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Abstract
An unidentified quantum fluid designated the pseudogap (PG) phase is produced by

electron-density depletion in the CuO2 antiferromagnetic insulator. Current theories suggest
that the PG phase may be a pair density wave (PDW) state characterized by a spatially
modulating density of electron pairs. Such a state should exhibit a periodically modulating
energy gap Ap(r) in real-space, and a characteristic quasiparticle scattering interference
(QPI) signature Ap(q) in wavevector space. By studying strongly underdoped
Bi>Sr2CaDyCuz0g at hole-density ~0.08 in the superconductive phase, we detect the 8ao-
periodic Ap(r) modulations signifying a PDW coexisting with superconductivity. Then, by
visualizing the temperature dependence of this electronic structure from the

superconducting into the pseudogap phase, we find evolution of the scattering interference



signature A(q) that is predicted specifically for the temperature dependence of an 8ao-
periodic PDW. These observations are consistent with theory for the transition from a PDW
state coexisting with d-wave superconductivity to a pure PDW state in the Bi;Sr.CaDyCu20sg

pseudogap phase.

Introduction

Carrier-doped CuO: sustains both high temperature superconductivity and the pseudogap
quantum fluid, often simultaneously. Although the former is reasonably well understood, a
decades-long effort by physicists to identify the latter’2 has yet to bear fruit. The essential
phenomenology of the pseudogap, while complex, is internally consistent. When p holes per
unit-cell are introduced to CuOz2, the antiferromagnetic insulator (AF) state disappears and
the pseudogap (PG) emerges in the region p<p* and T<T*(p) (Fig. 1a). For T < T*(p), an
energy gap A*(p) depletes the spectrum of electronic states, and thus the magnetic
susceptibility3 y(T), the electronic specific heat* C(T'), the c-axis conductivity>¢ p(w, T), and
the average density of electronic states” N(E). In k-space, there are four k(E = 0) Fermi arcs8
neighboring k ~ (+ w/2a,+ m/2a), beyond which the ‘pseudogap’ A*(k) opens3910 near
k=~ (+n/a,0);(0,+m/a). At extreme magnetic fields, tiny electron-like pockets with k-
space area A, = 7% of the CuO: Brillouin zone, are detected!! in the pseudogap state. Probes
of electrical and thermal transport in the pseudogap phase evidence electron-pairs without
phase rigidity12-14. Translational symmetry breaking is widely reported?>-17 to occur within
the pseudogap phase; it is associated with charge density modulations of wavevectors Q =~

2n/a(+1/4,0); (0,+1/4). A90°-rotational (C4) symmetry breaking at Q=0 and sometimes



time-reversal symmetry breaking are also reported depending on materials and techniquel8-
22 All these phenomena disappear102324 near a critical hole density p = p* which depends
on material. The long-term challenge has been to identify a specific state of electronic matter
that should exhibit all these properties simultaneously. A viable candidate has emerged

recently2°-38, the pair density wave state3?.

A spatially homogeneous d-wave superconductor has an electron-pair potential or order
parameter A4(1) = Aye'® with macroscopic quantum phase ¢ and critical temperature Te.
By contrast, a PDW state has an order parameter Ap(r) that modulates spatially at
wavevectors Qp

Ap (1) = [A(r)eiQP T+ A*(r)e” '@ 'r] et? (1)
with a macroscopic quantum phase 6. In theory, such a state exhibits a particle-hole
symmetric energy gap Ap(k) near the BZ edges, with the Ap(k) = 0 points connected by
extended k(E = 0) Fermi arcs810. Of necessity, such a partial gap suppresses N(E), C(T),

x(T), and p(w,T). Moreover, a pure PDW is defined by a pair potential modulation

as in equation (1) and exhibits a primary electron-pair density modulation pp(r) =
pp[e®2@rT 4+ ¢~2QrT] along with a collateral charge density modulation p¢ (1) = p2 [eiQC T+
e‘iQC'r] with wavevector Q¢ = 2Qp (Ref. 39). If the PDW is unidirectional, it necessarily

breaks the rotation symmetry of the material at @Q=0, and if biaxial it can break time reversal
symmetry*%, PDW order very naturally produces Fermi arcs26:30.4142, Finally, quasiparticles
of the PDW should exhibit scattering interference signatures3> which are uniquely

characteristic of that state.



