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Abstract—Mobile crowdsourcing has emerged as a promising paradigm that applies the principle of crowdsourcing to perform tasks of
mobility requirement. Due to the openness of mobile crowdsourcing, workers may yield low-quality task answers. To alleviate this
problem, substantial efforts have been devoted to elicit truthful data from workers. On the other hand, to facilitate task assignment,
workers are required to upload the platform their profiles, such as locations and expertise. Therefore, task assignment outcomes and
thus mobile crowdsourcing service accuracy is subject to the quality of workers’ self-reported profiles. In this paper, we leverage
incentive design to motivate workers to honestly reveal both task answers and their profiles. The challenge is to design one incentive
payment for truth elicitation in two kinds of submissions. For this, we first derive the sufficient and necessary conditions for answer
truthfulness and profile truthfulness separately. We then construct an incentive optimization problem that incorporates these conditions
as constraints. Its optimal solution lists the payment to each worker that elicits answers and profiles jointly. Our proposed mechanism,
with a formally proved bounded approximation ratio, ensures that truth-telling is a Bayesian Nash equilibrium. We prototype the
mechanism and conduct a series of experiments that involve 30 volunteers to validate the efficacy and efficiency of the proposed
mechanism.

Index Terms—Mobile crowdsourcing, joint answer and profile truthfulness, incentive mechanism design
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1 INTRODUCTION

M OBILE crowdsourcing facilitates individuals and businesses
to outsource their processes and jobs to a large pool of

mobile workers who carry out tasks using their sensor-equipped
mobile devices. Mobile crowdsourcing has a wide spectrum of
potential applications. For example, quite a few research propose
to harness the sensing power of distributed mobile devices for
spectrum monitoring/sensing of a large geographic area [1], [2],
[3], [4]. Under the framework of crowdsourcing, mobile devices
are hired to sense the spectrum occupancy/vacancy of their present
locations. The aggregated sensing results can produce a real-time
fine-grained spectrum usage map over a large geographic area.
Mobile crowdsourcing has also gained great interest in the field
of wireless signal fingerprinting based indoor/outdoor localization
[5], [6], [7], [8]. To reduce the effort of a manual calibration for
the site survey, especially in a multi-floor building or a large
geographic area, various kinds of crowdsourcing-based indoor
localization methodologies have been successfully applied. In ad-
dition, many mobile crowdsourcing tasks also exist in commercial
crowdsourcing platforms. For example, in Clickworker [9] some
tasks hire workers with mobile devices to carry out geolocation-
aware image collection, image tagging, road traffic monitoring,
etc. In Taskrabbit [10], the platform publishes spatial tasks such
as cleaning a house or walking a dog. Typically, these tasks are
only accessible by workers nearby.

• Mingyan Xiao, Wenqiang Jin, Chengkai Li, and Ming Li are with the
Department of Computer Science and Engineering, The University of
Texas at Arlington, TX, 76019, USA. E-mail: mingyan.xiao@mavs.uta.edu,
wenqiang.jin@mavs.uta.edu, cli@cse.uta.edu, ming.li@uta.edu.

In most mobile crowdsourcing systems, the platform assigns
tasks to suitable workers based on their self-reported profiles, such
as locations and expertise.

A typical workflow can be divided into four stages: task as-
signment, task execution, answer collection, and answer aggrega-
tion/analysis. In general, task assignment problems are formulated
to achieve certain optimization goals, e.g., maximizing the number
of assigned tasks [11], [12] or minimizing overall cost (time,
effort, and computing resources, etc.) incurred to workers [13],
[14]. For practical considerations, the problem may further take
into account various constraints, such as the maximum distance a
worker is willing to travel to perform tasks, a worker’s available
time duration, and her expected work quality.

Work quality is of essential importance to the success of
mobile crowdsourcing tasks because low-quality answers from
the crowd would easily deteriorate the accuracy of tasks via
aggregation. Low quality is often attributed to workers’ deliberate
mis-reporting, lack of effort exertion, or free-riders copying results
from peers. There have been some prior studies tackling the latter
two cases [15], [16]. In this paper, we are interested in defending
against more intelligent workers who may game the system
through strategically reporting task answers for higher beneficial
gain. Our discussion focuses on one of the most typical mobile
crowdsourcing tasks–binary-answer1, e.g., if a specific spectrum
band is vacant or not in the current location. A task is associated
with a ground truth of a binary value. Each worker exerts her effort
to derive an answer. To elicit truthful answers from the crowd,
some existing solutions resort to economic mechanisms [17],
[18], [19], [20], [20], [21], [22], [23]. Incentives are rewarded to

1. Our scheme can be easily extended to tasks with multiple answers.
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truthful workers such that truth-telling is a Nash equilibrium [24]:
no worker receives higher gain by lying, when others respond
honestly. Therefore, no one would unilaterally deviate from honest
reporting. It is worth noting that workers’ truthful answers do not
necessarily always coincide with the task ground truth, as workers
may be hindered from, for example, the insufficient accuracy of
smartphones’ built-in GPS module.

Workers may also be deceitful about their self-reported pro-
files. These profiles are indispensable in task assignments. A
strategic worker may fabricate her profile to manipulate task
assignment outcomes for their own gain. For instance, a worker in
location-based tasks is more likely to be selected if she misreports
her position as being closer to the location of interest. To prevent
workers from manipulating task assignment outcomes, one of the
primary goals of this work is to achieve profile truthfulness. Some
prior studies aim at improving cost truthfulness [1], [14], [25],
[26], [27], [28], [29], [30], i.e., motivating workers to reveal their
genuine costs. As cost can be deemed as part of self-reported
profiles, cost truthfulness is a special case of profile truthfulness.
Our approaches to achieve profile truthfulness need to cover a
much wider spectrum of strategic behaviors.

Rather than treating answer misreporting and profile misre-
porting separately, this paper aims to develop a unified framework
that protects two different stages from workers’ strategic manip-
ulation simultaneously. To the best of our knowledge, this is the
first study to tackle such a combined challenge of misreporting in
mobile crowdsourcing. Under the framework of incentive design,
there are existing solutions to elicit answer truthfulness [17], [18],
[19], [20], [20], [21], [22], [23] and cost truthfulness [1], [14],
[25], [26], [27], [28], [29], [30], respectively. However, they are
not directly applicable here due to their neglect of the other aspect.
We cannot simply apply the above schemes in different stages
of mobile crowdsourcing either, i.e., a worker is first paid for
answer truthfulness and then paid for cost truthfulness, as the
total payment would violate the conditions for each of the two
objects. Thus, our goal is to design a unified payment scheme that
guarantees both answer and cost truthfulness.

Since a worker’s true answers and profile are only known
to herself, uncovering the worker’s untruthful behavior is hard.
Hence, instead of directly detecting if a worker lies or not, we take
a proactive approach that focuses on prevention instead of passive
detection. To be specific, we propose an incentive mechanism
such that honestly providing both answers and profile is a Nash
equilibrium. While there are various types of incentives to adopt,
such as payment, reputation, and social recognition, our design
assumes incentives in the form of monetary payment. The salient
challenge in this approach is to design one payment to reward a
worker for truth elicitation in two kinds of submissions. Our idea
is to first derive the sufficient and necessary condition for answer
truthfulness and profile truthfulness, separately. We then construct
an incentive optimization problem that incorporates these condi-
tions as constraints. Its optimal solution lists the payment to each
worker. Since the solution must satisfy the constraints and thus
the conditions for truth-telling, the workers are well motivated to
behave honestly.

To derive each worker’s sufficient and necessary condition
for answer truthfulness, we use reference answers, i.e., reported
answers from each worker’s peers. As a worker’s true observation
toward a task is only known to herself, workers have “incom-
plete information”. For example, workers are unaware of the
platform’s payment and each other’s best strategies, i.e., which

answers everyone else could report in order to maximize their
own benefits (payments). To take this characteristic into account,
this paper resorts to the model of Bayesian game [31] instead
of the standard game model. A worker’s payment is evaluated
in its expectation with respect to her entire (binary) observation
space, as a function of the worker’s payments given the various
reference reports instances and her posterior belief. To be specific,
the posterior belief is the probability of the worker having a
particular observation, given the observations of other workers.
Then, by setting a worker’s expected payment while truth-telling
no less than that while lying, the worker has little incentive to
lie, which is so-called a Bayesian Nash equilibrium [31]. By
applying Bayesian inference, the posterior belief can be converted
into an expression of the ground truth’s prior probability and the
conditional probability of a worker’s answer given the ground
truth. Both probabilities are practically known to the platform
(Section 3.1). The idea of utilizing reference answers to derive
the condition for answer truthfulness was also used in the peer
prediction approach [17], [18], [19]. However, in their work, only
one reference answer is randomly picked from a worker’s peers
to evaluate the worker’s truthfulness. Such a simplistic method
will misjudge a worker when the selected peer reports incorrectly.
Instead, our approach is more robust as answers from all peers are
taken into account.

To derive the sufficient and necessary condition for profile
truthfulness, we design a randomized worker selection and worker
payment approach. We first formulate an optimization problem
for worker selection, i.e., assigning suitable workers to each
task. Since this problem is NP-hard, we first relax the integrality
constraint of each variable to its fractional domain and optimally
solve the relaxed problem. Given that the fractional optimal
solution is inapplicable to practical worker selection, it is then
decomposed into a weighted sum of a set of feasible integer
solutions. All weights are real-valued and range from 0 to 1,
with their sum equal to 1. Then, we come up with a randomized
worker selection; each feasible integer solution is randomly picked
at a probability equal to its associated weight. To ensure the
randomized worker selection is feasible to apply, the factional
optimal solution needs to scale up by a factor η. According to
[32], given any α-approximate algorithm that proves an integrality
gap of at most η for the “natural” linear relaxation, one can use
η as the scaling factor. Thus, an α-approximate algorithm to the
worker selection problem is further developed. Once the worker
selection outcome is determined, we set a worker’s payment as
η times the fractional payment derived from fractional VCG
(Vickrey-Clarke-Groves) [33]. We note that the fractional VCG
was originally developed to achieve bid truthfulness in generic
auctions via proper payment design. In this work, we tailor it to
tackle profile misreporting. The joint randomized worker selection
and worker payment ensure profile truthfulness.

The contribution of this work is summarized as follows.
• We develop an incentive mechanism that aims to achieve
comprehensive joint answer and profile truthfulness in mobile
crowdsourcing. The proposed mechanism ensures that truth-
telling is a Bayesian Nash equilibrium.
• We propose a randomized worker selection algorithm and
formally prove that the proposed algorithm produces an ap-
proximation ratio upper bounded by 2.
• To investigate the efficacy of our mechanism, a prototype
consisting of a worker-side app and a platform-side program
is implemented. We recruited 30 volunteers to conduct a series
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Fig. 1. A typical workflow of a mobile crowdsourcing system.

of in-field experiments. The full stack of code for the prototype
implementation is open-sourced at https://sites.google.com/site/
reportingtruthful/.
The rest of this paper is organized as follows. Section 2

presents the system model and problem statement. The proposed
mechanism design is elaborated in Section 3. Its performance
analysis is given in Section 4, followed by evaluation results in
Section 5. Related work is discussed in Section 6. We conclude
the paper in Section 7.

2 SYSTEM MODEL AND PROBLEM STATEMENT

2.1 System Model
We consider a mobile crowdsourcing system that consists

of a set of mobile workers and a platform. The platform has
a set of tasks to obtain answers from a crowd W = {w1,
· · · , wi, · · · , wK} of K candidate mobile workers. We consider
binary-answer tasks and denote the answer space of each task as
A = {0, 1}. Besides, each task is associated with a ground truth
G ∈ A, which is unknown prior to the accomplishment of tasks.
A typical workflow of the system is illustrated in Figure 1.
• Step 1©: The platform publishes a task.
• Step 2©: Each worker wi submits her profile.
• Step 3©: The platform selects the winner setW∗ for this task.
• Step 4©: Each winning worker wi ∈ W∗ submits her answer
ri.
• Step 5©: The platform derives the task’s final result by aggre-
gating collected answers using methods such as majority voting
[34] or maximum a posterior probability estimate (MAP) [35].
• Step 6©: The platform determines payments to winning work-
ers.
In order to select a proper set of workers for a task, conven-

tional approaches formulate an optimization problem that aims to
maximize or minimize a certain objective while satisfying a set of
constraints [14], [26], [27], [28], [29]. In this paper, we consider a
linear optimization problem in a generalized form, as follows.

P1 : min π1 =
∑
wi∈W

f(bi)xi

s.t.
∑
wi∈W

dixi ≥ γ, xi ∈ {0, 1} ∀wi ∈ W .

The platform solves P1 to choose a proper set of workers W∗
for the task. In P1, xi is a binary variable: 1 if worker wi is
to be selected, and 0 otherwise. The self-reported profile from
wi, denoted bi, is a vector of task-dependent parameters. Take

mobile crowdsourcing-based spectrum monitoring/sensing as an
illustration. Each mobile device is associated with its specific
sensing capabilities, such as the sensing range and operational fre-
quency band. Besides, each mobile device is at a different distance
away from the task location. f(·) can be any weighted aggregate
function over all elements in bi. It is selected by the platform and
unknown to the workers. For example, suppose a worker’s profile
bi = {si, ti} consists of her sensing capability ti and its distance
to the task location si, where si and ti are normalized values. The
function can be f(bi) = 0.8si+0.2(1− ti). In this example, the
worker’s distance to the location of interest outweighs her sensing
capability for being selected. Since bi is both task-dependent and
worker-dependent and thus a prior unknown to the platform, it is
collected before the formulation of P1. The scalar value of task-
independent parameter di is available at the platform via long-term
observation ofwi’s performance, e.g., task accomplishment rate or
average rating from task requesters. γ is a task-specific threshold
value chosen by the platform.

2.2 Problem Statement and Design Objectives

Workers are modeled as rational and self-interested. They
choose their strategies in a way to maximize their own benefits.
Thus, workers may intentionally game the system. As discussed
earlier, the platform collects data from workers for both worker
selection and answer aggregation. Both procedures are thus vul-
nerable to manipulation. According to the formulation of P1, wi
is more likely to be selected if she submits a fabricated profile bi
that produces a lower value of f(bi). Workers are also interested
in reporting falsified answers, if it generates higher gains than
truth-telling. Therefore, the primal goal of this work is to elicit
worker truthfulness in reporting both their profiles and answers.

We propose to leverage incentives to motivate workers to
behave honestly. The idea is simple: a worker receives the highest
payment for truth-telling. A winning worker wi’s payment is
expressed as pi(ri, r−i, bi, b−i), where bi and b−i represent the
worker profile reported by wi and its peers, respectively, and ri
and r−i are the answers reported by wi and its peers, respectively.
bi, b−i and r−i are vectors. r−i is the reference answers from
peers. Intuitively, payment pi is dependent of ri and bi. Besides,
since the platform is unaware of a worker’s true answer to the task,
we propose to utilize reference answers to measure the worker’s
answer truthfulness. Hence, pi also depends on r−i. Besides, to
achieve profile truthfulness, pi is also dependent of b−i. More
details can be found in Section 3.2.

We now define truthfulness that is achieved by a proper
incentive mechanism.

Definition 1. (Truthfulness.) Given true reference answers o−i
and profiles c−i, the mechanism achieves truthfulness if and only
if every worker’s best strategy is truth-telling, i.e.,

EA,I [pi(ri = oi, bi = ci|o−i, c−i)]
≥EA,I [pi(ri = oi, bi = ci|o−i, c−i)]

(1)

where oi and ci denotes wi’s true answer and profile, oi 6= oi
and ci 6= ci.

The above definition forms a Bayesian Nash equilibrium,
where no individual can gain higher payment on average by
lying when others behave honestly. Therefore, no worker has
the incentive to alter her reported answer or profile unilaterally,
because such a strategy would harm her interest. Since a worker’s
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TABLE 1
Notation

W entire worker set W∗ winner set
G ground truth pi wi’s payment
ci wi’s true profile bi wi’s reported profile
oi wi’s true answer ri wi’s reported answer
A task answer set xi recruitment variable
di wi’s coefficient γ recruitment threshold
π∗1 , π∗2 , π∗3 , π∗4 optimum result of P1, P2, P3, P4

π′∗1 optimum result of the linear relaxed P1

oi opposite of true observation oi
c−i true profile set from wi’s peers
b−i reported profile set from wi’s peers
o−i true answer set from wi’s peers
r−i reported answer set from wi’s peers
I set of all possible task assignment outcomes
θ an instance of the true reference report

x(I) a feasible solution to P1 under index I
β(I) selection probability of x(I)
I the set of feasible solution to P1

xF optimum solution to the linear relaxed P1

α approximation ratio of Algorithm 1
δ truth-telling payment margin

η
integrality gap between π∗1 and π∗2 ; upper bound

of the approximation ratio of our mechanism

true observation toward a task is unknown to the platform, her
payment is evaluated in the expectation with respect to A in (1).
Besides, our proposed mechanism relies on a randomized worker
selection, i.e., winning workers are selected in a probabilistic
manner. Thus, the expected payment further takes into account
all possible worker selection outcomes I . The details of the
randomized worker selection and I are discussed in Section 3.2.

Here we make a brief clarification why a Bayesian game is
considered. Bayesian games are games with incomplete informa-
tion, which are, informally, games where players may not know
all aspects of the game, such as sequence, strategies, and payoffs
of other players. In contrast, standard games refer to games of
complete information. In our paper, each worker, i.e., player, is
unaware of its payoff function because the platform’s payment and
other workers’ submitted information (i.e., profiles and answers)
are unknown. Hence, the interactions among workers in our case
should be formulated as a Bayesian game.

3 MECHANISM DESIGN

Our design first derives the sufficient and necessary conditions
for answer and profile truthfulness separately. In the framework
of incentive design, such a condition is expressed in the form
of worker payments. Specifically, for the condition of answer
truthfulness, a worker’s payment is set higher for reporting her
true observation toward a task than lying. Given that workers’ true
observations are only known to themselves, we utilize reference
answers to evaluate workers’ answer truthfulness (Section 3.1).
Motivated by the fractional VCG, the profile truthfulness is
achieved via the design of a randomized worker selection and
worker payments (Section 3.2). Since the proposed randomized
worker selection requires a scaling factor to ensure its feasi-
bility, we further develop an α-approximate algorithm to obtain

this value (Section 3.3). All the derived conditions are finally
incorporated into an incentive optimization problem as constraints.
Its solution provides the payment for each worker that motivates
truth-telling in two different kinds of submissions (Section 3.4).

3.1 Eliciting Truthful answers

This part derives a sufficient and necessary condition for
answer truthfulness. For a given worker selection outcome
I ∈ I , (1) is then degenerated to EA [pi(oi|o−i = θ)] ≥
EA [pi(oi|o−i = θ)]2. θ is an instance of the true reference
answer, which is a vector.

A belief regarding the prior probability of task ground truth
Pr[G = at] (at ∈ A) is deemed available at the platform.
It also knows the likelihood that a worker honestly reports its
genuine answer given the ground truth, i.e., Pr[oi = ai|G = at]
(ai ∈ A). This knowledge can be obtained by the platform via
long-term observation. Specifically, if the proposed mechanism
achieves truthfulness, then ri = oi and thus Pr[oi = ai|G =
at] = Pr[ri = ai|G = at]. Since ri is observable at the
platform and the ground truth G would be eventually derived,
Pr[ri = ai|G = at] can be obtained.

We have

EA [pi(oi|o−i = θ)] =
∑
ai∈A

Pr[oi = ai|o−i = θ]·pi(ai,o−i = θ)

where Pr[oi = ai|o−i = θ] is the likelihood that given wi’s peers
reporting honestly worker wi does the same. We have

Pr[oi = ai|o−i = θ] =
Pr[o−i = θ|oi = ai] Pr[oi = ai]

Pr[o−i = θ]
.

(2)
Here, workers are assumed to report independently. Hence,
Pr[o−i = θ|oi = ai] can be expressed by

Pr[o−i = θ|oi = ai] =
∏

wk∈W∗\wi

Pr[ok = ak|oi = ai]

where
Pr[ok = ak|oi = ai]

=
∑
at∈A

Pr[ok = ak|G = at] Pr[G = at|oi = ai], (3)

and
Pr[G = at|oi = ai] =

Pr[oi = ai|G = at] Pr[G = at]

Pr[oi = ai]

=
Pr[oi = ai|G = at] Pr[G = at]∑

at′∈A Pr[oi = ai|G = at′ ] Pr[G = at′ ]
.

Recall that Pr[oi = ai|G = at] and Pr[G = at] are common
knowledge at the platform. Thus Pr[ok = ak|oi = ai] (3) is
derived. As Pr[oi = ai] =

∑
at∈A Pr[G = at] ·Pr[oi = ai|G =

at] and Pr[o−i = θ] =
∏
wk∈W∗\wi

Pr[ok = ak], then Pr[oi =
ai|o−i = θ] (2) is also derived. Finally, EA [pi(oi|o−i = θ)] is
obtained.

Similarly,

EA [pi(oi|o−i = θ)] =
∑
ai∈A

Pr[oi = ai|o−i = θ]·pi(ai,o−i = θ).

2. Since we focus on analyzing the relation between answer reporting and
incentives, bi and c−i are temporarily dropped for expression simplicity. pi is
still dependent on them.
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Therefore, the sufficient and necessary condition for answer truth-
fulness is ∑

ai∈A
Pr[oi = ai|o−i = θ] · pi(ai,o−i = θ)

≥
∑
ai∈A

Pr[oi = ai|o−i = θ] · pi(ai,o−i = θ).
(4)

Its instantiation is

Pr[oi = 1|o−i] · pi(1,o−i) + Pr[oi = 0|o−i] · pi(0,o−i)
≥Pr[oi = 1|o−i] · pi(0,o−i) + Pr[oi = 0|o−i] · pi(1,o−i).

where pi(0,o−i) and pi(1,o−i) stand for wi’s payment when
reporting “0” and “1”, respectively, when o−i is observed with
an instance θ. If wi’s payment pi(0,o−i) and pi(1,o−i) satisfy
the above constraint, a worker is more willing to report genuine
observation for a higher payment in expectation. (5) will be
integrated into the final mechanism design, which will be clear
soon.

3.2 Eliciting Truthful Profiles
To elicit truthful profiles, inspired by a fractional version of the

VCG mechanism [33], our design consists of randomized worker
selection and worker payment.

Randomized worker selection. The objective of this part is
to select a proper set of winning workers to carry out the task
by solving P1. Since P1 is a 0-1 knapsack problem [36], it is
NP-hard to solve. We first consider its linear relaxed form by
converting the binary variable xi ∈ {0, 1} to 0 ≤ xi ≤ 1.
The relaxed problem transforms P1 into a fractional domain and
returns a fractional optimum solution, denoted by xF . Let π′∗1 be
the optimum result of the relaxed P1. While xF is inapplicable to
task assignment, we are able to decompose it into a randomized
format. Specifically, identify βI and x(I) = {xi(I)|∀i} such that
xF =

∑
I∈I βIx(I), where I = {x(I)|∀I ∈ I} is the set of

feasible integer solutions to P1 and βI ≥ 0 (
∑
I∈I βI = 1). Then

a randomized task assignment chooses the I-th integer solution
x(I) with probability βI .

On the other hand, there does not exist a convex combination
of integer solution

∑
I∈I βIxi(I) that equals xFi , because oth-

erwise, the expected objective value generated by these integer
solutions equals to that generated by the fractional solution, which
is apparently a contradiction to the fact that the fractional solution
achieves lower objective value than any possible integer solution.
Therefore, to derive a feasible decomposition, we need to scale up
the optimum fractional solution by a certain factor. According to
[32], given any α-approximate algorithm that proves an integrality
gap of at most η for the “natural” linear relaxation, one can
use η as the scaling factor. We leave the job of finding such an
approximation algorithm in Section 3.3.

The solution of βI ’s is obtained via solving the following liner
maximization problem

max
∑
I∈I

βI

s.t.
∑
I∈I

βIxi(I) ≤ ηxFi , ∀i∑
I∈I

βI ≤ 1, βI ≥ 0, ∀I ∈ I.

(5)

Note that x(I) is obtained by enumeration. Since it has an
exponential number of elements, the enumeration process is time-

consuming. Motivated by the ellipsoid method [37], we resort to
its dual problem and propose an algorithm that solves it within
polynomial time. Note that the α-approximate algorithm providing
the scaling factor η is also essential to solve (5). Details are given
in Appendix. Besides, we are able to prove in Lemma 4 that the
optimum value of (5) is 1.

A toy example. Here we provide a toy example to better
illustrate how the proposed random worker selection works. Con-
sider that there are two workers and one task. We further assume
the result from the relaxed P1 and the approximation ratio as
xF = (0.5, 0.5) and η = 2, respectively. Let I , the set of feasible
solution to P1, as {(1, 0), (1, 1)}. We aim to find β(1,0) and β(1,1)
such that β(1,0)·1+β(1,1)·1 = 2·0.5, β(1,0)·0+β(1,1)·1 = 2·0.5,
and β(1,0) + β(1,1) = 1. Through simple calculation, we derive
β(1,0) = 0 and β(1,1) = 1, which means our randomized worker
selection chooses x1 = 1, x2 = 1 (resp., x1 = 1, x2 = 0) with
probability 1 (resp., 0).

Worker payment. Recall that π′∗1 is the optimum result of
the linear relaxed P1. Consider a factional payment pFi =
π′∗1,−i − (π′∗1 − fi(bi)xFi ), where π′∗1,−i stands for the optimum
result of the linear relaxed P1 when wi is excluded from the
formulation. The winner wi’s payment is then set to pi(I) = ηpFi .
wi is a winner if xi(I) = 1 given a randomly picked worker
selection outcome I ∈ I . The calculation of pFi quantifies the
externality each winner causes to others under fractional worker
selection. As we will show in Theorem 3, paying a winner with its
externality and the scale-up factor η are essential to ensure profile
truthfulness.

Justification of applying fractional VCG. The worker selec-
tion problem P1 is NP-hard and thus computationally expensive to
find its optimum solution. We thus propose a randomized worker
selection to achieve a polynomial complexity. Here we give a
definition of fractional VCG.

Definition 2. (Fractional VCG.) In a fractional VCG, the allo-
cation rule is given by xF = {xFi |∀i}, the optimum allocation
solution in the fractional domain; the pricing rule is given by
pi = π∗1,−i−(π∗1−fi(bi)xi), where π′∗1 is the optimum allocation
result in the fractional domain, and π′∗1,−i stands for the optimum
result when wi is excluded from the auction.

Compared with conventional VCG, the allocation and pricing
are determined through solving LP problems in fractional VCG.
Therefore, it is more efficient to execute at the crowdsourcing
platform. Apparently, our computation efficiency is achieved by
compromising allocation optimum. Fortunately, as we prove in
Theorem 3 in the paper, the optimality gap, quantified in approx-
imation ratio here, is upper bounded by 2. We would also like to
mention some other existing approaches in tackling computation
complexity of VCG auctions. They typically develop heuristic al-
gorithms in allocation and pricing while achieving truthfulness and
individual rationality simultaneously. Those approaches, however,
are hard to bound the optimality gap especially when scenarios
become complicated.

3.3 An α-Approximate Algorithm

This part develops an α-approximate algorithm that provides
the scaling factor η for our randomized worker selection. It is also
an indispensable component to the proposed algorithm to solve
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(5). We first transform P1 into its equivalent form P2.

P2 : min π2 =
∑
wi∈W

fi(bi)xi

s.t.
∑

wi∈W\S

di(S)xi ≥ γ(S), ∀S ⊆ W : γ(S) > 0, (6)

xi ∈ {0, 1}, ∀wi ∈ W

where S is an arbitrary subset of workers, γ(S) = γ−
∑
wi∈S di,

and di(S) = min{di, γ(S)}. (6) involves a series of constraints
with respect to S satisfying S ⊆ W and γ(S) > 0. For a given
S, its corresponding xi’s are set to 1’s.

Lemma 1. P2 is equivalent to P1.

Proof. Denote by S1 and S2 the feasible solution sets of P1 and
P2, respectively. Since P1 and P2 have the same objective function,
it is equivalent to show S1 = S2.

First, we show S1 ⊆ S2. For an arbitrary feasible solution
x ∈ S1, denote its corresponding winner set asW∗ = {wi|xi =
1}. We have

∑
wi∈W∗ di ≥ γ, which can be transformed to∑

wi∈W∗\S

di ≥ γ −
∑
wi∈S

di = γ(S), (7)

with S ⊂ W∗. Then we discuss through the following two cases
that x ∈ S1 is also a feasible solution to P2.

Case 1: There exist some workers wi ∈ W∗\S with di ≥
γ(S). Denote these workers as S′. Then

∑
wi∈W\S di(S)xi =∑

wi∈W∗\S di(S)xi =
∑
wi∈W∗\(S∪S′) di+ |S

′|γ(S) ≥ γ(S),
which implies that (6) holds.

Case 2: No worker in W∗\S has di ≥ γ(S). In
another word, every worker in W∗\S has di < γ(S).
We have

∑
wi∈W\S di(S)xi =

∑
wi∈W∗\S di(S)xi =∑

wi∈W∗\S di≥γ(S). The last inequality is due to (7). Therefore,
(6) holds as well.

Second, we show S2 ⊆ S1. For an arbitrary feasible solution
x ∈ S2, we have

∑
wi∈W\S di(S)xi ≥ γ(S) = γ −

∑
wi∈S di.

It can be written as
∑
wi∈W\S di(S)xi +

∑
wi∈S dixi ≥ γ, be-

cause xi = 1 ∀wi ∈ S. Besides, di ≥ di(S) according to the def-
inition of di(S). Therefore,

∑
wi∈W dixi =

∑
wi∈W\S dixi +∑

wi∈S dixi ≥
∑
wi∈W\S di(S)xi +

∑
wi∈S dixi ≥ γ, which

implies that x is also a feasible solution to P1.
From the discussion above, we have S1 = S2. Therefore, P2

is equivalent to P1.

Since P1 and P2 are equivalent, if we can find an α-
approximate algorithm for P2, so it is for P1.

Now consider a linear program P3 by relaxing P2’s binary
variable xi ∈ {0, 1} to 0 ≤ xi ≤ 1. We further formulate a
dual problem of P3 but with the dual variables associated with
constraints 0 ≤ xi ≤ 1(∀i) dropped

P4 : max π4 =
∑

S⊆W:γ(S)>0

γ(S)y(S)

s.t.
∑

S⊆W:wi∈W\S,γ(S)>0

di(S)y(S) ≤ fi(bi), ∀wi ∈ W (8)

y(S) ≥ 0, ∀S ⊆ W

Algorithm 1 outlines the steps for the proposed α-approximate
algorithm. It leverages the formulation of P4 to derive a feasible
solution to P1. Its idea is to gradually grow the winning worker
set S(t) by selecting the worker which produces the smallest

(fi(bi)− q(t)i )/di(S
(t)) in each iteration (line 4). For each S(t),

it then calculates the corresponding dual variable solution y(S(t)).
It continues until the termination condition γ(S(t)) > 0 reaches.

Algorithm 1 The α-approximate algorithm
Input: {bi}, {di}, γ
Output: {xi}, {y(S)}, π1,W∗

1: xi ← 0, q(0)i ← 0, ∀i, y(S)← 0, ∀S, S(0) ← ∅, γ(S(0))←
γ −

∑
wi∈S(0) di, π

(0)
1 ← 0, t← 0;

2: while γ(S(t)) > 0 do
3: di(S

(t))← min{di, γ(S(t))}, ∀i;
4: i∗(t) ← argmini∈W\S(t)(fi(bi)− q(t)i )/di(S

(t));

5: y(S(t))←
(
fi∗(t)(bi∗(t))− q

(t)

i∗(t)

)
/di∗(t)(S

(t));
6: xi∗(t) ← 1;
7: π

(t+1)
1 ← π

(t)
1 + fi∗(t)(bi∗(t));

8: S(t+1) ← S(t) ∪ wi∗(t) ;
9: q

(t+1)
i ← q

(t)
i + di(S

(t))y(S(t)), ∀i ∈ W\S(t);
10: γ(S(t+1)) = γ −

∑
wi∈S(t+1) di;

11: t← t+ 1;
12: end while
13: W∗ ← S(t), π1 ← π

(t)
1 .

Lemma 2. Algorithm 1 provides a feasible solution to P1 and P4.

Proof. We first examine if Algorithm 1 provides a feasible solu-
tion to P1. According to the algorithm, xi is either 0 or 1. Thus, the
binary constraint is satisfied. Besides, the iteration of the algorithm
stops when γ(S) ≤ 0. Together with the definition of γ(S), we
have

∑
wi∈W di ≥

∑
wi∈S di ≥ γ. Then the other constraint of

P1 is also satisfied. Since the solution meets both constraints of
P1, it is feasible to P1.

We next examine if Algorithm 1 provides a feasible solution
to P4. Suppose the while-loop consists of T + 1 iterations. We
first verify if y(S(t)) identified in an arbitrary iteration t+1, ∀t ∈
[0, T ] is non-negative. Particularly, when t = 0, fi(bi) ≥ q

(0)
i =

0, and thus y(S(0)) is positive; when t ∈ [1, T ]

q
(t)
i = q

(t−1)
i + di(S

(t−1))y(S(t−1))

= q
(t−1)
i + di(S

(t−1))
fi∗(t)(bi∗(t))− q

(t−1)
i∗(t−1)

di∗(t−1)(S(t−1))

≤ q(t−1)i + di(S
(t−1))

fi(bi)− q(t−1)i

di(S(t−1))
= fi(bi).

Thus, q(t)
i∗(t)
≤ fi∗(t)(bi∗(t)). As di∗(t)(S

(t)) > 0, then we have
y(S(t)) = (fi∗(t)(bi∗(t))− q

(t)

i∗(t)
)/di∗(t)(S

(t)) ≥ 0.
The remaining task is to verify if {y(S) : S ⊆ W} has the

constraint (8) hold for all wi ∈ W . For this purpose, we divide
W into two non-overlapping subsets: W∗ and W\W∗, i.e., the
winning worker set and the losing worker set.

Case 1: wi∗(t) ∈ W∗, a worker selected in the arbitrary (t +
1)-th (t ∈ [0, T ]) iteration. We have∑
S⊆W:w

i∗(t)∈W\S,γ(S)>0

di∗(t)(S)y(S) =
t∑

τ=0

di∗(t)(S
(τ))y(S(τ))

=
t−1∑
τ=0

di∗(t)(S
(τ))y(S(τ)) + di∗(t)(S

(t))
(fi∗(t)(bi∗(t))− q

(t)

i∗(t)
)

di∗(t)(S
(t))

=q
(t)

i∗(t)
+ fi∗(t)(bi∗(t))− q

(t)

i∗(t)
= fi∗(t)(bi∗(t)).
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Thus, (8) is satisfied for all winning workers.
Case 2: wi ∈ W\W∗, any losing worker. We have (fi(bi)−

q
(T )
i )/di(S

(T )) ≥ (fi∗(T )(bi∗(T ))−q(T )

i∗(T ))/di∗(T )(S(T )). There-
fore, ∑

S⊆W:i∈W\S,γ(S)>0

di(S)y(S) =
T∑
τ=0

di(S
(τ))y(S(τ))

=
T−1∑
τ=0

di(S
(τ))y(S(τ)) + di(S

(T ))
(fi∗(T )(bi∗(T ))− q(T )

i∗(T ))

di∗(T )(S(T ))

≤q(T )
i + di(S

(T ))
(fi(bi)− q(T )

i )

di(S(T ))
= fi(bi)

which implies that (8) holds for workers fromW\W∗ as well.
According to the analysis above, Algorithm 1 provides a

feasible solution to P4.

Proposition 1. Algorithm 1 provides an α-approximation solution
to P1 where α = 2, i.e., π1/π∗1 ≤ 2.

Proof. Let wi∗ denote the worker selected in the last iteration by
Algorithm 1. The while loop continues as long as γ(S) > 0. Then
γ(W∗\wi∗) = γ −

∑
wi∈W∗\wi∗

di > 0 and thus∑
wi∈W∗\wi∗

di < γ. (9)

Besides,

π1 =
∑

wi∈W∗
fi(bi)=

∑
wi∈W∗

∑
S⊆W:wi∈W\S,γ(S)>0

di(S)y(S),

=
∑

S⊆W:γ(S)>0

∑
wi∈W∗\S

di(S)y(S).

The second equality can be easily inferred from the proof of
Lemma 2. The third equality is obtained by switching the order of
the two sum operations. Note that∑

wi∈W∗\S

di(S) ≤
∑

wi∈W∗\wi∗

di −
∑
wi∈S

di + di∗(S)

≤γ −
∑
wi∈S

di + di∗(S) = γ(S) + di∗(S) ≤ 2γ(S)

where the second inequality is due to (9). Let π∗4 be the optimum
value of P4. Due to the strong duality, π∗4 ≤ π∗1 . Combining all
the results above, we have

π1 ≤
∑

S⊆W:γ(S)>0

2γ(S)y(S) ≤ 2π∗4 ≤ 2π∗1 .

Based on Proposition 1 and its proof, we have

Corollary 1. π1 derived by Algorithm 1 and π∗3 have an integral-
ity gap of at most η, i.e., π1/π∗3 ≤ η, where η = 2.

Lemma 3. The computation complexity of Algorithm 1 isO(K2).

The complexity of Algorithm 1 is dominated by the while-
loop, which contains at mostK iterations. Recall thatK stands for
the number of workers. In each iteration, the most time-consuming
calculation is ranking (line 4), which is upper-bounded by K
operations. Thus, the complexity is upper bounded by O(K2).

While there have been some prior works [38] developing
approximation algorithms to solve 0-1 knapsack problems, they

all face a trade-off between iteration convergence and computation
efficiency. Particularly, when updating the dual variable, i.e., line 5
in our algorithm, their solution does not specify the exact step size.
As a result, if the step size is too small, then it takes excessively
long rounds for the algorithm to stop; if the step size is too large,
then the algorithm may fail to converge. Instead, Algorithm 1 iden-
tifies a proper step size,

(
fi∗(t)(bi∗(t))− q

(t)

i∗(t)

)
/di∗(t)(S

(t)), for
each iteration that ensures the convergence within K iterations.

3.4 Piecing All Components Together
We are now ready to integrate all ingredients into a unified

payment mechanism that elicit joint answer and profile truthful-
ness from strategic workers.

For the first objective, as discussed in Section 3.1, its sufficient
and necessary condition is that each winning worker receives no
less payment when reporting honestly than lying, as specified in
(4). Practical mechanisms require certain margins for truth-telling
[39]; honest reporting is better than lying by at least some margin
δ, chosen by the platform to offset the external benefits a worker
might obtain by lying. Thus, we twist a little bit over (4) and
obtain (10) to account for the margin δ.

For the second objective, for a given worker selection outcome
I , a winning worker wi receives ηpFi . On the other hand, since
wi’s true observation is unknown to the platform, we thus let wi’s
expected payment with respect to A equal to ηpFi (11).

Combining all discussions above, we arrive at the following
formulation in calculating winner wi’s payment, given a randomly
picked worker selection outcome I ∈ I

P5 : max δ

s.t.
∑
ai∈A

Pr[oi = ai|o−i]pi(ai,o−i)−∑
ai∈A

Pr[oi = ai|o−i]pi(ai,o−i) ≥ δ (10)∑
ai∈A

Pr[oi = ai|o−i]pi(ai,o−i) = ηpFi (11)

pi(ai,o−i) ≥ 0 ∀ai ∈ A.

The above optimization is a linear programming problem that
can be efficiently solved via the conventional simplex method [40].

Algorithm 2 summarizes our final design.

Algorithm 2 The final design
Input: {bi}, {ri}
Output: W∗, {βI}, {pi}

1: Compute the optimal fractional worker selection xF by solv-
ing the relaxed P1;

2: Compute the scale-up factor η using Algorithm 1;
3: Derive βI ’s by formulating and solving (5);
4: Select each integer solution x(I) of P1 randomly with proba-

bility βI , thusW∗ is derived;
5: Calculate winner’s payment pi(ai,o−i) (ai ∈ A) by solving

P5.

Theorem 1. The computation complexity of Algorithm 2 is
O(K2).

Proof. The computation of Algorithm 2 mainly consists of the
following components, solving P3 (line 1), obtaining η using
Algorithm 1 (line 2), solving (5) (line 3), and solving P5 (line 5).
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In the following, we provide an analysis of these four components.
We employ the simplex method to solve P3, an LP problem.
According to [41], the computation complexity of simplex method
is O(nd), where n and d are the number of variables and
constraints, respectively. Thus, the computation complexity for
solving P3 is O(K). Recall that K is the number of workers.
Similarly, the complexity for solving P5 is O(K). For Algorithm
1, its complexity is upper bounded by O(K2). While (5) is an
LP problem, it involves an exponential number of variables. Thus,
we first convert it to its dual problem and then solve it via the
ellipsoid method, whose complexity is at most O(n2), where n
is the number of variables. Thus, solving (5) causes O(K2). To
sum up, the computation complexity of the proposed mechanism
is O(K2).

3.5 Extension to Multi-choice Tasks
When considering multiple-choice tasks, the change is applied

to the instantiation of the sufficient and necessary condition for
answer truthfulness, the form is still the same though∑

ai∈A
Pr[oi = ai|o−i = θ] · pi(ai,o−i = θ)

≥
∑
ai∈A

Pr[oi = ai|o−i = θ] · pi(ai,o−i = θ),

which denotes that truth-telling achieves higher payment than
lying. Multiple-choice tasks introduces more choices of lying
than binary-choice tasks. Specifically, for each oi = ai, there
are k − 1 lying cases. Thus, more cases are generated in its
instantiation. All the instantiations will serve as constraints in P5

to get final payments. Recall that P5 is an LP problem, which can
be efficiently solved by the simplex method with the computation
complexity O(nd), where n and d are the number of variables
and constraints, respectively. Hence, although multi-choice tasks
would increase the number of constraints in P5, it would not cause
any change to our scheme design.

Theorem 2. Given K workers and M k-choice tasks, the compu-
tation complexity of Algorithm 2 is O(MK2 +MKk(k − 1)k)

Proof. The proof follows the main idea of Theorem 1. Here we
mainly highlight the changes due to multi-choice tasks. Under
the k-choice setting, P5 becomes the linear programming problem
with (k − 1)k constraints and k variables, where k is the number
of choices in each task. Therefore, the complexity of P5 for K
workers is O(Kk(k − 1)k). Hence the computation complexity
of the proposed mechanism for one k-choice task isO(K+K2+
K2 +Kk(k − 1)k) = O(K2 +Kk(k − 1)k). For M tasks, its
total computation complexity isO(MK2+MKk(k−1)k).

Although Theorem 1 seems to indicate an exponential compu-
tation complexity, the exponential part k is typically a small value
no larger than 6. Hence, the overall computation is still practical
to implement on a regular server.

4 PERFORMANCE ANALYSIS

In this section, we analyze the properties achieved by our
mechanism, including joint answer and profile truthfulness and
its approximation ratio.

Theorem 3. The proposed mechanism guarantees joint answer
and profile truthfulness.

Proof. According to Definition 1, we need to prove EA,I
[pi(oi, ci)] ≥ EA,I [pi(oi, ci)]3. For this purpose, we first show
EA,I [pi(oi, ci)] ≥ EA,I [pi(oi, ci)] and then EA,I [pi(oi, ci)]
≥ EA,I [pi(oi, ci)] .

Specifically,

EA,I [pi(oi, ci)] =
∑
I∈I

βIEA[pi(oi, ci)]

=
∑
I∈I

βI
∑
ai∈A

Pr[oi = ai]pi(ai) =
∑
I∈I

βIηp
F
i (ci) = ηpFi (ci)

which is exactly η times wi’s payment under the frac-
tional VCG mechanism when reporting ci. Similarly, we have
EA,I [pi(oi, ci)] = ηpFi (ci), i.e., η times wi’s payment under
the fractional VCG mechanism when reporting untruthful ci. On
the other hand, as proved in [33], the fractional VCG guarantees
pFi (ci) ≥ pFi (ci), and thus EA,I [pi(oi, ci)] ≥ EA,I [pi(oi, ci)].

When wi submits ci, under a specific feasible worker re-
cruitment profile I ∈ I , wi either wins or loses. The following
discussion is conducted for these two cases, separately.

For the first case, wi loses with ci. Then EA[pi(oi, ci)] =
EA[pi(ri, ci)] = 0. Since wi loses, it will not be selected. Hence,
its payment is 0.

For the second case, wi wins with ci

EA[pi(oi)]− EA[pi(oi)]

=
∑
ai∈A

Pr[oi = ai] · (pi(ai)− pi(ai)) ≥ δ.

Combining these two cases, we have EA[pi(oi, ci)] ≥
EA[pi(oi, ci)]. Therefore, EA,I [pi(oi, ci)] =

∑
i∈I βI ·

EA[pi(oi, ci)] ≥
∑
i∈I βI · EA[pi(oi, ci)] = EA,I [pi(oi, ci)].

It is desirable to analyze the approximation ratio of the
proposed mechanism to the optimum result of P1, where truth-
fulness is not guaranteed. It evaluates the optimality tradeoff for
truthfulness.

Theorem 4. The proposed mechanism achieves the approximation
ratio upper bounded by 2.

Proof. The expected overall objective value achieved by the
proposed mechanism is formulated by

∑
I∈I

βI
∑

wi∈W
fi(bi)xi(I).

Thus, the approximation ratio is calculated as∑
I∈I

βI
∑

wi∈W
fi(bi)xi(I)

π∗1
=

∑
wi∈W

fi(bi)(
∑
I∈I

βIxi(I))

π∗1

=η

∑
wi∈W

fi(bi)x
F
i

π∗1
= η

π∗3
π∗1
≤ η

where η = 2.

5 EXPERIMENTAL EVALUATION

5.1 Experimental Setup

As a proof-of-concept implementation, we develop a prototype
of the proposed mechanism. The prototype mainly consists of
the worker-side app and the platform-side program. Specifically,
the app is developed in Android. The platform program runs

3. For expression simplicity, we omit o−i and c−i from pi in the following
discussion.
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Fig. 2. Screenshots of worker-side app.

on a Dell laptop with a 1.6GHz processor and 16GB RAM. To
facilitate the task publication and data reporting, the web server,
named HTTP File Server (HFS) [42], is utilized. To investigate
the performance of our mechanism, in-field experiments involving
30 volunteers have been conducted. For each task, the worker-
side app also generates a random number from [0.005, 0.075] to
represent the volunteer’s self-reported profile4, which is unknown
by the platform. There are 60 tasks in total. All of them are binary-
answer English grammar questions from commonly used real-
world crowdsourcing datasets [43]. An on-site training workshop
on app usage was provided to volunteers before the experiment.
The experiment procedure is briefly summarized as follows. Once
the platform publishes a task, workers submit their reported
profiles (Figure 2(b)). The volunteer decides if to submit the
same profile as generated by the app or a different one. Then
the platform determines which workers to recruit. The selected
workers then solve the question and send back the answers, i.e.,
answers (Figure 2(c) and 2(d)). The platform determines payment
to each worker for this task (Figure 2(e)). A worker’s final payment
is the accumulated amount it receives in all tasks (Figure 2(f)).

We developed our own prototype instead of using existing
crowdsourcing platforms, such as Amazon Mechanical Turk or
Flower Eight, due to the complex nature of our payment rule and
the centralized worker selection. In these platforms, a worker’s
payment is predeclared and generally fixed. Thus, dynamic incen-
tives cannot be implemented. All of our source codes are available
online5.

For comparison purposes, the experiment is also conducted
with another two incentive mechanisms. The first one, called
random VCG, employs the random VCG auction framework for
worker selection and payment calculation so as to achieve profile
truthfulness. The second one is called truth serum [16] that was
designed for answer truthfulness. Specifically, truth serum extracts
a worker’s posterior belief from its reported answer and scores it
using reference answers. The scoring rule is carefully designed
such that truth-telling is a Bayesian Nash equilibrium.

5.2 Analysis of Answer Truthfulness
This section evaluates answer truthfulness. Since all tasks are

relatively easy grammar questions for college students, we assume

4. In the experiments, there is only one parameter in a worker’s profile for
simplicity.

5. https://sites.google.com/site/reportingtruthful/
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Fig. 3. A randomly selected worker’s reported and true answer for 60
tasks in our mechanism.

that their genuine answer to a task is the same as its ground truth.
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Fig. 4. Answer elicitation performance comparison among our mecha-
nism, random VCG, and truth serum.

Figure 3 shows a randomly selected worker’s reported answer
and the ground truth across the entire 60 tasks. We use “1” and
“0” to denote the answer “yes” and “no”, respectively. This worker
misreports more often at the beginning but tends to be honest later.
Particularly, 7 tasks are misreported among the first half batch,
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Fig. 5. A randomly selected worker’s reported and true profile for 60
tasks in our mechanism.
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Fig. 6. Profile elicitation performance comparison among our mecha-
nism, random VCG and truth serum.

while this number drops to 4 for the second half batch. Since the
worker gets the best-expected payoff when behaving honestly, it
gradually adjusts strategies to truth-telling.

Figure 4(a) examines the truthful task ratio, which is defined
as the percentage of tasks that a worker honestly reports among
all the tasks. We observe that the ratio achieved by our mechanism
and truth serum is around 0.9, while that for the random VCG is
as low as 0.5. Thus, workers demonstrate no preference in answer
reporting when truth elicitation is not enforced. Our mechanism
performs as good as truth serum in motivating truth-telling.
However, the latter does not consider profile truthfulness, which
will be discussed in the next section. In addition, we compare
in Figure 4(b) the truthful worker ratio, which is defined as the
percentage of honest-reporting workers for a given task, among
the three mechanisms. Similarly, ours has a similar performance
as truth serum. Both of them outperform the random VCG. It is
worth mentioning that neither our mechanism nor truth serum can
guarantee perfect truth-telling in real-world experiments. This is
because workers are modeled as idealized “rational individuals”
with perfect knowledge to act in the paper, which may not be
reflective of their actual status in real-world scenarios.
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Fig. 7. The platform’s expense for different tasks.

TABLE 2
Accuracy performance comparison.

Accuracy Error Accuracy ratio
Our mechanism 55 5 91.7%

Truth serum 54 6 90.0%
Random VCG 32 28 53.3%

5.3 Analysis of Profile Truthfulness
Figure 5 depicts a randomly selected worker’s reported profile

and its genuine value for the 60 tasks. We observe a similar
trend as in Figure 4: the worker is more likely to misreport at
the beginning but tends to behave honestly after a few rounds of
task executions. This is also because our mechanism effectively
encourages workers to report true profiles. Figure 6(a) compares
the truthful task ratio among the three mechanisms. We find that
our mechanism and the random VCG have a similar performance
in truthful profile elicitation, which outperforms truth serum. This
is because the former two apply random VCG for worker selection
where profile truthfulness is guaranteed while truth serum does
not consider profile truthfulness but merely answer truthfulness. A
similar observation is obtained in Figure 6(b).

We further examine the platform’s expense incurred by the
three mechanisms for each task in Figure 7. The expense is the
sum of all worker payments. Truth serum causes the highest
expense among the three. Since it fails to consider profile truthful-
ness, workers can manipulate reported profiles and thus incur extra
payment to the platform. We also observe that our mechanism
brings a slightly higher expense than random VCG on average.
This extra expense ensures the answer truthfulness that random
VCG fails to achieve.

5.4 Accuracy Performance
Once the platform collects answers from workers, it aggregates

them and derives the final result. We employ the majority voting
as the aggregation method, i.e., if more than half answers are
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Fig. 8. The platform’s expense under different mobile crowdsourcing
sizes.
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Fig. 9. Time consumption of our mechanism under different system
sizes.

“yes”, then the final result of the task is deemed “yes”; otherwise,
it is “no”. Accuracy is different from answer truthfulness. The
former denotes that the aggregated answer is the same as the
ground truth, while the latter means a worker reports her true
observation. Table 2 compares the accuracy performance among
the three mechanisms. Our mechanism and truth serum have a
similar performance. Specifically, we get correct answers in 55
and 54 tasks out of 60 via our mechanism and truth serum,
respectively. The random VCG has the lowest accuracy ratio,
53.3%. Together with the answer truthfulness analysis Figure 4,
we find that answer truthfulness and accuracy demonstrate a strong
positive correlation in our mechanism. This property is useful,
especially for the tasks whose ground truth is hard to derive.

5.5 Impact of System Size

We also analyze the impact of system size on the mecha-
nism performance. Figure 8 shows the platform’s expense under
different system sizes. We find in Figure 8(a) that the expense
increases linearly as the number of tasks grows. Specifically, the
total amount is $26.8 when there are 30 tasks and 15 reference
answers. This value increases to $60.5 when the task number
becomes 60. The observation meets our expectation: more workers
need to be recruited to execute more tasks, thus incurring higher
expenses to the platform. Here, reference answers correspond to
r−i in the mechanism. Figure 8(b) shows that the platform’s
average expense also increases linearly with respect to the number
of reference answers. Specifically, the platform’s average payment
is $25.5 when there are 40 tasks and 10 reference answers. It
increases to $50.3 when the answer number becomes 15.

Figure 9 illustrates the time consumption of our mechanism
under different settings. It mainly comes from three processes:
winner selection, payment calculation, and the data communi-
cation between the platform program and the worker-side app.
Notice that the task execution time, i.e., the duration for workers
to conduct tasks and derive results, is not included, as this part de-
pends on individual intelligence that varies from worker to worker.
We observe from Figure 9(a) that the time slightly increases, from
about 0.7s to 2.2s, when the task number changes from 5 to 60.
The average time consumption for each task is as low as 0.05s. It
is worth mentioning that tasks are conducted sequentially in the
current experiment. The time consumption can be further reduced
when they are processed in parallel, which we will implement
and examine in our future work. A similar trend is observed in
Figure 9(b). The time consumption slightly increases when more

workers participate. Specifically, the value is 1.1s when there are
21 workers, and it becomes 2.1s when the worker size is 60.

To sum up, our mechanism can not only effectively elicit
truthful answers and profiles, but is also feasible to implement
for practical mobile crowdsourcing systems due to its moderate
expense caused to the platform and high computation efficiency.

5.6 Analysis of Scalability
To evaluate the scalability of the proposed scheme, we further

conduct a series of simulations. Besides, its performance is also
compared with a baseline approach, i.e., the conventional VCG.
To implement the baseline approach, we utilize CPLEX, a com-
mercial optimization software package [44], to optimally solve
the integer programming (IP) problem P1 for task allocation and
VCG for payment determination. For each task and worker, we
randomly generate task-independent parameters di and workers’
profile bi from the normal distribution N(0.5, 0.2). γ is set to 2
by default. The maximum worker size and task size is set to 1000
and 1600, respectively. All results are averaged over 100 trials.
The evaluations run on a Dell laptop with a 1.6GHz processor and
16GB RAM.

Figure 10 compares the time consumption between our scheme
and the baseline approach given different amounts of tasks. As
a note, the baseline approach stands for the conventional VCG
approach that directly applies CPLEX to find the optimum solution
of task allocation and pricing. We observe in Figure 10 that our
scheme spends much less time than the baseline approach given
the same number of tasks. For example, when there are 400 tasks,
it takes our scheme 2.3 s and 6.9 s to derive task allocation and
pricing outcomes, respectively. However, the values become 62.5
s and 63.2 s for the baseline approach. This is because the latter
solves computationally expensive IP problems, i.e., P1, for both
task allocation and payment determination; instead, our scheme
follows the framework of fractional VCG that only involves
solving LP problems with polynomial complexity.

Figure 11 compares the time consumption between our scheme
and the baseline approach given different numbers of workers. We
observe that our scheme’s time for task allocation increases slower
than that of the baseline approach as the worker number grows.
This is because more variables introduce a lower time complexity
to LP problems (or our scheme) than IP problems (or the baseline
approach). We also notice in Figure 11(a) that our payment deter-
mination takes relatively stable time with the increase of worker
numbers. Combining the results from Figure 10 and Figure 11,
we conclude that our scheme is more practical for implementation
than the conventional VCG in terms of computation efficiency,
especially when the number of workers and/or tasks is large.

6 RELATED WORK

Answer truthfulness. Mechanism design to elicit truthful
answers/data, in binary-answer tasks, is an extensively studied
topic [17], [18], [19], [20], [20], [21], [22], [23] The idea is to
devise payment rules such that truth-telling is a Nash equilibrium.
Since the ground truth for each task is unknown to the system,
a natural solution is to reward workers based on other workers’
reports, i.e., reference answers [17], [18], [19] Another solution is
to utilize a truth detection technology that gives a signal indicating
if a worker is truthful or lying based on factors, e.g., physiological
measures (e.g., pupil dilation) [20], [21]. Realizing that workers’
efforts also determine the accuracy of crowdsourcing services,
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Fig. 10. Time consumption of our scheme and the baseline approach
over different task numbers (Worker number=500).
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Fig. 11. Time consumption of our scheme and the baseline approach
over different worker numbers (Task number=500).

a couple of works [20], [22], [23] further utilize incentives to
motivate workers to exert efforts in task execution. For example,
Dasgupta et al. [22] incentivized maximum effort followed by
truthful reports of answers in an equilibrium that achieves max-
imum payoffs for workers. Gong et al. [23] developed mecha-
nisms to incentivize strategic workers to truthfully reveal their
private quality and data, and make truthful efforts as desired by
the crowdsourcing requester. The above two works assume that
workers have the same cost of effort exertion and/or the same
solution accuracy. In practice, for example, students with a better
academic background are likely better at homework assessment.
They may spend smaller costs (e.g., time) generating homework
assessments with higher quality (i.e., higher solution accuracy).
Huang et al. [20] then accommodated such worker heterogeneity
in their incentive mechanism design. None of the above works
considers profile truthfulness. As discussed, this property is of
equal importance for the platform to deliver high-quality mobile
crowdsourcing services.

Cost truthfulness. Minimizing the overall worker cost, in
terms of energy consumption, travel distance, or computing re-
sources, is a prevailing decision criterion to generate suitable
worker-task pairs during task assignments. Since cost is private
information and workers are strategic in reporting this value for
favorable outcomes, the main challenge lies in how to stimulate
workers to disclose their costs truthfully. Incentive mechanisms
have attracted most attention for truthful cost elicitation due to
their ability to deal with workers’ strategic behaviors [1], [14],
[25], [26], [27], [28], [29], [30] For example, Yang et al. [25]
were among the first to discuss cost truthfulness during task as-
signment in crowdsourcing. Auction-based incentive mechanisms
have been developed. Along this line of research, [1], [27], [29]

then study the impact of budget constraints at the platform. Since
the monetary provision is limited, the platform’s strategy space
is thus confined. Noticing that existing mechanisms assume the
existence of only one task requester, [30] considers multiple
requesters. The framework of double-auction is thus applied. Cost
truthfulness is guaranteed at both requesters and workers. Since
cost is merely one kind of self-reported profile, cost truthfulness is
thus a special case of profile truthfulness that we aim to achieve.
Aside from the cost, strategic workers are able to manipulate a
much wider spectrum of self-reported profiles, which conventional
cost truthfulness schemes cannot resist.

Summary. To our knowledge, this is the first study that
protects two different stages, i.e., task assignment and answer ag-
gregation, in crowdsourcing from workers’ strategic misreporting
simultaneously. In the task assignment stage, workers report their
profiles, such as locations, expertise, and cost of task execution,
to the platform, who then decides task assignment based on the
collected profiles. Hence, strategic workers may manipulate their
reports to gain benefit. This is the same case in the answer
aggregation stage where workers lie about their reported answers.
Prior works utilize incentive design to tackle either one of the
above two kinds of misbehaviors. Instead, we aim to develop
a unified framework to address them at the same time. It is
infeasible to directly apply existing schemes in each stage, i.e.,
a worker is first paid for answer truthfulness and then paid for cost
truthfulness. This is because the worker’s total payment received
from both stages, if not carefully calibrated jointly, would violate
conditions for both profile truthfulness and answer truthfulness.

Another limitation of the prior works is that they mostly
focus on cost truthfulness, i.e., motivating workers to reveal their
genuine costs in task execution. In fact, in the stage of task assign-
ment, workers are required to report many other information, such
as location and expertise, in addition to the cost. We call them
“profile” in this paper. Cost truthfulness cannot guarantee workers
truth-telling over other information. To address this issue, our
approach achieves profile truthfulness that covers a much wider
spectrum of strategic behaviors.

7 CONCLUSION

In this paper, we develop an incentive mechanism to jointly
elicit truthful answers and profiles from strategic workers in
mobile crowdsourcing. Our design first derives the sufficient and
necessary conditions for these two goals separately. Particularly,
to achieve answer truthfulness, we leverage reference answers to
evaluate the truthfulness of a given worker’s answer. Under the
model of Bayesian game, a worker’s expected payment for truth-
telling is set no less than that when lying, which leaves workers
little incentive to lie. The condition of profile truthfulness is
derived via the design of randomized worker selection and worker
payment. We first formulate a worker selection optimization
problem. Due to its NP-hardness, we resort to solving its relaxed
version in a fractional domain. The factional optimal solution is
then decomposed into a randomized format. An α-approximate
algorithm is further developed. The upper bound of its integrality
gap then serves as a scaling factor η, which is applied to the
randomized worker selection to ensure its feasibility. As a final
step, the conditions for answer and profile truthfulness are inte-
grated as constraints of the payment optimization problem, whose
solution is the incentive paid to each worker to motivate honest
behaviors. As a proof-of-concept implementation, we prototype
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the proposed mechanism. A series of experiments that involve 30
volunteers have been conducted. Results show that our mechanism
is effective and efficient for practical implementation.
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