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The current response to an electromagnetic field in a Weyl or Dirac semimetal becomes nonlocal due to
the chiral anomaly activated by an applied static magnetic field. The nonlocality develops under the
conditions of the normal skin effect and is related to the valley charge imbalance generated by the joint
effect of the electric field of the impinging wave and the static magnetic field. We elucidate the signatures of
this nonlocality in the transmission of electromagnetic waves. The signatures include enhancement of the
transmission amplitude and its specific dependence on the wave’s frequency and the static magnetic field
strength.
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Introduction.—A salient feature of Weyl and Dirac
materials is the possibility to realize the chiral anomaly
due to their relativisticlike electronic spectra in the vicinity
of the band-touching nodal points. As was pointed out in
Ref. [1], this is an analog of the Adler-Bell-Jackiw axial
anomaly in relativistic physics [2,3]. The chiral Adler-
Bell-Jackiw anomaly was first observed inWeyl superfluid
3He-A [4]. In the solid-state physics setting, the anomaly
may lead to a negative magnetoresistance in the direction
parallel to the applied magnetic field. Interest in the
manifestations of the chiral anomaly in the electron trans-
port flared up after the discovery ofWeyl semimetals [5–7].
The kinetic theory of negative magnetoresistance in direct
current (dc) transport was fleshed out [8], and its depend-
ence on the electron spectra and relaxation times was
elucidated. A negative magnetoresistance was indeed
observed in Dirac (e.g., Na3Bi, Cd3As2, and ZrTe5) and
Weyl (e.g., transition metal monopnictides TaAs, NbAs,
TaP, and NbP) semimetals (see Refs. [9–13] for reviews on
anomalous transport properties). However, it was soon
realized that the observation of the negative magneto-
resistivity alone is not sufficient to claim the realization
of the chiral anomaly. Among the effects that canmimic the
anomaly are current jetting [14,15] due to an inhomo-
geneous distribution of the electric current in materials
with high mobility and electron scattering on long-range
ionic impurities [16].
It was suggested in Ref. [17] to use frequency as an

additional control “knob” to investigate the effects of
the chiral anomaly while circumventing the current jetting:
in the presence of a magnetic field, the anomaly results in a
Drude-like contribution to the conductivity. The width of the
corresponding low-frequency peak in the linear alternating
current (ac) response to a spatially uniform electric field is
determined by the internode relaxation rate. The latter rate is
usually small compared with the intranode relaxation rate,
so the anomalous conductivity peak is fairly narrow. The

tendency toward peak narrowing was seen in the contactless
measurements of the transmission amplitude of an electro-
magnetic field through a Cd3As2 film [18].
The electric field of the wave penetrating a material,

however, is nonuniform due to the skin effect. This raises a
question regarding the influence of chiral anomaly on the
transmission of an electromagnetic wave across a film
made of a Weyl or Dirac conductor.
We demonstrate in this Letter that an application of a

magnetic field parallel to the surface of a Weyl or Dirac
conductor activates the chiral anomaly and may result in a
nonlocal current response to an impinging electromagnetic
wave. We emphasize that this nonlocal response develops
under the conditions corresponding to the normal skin
effect. The latter is thought to be adequate for materials
with the electron mean free path shorter than the electro-
magnetic field penetration depth [19]. A new element
brought by the topological electronic band structure is
the valley charge imbalance. It is activated via the chiral
anomaly by the joint effect of the electric field of the
impinging wave, active within the skin layer, and a static
magnetic field. The valley charge imbalance preserves the
local charge neutrality and therefore is not suppressed by
screening. This property allows the imbalance to diffuse
beyond the skin depth, deeper into the sample. The
accompanying chiral magnetic effect [20,21] current rep-
resents the nonlocal response to the electric field of the
impinging wave and facilitates its anomalous penetration,
similar to a dc nonlocal transport [22–24].
The three main regimes of the current response including

dc, ac local, and ac nonlocal regimes are schematically
illustrated in Fig. 1. In this work, unlike the existing studies
(e.g., Ref. [18]) of the chiral anomaly performed in the local
regimes (see the blue dotted line in Fig. 1), we focus on the
ac nonlocal regime with a spatial dispersion of the
conductivity (see the red dotted line in Fig. 1).
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Model and key equations.—To study the transmission of
electromagnetic waves, we consider a film of a Dirac or
time-reversal symmetric Weyl semimetal [25] with the
thickness L along the z direction. We assume the normal
incidence of the incoming (z ≤ 0) wave with an electric
field Einðt; zÞ ¼ Eineiðkz−ωtÞ, where ω is the angular
frequency and k ¼ ω=c is the wave vector. A portion of
the incoming field Erðt; zÞ is reflected from the surface,
and a portion Eoutðt; zÞ is transmitted across the film. The
in-medium field Eðt; zÞ satisfies the standard system of
Maxwell’s equations. To close it, one needs to evaluate the
current density as a response to the electric field. This
(generally nonlocal) linear response is controlled by the
electron kinetics. In building the kinetic theory of a Weyl
or Dirac semimetal, we assume that the characteristic
intranode relaxation times are much shorter than the
internode ones in accordance with experiments, see,
e.g., Refs. [18,27]. In addition, the intranode scattering
rates are assumed to be much larger than the frequency of
the electromagnetic field. To activate the chiral anomaly,
we include a static uniform magnetic field B0, which is
applied parallel to the surface and is classically weak [28].
Under this condition, B0 does not affect the diffusive
electron dynamics while introducing an anomalous term
into the partial current density jαðt; zÞ produced by
electrons of node α [29],

jαðt; zÞ ¼ σαEðt; zÞ −Dα∇Nαðt; zÞ − vΩ;αNαðt; zÞ: ð1Þ

Here Nαðt; zÞ is the perturbed partial (or valley) electron
charge density at node α and vΩ;α is the anomalous
velocity associated with the flux χα of the Berry curvature;
Dα and σα ¼ e2ναDα are the respective diffusion constant
and partial electric conductivity. In terms of χα and the
Fermi level density of states να of electrons around node α,
the anomalous velocity is vΩ;α ¼ χαeB0=ð4π2ℏ2cναÞ.
While the first two terms in Eq. (1) correspond to the
conventional intranode diffusion current, the last term
describes the chiral magnetic effect current [20,21] after
summing over all nodes.
The kinetic equation in the diffusive approximation is

∂tNαðt; zÞ þ ∇ · jαðt; zÞ ¼ −
XNW

β

Tα;βNβðt; zÞ

− e2ναvΩ;α · Eðt; zÞ; ð2Þ

see the Supplemental Material [31] and, e.g., Refs.
[10,22,36] for details. The terms on the left-hand side
of Eq. (2) correspond to the conventional continuity
equation in each of the nodes. On the right-hand side,
the shorthand notation Tα;β ¼ δα;β

PNW
γ 1=τα;γ − 1=τβ;α in

the term responsible for the internode scattering in the
relaxation time approximation was introduced. Here NW
is a number of Weyl nodes and 1=τα;β are the scattering
rates between nodes α and β. Finally, the last term in
Eq. (2) corresponds to the chiral anomaly. It is important
to note that the total electric charge

PNW
α Nαðt; zÞ is

conserved by the collision integral and the chiral anomaly.
In addition, the transverse field, ∇ ·EðzÞ ¼ 0, in Eq. (2)
does not violate the electric charge neutrality.
Since the time dependence of fields, currents, and

densities is given by the same prefactor e−iωt, we combine
Eqs. (1) and (2) as

XNW

β

�
Tα;β

Dα
− 2iq2αðωÞδα;β − δα;β∂2

z

�
NβðzÞ

¼ −
e2να
Dα

vΩ;α ·EðzÞ; ð3Þ

where qαðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=ð2DαÞ

p
is the inverse of the diffusion

length. Finally, neglecting the displacement current for
ω ≪ σ0 with σ0 ¼

PNW
α σα being the static conductivity,

Maxwell’s equations for the transverse components of the
electric field together with the equation for current [Eq. (1)]
are brought to the following form:

FIG. 1. The schematic representation of the current response
regimes discussed in this work. Here q0ðωÞ ¼ 1=δðωÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ0ω

p
=c is inverse of the skin depth, σ0 is the static Drude

conductivity, ω is the angular frequency of the impinging wave,
qðωÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω=ð2DÞp
is inverse of the diffusion length, D is the

diffusion coefficient, ξ ¼ q0ðωÞ=qðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πσ0D

p
=c is the

frequency-independent parameter quantifying the nonlocality
of the response, and 1=τ5 is the effective internode scattering
rate. In addition, we assume a short intranode scattering time τ,
i.e., ωτ ≪ 1. The transmission of electromagnetic waves is
described via the standard expressions for the normal skin effect
[19] with conductivity modified by the chiral anomaly,
σðωÞ ¼ σ0 þ σanomðB0;ωÞ, in the dc and ac local (ξ < 1) regimes;
see Eq. (10) for the transmitted electric field. In the ac nonlocal
regime (ξ > 1), it is possible to achieve an enhancement of the
electromagnetic wave penetration depth; see Eqs. (8) and (9).
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½∂2
z þ 2iq20ðωÞ�EðzÞ ¼

4πiω
c2

XNW

α

vΩ;αNαðzÞ; ð4Þ

where q0ðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ0ω

p
=c is the inverse of the skin depth.

In order to form a complete system for the transverse
electric field EðzÞ and the valley charge densities NαðzÞ,
Eqs. (3) and (4) should be amended with boundary
conditions. We use the standard boundary conditions for
electromagnetic fields, i.e., we require the continuity of
the tangential component of the electric fields and their
derivatives [37] at z ¼ 0; L. As for the densities, we
consider two types of phenomenological boundary con-
ditions:

ðiÞ Nαðz¼ 0;LÞ ¼ 0 and ðiiÞ ∂zNαðz¼ 0;LÞ ¼ 0: ð5Þ

These two conditions correspond, respectively, to the limits
of fast and no internode relaxation at the boundary.
Transmission of electromagnetic waves.—A finite

anomalous velocity vΩ;α emerging at B0 ≠ 0 couples the
electric field EðzÞ of the wave to the diffusion of partial
densities NαðzÞ. The spectrum of the diffusion length scales
can be found by solving the eigenvalue problem for the
coupled set of the diffusion equations; see Eq. (3) for a
diffusion equation at node α. In general, the spectrum of the
diffusion lengths depends on the internode relaxation rates.
However, in the limit of ω being high compared with the
characteristic value 1=τ5 of the internode scattering rates,
the diffusion equations decouple from each other, and the
diffusion lengths are quantified by 1=qαðωÞ. We note that the
ratio ξα ¼ q0ðωÞ=qαðωÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πσ0Dα

p
=c is defined solely

by the material properties and is independent of ω. The
anomalous penetration of the field is driven by the largest
among ξα. Aiming at a strong anomalous effect, we assume
ξα ≫ 1 for all α and consider films of thickness far
exceeding the normal-skin penetration depth L ≫ 1=q0ðωÞ.
It is convenient to separate the electric field into

two components, EðzÞ ¼ EkðzÞ þE⊥ðzÞ, parallel and
normal to B0, respectively. The anomaly affects only the
former one, while jE⊥ðzÞj ∝ e−Lq0ðωÞ is independent of B0.
When evaluating EkðzÞ, we focus on the most practical case
of weak coupling between EkðzÞ and NαðzÞ. This allows us
to solve Eqs. (3) and (4) iteratively in vΩ;α by starting with

Eð0Þ
k ðzÞ¼ð1−iÞðω=cÞe−zq0ðωÞeizq0ðωÞEkin=q0ðωÞ at L − z ≫

1=q0ðωÞ within the film; the corresponding outgoing field
follows from the boundary conditions and reads

Eð0Þ
koutðz ¼ LÞ ¼ 2ð1 − iÞðω=cÞe−Lq0ðωÞeiLq0ðωÞEkin=q0ðωÞ.

Being substituted into the right-hand side of Eq. (3), Eð0Þ
k ðzÞ

creates a source exciting valley charge density imbalance.

The resulting solution Nð1Þ
α ðzÞ ∝ vΩ;α reads [31] as

Nð1Þ
α ðzÞ ¼ −i

e2ναvΩ;α
2q20ðωÞDα

sin ½ð1þ iÞðL − zÞqαðωÞ�
sin ½ð1þ iÞqαðωÞL�

Eð0Þ
k ð0Þ

ð6Þ

for the Dirichlet boundary conditions [Eq. (5)]. In solving
Eq. (3), we assumed a highly nonlocal regime, ξα ≫ 1, and
considered z ≫ 1=q0ðωÞ.
Lastly, we use Eq. (6) on the right-hand side of Eq. (4) to

find the anomalous correction Eð2Þ
k ðzÞ ∝ v2Ω;α to the electric

field. The solution to Eq. (4) is simplified by a slow
spatial variation of the partial densities, 1=qαðωÞ ¼
ξα=q0ðωÞ ≫ 1=q0ðωÞ, allowing us to write

Eð2Þ
k ðzÞ ¼ 1

σ0

XNW

α

vΩ;α

�
Nð1Þ

α ðzÞ − 1þ i
2q0ðωÞ

× e−ðL−zÞq0ðωÞeiðL−zÞq0ðωÞ∂zN
ð1Þ
α ðz ¼ LÞ

�
: ð7Þ

This form is valid for either of the two boundary
conditions for NαðzÞ. The outgoing field follows from
the continuity of the tangential components of the electric

field, i.e., Eð2Þ
koutðz ¼ LÞ ¼ Eð2Þ

k ðz ¼ LÞ.
We consider two characteristic cases of a thick film,

L ≫ 1=qαðωÞ, and a thin film, L ≪ 1=qαðωÞ, compared
with the diffusion lengths. In the former case, the partial
charge density decays exponentially with z. Using Eq. (7),
we find the following transmitted electric field:

Ekoutðt; z ¼ LÞ ¼ 2

ffiffiffiffiffiffiffiffi
ω

πσ0

r �
e−L=δðωÞ cos

�
L

δðωÞ −
π

4
− ωt

�

−
XNW

α

gα
ξ3α

B2
0

B2
αðωÞ

e−L=½ξαδðωÞ�

× cos

�
L

ξαδðωÞ
þ π

4
− ωt

��
Ekin; ð8Þ

where gα ¼ 1 for Nð1Þ
α ðz ¼ 0; LÞ ¼ 0 and gα ¼ ξ2α for

∂zN
ð1Þ
α ðz ¼ 0; LÞ ¼ 0, respectively. For clarity, in

Eq. (8), we restored the real part for the fields, used
the conventional definition for the normal-skin depth,
δðωÞ ¼ c=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ0ω

p
, and introduced the characteristic

magnetic field BαðωÞ ¼ 4πΦ0ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωνα

PNW
β νβDβ

q
, which

depends on the electronic properties of the material and
frequency. In writing BαðωÞ, we used the explicit expres-
sion for vΩ;α and σ0 ¼ e2

PNW
α ναDα for the Drude con-

ductivity; Φ0 ¼ πℏc=e is the magnetic flux quantum.
While the terms in Eq. (8) representing the conventional
and anomalous components of the transmitted field both
decay exponentially with the film thickness, the respective
penetration depths are vastly different at ξα ≫ 1.
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In the case of a thin film, L ≪ 1=qαðωÞ, the partial
charge, which is created in the skin layer, spreads over
the entire thickness of the film L due to diffusion.
Substituting the proper limit of Eq. (6) that defines

Nð1Þ
α ðzÞ into Eq. (7), we find

Ekoutðt;z¼LÞ¼2

ffiffiffiffiffiffiffiffi
ω

πσ0

r �
e−L=δðωÞcos

�
L

δðωÞ−
π

4
−ωt

�

−
1

2
ffiffiffi
2

p δðωÞ
L

XNW

α

gα
ξ2α

B2
0

B2
αðωÞ

sinðωtÞ
�
Ekin: ð9Þ

As expected, the anomalous correction to the outgoing
electric field (the second term) acquires a ∝ 1=L scaling
with the film thickness. In the case of the Dirichlet
boundary conditions (gα ¼ 1), there is an additional small
prefactor 1=ξ2α that originates from the suppression of

Nð1Þ
α ðzÞ near the boundaries. Such suppression is absent

for the Neumann boundary conditions (gα ¼ ξ2α) where a
uniform partial charge density is allowed [31].
To contrast the results for the local and nonlocal regimes,

we also present the transmitted field at ξα ≪ 1. It can be
obtained by introducing the anomalous correction to the
electric conductivity in the standard expression for the
normal skin effect; see the Supplemental Material [31] for
details. In the leading order in B0, we have

Ekoutðt; z ¼ LÞ ¼ 2

ffiffiffiffiffiffiffiffi
ω

πσ0

r
e−L=δðωÞ

�
cos

�
L

δðωÞ −
π

4
− ωt

�

−
1ffiffiffi
2

p L
δðωÞ

XNW

α

B2
0

B2
αðωÞ

× cos
�

L
δðωÞ − ωt

��
Ekin; ð10Þ

where, as in the case of the nonlocal response, we neglected
the internode scattering. As one can see by comparing
Eqs. (8)–(10), the scaling of the anomalous parts of the
transmitted fields with frequency is qualitatively different
and might be used to distinguish nonlocal and local response
regimes even if material parameters are not known a priori.
Furthermore, it is straightforward to check [31] that the
amplitude of the transmitted field in the local regime always
decreases with the magnetic field. On the other hand,
interference between the anomalous and the regular terms
in Eq. (8) or (9) may lead to an enhancement of the
transmitted field at B0 ≠ 0.
Estimates for a model with symmetric Weyl nodes.—To

provide estimates of the proposed effects, we consider a
simplified model with NW Weyl nodes forming well-
separated from each other symmetric pairs. Each pair consists
of nodes carrying opposite topological charges. We assume
the electron dispersion around each of the nodes to be linear,
with the same parameters να → ν and Dα → D. This allows

us to introduce the node-independent electron mean free path
l ¼ vFτ with the intranode relaxation time τ, and replace
ξα → ξ. With these simplifications, we reformulate the
condition of the normal skin effect, l ≪ δðωÞ, as
ξ

ffiffiffiffiffiffi
ωτ

p
≪ 1. Therefore, our approximations are valid for

the following double constraint on ξ: 1 ≪ ξ ≪ 1=
ffiffiffiffiffiffi
ωτ

p
. The

lower constraint on frequency ω comes from the internode
relaxation rate. In our model, the corresponding rate, 1=τ5,
comes from relaxation within ðα;−αÞ pairs. At the lower
limit for frequency, ω ∼ 1=τ5, the range for ξ is limited from
above by

ffiffiffiffiffiffiffiffiffi
τ5=τ

p
; see also the Supplemental Material [31].

The magnitude of the anomalous correction to the
transmitted field is controlled by the ratio B0=BαðωÞ in
Eqs. (8)–(10). In the simplified model, there is no dependence
on α, and we are able to transform BαðωÞ →
B⋆ðωÞ ¼ ð4= ffiffiffi

3
p ÞBuq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NWωτ

p
. Here Buq is the magnetic

field at which the ultra-quantum limit (i.e., only the lowest
Landau level is populated) is reached. At the lowest
frequencies, ω ∼ 1=τ5, the characteristic field is B⋆∼
Buq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NWτ=τ5

p
.

To flesh out the estimates, we use some of the parameters
of the Weyl semimetal TaAs [38] derived from Refs. [45,46]:
NW ¼ 24, the Fermi velocity vF ≈ 3 × 107 cm=s, the Fermi
level (measured from a node) μ ≈ 20 meV, and the ratio
τ5=τ ≈ 158. We estimate Buq ≈ 3.5 T, the upper limit ξ ∼ 13

for the range of ξ, and the lower limit B⋆ ∼ 1.4 T for
B⋆ ∼ Buq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NWτ=τ5

p
. The above estimates depend on the

ratio τ5=τ, but not separately on any of these times. To get
ξ≳ 1, however, one needs τ ≳ 10 ps; this is about 25 times
higher than the value τ ≈ 0.38 ps reported in Refs. [45,46].
One may expect the above quoted ratio τ5=τ to persist for
cleaner samples if both τ and τ5 are limited by scattering off
the same defects. Lastly, at τ ∼ 10 ps, fields B0 ≲ 0.02 T
satisfy the condition of a classically weak field.
We illustrate the dependence of the relative field ampli-

tude jEkoutj=jEoutðB0 ¼ 0Þj − 1 on frequency in Fig. 2 for
the nonlocal regime. Since cyclotron motion does not affect
the conductivity along the direction of a nonquantizing
magnetic field (B0 ≪ Buq) for spherical Fermi surfaces [47],
we extend the field domain in Eqs. (8)–(10) to B0 ≲ B⋆. The
main qualitative difference between the nonlocal and local
regimes is that the chiral anomaly enhances the transmission
amplitude in some interval of ω for the former one, while it
suppresses the amplitude at any ω in the local regime.
Scaling of the transmission amplitude with the film thickness
L at ξ ≪ 1 is controlled by a single parameter L=δðωÞ; see
Eq. (10). In the nonlocal regime, the dependence on L is
defined by the normal-skin and diffusion lengths, δðωÞ and
ξδðωÞ, respectively. In certain intervals of L, the anomalous
correction competes with the normal-skin term in Ekout
[see Eqs. (8) and (9)], resulting in the negative values of
jEkoutj=jEoutðB0 ¼ 0Þj − 1. However, with the raise of
frequency, the anomalous term could win over the
normal-skin one, as is illustrated by Fig. 2.

PHYSICAL REVIEW LETTERS 128, 146801 (2022)

146801-4



Discussion and Summary.—We showed that the chiral
anomaly may lead to a nonlocal current response of a Weyl
or Dirac semimetal even under the conditions of the normal
skin effect. The length scale for the nonlocality is deter-
mined by the diffusion length of the valley charge imbal-
ance, which does not violate the local electric charge
neutrality. This nonlocality is manifested in the penetration
and transmission of electromagnetic waves if the diffusion
length exceeds the normal-skin depth. Such a regime may
be possible in sufficiently clean materials.
The chiral anomaly is activated by a static magnetic field

B0 applied parallel to the surface of the material. The
anomaly affects the transmission of an electromagnetic
wave with the electric field Ek parallel to B0. In this case,
the penetration of the field is sensitive to the competition
between the normal and anomalous mechanisms of the
electromagnetic field propagation in the material. The
penetration of the component of the electric field E⊥
orthogonal to B0 is unaffected by the anomaly.
We developed a detailed prediction for the field trans-

mission across the film; see Eqs. (8) and (9) for films thick
and thin compared with the diffusion length, respectively, as
well as Eq. (10) for the local response regime. In view of a
weaker decay of the anomalous components, it might be
possible to achieve an enhancement of the electromagnetic
wave penetration depth in the nonlocal regime; see Fig. 2.
Furthermore, the anomalous part of the transmitted field
in the local and nonlocal regimes of the current response
is characterized by a different scaling with frequency,
cf. Eqs. (8) and (9) with Eq. (10). These features may allow
one to identify the nonlocality, even if the electron transport
parameters of a sample are not known in advance.
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