While charge density modulations p.(r) are widely reported in the pseudogap phasels-17 it
is unknown if electron-pair density pp(r) or electron-pair potential Ap () modulations exist
therein. Whether the QPI signature Ap(q) of a PDW occurs in the pseudogap phase is also
unknown. Indeed, exploration of the pseudogap phase in search of a PDW poses severe
experimental challenges. The modulating electron-pair density pp () which is iconic of the
PDW state has been visualized directly by scanned Josephson tunneling microscopy3643 but
such experiments must be carried out at sub-kelvin temperatures where both sample and
STM tip are superconducting. Another approach used in the superconductive phase has been
to visualize signatures of the PDW electron-pair potential modulations3>3738 Ap (). But none
of these experiments provide evidence on whether the pseudogap state in zero magnetic field
is a PDW, because they were all carried out deep in the superconducting phase at
temperatures T < 0.1T,. At low temperatures but in high magnetic fields, both scanning
tunneling microscopy and quantum oscillation studies report evidence for a PDW state3744,
implying that the relict of suppressed superconductivity is a PDW. Therefore, our objective is
to visualize the evolution with temperature of electronic structure, especially Ap (r) and
Ap(q), from the superconducting into the zero-field pseudogap phase of strongly

underdoped Bi>Sr2CaDyCu20s.

Results
Modeling the temperature dependence of the PDW state
For theoretical guidance, we use a quantitative, atomic-scale model for PDW state based

upon CuO3 electronic structure and the t-/ Hamiltonian,



H=-— Z(i,j),a PGtij(C?-aCjG + h C. ) PG +]Z<i,j> Si ' Sj (2)
Here, the electron hopping rates between nearest neighbor (NN) and next-nearest neighbor

(NNN) Cu d,2_,2 orbitals are t and t’, respectively, the onsite repulsive energy U — o, thus

the antiferromagnetic exchange interactions J=4t?/U, and the operator P; eliminates all
doubly-occupied orbitals. A renormalized mean-field theory (RMFT) approximation then

replaces Pg with site-specific and bond-specific renormalization factors gl-t,j and g; ; based on

the average number of charge and spin configurations permissible3435. The resulting
Hamiltonian is decoupled into a diagonalizable mean-field approximation using on-site hole
density &; , bond field y;j, , and electron-pair potential A;j, . This mean field ¢-] Hamiltonian
has a uniform d-wave superconducting (DSC) state as its ground state, but PDW and DSC
states are extremely close in energy, as has also been shown elsewhere*>-47. Our approach is
to find metastable configurations of PDW states and study their signatures in STM. To this
end, the RMFT equations are initialized with the electron pair potential fields modulating at
wavevector Qp = (+1/8,0)2m/a,, as suggested by recent observations of electron-pair
density modulating at 2Qp3¢ and energy-gap modulations at Q@ at zero-magnetic field38 as
well as in magnetic fields3’. Moreover because there is little evidence of any long-range
magnetic order coexisting with charge modulations in Bi;Sr2CaCu20sg at any temperatures,
we constrain the RMFT solutions to non-magnetic modulating states only, thus, excluding
(r, ) spin density wave order and stripe order. In the self-consistent solution wavefunction

Y, (r) of this broken-symmetry state then predicts the net charge on each Cusite §; = 1-<
W X6 nig|¥o >, the bond-field between adjacent sites ij x;j; =< ‘{’0|C;racja|‘110 >, and the

electron-pair field on the bond between adjacentsites i,j A;j; = 0 < Wy|c¢;s¢j5|'¥, >. Finally,



because experimental visualizations are carried out at the crystal termination BiO layer of

BizSr2CaCuz0s, Cu d,2_,2 Wannier functions W; (r) and lattice Green’s function G;;,(E) are
used to generate the r-space Green’s functions G, (r,E) = Y;;G;je (EYW;(r)W; (1)
everywhere at a height 0.4 nm above BiO terminal plane. Thus, the atomically resolved
density of electronic states N(r,E) = Y, —%Im G, (r,E) at the BiO termination surface of

Bi,Sr2CaCu20s is predicted for the case where the adjacent CuO; crystal layer sustainsa A =

8ay, PDW (Supplementary Note 1).

From this theory, Figure 2a shows the average N(r,E) at height ~4 A above the BiO
termination in Bi;Sr2CaCuz0s for the PDW state coexisting with d-wave superconductivity
(PDW+DSC state) at low-temperatures and pure PDW state at a higher temperature. The
PDW+DSC state shows a V-shaped N(E) due to presence of nodes in DSC state. With
increasing temperature, the uniform component of the pair potential decreases
(Supplementary Note 1 and Fig. 2e) and gap scales corresponding to DSC (4,) and PDW (4,)
components can be identified as a shoulder feature and a coherence peak, respectively (light-
blue curve corresponding to T=0.04t). Nodal points disappear in transition from PDW+DSC
state to PDW state at higher temperatures leading to a large zero-energy N(E) in the latter
(red curve corresponding to 7=0.09t) (Supplementary Note 1). Thus, a finite zero energy
density-of-states is a natural property of a PDW state. These features agree with the
experimental findings (Fig. 1d). However, the spectral gap defined by the position of the E>0
coherence peak reduces in the high-temperature PDW state due to the reduced 4;;,. We
believe this discrepancy is a result of an inadequate treatment of self-energy effects in the

current renormalized mean field theory, including the assumption of temperature
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independent Gutzwiller factors (Supplementary Note 1). Fig. 2b shows the most prominent
Fourier components of the mean-fields in PDW+DSC and PDW states namely Qp =
(£2m/8ay, 0) and Q. = 2Qp. All mean-fields, including the hole density and the d-wave gap
order parameter34 shown in Fig. 2c and 2d, respectively, exhibit periodicity of 8a, in the
PDW+DSC state at low temperatures. However, due to the absence of the uniform component
(g = 0) in pure PDW state, density-like quantities are 4a, periodic as predicted by Ginzburg-
Landau theories3? (Fig 2c). We note that the bond field ;j is a density-like quantity too and
exhibits a behavior very similar to the hole density (Supplementary Note 1). The
temperature dependence of the uniform and PDW (q = Q) components are shown in Fig.
2e. With increasing temperature, the uniform component of the gap, which corresponds to
DSC in the PDW+DSC state, decreases rapidly and becomes negligibly small compared to the
PDW component in the temperature range 0.05¢<7<0.085¢, but does not vanish. We have
verified that a converged nonzero solution for A( q = 0), ‘fragile PDW+DSC’ state’, exists in
this region (white background in Figs. 2e-f). For 7>0.085t, the PDW+DSC solution of the
RMFT equations becomes unstable and the pure PDW state is the only stable solution for a
modulated state (pink background in Figs. 2e-f) (Supplementary Note 1). The temperature
dependence of ¢ = Qp and q = Q. components of the hole density is shown in Fig. 2f. We
find that the g = Q. component of the charge density is dominant at all temperatures and
the q = Qp component exhibits essentially the same temperature dependence as the
uniform component of the gap order parameter. This is in agreement with Ginzburg-Landau
theory3? and experimental observation37.3843 that a PDW generated charge density wave
(CDW) state will have ¢ = Qp and q = Q. = 2Qp components that are related to the uniform

(4(0)) and PDW (4(Qp)) components of the gap order parameter as 6(Qp)



(A(0)A(—Qp)" + A(Qp)A(0)*) and 5(Q.) x A(Qp)A(—Qp)*. The self-consistent PDW
solutions are found to exist in a hole doping range 0.06<p<0.14 for all temperatures

considered.

We explore these predictions using strongly underdoped Bi>SrCaDyCuz0s samples with
resistive transition temperature T, = 37 + 3 Kand p = 0.08 as shown schematically by the
white arrow in Fig. 1a. These samples are cleaved in cryogenic vacuum at T = 4.2 K and
inserted to the instrument. Measurements are carried out at a sequence of temperatures
from 0.17, < T < 1.5T, spanning the range from the superconducting to well into the
pseudogap phase. The topographic images T'(r) of the FOV studied versus temperature are
taken using the experimental methods described in "Methods” section and presented in
Supplementary Figure 4. Both the tip-sample differential tunneling current I(r,V) and
conductance dI /dV (r,E = eV) = g(r,V) are measured at bias voltage V=E/e and with sub-

angstrom spatial resolution. Because the density-of-electronic-states N (7, E) is related to the

differential conductance as g(r,E) « N(r, E)[I,/ feVS

o N(r,E")dE'], where I; and Vs are

. . : V. . .
arbitrary set-point parameters and the denominator foe *N(r,E")dE' is unknown, valid

imaging of N(r, E) is intractable. However, one can suppress these serious systematic “set-
point” errors by using R(r,E) =I1(r,E)/I(r,—E) or Z(r,E) = g(r,E)/g(r,—E) so that
distances, modulation wavelengths and spatial-phases can be measured accurately.
Furthermore, Bogoliubov quasiparticle scattering interference (BQPI) occurs when an
impurity atom scatters quasiparticles, which interfere to produce characteristic modulations
of SN (r, E) surrounding each scattering site. The Fourier transform of §N(r, E), 6N(q,E),

then exhibits intensity maxima at a set of wavevectors q; connecting regions of high joint-
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density-of-states. Local maxima in Z(q, E) therefore reveal the sets of energy dispersive
wavevectors q;(E) generated by the scattering interference: An efficient synopsis of these
complex phenomena can then be achieved!0 by using A(q, A) = Y'4~,Z(q, E), which provides

a characteristic “fingerprint” of whatever ordered state, e.g. CDW or PDW, controls the q; (E).

Evolution of energy gap modulations from superconductive to pseudogap phase

At T = 4.2 K we first measure g(r,V) in a 20 nm-square FOV (see "Methods” section and
Supplementary Figure 4). The average differential conductance g (V) is shown as a blue curve
in Fig. 1d, where the energy of the coherence peak is determined from a local maximum in
g(V) forV > 0 (identified by a black vertical arrow). Measuring this energy versus location
yields the so-called gapmap A; (1) as shown in Fig. 3a. Fourier analysis of A, (r) yields A (q),
which exhibits significant disorder as g — 0 (Supplementary Figure 5b). But, by fitting the
central peak to a cylindrical gaussian, and then subtracting it from A;(q), we find four
maximaatq = [(£0.125 £ 0.040,0); (0,%0.125 + 0.015)] 2m/a, (insetin Fig 3a). These are
the energy-gap modulations with period approximately 8a,, that have been previously
reported3> 37.38 for samples with p = 0.17, and are the signature of a PDW state coexisting
with d-symmetry superconductivity at low temperature. Fourier filtration of Fig. 3a retaining
only modulations at q = [(+1/8,0); (0,+1/8)] 21t/a, yields an accurate image of the PDW
gap modulations as seen in Fig. 3b. But when the same procedures are carried out at T =
1.5T; = 55 K, the coherence peaks from which the gap is defined have so diminished that an
equivalent gapmap is difficult to achieve. For example, Figs 3c and 3d show the measured
g(r,60 mV) in an identical 10 nm-square FOV at T = 0.14T, = 5K and T = 1.5T; = 55 K.

Cross correlation analysis of g(r,V) at T = 0.14T; and of g(r,V) at T = 1.5T in this FOV



versus bias voltage V, yield a normalized cross correlation coefficients around 0.9 for
practically all energies (Supplementary Note 3), thus indicating that virtually no changes
have occurred in spatial arrangements of electronic structure upon entering the PG phase.
The major exception is in the energy range +100 meV < E < +160 meV, wherein the feature
denoted coherence peak (arrow Fig. 1d) diminishes strongly in amplitude. This however
makes comparison of the A; (r) in same FOV at T=5 Kand T = 55 K challenging. