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We report on finite bias spectroscopy measurements of the two-electron spectrum in a gate defined
bilayer graphene (BLG) quantum dot for varying magnetic fields. The spin and valley degree of freedom in
BLG give rise to multiplets of six orbital symmetric and ten orbital antisymmetric states. We find that
orbital symmetric states are lower in energy and separated by ≈ 0.4–0.8 meV from orbital antisymmetric
states. The symmetric multiplet exhibits an additional energy splitting of its six states of ≈ 0.15–0.5 meV
due to lattice scale interactions. The experimental observations are supported by theoretical calculations,
which allow to determine that intervalley scattering and “current-current” interaction constants are of the
same magnitude in BLG.
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Graphene quantum dots (QDs) are considered promising
candidates for spin-based quantum computation, as the
low spin-orbit and hyperfine coupling provides long spin
coherence times [1–5]. In addition to the spin, graphene
offers the valley degree of freedom, which gives rise to a
rich energy spectrum and creates the opportunity for the
implementation of valley and Kramer’s qubits [5–7].
Recent experimental progress on electrostatically confined
bilayer graphene (BLG) QDs, demonstrating single-
electron occupation [8–10], gate-tunable valley g factors
[11] and low spin-orbit coupling [12–14], brings graphene-
based qubits within reach. As two-electron states are
particularly interesting for the implementation of well-
controllable qubits, such as exchange and singlet-triplet
qubits [15,16], which offer various advantages over single-
electron qubits, a detailed understanding of the two-particle
spectrum in BLG QDs is becoming increasingly important.
This is all the more true since the spin and valley

(Kþ, K−) degrees of freedom in BLG yield a total of 16
two-particle states where the wave-function-dependent
valley g factors give rise to a rich level spectrum. The
total two-particle wave function in BLG can be factorized
into an orbital, a spin and a valley term [17,18], resulting in
six states with an antisymmetric spin valley and a sym-
metric orbital wave function, and ten states with a sym-
metric spin-valley and an antisymmetric orbital wave

function. This gives rise to the symmetric and antisym-
metric multiplet structure of the two-electron spectrum
in BLG.
In this Letter, we report on the experimental observation

and detailed description of the symmetric and antisym-
metric two-electron multiplets in BLG QDs. We confirm
the Berry curvature induced wave function dependence of
the valley magnetic moment, observing different valley g
factors for single-particle, symmetric, and antisymmetric
orbital wave functions, which gives rise to a rich magnetic-
field dependent transition structure. Additionally, we show
that the energy splitting between the multiplets (ΔOrb) can
be tuned in the range of 0.4–0.8 meV and that the splitting
of the orbital-symmetric multiplet allows us to quantify
inherent lattice scale interaction constants in BLG [19–21].
We reconstruct the two-electron spectrum of the BLG

QD from finite bias spectroscopy measurements of the
N ¼ 1 → 2 transition. Therefore, it is necessary to con-
sider both single- and two-particle states, which are
presented in Figs. 1(a), 1(b). Figure 1(b) shows the energy
of the four single-particle states of the lowest orbital as a
function of an out-of-plane magnetic field, B⊥. At zero
magnetic field, the four states are split into two Kramers
pairs by Kane-Mele spin-orbit coupling, ΔSO, [12–14,22].
At finite magnetic field, the states shift linearly in
energy according to their spin and valley Zeeman
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effect ΔEðB⊥Þ ¼ 1
2
ð�gs � gð1Þv ÞμBB⊥, with the spin g

factor gs ¼ 2, the single-particle (wave function dependent)

valley g factor gð1Þv , and the Bohr magneton μB [17,23–25].
Note that the valley g factor is usually around one order of
magnitude larger than the spin g factor. Measurements
confirming the well-understood single-electron spectrum in
our single QD are shown in Supplemental Material, Fig. S2
[26]. The 16 two-particle states are shown in Fig. 1(a),
which, at B⊥ ¼ 0, group into the orbital symmetric (ϕs)
and antisymmetric (ϕa) multiplets separated by the energy
ΔOrb. For both the valley and spin wave function compo-
nents, there are three symmetric and one antisymmetric
two-particle states, namely the triplets jTs;v

0�i and the singlet
jSs;vi, where s and v refer to spin and valley. There are six
(ten) antisymmetric (symmetric) combinations of the spin

and valley components, which need to be combined with an
(anti)symmetric orbital component for the total wave
function to remain antisymmetric [27]. The orbital energy
of the two-particle states comprises the occupied single-
particle orbitals’ energies and Coulomb interactions
between the two particles, which lead to a splitting of
symmetric and antisymmetric orbitals by ΔOrb, depending
on the size of the QD, surrounding screening and applied
displacement field [17]. Additionally, the orbitally sym-
metric states are affected by short-range Coulomb inter-
actions inherent to BLG [19–21], since their orbital wave
functions have nonzero density at the relevant short
interparticle distances. BLG exhibits local density fluctua-
tions that are determined by the lattice symmetry. Mutual
interactions between these fluctuations induce the forma-
tion of states with spontaneously broken symmetries in
sublattice and valley space, introducing splittings δ1;2
proportional to the strength of the corresponding short-
range interactions [18]. The energy of the spin- and valley-
dependent part is determined by the coupling to the
magnetic field and the spin-orbit coupling. Kane-Mele
spin-orbit coupling induces opposite spin splittings in the
two valleys, which only affects states in the antisymmetric
orbital that are both valley and spin polarized. A
perpendicular magnetic field couples to spin- and/or
valley-polarized states jTv;s

0�i and shifts their energies
according to their corresponding g factors. Note, that the
two-particle valley g factors (gsv; gav) are in general also

different from the single-particle g factor (gð1Þv ) [28].
Figure 1(c) shows a schematic of our QD device, which

consists of a BLG flake encapsulated in hexagonal boron
nitride (hBN). This heterostructure is placed on a graphite
back gate (BG) and has two Cr=Au gate layers evaporated
on top, a set of split gates (SG) and a finger gate (FG). To
form a QD, we follow previous works [8–11,13,24,29,30]:
A narrow p-doped channel is created utilizing SG and BG.
The FG locally overcompensates the potential applied by
the BG to form an n-type QD. It is separated from source
and drain by two tunneling barriers, where the Fermi
energy resides within the band gap. With a simple plate
capacitor model [31], we estimate the radius of our QD to
be ≈ 80 nm, which is compatible with the dimensions of
the gate layout.
Figure 1(d) shows the differential conductance, dI=dVb,

through the QD as a function of the bias, Vb, and FG
voltage, VG, for an electron occupation, N , between zero
and two. Within the Coulomb diamonds, N is fixed and
transport is suppressed by Coulomb blockade. The outline
of the conducting region between N ¼ 1 and N ¼ 2 is
defined by the ground state (GS) transition entering and
leaving the bias window. Here, “GS transition” refers to the
QD being in its GS before and after the tunneling of the
second electron onto the QD. Additional transitions involv-
ing excited states (ES) of the N ¼ 1 and/or N ¼ 2
spectrum are possible within that region, as highlighted
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FIG. 1. (a), (b) Single-,N ¼ 1, and two-particle,N ¼ 2, energy
spectrum of a BLG QD in an out-of-plane magnetic field. The two-
particle states are split into two multiplets with (anti)symmetric
orbital wave function, (ϕa) ϕs, consisting of (ten) six states. They
are separated by an orbital splitting, ΔOrb, while the symmetric
multiplet is split again, denoted with δ1;2. The valley g factor is
different for single-particle, symmetric, and antisymmetric orbitals.
(c) Schematic of the device with BLG encapsulated in hexagonal
boron nitride and multiple gate layers that create the QD via soft
confinement. (d) Differential conductance dI=dVb with respect to
applied bias and FG voltage, showing diamond shaped regions of
Coulomb blockade. Finite bias measurements are performed along
the yellow arrow to inspect the excited state spectrum in the single
and two-particle regime. White arrows highlight excited states of
the two-particle spectrum.
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by the white arrows. Apart from QD transitions, we also
observe additional features in the differential conductance
in Fig. 1(d) [32], which most likely originate from density
of states effects in the leads [33,34] (see white asterisk) and
have previously been observed in similar devices [24].
To experimentally investigate the two-particle spectrum,

we measure line cuts along the dashed arrow in Fig. 1(d)
and inspect the magnetic field dependence of the GS and
ES transitions. In Fig. 2(a), we plot the transconductance,
dI=dVG, at Vb ¼ 3 mV as function of VG and B⊥. The gate
voltage along the dashed arrow in Fig. 1(d) was converted
to electrochemical potential [displayed on the right axis of
Fig. 2(b)] and the raw data was corrected for magnetic field
dependent oscillations in the lever arm, which are due to
Shubnikov–de Haas oscillations in the lead region [25].
With increasing VG, first the GS transition enters the bias
window, then additional transitions follow, each appearing
as feature of increased differential transconductance, giving
rise to a rich spectrum. Eventually, the GS transition leaves
the bias window, which Coulomb blockades the QD and
appears as a feature of strong negative transconductance
(white dashed line). The inset shows the reversed bias
direction for low magnetic fields [35]. From the linewidth
of the features, we may estimate a lower bound for possible

spin and/or valley mixing of < 100 μeV, in good agree-
ment with recent measurements on BLG double QDs [13].
We reproduce the features of Fig. 2(a) in theoretical

calculations, which are shown in Fig. 2(b). Tunneling
transport through the QD is described by solving the rate
equations for the single- and two-particle states presented
in Figs. 1(a) and 1(b) [36]. We obtain the tunnel rates for a
single-electron sequential tunnelling process to first order
in the tunneling Hamiltonian and by applying Fermi’s
golden rule. Using the tunnel rates we compute the
occupation probabilities for the different QD states in
the stationary limit and the resulting sequential tunnelling
current. Employing this procedure and adjusting the free

parameters gð1Þv , gs;av , δ1;2, tS;D, and ΔSO, we obtain differ-
ential transconductance maps [18] as in Fig. 2(b).
Now, we assign the most prominent features in Figs. 2(a)

and 2(b) to their corresponding transitions from single- to
two-particle states. Figure 2(c) shows all possible transi-
tions at zero magnetic field, where the spin-orbit splitting
was neglected for simplicity. The length of each transition
arrow directly corresponds to the chemical potential
required for that transition. Identifying transitions with
the features in Fig. 2(a) allows us to extract the involved
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FIG. 2. (a) Differential transconductance dI=dVG as a function of VG and B⊥, measured across the N ¼ 2 Coulomb peak at
Vb ¼ 3 mV as indicated in Fig. 1(b). Transitions to states with symmetric and antisymmetric orbital wave function with different g
factors give rise to a rich spectrum. The inset shows an enlargement for low magnetic field with reversed bias, where the multiplet
splitting is visible. Prominent features are highlighted by dashed lines, obtained from theoretically predicted features in (b): calculated

differential conductance map as in (a), assuming gð1Þv ¼ 39, gsv ¼ 32, gav ¼ 43, ΔSO ¼ 80 μeV, δ1 ¼ 66 μeV, δ2 ¼ 306 μeV, and an
asymmetry of the tunnel barriers to source tS and drain tD of tS=tD ¼ 0.7. (c),(d) Transition scheme from one to two electrons in the QD
at zero (c) and finite (d) B⊥, with spin-orbit coupling and spin Zeeman splittings omitted for simplicity. The length of the transition
arrows corresponds to the chemical potential necessary to enter the second electron in the QD, which also corresponds to the y axis in (a)
and (b).
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energy scales. The orbital splitting is ΔOrb ≈ 700 μeV, with
the symmetric orbital providing the GS transition (5,6) and
the antisymmetric orbital appearing at position (I) with
transitions 1, 3, 8, and 10. From the inset in Fig. 2(a), we
can extract δ2 ≈ 350 μeV, while δ1 ≈ 0 within the meas-
urement resolution. Figure 2(d) shows the level scheme at
finite B⊥. We can identify three different slopes that match
neatly with the data. The first ones are caused by transitions

where only the single-particle states shift with gð1Þv and
the two-particle states remain constant (3-8), while the
other two are due to transitions from the single-particle
states to the valley polarized triplets in either the symmetric
(2,9) or antisymmetric (1,10) orbital [42]. The change
in chemical potential for each transition is given by

Δμ3−8 ¼ � 1
2
gð1Þv μBB⊥, Δμ2;9 ¼ �ðgsv − 1

2
gð1Þv ÞμBB⊥, and

Δμ1;10 ¼ �ðgav − 1
2
gð1Þv ÞμBB⊥, respectively.

Taking these different slopes into account, it can be
understood how the GS transition evolves with magnetic
field. Transitions 5 and 6 are the GS transition for zero
magnetic field. For increasing positive magnetic field,
transition 6 requires more chemical potential, while tran-
sition 5 needs less. Still, transition 6 remains the GS
transition (which defines the Coulomb blockaded region),
since jK−i is the single-particle GS. Instead, transition 5
becomes a “negative” excited state, which manifests as a
decrease in transconductance [see arrow 5 in Fig. 2(a)]. At
position (II), transition 9 becomes the GS transition, when
jSsTv

−i becomes the two-particle GS. This reveals that the
symmetric orbital is lower in energy than the antisymmetric
one, since only the multiplet splitting of the symmetric
orbital gives rise to this change in the GS transition. When
further increasing the magnetic field, transition 10 even-
tually becomes the GS transition [see position (III)], as
soon as jTs

0�T
v
−i is lower in energy than jSsTv

−i, showing
that gav > gsv.
In order to better understand the energy scales involved

in the two-particle spectrum, the measurement of Fig. 2(a)

is performed for different displacement fields,D, applied to
the BLG, which changes the band structure and also the
confinement potential of the QD [17]. For each displace-
ment field, we evaluated ΔOrb; δ2, and the valley g factors
of the most distinct transitions. For transitions 3–8 in Fig. 2,
the slope only arises from the single-particle states, since
the two-particle states do not shift with magnetic field.
Figure 3(a) shows that the single-particle g factor evaluated
from transitions 6 and 8 are the same within the error
margins, even though they target states in two different

orbitals. There is a decrease of gð1Þv for higher displacement
fields, which was also observed earlier [11]. This decrease
is also visible in Fig. 3(b), where the g factors of the
symmetric and antisymmetric orbitals gs;av , are evaluated
from transitions 9 and 10. They show an average difference
of gav − gsv ≈ 8, confirming that the symmetric and anti-
symmetric orbital comprise of different single-particle
orbital states. The decrease of all g factors in Fig. 3
indicates a shift in the wave functions’ composition in k
space. This conclusion is supported by the fact that both the
orbital splitting as well as the short range interaction
contribution δ2 show the same trend in Fig. 3(c), since
they also scale with the shape of the wave function [17].
The orbital splitting, ΔOrb, decreases from ≈ 0.8 to
0.4 meV for increasing displacement fields, while δ2
decreases from ≈ 0.5 to 0.15 meV. For all displacement
fields, δ1 ≈ 0 within the measurement resolution.
The measurements of the splittings in Fig. 3(c) allow

conclusions about the microscopic short-range interaction
constants in BLG. We can relate the multiplet splittings δ1;2
to the short-range coupling constants [18–20], g⊥, (quan-
tifying intervalley scattering) and, gz0; g0z (generated
by “current-current” interactions): δ1 þ δ2 ¼ 8jg⊥Jj and
δ2 − δ1 ¼ 4jðgz0 þ g0zÞJj. The influence of the QD size,
confinement potential and band gap on the short-range
splitting is captured in J, which is the wave function
overlap of the specific QD state [17,18]. Consequently,
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FIG. 3. (a) Single-particle g factors, gð1Þv , as a function of applied perpendicular displacement field, evaluated from transitions to
orbitally symmetric (six) or antisymmetric (eight) two-particle states with vanishing valley magnetic moment [labeling as in Fig. 2(c)].
(b) Two-particle g factors, gs;av , evaluated from the transitions to valley triplet states in the (anti)symmetric orbital. Symmetric and
antisymmetric orbitals exhibit an average g factor difference of ≈ 8. (c) Energy splitting between symmetric and antisymmetric orbital,
ΔOrb, and multiplet splitting, δ2, in the symmetrical orbital as a function of displacement field.
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our experimental observation of near-vanishing δ1 indicates
that intervalley scattering and “current-current” interactions
are of the same magnitude in BLG QDs, i.e., 2jg⊥j≈
jgz0 þ g0zj. CalculatingJ for QDs of radius ≈ 80 nm yields
J ≈ 4 × 10−4 nm−2 [17]. Combining this with our exper-
imental results for δ2, we obtain an estimate for the short-
range BLG coupling constants [43], jg⊥j ≈ 0.08 eV nm2,
which is in accordancewith the order of magnitude estimated
previously from microscopic calculations [17].
In summary, we have experimentally observed both

orbitally symmetric and antisymmetric two-particle states
in a BLG QD using finite bias tunneling spectroscopy. We
identified that the 16 possible states are split into orbitally
symmetric and antisymmetric two-particle states separated
by ΔOrb ≈ 0.4–0.8 meV. The orbitally symmetric multiplet
is further split with δ2 ≈ 0.15–0.5 meV by lattice scale
interactions which are equally related to intervalley scatter-
ing and “current-current” interactions. We find that the two-
particle ground state is a spin triplet at B ¼ 0 but can be
tuned to be a spin singlet for finite out-of-plane magnetic
field. This is in contrast to semiconductor QDs, where the
spin singlet is the two-particle ground state for common
magnetic field strengths and is utilized for qubit readout in
double QDs via Pauli spin blockade. Understanding the
two-particle spectrum in BLG QDs is thus an essential step
for further investigating the influence of the valley on Pauli
blockade in double QDs and eventually for identifying a
suitable regime for qubit operations.
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