Combining Eqs. (20) and (27) for
U � � + � and EA � �, we reproduce the known result for
the boundary between the phases with even and odd ground
states [34–36].

Finally, we note that the asymmetry between the level-
spacings can be probed in the tunneling spectroscopy of the
junction [37,38] or in its microwave response, see Sec. VI for
the discussion of the latter approach. Measurement of Easym

can be used to experimentally assess the strength of the on-site
Coulomb repulsion in the weak link.

IV. LOW-ENERGY THEORY

If the ABS is located well below the gap, EA � �, the
dynamical properties of the junction at small frequencies,
h̄ω � �, can be described with a help of a low-energy theory.
Here we present such a theory. The requirement EA � � is
fulfilled in the two cases summarized in Table I.

The fermion number parity is conserved within our model.
Thus the dynamics of the system can be studied separately
for states with odd and even fermion parity. In the odd parity
sector, states |1↑〉 and |1↓〉 are not coupled by the applied
phase or gate voltage drives due to spin conservation. Thus,

in the odd states, the system adiabatically follows the change
in εg and ϕ induced by the drives as long as the drive frequency
is small, h̄ω � �.

The dynamics is more intricate in the even parity sector. If
the frequency of the drives is comparable to E [2] − E [0] =
2EA, the transitions between states |0〉 and |2〉 have to be
accounted for. This dynamics can be captured by a low-energy
Hamiltonian. The latter can be obtained from the full Hamilto-
nian by applying a two-level adiabatic approximation. In the
particle-hole basis, the low-energy Hamiltonian is given by
(see Appendix C for the detailed derivation)

H (le)
even = Eeven + �

� + �

(
ε̃(t ) γ̃ [ϕ(t )]

γ̃ �[ϕ(t )] −ε̃(t )

)
, (28)

where ε̃(t ) = ε̃g(t ) − δ�
2�

eV (t ) [with V (t ) = φ0∂tϕ(t ) and
δ� = �L − �R]; ε̃g and γ̃ [ϕ] are defined in Eq. (21). The
c-number contribution Eeven is given by Eq. (22). In the static
case, the energy spectrum of Hamiltonian (28) is given by
Eq. (14) with EA of Eq. (20).

Hamiltonian (28) has several notable features. First, parti-
cles and holes are coupled via the off-diagonal matrix element
∝ γ̃ . These pairing correlations originate due to the proximity
effect arising from the superconducting leads. Second, ε̃g is
attenuated by the factor of �/(� + �) < 1, which describes
the probability of finding a quasiparticle at the dot (as opposed
to the leads), see discussion after Eq. (10). Finally, there is a
peculiar correction − δ�

2�
eV (t ) to the potential energy of the

dot. It describes the average potential felt by the quasipar-
ticle during its virtual excursions to the leads. Notably, this
correction vanishes for �R = �L since we assume VR(t ) =
−VL(t ) = V (t )/2. Formally, such a correction to the Hamil-
tonian stems from Berry connection, − ih̄

2 〈p|ṗ〉 + ih̄
2 〈h|ḣ〉 ≈

− δ�
2�

eV (t ), where |p〉 and |h〉 are the particle and hole states
respectively (see Appendix C for details).

It is convenient to perform a time-dependent gauge trans-
formation that removesV (t ) from the diagonal components of
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Eq. (28). This leads to H (le)
even → H ′(le)

even with

H ′(le)
even = Eeven + �

� + �

(
ε̃g(t ) z[ϕ(t )]

z�[ϕ(t )] −ε̃g(t )

)
, (29)

where

z[ϕ] = exp

(
−i

ϕ

2

δ�

� + �

)
γ̃ [ϕ]. (30)

One can check that in this gauge the low-energy charge
and current operators can be obtained as the derivatives of
the low-energy Hamiltonian: Q̂(le) = −e∂εgH

′(le)
even and Î (le) =

φ−1
0 ∂ϕH ′(le)

even , respectively. This property is useful for studying
the electromagnetic response of the system and therefore we
always work with the gauge-transformed version of the low-
energy Hamiltonian. Thus in what follows we omit the prime
in H ′(le)

even .
We note that the limit � � � reduces the Hamiltonian

(29) to that of a short junction with a reflection amplitude
r = δ�/� [16]. Importantly, in this regime quasiparticles oc-
cupying the Andreev bound state predominantly stay within
the leads (and not at the dot). Therefore the drive applied to
the gate cannot induce transitions within the even parity sector
and all charging effects are suppressed.

Finally, we remind that Hamiltonian (28) was derived un-
der the assumption that capacitance between the dot and the
gate is much larger than the capacitance between the dot and
the leads. If the capacitances to the leads and to the gate are
comparable, εg(t ) [and thus ε̃g(t)] in Eq. (29) starts to depend
on voltages in the leads in addition to Vg(t ). We present this
dependence in Appendix E.

V. LINEAR RESPONSE

In this section, we study the linear electromagnetic re-
sponse of the ABS to weak externally applied drives δVg(t )
and δφ(t ) = φ0δϕ(t ) (note that we use the flux variable φ

to characterize the differential phase drive; φ0 = h̄/2e is the
reduced flux quantum). As follows from linearizing Hamilto-
nian (1), time-dependent perturbations describing these drives
are given by δHQ(t ) = Q̂δVg(t ) and δHI (t ) = Îδφ(t ), respec-
tively. The linear response function χ [ω, n] ≡ χ [ω, εg, ϕ, n]
depends on the state in which the system resides before the
application of the perturbations. n = 0 and n = 2 correspond
to states |0〉 and |2〉, respectively. n = 1 corresponds to either
|1↑〉 or |1↓〉 (the response function in our model does not
depend on spin and we do not specify it in the definition of
χ ). We define the response function as a matrix

(
δQ(ω)
δI (ω)

)
= χ [ω, n]

(
δVg(ω)
δφ(ω)

)
, χ =

(
χQQ χQI

χIQ χII

)
. (31)

Here, δQ and δI are the deviations of the average charge
and current from their stationary values. As usual, the Her-
mitian (anti-Hermitian) part of χ describes the nondissipative
(dissipative) response of the system. The response function
matrix satisfies a general relation that guarantees that physical
quantities are real, χ [ω] = χ�[−ω].

Prior to computing χ , we discuss symmetry properties of
this matrix. From time-reversal and particle-hole symmetries,
we obtain

χ [ω, ϕ, εg] =Mχ [−ω,−ϕ, εg]M, (32)

χ [ω, ϕ, εg] =χ [ω,−ϕ,−εg], (33)

respectively (for brevity we omitted the state argument n).
Here matrix M = diag{1,−1}. From inversion symmetry we
get4

χ [ω, ϕ, εg, �L, �R] = Mχ [ω,−ϕ, εg, �R, �L]M. (34)

In this expression, we introduced �L and �R as arguments.
Note that in the right side of Eq. (34) these arguments
are exchanged. The symmetry relations have a set of im-
portant consequences for the off-diagonal component of the
response function χIQ (similar conclusions are true for χQI ).
From Eq. (32), we see that Re χIQ vanishes at time-reversal
symmetric points ϕ = 0, π . As a consequence of particle-
hole symmetry, Re χIQ also vanishes at εg = 0. Finally, from
Eqs. (32) and (34), we see that Im χIQ = 0 for an inversion-
symmetric weak link, �R = �L, at any ϕ and εg.

Now we proceed to the calculation of the response func-
tions in the considered discrete states. The components of
matrix χ can be expressed as (see Appendix D 1)

χAB[ω, n] = ∂a∂bE [n] + δχAB[ω, n]. (35)

Here, indices A and B stand for Q or I while a and b are
the respective drive variables, Vg or φ. The second term in
Eq. (35) vanishes at zero frequency [see Eq. (36)]. The first
term in Eq. (35) is, in contrast, nonzero at ω = 0. It describes
the frequency-independent adiabatic part of the response func-
tion (naturally, this contribution is purely nondissipative).
Its diagonal components are the inverse inductance of the
junction, 1/L[n] = ∂2

φE [n] = φ−2
0 ∂2

ϕE [n], and the quantum
capacitance, C[n] = ∂2

VgE [n] = ∂VgQ[n], where Q describes
the average charge at the dot. The off-diagonal component,
∂φ∂VgE [n] = ∂φQ[n] ≡ φ−1

0 ∂ϕQ[n], describes how the charge
at the dot changes with phase ϕ. It is also related to the change
of the Josephson current with gate voltage, ∂φ∂VgE [n] =
∂VgI[n], such that Maxwell’s relation holds, ∂φQ = ∂VgI . Due
to time-reversal symmetry, ∂φ∂VgE [n] vanishes at ϕ = 0 and
ϕ = π . ∂φ∂VgE [n] also vanishes at εg = 0 due to the presence
of the particle-hole symmetry.

The second term in Eq. (35) describes the dynamic part of
the response function,

δχAB[ω, n] = χK
AB[ω, n] − χK

AB[0, n], (36)

where χK
AB[ω] is given by the Kubo formula, χK

AB[ω] =
−i
∫∞

0 dteiωt 〈[Â(t ), B̂]〉. Here the average is computed over
the unperturbed stationary state of the system which we as-
sume to be either |0〉, |1↑〉, |1↓〉, or |2〉. The subtraction

4Action of the inversion symmetry defined by Eq. (34) needs to be
modified if the capacitances between the dot and the leads, CL and
CR, are comparable to the capacitance between the dot and the gate,
Cg. In that case, under the action of inversion symmetry capacitances
CL and CR should be exchanged similarly to �L and �R.
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of the zero-frequency contribution is required to ensure that
δχAB[0, n] = 0 and that the overall response function χAB is
related to derivatives of energy at zero frequency (see Ap-
pendix D 1 for detailed discussion). As follows directly from
the Kubo formula, δχAB can be expressed as a sum over many-
body states of the system,

δχAB[ω, n] = −
′∑
k

h̄ω

Ekn

AnkBkn

Ekn − h̄ω − i0
+ c.c.(−ω). (37)

Here, k labels the many-body states, Ekn = E [k] − E [n],
prime designates that k 	= n, and Ank and Bkn are the matrix
elements of operators Â and B̂. Notice that the sum in Eq. (37)
runs over the states that belong to both discrete and continuous
parts of the many-body spectrum. If the system is initially in
an even state, |0〉 or |2〉, the sum involves one discrete state
(|2〉 or |0〉, respectively) in addition to the states of continuum.
If the system is in an odd state, |1↑〉 or |1↓〉, the sum includes
only the states of the continuum; there are no matrix elements
between |1↑〉 and |1↓〉 due to spin conservation.

We now describe how the response function can be com-
puted in the limit of weak Coulomb interaction, U � � + �,
and small frequencies, h̄ω � �.5 The weakness of interaction
implies that the adiabatic part of the response function can be
found using the perturbative expressions for the energies of
the discrete states [see Eqs. (14), (15), (22), and (24)]. The
condition h̄ω � � implies that the terms in Eq. (37) in which
k belongs to the many-body continuum are suppressed by a
small parameter h̄ω/�. This allows us to disregard δχ in
comparison with the adiabatic part of the response function,
∂a∂bE , if the system is initially in one of the odd states, |1↓〉
or |1↑〉. The situation is different if the initial state is |0〉 or
|2〉. Then, the sum in Eq. (37) includes one discrete state
in addition to the continuum. The corresponding term may
compete with the adiabatic part of the response function even
at small frequencies h̄ω � �, as long as h̄ω ∼ 2EA. Thus we
approximate the dynamic part of the response function in state
|0〉 as

δχAB[ω, 0] = − h̄ω

2EA

A02B20

2EA − h̄ω − i0
+ c.c.(−ω). (38)

Notice that the response function has a resonant behavior at
the transition frequency, h̄ω = 2EA. Such a resonance corre-
sponds to a process in which a drive photon is absorbed to
change the occupation of the Andreev bound state. Away from
the resonance, the low-frequency response is purely nondissi-
pative. The dynamic component of the response function in
state |2〉 is approximately related to that in state |0〉 via

δχAB[ω, 2] = −δχAB[ω, 0], (39)

as follows directly from Eq. (37) when neglecting terms with
k in the many-body continuum.

Next, recall that according to Eq. (38) energy EA

should be comparable to h̄ω for δχAB[ω, 0] to produce an

5More accurately, our derivation of the response functions is valid
when h̄ω � � − EA. For simplicity, in Sec. V, we focus on the limit
� � � in which case EA � �. Then it is enough to require h̄ω � �,
as is done in the main text.

appreciable contribution to the response function χAB[ω, 0].
Since we assume h̄ω � �, in such case EA is also small and
thus δχAB[ω, 0] can be approximately computed with the help
of the low-energy theory of Sec. IV. Correspondingly, the
charge and current operators in Eq. (38) can be exchanged
for their low-energy versions. Then, for the charge-charge
component of the response function, we find

δχQQ[ω, 0] = −e2 h̄2ω2

4E2
A − (h̄ω + i0)2

∂2
εg
EA. (40)

Note that for h̄ω � EA, the response function scales as
δχQQ[ω, 0] ∝ ω2. Similarly to δχQQ, the components δχQI ,
δχIQ, and δχII can be found with the help of the low-energy
Hamiltonian (29). However, in general the resultant expres-
sions are cumbersome and we relegate them to Appendix D 3.
Here, we invoke an additional approximation to illustrate the
qualitative features of the results. Namely, we disregard the
phase factor in Eq. (30) since it gives only the subleading
corrections of order EA/� � 1 to the response functions.
Neglecting such corrections, we find for δχIQ

δχIQ[ω, 0] = eφ−1
0

1

4E2
A − (h̄ω + i0)2

[
h̄2ω2∂εg∂ϕEA

+
(

�

� + �

)3 ih̄ω

EA
�δ�

(
1 + f

U

�

)(
1 + g

U

�

)2
]
. (41)

Notice that there exists a well-defined limit
δχIQ[ω, n]/(−iω)|ω→0 = Cp which describes the capacitive
response of the polarization charge between the leads to
the applied gate voltage. The capacitance Cp vanishes
for symmetric contacts, δ� = 0. This is because in that
case the system is symmetric under a combination of a
time-reversal and inversion symmetries [see Eqs. (32) and
(34), respectively]. The response function δχQI can be
obtained from Eq. (41) by conjugating the expression in the
bracket. Finally, for δχII within the adopted approximations,
we obtain

δχII [ω, 0] = −φ−2
0

EA

h̄2ω2

4E2
A − (h̄ω + i0)2

1

|γ̃ |2
[
ε̃2
g (∂ϕEA)2

+ 1

4

(
�

� + �

)2

�2δ�2
(

1 + g
U

�

)4
]
. (42)

Capacitance δχII [ω, n]/(−iω)2|ω→0 describes the response of
the polarization charge to the voltage bias between the leads.
It is instructive to consider the limit � � �, |δ�|, |εg|,U in
which our setup is equivalent to a short junction with high
transparency. Then, equation (42) reduces to

δχII [ω, 0] = −φ−2
0

EA

h̄2ω2

4E2
A − (h̄ω + i0)2

1
4�2δ�2

�2 − 4�R�L sin2 ϕ

2

.

(43)
It reproduces the known result for the response function of the
short junction near ϕ = π [18].

We demonstrate the behavior of the low-frequency re-
sponse functions χQQ[ω, n] and χII [ω, n] for a particular
choice of model parameters in Fig. 4 (plots for χIQ and χQI

are presented in Appendix D 2). The parameters are chosen to
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FIG. 4. The response functions χII and χQQ of the ABS in states |0〉, |1σ 〉, |2〉 with different number of quasiparticles at the ABS. χII is
plotted as a function of ϕ in (a) [for εg = 0] and as a function of εg in (b) [for ϕ = π ]. χQQ is plotted as a function of ϕ in panel (c) [for
εg = 0] and as a function of εg in panel (d) [for ϕ = π ]. Plots are produced using Eqs. (35), (39), (40), and (42), for parameters �L = 0.3�,
�R = 0.35�, U = 0.35� (same as in Fig. 3), and h̄ω = 0.21�. The response functions in states |0〉 and |2〉 diverge when the frequency is in
resonance with the transition between |0〉 and |2〉, i.e., when h̄ω = 2EA (vertical dashed lines in the plots). In the odd states and away from the
resonances in the even states, the response is adiabatic: χII ≈ ∂2

φE describes the inverse inductance of the weak link and χQQ ≈ ∂2
Vg
E describes

its quantum capacitance. The dissipative (imaginary) part of the response functions—which is present at resonances only—is not shown in the
plot.

demonstrate resonant behavior, h̄ω = 2EA, at specific values
of ϕ and εg. The response functions χAB[ω, 0] and χAB[ω, 2]
diverge at the resonances and change sign across them. The
response functions in the odd states |1σ 〉 are approximately
adiabatic, χAB[ω, 1] ≈ ∂a∂bE [1], since h̄ω is small compared
to �. For weak Coulomb interaction, they are primarily
determined by Econt, i.e., the contribution of the occupied
continuum states [see Eqs. (6), (12), and (24)]. Notice that at
� ∼ � the phase dependence of χII [ω, 1]—which is mainly
determined by the continuum contribution—is comparable in
magnitude to that of χII [ω, 0] and χII [ω, 2] [see Fig. 4(a)]. At
the same time, χII [ω, 1] is almost independent of the gate volt-
age up to |εg| ∼ � [see Fig. 4(b)]. χQQ[ω, 1] weakly depends
on both ϕ and |εg| � � even though � ∼ � [see Figs. 4(c)
and 4(d)].

To conclude this section, we note that without the interac-
tion, U = 0, the dynamic part of the response function can be
calculated in our model exactly. The resultant expressions are
cumbersome, so we present them in Appendix D 4.

VI. ASYMMETRY OF THE RESPONSE FUNCTIONS

Results of Secs. III–V indicate that the response functions
are sensitive to the on-site Coulomb repulsion. Therefore the
measurement of these functions might be used to estimate the
strength of the Coulomb interaction. A particularly convenient
combination of the response functions that explicitly charac-

terizes the magnitude of parameter U is

χ
asym
AB [ω] = χAB[ω, 2] + χAB[ω, 0]

2
− χAB[ω, 1], (44)

which we call the response asymmetry. This quantity is illus-
trative because it is nonzero only in the presence of Coulomb
interaction. The latter property can be easily seen in the limit
ω → 0. Indeed, χ

asym
AB [ω → 0] = ∂a∂bE asym and E asym = 0

for U = 0 as was shown in Section III. We demonstrate in
Appendix D 4 that the response asymmetry also vanishes at
ω 	= 0 when U = 0.

We calculate χ
asym
AB in the regime of perturbatively weak

Coulomb repulsion and low frequency, h̄ω � �. There, the
asymmetry reduces to that of the adiabatic components of the
response functions. Indeed, in this limit the dynamic com-
ponents of the response functions cancel in the combination
χAB[ω, 0] + χAB[ω, 2], as can be seen from Eq. (39). At the
same time, δχAB[ω, 1] is small compared to the adiabatic
part of the response function and can be disregarded [see the
discussion after Eq. (37)]. Thus χ

asym
AB can be directly found

from the asymmetry of the energies, see Eq. (25). In this way,
we obtain the approximate relation

χ
asym
AB [ω] = U

2
∂a∂bα

2, (45)

where α is given by Eq. (19). Expression (45) can be sim-
plified in the limit of weak coupling between the level and
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FIG. 5. Asymmetry of the response functions χII [ω, n]. χII [ω, n]
is plotted as a function of phase in the vicinity of ϕ = π for �L =
0.30�, �R = 0.35�, U = 0.5� and, h̄ω = 0.21�. Vertical lines
correspond to the resonances at h̄ω = 2EA. Dashed line shows the
half-sum between χII [ω, 0] and χII [ω, 2]. Due to the presence of
Coulomb interaction, the half-sum differs from χII [ω, 1] by χ

asym
II [ω]

[see Eq. (45)].

the leads, �, |εg| � � [case (i) of Table I]. To the lowest
nonvanishing order, we obtain

χ
asym
QQ = −e2 3U

�

�

�2
, χ

asym
II = −φ−2

0

2U

�

�R�L cos ϕ

�
,

χ
asym
IQ = χ

asym
QI = eφ−1

0

8U

�

�R�Lεg sin ϕ

�3
. (46)

For stronger coupling, � � �, we demonstrate the asymme-
try of inductive response functions χII [ω, n] in Fig. 5. The
asymmetry of inductive responses was recently measured in
our experiment [29], pointing to the importance of Coulomb
interaction for the microwave properties of nanowire weak
links.

VII. ABS IN CIRCUIT QED

Above we demonstrated that the microwave response of
a finite-length weak link is characterized by four response
functions, χQQ, χQI , χIQ, and χII . Experimentally, these re-
sponse functions can be studied using the toolbox of circuit
quantum electrodynamics (cQED). In cQED, the weak link
coupled to a microwave resonator shifts the frequency of the
latter. The magnitude of this dispersive shift may be related to
a certain combination of the response functions, specific for
a particular resonator design. In this section, we elucidate this
relation and demonstrate how different response functions can
be measured by appropriately tailoring the geometry of the
resonator.

We assume that the weak link hosting ABS is attached to
a microwave resonator at two sites, L and R [see Fig. 6(a)].
External flux threads the loop between the junction and the
resonator thus controlling the phase bias ϕ across the weak
link.6 The resonator is modelled as a black box with a given

6The phase ϕ drops at the weak link provided that inductance of the
latter is much smaller than that of the resonator. Throughout Sec. VII
we assume that this condition is satisfied.

matrix admittance, Y res
i j [ω], where i, j ∈ {L,R}. The admit-

tance determines the relation between the currents flowing in
the resonator and the voltages at nodes L and R,

Ii(ω) =
∑
j=L,R

Y res
i j [ω]Vj (ω). (47)

We assume that the resonator is grounded (see Fig. 6) and
that VL and VR are evaluated relative to the ground. Due
to the presence of the ground, the currents explicitly de-
pend on both VL and VR (i.e., not only on the voltage
difference VL −VR). We assume that the photon loss in the
resonator can be neglected such that Y res

i j is an anti-Hermitian
matrix. The frequency of the modes of the unloaded resonator
(i.e., in the absence of the weak link) can be found as solutions
of the characteristic equation

detY res
i j [ω] = 0. (48)

Let ωres be the frequency of a given mode of the resonator
determined by Eq. (48). Then, the structure of the mode can
be found by solving

∑
j=L,R Y

res
i j [ωres]Vres, j = 0.

When the weak link is present in the circuit, the character-
istic equation changes to

det
(
Y res
i j [ω] + Yi j[ω]

) = 0. (49)

Here Yi j[ω] is the admittance of the ABS. The admittance
matrix is related to the response functions computed in Sec. V
[see Eq. (35)] via

YLL = χII

−iω
+ iω

4
χQQ + 1

2
(χIQ − χQI ), (50a)

YLR = χII

iω
+ iω

4
χQQ − 1

2
(χIQ + χQI ), (50b)

YRL = χII

iω
+ iω

4
χQQ + 1

2
(χIQ + χQI ), (50c)

YRR = χII

−iω
+ iω

4
χQQ − 1

2
(χIQ − χQI ) (50d)

(we suppressed the frequency arguments for brevity). We as-
sume that the presence of the weak link does not affect the
structure of the modes of the resonator. This assumption is
justified if the admittance of the load is small enough. In
that case, Eq. (49) can be solved by taking Yi j into account
perturbatively. We find that the frequency of the mode of the
resonator in the presence of the load is given by ωres + δω,
where

δω = −
∑

i, j∈L,R V
�

res,iYi j[ωres]Vres, j∑
i, j∈L,R V

�
res,i

(
Y res
i j

)′
[ωres]Vres, j

(51)

and (Y res
i j )′[ωres] = dY res

i j /dω|ω=ωres . Equation (51) is a gener-
alization of the relation between the frequency shift and the
admittance [39] to the multiterminal case. The numerator of
Eq. (51) depends on Vres, i.e., on the structure of the mode of
the resonator. This opens a prospect of extracting particular
components of the response function of the weak link by
choosing a suitable geometry of the resonator. In Figs. 6(b)
and 6(c), we demonstrate lumped element circuits of res-
onators that can be used to isolately measure χII and χQQ.
We note the components χQI and χIQ cannot be measured
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FIG. 6. (a) A finite-length weak link with a state-dependent admittance Yi j[ω] is galvanically connected to a microwave resonator with
admittance Y res

i j [ω] (indices i, j ∈ {L,R} denote the left or the right lead, respectively). An external flux tunes the phase difference ϕ across the
weak link. The gate voltage Vg also tunes the energy of the fermionic level in the weak link. The presence of the weak link shifts the frequency
of the mode of the resonator, ωres → ωres + δω. (b) Effective circuit representing a microwave resonator which can be used to measure the
response function χII of the weak link. Due to the symmetry of the resonator with respect to the ground, its mode has opposite voltages on
the left and at the right node. Then, using Eq. (51), we find δω/ωres = LχII [ωres] as long as χII � L−1. (c) Effective circuit representing a
microwave resonator which can be used to probe the response function χQQ of the weak link. The mode of the resonator has the same voltages
at the left and at the right nodes which, according to Eq. (51), leads to δω/ωres = L2χQQ[ωres]/[2(L + L′)2C] for χQQ � C.

separately from χQQ or χII irrespective of the geometry of the
resonator [as can be verified directly from Eq. (51)].

Finally, we mention that Eq. (51) was derived under the
assumption that the capacitance between the dot in the weak
link and the gate is much larger than that between the dot and
the leads. We derive a similar expression for arbitrary ratio of
capacitances in Appendix E, see Eq. (E2).

VIII. DISCUSSION AND CONCLUSIONS

Our work elucidates the problem of computing the mi-
crowave response of a finite-length weak link hosting a single
ABS. Within a minimal Hamiltonian model, we calculated the
corresponding linear response functions and found their evo-
lution with the number of quasiparticles occupying ABS. The
resulting linear response functions can be used to analyze the
state-dependent dispersive shifts in cQED experiments with
the weak link coupled to a microwave resonator. Our minimal
model captures the essential features differentiating a finite-
length weak link from a point contact: (a) for the former both
the ABS and the delocalized states contribute to the inductive
response, and (b) a finite-length link may accommodate elec-
tric charge making Coulomb interaction important. Our theory
combined with the recent experimental results [29] highlight
that quantum dot models provide an insightful perspective on
microwave experiments with nanowire weak links. Below, we
discuss the salient points of our work.

Low-energy Hamiltonian. The energy of an ABS formed
in a finite-length weak link lies within the superconducting
gap and does not reach � at any phase bias. To describe
the ABS energy spectrum and dynamics, we derived a 2 ×
2 low-energy Hamiltonian which takes into account weak
charging effects and delocalization of the quasiparticle into
the leads [see Eq. (29)]. This Hamiltonian yields an approxi-
mate expression for the ABS energy, see Eq. (11), where the
dependence of δ and τ on the model parameters is presented
in Eqs. (20) and (21). Equation (11) becomes exact if the tun-
neling rate is either large, � � �, or small, � � � [27,28].
It remains valid in the intermediate regime, � ∼ �, in the

domain of ϕ for which EA(ϕ) � �, and provides a reasonable
extrapolation between the solvable limits at EA(ϕ) ∼ �.

The low-energy Hamiltonian describes the dynamics of the
ABS in the even fermion parity sector. It provides a lumped
element model of the weak link that can be used to analyze
a variety of microwave experiments. Here, we applied the
Hamiltonian to calculate the linear response functions of the
weak link. The low-energy Hamiltonian may also be used in
more complicated situations where the quantum fluctuations
of phase across the weak link are appreciable [27,28].

Inductance of the continuumpart of theweak-link spectrum.
As well-known in theory [15,16,18] and demonstrated in ex-
periments [8,13], the dynamic response of a single-channel
point contact is fully determined by the properties of the two-
level ABS system hosted by the weak link. This is however
not the case for the finite-length weak links. In particular, to
compute the inductance of the weak link it is not enough to
account for the contribution of the ABS ∝ (∂2

ϕEA)−1. This is
because the continuum of states outside of the superconduct-
ing gap also contributes to the energy [see Eq. (12)] and hence
to the inductance. We show that the continuum contribution
becomes comparable to that of the ABS when the coupling
between the dot and the leads is strong, � ∼ � [cf. Eqs. (10)
and (13)]. The effect of the continuum is especially prominent
in the odd states, where it fully determines the inductance.
Interestingly, the contribution of the continuum to the energy
is minimal at phase bias ϕ = π [see Eq. (13)]. A π junction is
thus realized whenever the ABS traps a single quasiparticle 7.
These results indicate that taking the continuum contribution
into account is necessary to accurately describe microwave
experiments with ABSs [29].

7The π -junction behavior for odd occupancy of the ABS should not
be confused with that in the doubly occupied even state. In the latter
case, the flipped energy-phase relation stems from the bound state
contribution and is present even in a short single-channel junction.
π -junction behavior in the odd state, in contrast, stems from the
continuum states and is thus manifestly a finite-length effect.
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Electrodynamic response functions. A finite-length weak
link may accommodate charge. Both this charge and the
current through the weak link respond to gate voltage and
phase bias. Thus the microwave response of an ABS has a
multi-terminal character; the linear response functions form a
2 × 2 matrix, χ . At small frequencies the response functions
are adiabatic, i.e., they can be found as the derivatives of the
energies of the many-body states with respect to appropri-
ate parameters [see Eq. (35)]. Adiabatic response functions
characterize the quasi-static properties of the weak link, such
as the inverse inductance and quantum capacitance. At finite
frequency, a dynamic contribution to the response functions
appears [see Eq. (36)]; it is the most prominent in the even
sector where χ may have a resonant behavior (see Fig. 4).
Our theory smoothly interpolates between the adiabatic and
resonant limits. The matrix χ can be accessed in cQED archi-
tecture by coupling the weak link to a microwave resonator
and measuring the dispersive shift of the latter [see Eqs. (50)
and (51)]. Recent experiments used this technique to study the
inductive response of weak links [13,29]. The investigation
of the capacitive response may be an interesting direction for
future experimental works. Such a study can be carried out in
a setup similar to that used in Refs. [13,29], with appropriately
modified resonator geometry [see Fig. 6(c)]. We note that
interpolation between the adiabatic and resonant limits for the
dispersive shift was also pointed out in a recent work [40].

Coulomb interaction. Accumulation of charge in a finite-
length weak link makes the effects of Coulomb interaction
important for the ABS physics. Surprisingly, most of the mi-

crowave experiments with nanowire weak links completely
ignore the role of interaction in interpreting the data. Our
recent experimental results [29] suggest that the on-site in-
teraction may in fact be important to adequately describe the
state-dependent response functions of the system. The theory
presented here provides a guidance for assessing the strength
of the interaction by comparing to each other the microwave
responses measured at different occupancy of the ABS [see
Eqs. (44) and (45)].

Finally, quantum-dot inspired description of a finite-length
weak link can be extended in multiple ways. In particular, it
is possible to include the Zeeman effect, account for more
levels in the weak link, and for spin-orbit interaction. Looking
forward, it would be interesting to compute and analyze, in the
same framework, the microwave response of a finite-length
weak link connecting topological superconductors [41,42]. It
would also be interesting to evaluate the microwave response
of a weak link containing a quantum dot in the regime of
strong Coulomb interaction [24,25,34–36,38,43–45] where
Kondo effect might be important.
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APPENDIX A: SPECTRAL PROPERTIES OF THE ABS IN THE ABSENCE OF COULOMB INTERACTION

1. Green’s functions in the noninteracting case

In this Appendix, we derive the expression for the Green’s functions of the system in the absence of interaction. The central
result is the Green’s function of the dot, Gdd (ε) [see Eq. (8) of the main text]. This Green’s function can be conveniently used to
find the energy of the Andreev bound state EA,0 [see Eq. (7)], as well as the continuum contribution to the energy of the system,
see Eq. (12) and Appendix A 2. We start by rewriting the Hamiltonian (1) in the particle-hole representation forU = 0. Up to an
irrelevant c number, we obtain

H =
∑
i=L,R

(Hi + HT,i ) + Hd , (A1)

where

Hi =
∫

dr�
†
i (r)

[
ξ̂ τz + �τx

]
�i(r), Hd = D†εgτzD, HT,i = ti

{
D†τze

i
2 τzϕi�i(0) + H.c.

}
, (A2)

τx,y,z are Pauli matrices in the Nambu space, �i(r) = (ψi,↑(r), ψ
†
i,↓(r))T , and D = (d↑, d†

↓)T . Next, we introduce the retarded
and advanced Green’s functions GR/A. These Green’s functions have multiple components, of which the important ones are

GR/A
dd,μν

(t ) = ∓iθ (±t )〈{Dμ(t ),D†
ν (0)}〉, GR/A

i j,μν = ∓iθ (±t )〈{�i,μ(0, t ), �†
j,ν (0, 0)}〉, (A3)

GR/A
id,μν

(t ) = ∓iθ (±t )〈{�i,μ(0, t ),D†
ν (0)}〉, GR/A

di,μν
(t ) = ∓iθ (±t )〈{Dμ(t ), �†

i,ν (0, 0)}〉, (A4)

where curly brackets denote the anticommutator. In the subsequent calculations, we will only need the Green’s functions at
the position of the junction; hence the lead operators are all evaluated at r = 0 in the above definitions. Using the Heisenberg
equations of motion for the operators D(t ) and �i(t ), we may obtain a system of two coupled equations for GR/A

dd and GR/A
id . In

the energy domain, the system reads

(ε − εgτz ± i0)GR/A
dd (ε) = 1 +

∑
i=L,R

T †
i G

R/A
id (ε), GR/A

id (ε) = 1

V

∑
k

1

ε − ξkτz + �τx ± i0
TiG

R/A
dd (ε), (A5)
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where Ti = tiτze− i
2 τzϕi . Note that Gdd (ε), Gid (ε), and Gi j (ε) have different dimensions. In particular, Gdd (ε) has the dimension

of inverse energy, Gid (ε) has the dimension of inverse energy times inverse square root of volume, Gi j (ε) has the dimension of
inverse energy times inverse volume. Substituting the second equation into the first and computing the sum over the momenta we
obtain Eq. (8) of the main text for GR/A

dd [in Eq. (8), ε should be changed to ε ± i0 for retarded and advanced Green’s function,
respectively].

For future reference, we also obtain the remaining components of the Green’s functions. From Eq. (A5), we find

GR/A
id (ε) = gR/A

ε TiG
R/A
dd (ε), gR/A

ε = −πν√
�2 − (ε ± i0)2

(
ε �

� ε

)
, (A6)

where ν is the normal-state density of states in the leads (per spin projection). The components GR/A
di and GR/A

i j can be found

analogously to GR/A
dd and GR/A

id . We obtain

GR/A
di (ε) = GR/A

dd (ε)T †
i g

R/A
ε , GR/A

i j (ε) = gR/A
ε δi j + gR/A

ε TiG
R/A
dd (ε)T †

j g
R/A
ε . (A7)

2. Many-body energy spectrum

In this Appendix, we describe the structure of the discrete many-body states |00〉, |10,↑/↓〉, and |20〉 in the absence of Coulomb
interaction, and derive Eqs. (6) and (12) for the energies of these states.

At U = 0, the many-body Hamiltonian [see Eqs. (A1) and (A2)] can be decomposed into the quasiparticle creation and
annihilation operators as

H =
∑
|ε|>�

εγ †
ε γε + EA,0γ

†
EA,0

γEA,0 − EA,0γ
†
−EA,0

γ−EA,0 . (A8)

Here, we work in the “semiconductor” picture of superconductivity, in which there are states with both positive and negative
energies. The first term corresponds to the states of the continuum. The second and the third terms describe the ABS; EA,0 is the
ABS energy which may be found as a solution of det G−1

dd (ε) = 0 in the interval ε ∈ [0,�). The ground state of Hamiltonian
(A8) corresponds to all single-particle states with negative energy being occupied,

|00〉 = γ
†
−EA,0

|O〉, |O〉 =
∏

ε<−�

γ †
ε |�〉, (A9)

where |�〉 is the vacuum state. Other discrete many-body states are

|20〉 = γ
†
EA,0

γ−EA,0 |00〉 |10,↑〉 = γ
†
EA,0

|00〉, |10,↓〉 = γ−EA,0 |00〉. (A10)

The number n in the label of the state |n0〉 characterizes the number of single-particle excitations above the ground state.
We can find energies of the discrete states with the help of Eqs. (A8)–(A10),

E0[0/2] = Econt ∓ EA,0, E0[1] = Econt. (A11)

Here Econt = ∑
ε<−� ε corresponds to the total energy of the filled states of the continuum. This continuum contribution can be

conveniently represented in terms of the Green’s functions GR/A of the system,

Econt = −
∫ −�

−∞

ε′dε′

2π i

∑
ε

[−2π i δ(ε′ − ε)] = −
∫ −�

−∞

ε′dε′

2π i

∂

∂ε′ ln det[GA(ε′)[GR(ε′)]−1]. (A12)

As can be shown,

det GR/A(ε′) = det GR/A
dd (ε′) · det gR/A

R,0 (ε′) · det gR/A
L,0 (ε′), (A13)

where g
R/A
i,0 are the Green’s functions of the lead i in the absence of tunneling to the dot [it is given by g

R/A
i,0 (ε′) = (ε′ ± i0 −

[ξ̂ τz + �τx])−1]. Substituting representation (A13) in Eq. (A12), we obtain

Econt = −
∑
i=L,R

∑
k

√
�2 + ξ 2

k −
∫ −�

−∞

ε′dε′

2π i

∂

∂ε′ ln det
[
GA

dd (ε′)
[
GR

dd (ε′)
]−1]

, (A14)

While the first term is thermodynamically large, it is also independent of the phase and gate-voltage biases ϕ, εg. Therefore it
has no effect on the dynamics of the ABS. By omitting the irrelevant first term and performing integration by parts on the second
term, we obtain Eq. (12).

APPENDIX B: CORRECTIONS TO ENERGIES DUE TO THE INTERACTION

In this Appendix, we find the first-order corrections to the energies of the discrete states |00〉, |10,σ 〉, and |20〉 due to a finite
strength of Coulomb interaction U � � + �.
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According to the first-order perturbation theory, we need to compute the matrix elements of the interaction Hamiltonian

Hint = U
(
d†

↑d↑ − 1
2

)(
d†

↓d↓ − 1
2

)
(B1)

between the unperturbed discrete states. To do that, it is convenient to expand Hint into the quasiparticle operators γε [see
Eq. (A1)]. The expansion may be performed with the help of the eigenstate decompositions of the creation and annihilation
operators for an electron at the dot:

d↑ = pEA,0γEA,0 + p−EA,0γ−EA,0 +
∑
|ε|>�

pεγε, d†
↓ = hEA,0γEA,0 + h−EA,0γ−EA,0 +

∑
|ε|>�

hεγε. (B2)

Here, pε and hε are the particle and hole components of the ABS wave function at the dot, respectively. The main technical trick
of our calculation is to perform a rotation of the operators γEA,0 and γ−EA,0 to a particle-hole basis such that

d↑ = √
αγp +

∑
|ε|>�

pεγε, d†
↓ = √

αγh +
∑
|ε|>�

hεγε, (B3)

where fermionic operators γp/h are defined as

γp = 1√
α

(
pEA,0γEA,0 + p−EA,0γ−EA,0

)
, γh = 1√

α

(
hEA,0γEA,0 + h−EA,0γ−EA,0

)
, (B4)

and α is a normalization factor that ensures {γp/h, γ
†
p/h} = 1 [this factor is similar for γp and γh due to particle-hole symmetry].

The particle and hole operators γp/h are more convenient than operators γ±EA,0 since the interaction Hamiltonian has a more
concise form in terms of the former; this simplifies the calculation of the matrix elements of Hint. We note that the normalization
factor α can be expressed with the help of particle-hole symmetry as

α = ∣∣pEA,0

∣∣2 + ∣∣hEA,0

∣∣2 = ∣∣p−EA,0

∣∣2 + ∣∣h−EA,0

∣∣2. (B5)

Thus physically it describes the probability of finding a quasiparticle in the ABS at the dot rather than in the leads.

a. Corrections to energies of odd states

We proceed by finding the correction to the energies of the odd states due to the presence of interaction. First, we note that the
matrix element of Hint between different odd states vanishes since the Coulomb interaction conserves spin. The matrix elements
between the odd and even states are zero as well, due to the conservation of fermion number parity. Therefore, to find the desired
corrections to the odd states energies, it is enough to compute the expectation value of the interaction Hamiltonian in either of
the odd states [the result is the same for the two odd states due to spin-rotation symmetry]. To evaluate this expectation value, it
is convenient to express the odd states in terms of the particle and hole operators γp/h,

|10,↑〉 = γ †
p γ

†
h

∏
ε<−�

γ †
ε |�〉, |10,↓〉 =

∏
ε<−�

γ †
ε |�〉. (B6)

Substituting the decomposition of operators (B3) into Eq. (B1) and using Eq. (B6), we find for the projection of Hint on either of
the odd states:

〈10,σ |Hint|10,σ 〉 = −U

( ∑
ε1,ε2<−�

[∣∣pε1

∣∣2∣∣hε2

∣∣2 − h�
ε1
pε1 p

�
ε2
hε2

]− 1

2

∑
ε<−�

[|pε |2 + |hε |2] + 1

4

)
. (B7)

Here, we used a set of relations that follow from particle-hole symmetry:∑
ε>�

pεh
�
ε = −

∑
ε<−�

pεh
�
ε,

∑
ε>�

|hε |2 =
∑

ε<−�

|pε |2,
∑
ε>�

|pε |2 =
∑

ε<−�

|hε |2, (B8)

and the completeness relation for the single-particle wave functions:

α +
∑

ε<−�

|pε |2 +
∑

ε<−�

|hε |2 = 1. (B9)

The sums over energies in Eq. (B7) can be expressed in terms of the integrals of the Green’s function of the dot. Direct
comparison shows that

∑
ε<−�

(
pε p�

ε pεh�
ε

p�
εhε hεh�

ε

)
= A, where A =

∫ −�

−∞
dε

i

2π

[
GR

dd (ε) − GA
dd (ε)

]
. (B10)

Using these relations in Eq. (B7) we obtain Eq. (24) of the main text.
Note that α = 1 − trA follows from Eqs. (B9) and (B10). The trace can be easily computed in terms of EA,0 by bending the

integration contour in complex plane. This results in Eq. (19) of the main text.

174517-14



MICROWAVE RESPONSE OF AN ANDREEV BOUND STATE PHYSICAL REVIEW B 104, 174517 (2021)

b. Corrections to energies of even states

The matrix elements of the interaction Hamiltonian in the even fermion parity sector are computed most easily in the basis of
particle and hole states. These states are defined as

|p〉 = γ †
p |O〉, |h〉 = γ

†
h |O〉 (B11)

[see Eq. (A9) for the definition of |O〉]. The states |p/h〉 are directly related to the even states |00/20〉. Using Eq. (B4), we obtain

|p〉 = 1√
α

(
p�

−EA,0
|00〉 + p�

EA,0
|20〉

)
, |h〉 = 1√

α

(
h�

−EA,0
|00〉 + h�

EA,0
|20〉

)
. (B12)

The computation of the matrix elements of Hint between particle and hole states can be carried out similarly to how it was done
for the odd states. This results in Eqs. (15) and (22) of the main text.

1. Low-energy expression for EA

In this section, we use Eqs. (15) and (22) to find the energy EA in the limit EA,0 � �. This leads to Eqs. (20) and (21) of
the main text. The limit EA,0 � � is achieved in the weak coupling regime, �, |εg| � � at any ϕ [case (i) of Table I], and the
strong coupling regime, � � �, provided that |�L − �R|, |εg| � � and |ϕ − π | � 1 [case (ii) of Table I].

According to Eq. (15), EA can be found as a solution of the following characteristic equation:

det

⎡
⎣ε − 1

1 + �√
�2−E2

A,0

⎛
⎝ εg

�√
�2−E2

A,0

∑
i �ieiϕi

�√
�2−E2

A,0

∑
i �ie−iϕi −εg

⎞
⎠− αU

(App−Ahh

2 Aph

A�
ph −App−Ahh

2

)⎤⎦ = 0. (B13)

Here, in the second term under the sign of det, EA,0 can be neglected in comparison to � in the square root factors. With a similar
precision, α can be exchanged for its low-energy value, �/(� + �). Finally, the elements of the matrix A may be approximated
by

App − Ahh

2
≈ εg

�
f

(
�

�

)
, f (x) = −2x

π

∫ −1

−∞
dz

1√
z2 − 1

1

z2
(
1 + x2

z2−1

)2 = − x

π

2 + x2 − 3x arccos(x)√
1−x2

(1 − x2)2
, (B14)

Aph ≈ �ReiϕR + �LeiϕL

�
g

(
�

�

)
, g(x) = 1

π

∫ −1

−∞
dz

1√
z2 − 1

1 − x2

z2−1

z2
(
1 + x2

z2−1

)2 = 1

π

1 + 2x2 − x(2+x2 ) arccos(x)√
1−x2

(1 − x2)2
. (B15)

Substituting Eqs. (B14) and (B15) with ϕL = −ϕR = ϕ/2 in Eq. (B13) and solving the resulting simplified equation we obtain
Eqs. (20) and (21) of the main text. Note that, at the first glance, functions f (x) and g(x) in Eqs. (B14) and (B15) are divergent
at x = 1 due to the vanishing of the denominators. This, however, is not the case because the numerators also vanish at x = 1
resulting in a smooth curve depicted in Fig. 2. In the weak coupling regime, case (i) of Table I, the results for f and g, Eqs. (B14)
and (B15), are reliable only to the leading order in �/�. For case (ii) of Table I, the calculation of the matrix elements of A is
valid at arbitrary �/�.

2. Interaction corrections to energies E[1] and Eeven for weak coupling between the dot and the leads

Here, we explicitly calculate energies E [1] and Eeven to the first order in U/� in the weak coupling limit, �, |εg| � � [case
(i) of Table I]. The interaction correction to the energy of the odd states is given by

E [1] − E0[1] ≈ −U det(A − 1/2) ≈ U

[
−1

4
+ �

2�
+ 3�ε2

g

4�3
+
(

2

π2
− 1

)
�R�L

�2
cos ϕ

]
, (B16)

where we retained only the leading terms that determine the εg and ϕ dependence of E [1] − E0[1]. In particular, we suppressed
small terms ∼Uε2

g�R�L cos ϕ/�4 that depend both on εg and on ϕ. In principle, such terms are important for the careful
calculation of the adiabatic contribution to χQI and χIQ. However, capturing them analytically is beyond the scope of the
manuscript.

With a similar precision, we find

Eeven − E0[1] ≈ −U det(A − 1/2) +U
α2

2
≈ U

[
1

4
− �

2�
− 3�ε2

g

4�3
+
(

2

π2
+ 1

)
�R�L

�2
cos ϕ

]
. (B17)

APPENDIX C: LOW-ENERGY HAMILTONIAN

In this Appendix, we derive the low-energy Hamiltonian governing the dynamics of the ABS in the even fermion parity
sector [Eq. (28) of the main text]. To do that, we project the full Hamiltonian of the system onto the low-energy subspace,
and then employ the adiabatic approximation. The low-energy subspace is formed by the discrete states |0〉 and |2〉, whose
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energies are denoted by E [0/2] = Eeven ∓ EA. The low-energy regime of EA � � is reached in two cases: (i) in the weak
coupling limit, |εg|, � � � at arbitrary phase bias ϕ, and (ii) in the strong coupling limit, � � �, provided |ϕ − π | � 1 and
|�L − �R|, |εg| � � (as summarized in Table I). We assume below that either of the two conditions is fulfilled.

We first focus on the case in which the Coulomb interaction is absent, U = 0; we discuss the modifications arising due to
U 	= 0 at the end of the section. Let us consider the many-body Hamiltonian H[ϕi, εg] [Eq. (1) withU = 0], in which parameters
ϕi ≡ ϕi(t ) and εg ≡ εg(t ) depend on time. We assume that the dynamics of ϕi(t ) and εg(t ) is sufficiently slow—i.e., the associated
frequency scale h̄ω � �. At the same time, we allow h̄ω to be comparable to EA � �, which makes it important to account for
possible transitions between the states of the low-energy subspace.

The wave function solving the time-dependent Schrödinger equation can be approximated by

|ψ (t )〉 ≈ cp(t )|p(t )〉 + ch(t )|h(t )〉. (C1)

Here the particle and hole states |p/h〉 were introduced in Eq. (B12); they depend on time parametrically due to the time-
dependence of ϕi(t ) and εg(t ). This parametric dependence is in fact weak, which makes the particle-hole basis convenient for
the derivation. Finding an effective Hamiltonian that would describe the evolution of amplitudes cp(t ) and ch(t ) is the main goal
of this Appendix. The approximation (C1) is in the spirit of a usual adiabatic approximation extended to a two-level system.

Substituting the decomposition (C1) into the time-dependent Schrödinger equation, we obtain an equation for the evolution
of C(t ) = (cp(t ), ch(t ))T :

ih̄∂tC(t ) = H (le)
even C(t ). (C2)

The 2 × 2 matrix H (le)
even plays the role of an effective Hamiltonian; it is given by

H (le)
even = Eeven + H + �. (C3)

Here

Hμν = 〈μ(t )|H [ϕi(t ), εg(t )]|ν(t )〉 − Eevenδμν, �μν = −ih̄〈μ(t )|∂t |ν(t )〉, μ, ν ∈ {p, h}, (C4)

and Eeven is a c-number term which—in the absence of Coulomb interaction—is related to the continuum energy, Eeven =
Econt (εg(t ), ϕ(t )) [see Eq. (12)]. The matrix H can be found straightforwardly using the definition (B12) of particle and hole
states. We obtain

H = 1

1 + �√
�2−E2

A,0(t )

⎛
⎝ εg(t )

�
∑

i �ieiϕi (t )√
�2−E2

A,0(t )
�
∑

i �ie−iϕi (t )√
�2−E2

A,0(t )
−εg(t )

⎞
⎠ ≈ �

� + �

(
εg(t )

∑
i �ieiϕi (t )∑

i �ie−iϕi (t ) −εg(t )

)
, (C5)

where in the latter equality we neglected EA,0 � �.
Next, � in Eq. (C3) is the matrix of Berry connection. It stems from the parametric dependence of |p(t )〉 and |h(t )〉 on time.

To find �, it is convenient to use the many-body representation for the states: |p/h〉 = γ
†
p/h|O〉. This representation allows us to

rewrite � as

�μν = −ih̄〈O|γμγ̇ †
ν |O〉 − ih̄δμν〈O|Ȯ〉. (C6)

Here the second term is ∝ δμν and thus does not influence the dynamics of the system [e.g., it has no effect on the response
functions]; we omit it in what follows. To find the first term, −ih̄〈O|γμγ̇ †

ν |O〉, it is convenient to expand γp and γh into the
electron field operators. The expansion reads(

γp

γh

)
= √

α

(
d↑
d†

↓

)
+
∑
i,k

�
†
i,k

(
ψ↑,i,k

ψ
†
↓,i,−k

)
, (C7)

where dσ is the annihilation operator for an electron at the dot with spin σ =↑ or ↓, and ψσ,i,k is the annihilation operator for
an electron in the lead i ∈ {L,R} with momentum k and spin projection σ . Parameter α is defined in Eqs. (18) and (19). Finally,
�i,k is a 2 × 2 matrix that is defined in terms of the ABS wave functions as

�i,k = 1√
α

(�EA,0,i,k, �−EA,0,i,k )

(
pEA,0 p−EA,0

hEA,0 h−EA,0

)
. (C8)

Here, p±EA,0 , h±EA,0 are the components of the wave function at the dot [see Eq. (B2)], and �±EA,0,i,k are the 2 × 1 spinors
describing the components of the ABS wave functions in the lead i. Using the decomposition (C7) together with the normalization
condition α +∑

i,k �
†
i,k�i,k = 1 [where α and 1 are proportional to the 2 × 2 identity matrices] in Eq. (C6) we may represent

the Berry connection � as

� = − ih̄

2

∑
i,k

[�†
i,k�̇i,k − �̇

†
i,k�i,k]. (C9)
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The matrix �i,k can be found using the Schrödinger equation for the ABS wave functions. We obtain

�i,k = 1√
V

√
α Ti

�2 − E2
A,0 + ξ 2

k

[
ξkτz − �eiϕiτz/2τxe

−iϕiτz/2 + H
]
, (C10)

where τx,y,z are Pauli matrices in the Nambu space, Ti = tiτze−iϕiτz/2, and V is the volume of the lead. The third term in brackets
is ∼EA,0 and may be neglected in comparison with the first two terms ∼� at low energies EA,0 � �.8 Then, we find

�i,k ≈ 1√
V

√
�

� + �

Ti
�2 + ξ 2

k

[
ξkτz − �eiϕiτz/2τxe

−iϕiτz/2
]
, (C11)

where we also disregarded EA,0 is the denominator and used α ≈ �/(� + �). Substituting this expression in Eq. (C9), we obtain

� ≈ −τz
�Rh̄ϕ̇R + �Lh̄ϕ̇L

2(� + �)
. (C12)

Combining Eqs. (C3), (C5), and (C12), we arrive to a final expression for the low-energy Hamiltonian in the absence of
Coulomb interaction:

H (le)
even = Eeven + �

� + �

(
εg(t )

∑
i �ieiϕi (t )∑

i �ie−iϕi (t ) −εg(t )

)
− �Rh̄ϕ̇R(t ) + �Lh̄ϕ̇L(t )

2(� + �)

(
1 0
0 −1

)
. (C13)

The Hamiltonian H (le)
even is evidently consistent with the gauge-invariance. The gauge-invariance means that the physics should

not be affected by a common shift Vsh(t ) of all electric potentials,

εg(t ) → εg(t ) − eVsh(t ), h̄ϕ̇R/L(t ) → h̄ϕ̇R/L(t ) + 2eVsh(t ). (C14)

Indeed, as can be easily checked, such a common shift may be compensated by a unitary transformation9

H (le)
even → UH (le)

evenU† − ih̄UU̇†, where U = exp
[
−iτz

1

h̄

∫ t

eVsh(t ′)dt ′
]
. (C15)

The next step is to account for a weak Coulomb interaction, U � � + �. The interaction leads to the renormalization of
the parameters of the low-energy Hamiltonian H (le)

even. The renormalizations may be accounted for by combining the perturbative
approach of Appendix B with the requirement of the gauge-invariance, as detailed below.

To start with, it is again convenient to represent the low-energy Hamiltonian as H (le)
even = Eeven + H + �, where Hμν =

〈μ|H |ν〉 − Eeven and �μν = −ih̄〈μ|∂t |ν〉. To find Eeven and H, we project the full many-body Hamiltonian H (including the
Coulomb interaction part) onto particle and hole states which depend on time parametrically. The projection is carried out
similarly to how it was done in Appendix B. We obtain Eeven given by Eq. (22) and H given by

H ≈ �

� + �

(
εg(t )

[
1 + U

�
f ( �

�
)
] ∑

i �ieiϕi (t )
[
1 + U

�
g( �

�
)
]

∑
i �ie−iϕi (t )

[
1 + U

�
g( �

�
)
] −εg(t )

[
1 + U

�
f ( �

�
)
]
)

. (C16)

Here dimensionless functions f and g are defined in Eqs. (B14) and (B15), respectively.
To understand how expression (C6) for the Berry connection � gets renormalized by U 	= 0, we require the low-energy

Hamiltonian H (le)
even = Eeven + H + � (with H given by Eq. (C16)) to be consistent with the gauge-invariance [see Eqs. (C14)

and (C15)]. This leads to

� ≈ −τz
�Rh̄ϕ̇R + �Lh̄ϕ̇L

2(� + �)

[
1 − U

�
f

(
�

�

)]
(C17)

In the main text, we focus on a particular gauge in which ϕL(t ) = −ϕR(t ) = ϕ(t )/2. In this gauge, we find by combining
Eqs. (C16) and (C17):

H (le)
even ≈ Eeven + �

� + �

(
ε̃g(t ) γ̃ [ϕ(t )]

γ̃ �[ϕ(t )] −ε̃g(t )

)
− δ� h̄ϕ̇(t )

4(� + �)

[
1 − U

�
f

(
�

�

)](
1 0
0 −1

)
, (C18)

where δ� = �L − �R and

ε̃g(t ) = εg(t )

[
1 + U

�
f

(
�

�

)]
, γ̃ [ϕ(t )] =

(
� cos

ϕ(t )

2
+ iδ� sin

ϕ(t )

2

)[
1 + U

�
g

(
�

�

)]
. (C19)

Finally, we note that in the considered gauge the Berry connection term in Eq. (C18) is small: at most, it produces relative
corrections ∼EA/� to the transition matrix elements. The renormalization of the Berry connection due to U � � + � thus has

8It can be shown by a straightforward-yet-tedious calculation that retaining H in Eq. (C10) would only produce corrections to the Berry
connection � whose influence on the dynamics of the ABS (e.g., on the transition matrix elements) is suppressed by a small parameter
E 2

A,0/�
2 � 1.

9The gauge-invariance of Eeven is ensured by a contribution to the Berry connection −ih̄〈O|Ȯ〉, which we omitted in Eq. (C13).
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a very weak influence on the dynamics of the ABS (which is controlled by a small parameter ∼EAU/�2 � 1). Neglecting the
renormalization, we arrive to Eq. (28) of the main text.

APPENDIX D: LINEAR RESPONSE FUNCTIONS

1. General expression for the linear response functions

In this section, we derive Eq. (35) of the main text. We start with a general linear response relation,

χAB[ω, n] = 〈∂bÂ〉 + χK
AB[ω, n], χK

AB[ω, n] = −i
∫ ∞

0
dteiωt 〈[Â(t ), B̂(0)]〉, (D1)

that includes the diamagnetic term 〈∂bÂ〉 and the Kubo term χK
AB[ω, n]. This relation can be expressed identically as

χAB[ω, n] = 〈∂bÂ〉 + χK
AB[0, n] + δχAB[ω, n], where δχAB[ω, n] = χK

AB[ω, n] − χK
AB[0, n]. (D2)

By definition, the dynamic part of the response function δχK
AB[ω, n] vanishes at zero frequency. The remaining part, 〈∂bÂ〉 +

χK
AB[0, n], in turn describes the zero-frequency response. We may simplify the latter part using the fact that at ω = 0 the system

follows the applied drives adiabatically. The adiabaticity implies

χAB[0, n] = ∂b〈Â〉 = ∂a∂bE [n], (D3)

where we used 〈Â〉 = 〈∂aH〉 = ∂aE [n]. Thus we identify

〈∂bÂ〉 + χK
AB[0, n] = χAB[0, n] ≡ ∂a∂bE [n], (D4)

which leads to Eq. (35) of the main text.

2. Off-diagonal components of the response function

In this Appendix, we present the plots of phase- and gate voltage- dependence of χIQ[n, ω] for the parameters �L, �R, U ,
and ω similar to those used in Fig. 4. Nondissipative parts of χIQ and χQI are related by the complex conjugation and thus we do
not consider the latter separately. In contrast to χQQ and χII , nondissipative part of χIQ has both real and imaginary components.
We plot these components separately in Fig. 7. Note that χIQ vanishes if εg = 0 or ϕ = π (as a consequence of particle-hole and
time-reversal symmetries, respectively [see discussion after Eq. (34)]). Thus we plot the phase dependence for εg = 0.05� and
the gate voltage dependence for ϕ = 9π/10.

3. Full expressions for dynamic parts of the response functions at small frequencies

Here, we present expressions for the dynamic parts of the response functions without neglecting the small phase factor in
Eq. (30) (as was done in the main text). We only present expressions for δχAB in the state |0〉. In the state |2〉, the dynamic part of
the response function can be approximately recovered as δχIQ[ω, 2] = −δχIQ[ω, 0]. The dynamic part of the response function
in the odd states is small at h̄ω � �.

Equation (40) for δχQQ remains unaltered when the phase factor is taken into the account. For δχII at h̄ω � � we get

δχII [ω, 0] = −φ−2
0

EA

h̄2ω2

4E2
A − (h̄ω + i0)2

1

|γ̃ |2
[
ε̃2
g (∂ϕEA)2 + 1

4

(
�

� + �

)2(
1 + g

U

�

)4

δ�2

(
� − |γ |2

� + �

)2
]
, (D5)

where |γ |2 = �2 − 4�R�L sin2(ϕ/2). For δχIQ we obtain at h̄ω � �

δχIQ[ω, 0] = eφ−1
0

4E2
A − (h̄ω + i0)2

[
h̄2ω2∂εg∂ϕEA +

(
�

� + �

)3 ih̄ω

EA

(
� − |γ |2

� + �

)
δ�
(

1 + f
U

�

)(
1 + g

U

�

)2
]
. (D6)

Response function δχQI can be obtained from Eq. (D6) by conjugating the expression in the square brackets.

4. Exact evaluation of the linear-response functions in the absence of interaction

In this Appendix, we provide the exact expressions for linear response functions in the discrete states |00〉, |10,σ 〉, and |20〉
in the absence of Coulomb interaction. We also clarify why in the noninteracting case the linear response functions satisfy the
occupation rule (χ [ω, 0] + χ [ω, 2])/2 = χ [ω, 1].

We start with a general expression for the linear response functions. As was shown in Appendix D 1,

χAB[ω, n] = ∂a∂bE0[n] + δχAB[ω, n], (D7)

δχAB[ω, n] = χK
AB[ω, n] − χK

AB[0, n], χK
AB[ω, n] = −i

∫ ∞

0
dteiωt 〈[Â(t ), B̂(0)]〉. (D8)
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FIG. 7. The response function χIQ in states |0〉, |1σ 〉, |2〉 with different number of quasiparticles at the ABS. Re χIQ is plotted as a function
of ϕ in (a) [for εg = 0.05�] and as a function of εg in (b) [for ϕ = 9π/10]; Im χIQ is plotted as a function of ϕ in panel (c) [for εg = 0.05�]
and as a function of εg in panel (d) [for ϕ = 9π/10]. The plots are produced using Eqs. (35), (39), and (41), for parameters �L = 0.3�,
�R = 0.35�,U = 0.35�, and h̄ω = 0.21� (these parameters are similar to that in Fig. 4). The response functions in states |0〉 and |2〉 diverge
when the frequency is in resonance with the transition between |0〉 and |2〉, i.e., when h̄ω = 2EA (vertical dashed lines in the plots). Generally,
the response function χIQ in the odd states is small compared to that in the even states. We note that away from resonances both Re χIQ and
Im χIQ describe the nondissipative response. The dissipative part of the response functions—which is present at resonances only—is not shown
in the plot.

Here, A and B stand for either current or charge, a and b are the corresponding drive variables (Vg corresponds to Q and φ

corresponds to I), and the average in χK
AB is taken over the discrete state |n0〉 (with n = 0, 1 or 2). The adiabatic part of the

response function, ∂a∂bE0[n], can be calculated using the exact expression for the energies of the discrete states, cf. Eq. (6).
To calculate the dynamic part, δχAB, it is convenient to introduce the single-particle representations of the current and charge
operators I and Q. These objects are related to the corresponding many-body operators Î and Q̂ through

Î = η†Iη, Q̂ = η†Qη, where η =
⎛
⎝ D

�L(r = 0)
�R(r = 0)

⎞
⎠, (D9)

and are given explicitly by

I = − e

2
τz

⎛
⎝ 0 −itLeiϕLτz/2 itReiϕRτz/2

itLe−iϕLτz/2 0 0
−itRe−iϕRτz/2 0 0

⎞
⎠, Q = −eτz

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠. (D10)

We will now use the Wick’s theorem to express the average 〈[Â(t ), B̂(0)]〉 in terms of the single-particle Green’s functions and
matrix elements of the operators I and Q [see Eq. (D10)]. To do that, we first introduce the relevant Green’s functions:

G+−
μν (t ) = −i〈ημ(t )η†

ν (0)〉, G−+
μν (t ) = i〈η†

ν (0)ημ(t )〉, (D11)

where μ and ν are the indexes in the Nambu space. In terms of these Green’s functions, the response functions can be expressed
as

χK
AB[ω, n] = −i

∫ ∞

0
dteiωtTr[AG+−(t )BG−+(−t ) − AG−+(t )BG+−(−t )], (D12)

where A and B are the single-particle versions of the operators Â and B̂, respectively, and the trace is taken over the matrix
indices both in the dot/lead subspace and in the Nambu subspace. Note that the information about the state of the system—|00〉,
|10,σ 〉, or |20〉—is encoded in G+− and G−+. Next, it is convenient to relate G+− and G−+ to the retarded, advanced, and Keldysh
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Green’s functions,

GR/A
μν (t ) = ∓iθ (±t )〈{ημ(t ), η†

ν (0)}〉, GK
μν (t ) = G+−

μν (t ) + G−+
μν (t ). (D13)

The relations may be summarized as

G+−(t > 0) = GK (t ) + GR(t )

2
, G−+(t > 0) = GK (t ) − GR(t )

2
,

G+−(t < 0) = GK (t ) − GA(t )

2
, G−+(t < 0) = GK (t ) + GA(t )

2
. (D14)

Representation of Eq. (D14) is convenient, because the retarded and advanced Green’s functions are agnostic to the state of
the system. The information about the latter is solely contained in the Keldysh Green’s function. Substituting Eq. (D14) into
Eq. (D12), we obtain

χK
AB[ω, n] = − i

2

∫ ∞

0
dteiωtTr[AGR(t )BGK (−t ) + AGK (t )BGA(−t )]. (D15)

As the next step, we transfer the latter equation to the energy domain and use Kramers-Kronig relations

GR(h̄ω + ε1) = −
∫ ∞

−∞

dε2

2π i

GR(ε2) − GA(ε2)

h̄ω + ε1 − ε2 + i0
, GA(ε1 − h̄ω) = −

∫ ∞

−∞

dε2

2π i

GR(ε2) − GA(ε2)

ε1 − h̄ω − ε2 − i0
, (D16)

as well as

GK (ε) = (1 − 2n(ε))[GR(ε) − GA(ε)]. (D17)

In the Eq. (D17), n(ε) is the distribution function. For the considered discrete states n(ε > �) = 0 and n(ε < −�) = 1. State |00〉
is determined by n(−EA,0) = 1 and n(EA,0) = 0; states |1σ,0〉 have n(EA,0) = n(−EA,0) = (1 + σ )/2, where σ = 1 and σ = −1
correspond to spin up and down, respectively; finally, in the state |20〉 we have n(−EA,0) = 0 and n(EA,0) = 1. Ultimately, we
obtain

χK
AB[ω, n] =

∫ ∞

−∞
dε1dε2

n(ε1) − n(ε2)

h̄ω + ε1 − ε2 + i0
Tr[AV (ε2)BV (ε1)], V (ε) = i

2π
(GR(ε) − GA(ε)). (D18)

Notice that the trace in Eq. (D18) does not depend on the distribution function n(ε) since it contains only the retarded and
advanced Green’s functions. The components of these Green’s functions were computed in Appendix A 1. We identify

GR/A(ε) =

⎛
⎜⎜⎝
GR/A

dd (ε) GR/A
dL (ε) GR/A

dR (ε)

GR/A
Ld (ε) GR/A

LL (ε) GR/A
LR (ε)

GR/A
Rd (ε) GR/A

RL (ε) GR/A
RR (ε)

⎞
⎟⎟⎠, (D19)

where GR/A
dd is determined by Eq. (8) (with ε exchanged for ε ± i0), while GR/A

id , GR/A
di , and GR/A

i j are given in Eqs. (A6) and (A7).
Note that the advanced Green’s function can be obtained from the retarded Green’s function via GA(ε) = (GR(ε))†. Matrix V
can be decomposed into a continuum contribution (that is nonzero for |ε| > � only) and the contributions corresponding to the
ABS (which are nonzero only at ε = ±EA,0),

V (ε) = V (ε)θ (|ε| − �) + V+δ(ε − EA,0) + V−δ(ε + EA,0). (D20)

In this expression,

V± =
⎛
⎝νdd,± νdL,± νdR,±

νLd,± νLL,± νLR,±
νRd,± νRL,± νRR,±

⎞
⎠, (D21)

where

νdd,± = ±
(
�2 − E2

A,0

)
2�R�L�2

dEA,0

d cos ϕ

⎛
⎝ ± EA,0

Z (EA,0 ) + εg
�√

�2−E2
A,0

∑
i �ieiϕi

�√
�2−E2

A,0

∑
i �ie−iϕi ± EA,0

Z (EA,0 ) − εg

⎞
⎠,

1

Z (ε)
= 1 + �√

�2 − ε2
, (D22)

and

νid,± = g±EA,0Tiνdd,±, νdi,± = νdd,±T †
i g±EA,0 , νi j = g±EA,0Tiνdd,±T †

j g±EA,0 . (D23)
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Equation (D18) combined with the representation Eq. (D20) allow us to break the response function into physically distinct
contributions. Using the particle-hole symmetry and Eq. (D20), we obtain

χK
AB[ω, n] = −

∫ +∞

�

dε1dε2
1

h̄ω + ε1 + ε2 + i0
Tr[Aν(−ε2)Bν(ε1)]

−
∫ +∞

�

dε1
1 + n(EA,0) − n(−EA,0)

ε1 − EA,0 + h̄ω + i0
Tr[Aν+Bν(ε1)] −

∫ +∞

�

dε1
1 + n(−EA,0) − n(EA,0)

ε1 + EA,0 + h̄ω + i0
Tr[Aν−Bν(ε1)]

− [n(−EA,0) − n(EA,0))]
Tr[Aν−Bν+]

2EA,0 + h̄ω + i0
+ c.c.(−ω), (D24)

where c.c.(−ω) denotes the complex conjugate of all of the preceding terms in the equation, in which we also change ω → −ω.
Different terms in Eq. (D24) correspond to different transition processes. The first line corresponds to a process in which a
Cooper pair in the condensate is broken to produce two quasiparticle excitations in the continuum. The second line contains
processes that involve both the ABS and the quasiparticle continuum. Finally, the first term in the third line corresponds to
transition processes that involve only the ABS. The contributions to χK

AB[ω, n] stemming from the first two lines are small at
small frequencies due to the large energy denominators. They can be neglected for h̄ω � � − EA,0 in comparison with either
the first term in the third line of (D24), or with the adiabatic contribution to the response function. In the main text, we assumed
EA,0 � � and thus it was enough to require h̄ω � � to neglect the first two lines of Eq. (D24).

Equation (D24) can be used to obtain an especially simple expression for the diagonal components of the dynamic part of the
response function, δχAA. We find

δχAA[ω, n] = −
∫ +∞

�

dε1dε2

ε1 + ε2

2h̄2ω2

(ε1 + ε2)2 − (h̄ω + i0)2
Tr[Aν(−ε2)Aν(ε1)]

−
∑
σ=±

(1 + σ [n(EA,0) − n(−EA,0)])
∫ +∞

�

dε1

ε1 − σEA,0

2h̄2ω2

(ε1 − σEA,0)2 − (h̄ω + i0)2
Tr[AνσAν(ε1)]

− [n(−EA,0) − n(EA,0))]
1

2EA,0

2h̄2ω2

4E2
A,0 − (h̄ω + i0)2

Tr[Aν−Aν+]. (D25)

Notice that the diagonal parts of the response function scale as ∝ ω2 at small frequencies.

Occupation rule in the absence of interactions

In the absence of interaction, the response functions satisfy the occupation rule,

1

2
(χAB[ω, 0] + χAB[ω, 2]) = χAB[ω, 1]. (D26)

This can be easily checked using Eq. (D24) for the finite-frequency response function χAB[ω, n]. To do that, first note that
n(−EA,0) − n(EA,0) = 1 in the state |00〉 and n(−EA,0) − n(EA,0) = −1 in the state |20〉. Therefore the average of n(−EA,0) −
n(EA,0) between the even states is zero. At the same time, n(−EA,0) − n(EA,0) = 0 in the odd states. Thus Eq. (D26) holds.

We believe that the validity of the occupation rule Eq. (D26) in the absence of Coulomb interaction is not restricted to a
particular model considered here. First of all, Eq. (D26) is agnostic to the presence of other ABS within the gap, as long as they
have a consistent occupation. Equation (D26) should also hold atU = 0 in the presence of magnetic field and spin-orbit coupling
[though in the absence of spin degeneracy the right-hand side of Eq. (D26) should be replaced with a half-sum of the odd sates
in the considered spin-split doublet]. Finally, the occupation rule also survives the presence of above-the-gap quasiparticles
provided that the occupation of the ABS is certain.

APPENDIX E: EFFECTS OF CAPACITANCE BETWEEN THE DOT AND THE LEADS

Throughout the main text, we assumed that the capacitance between the dot in the weak link and the gate, Cg, is much larger
than capacitances between the dot and the leads, CL and CR (indices L/R correspond to left and right lead, respectively). This
may not necessarily be the case in the experiments. In this Appendix, we discuss the modifications of our theory that arise when
capacitances between the leads and the dot are comparable to the capacitance between the gate and the dot. We still neglect the
capacitance between the dot and the ground, assuming that the grounded parts of the device are located sufficiently far away
from the weak link.

The main effect of appreciable CR and CL is the modification of a relation between the energy of the level at the dot, εg(t ),
and the voltages Vg(t ), VL(t ), and VR(t ) [here Vg(t ) is the voltage bias applied to the gate, VL(t ) is the voltage at the left lead, and
VR(t ) is the voltage at the right lead]. We find

εg(t ) = −e
CgVg(t ) +CLVL(t ) +CRVR(t )

Cg +CL +CR
. (E1)
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This expression should be contrasted with a simpler relation used in the main text, εg(t ) = −eVg(t ); the latter relation is justified
only when Cg � CL,CR. Keeping in mind the modified expression for εg(t ), Eq. (E1), the low-energy Hamiltonian is still given
by H (le)

even = Eeven + H + �, where Eeven is determined by Eq. (22), H is determined by Eq. (C16), and � is determined by
Eq. (C17).

Next, we derive the relation between the admittance matrix of the weak link and the response functions χII , χIQ, χQI , and
χQQ, taking into the account CL and CR. Motivated by cQED applications of Sec. VII, we assume that the gate voltage is static.
Then we find

YLL[ω] = χII [ω]

−iω
+ Cg −CL +CR

Cg +CL +CR

χIQ − χQI

2
+
(
Cg −CL +CR

Cg +CL +CR

)2 iωχQQ

4
, (E2a)

YLR[ω] = χII [ω]

iω
− 1

2

Cg(χIQ + χQI ) − (CL −CR)(χIQ − χQI )

Cg +CL +CR
+ C2

g − (CL −CR)2

(Cg +CL +CR)2

iωχQQ

4
, (E2b)

YRL[ω] = χII [ω]

iω
+ 1

2

Cg(χIQ + χQI ) + (CL −CR)(χIQ − χQI )

Cg +CL +CR
+ C2

g − (CL −CR)2

(Cg +CL +CR)2

iωχQQ

4
, (E2c)

YRR[ω] = χII [ω]

−iω
− Cg +CL −CR

Cg +CL +CR

χIQ − χQI

2
+
(
Cg +CL −CR

Cg +CL +CR

)2 iωχQQ

4
. (E2d)

Matrix Yi j[ω] can be used to determine the frequency shift of the microwave resonator coupled to the weak link, see Eq. (51).
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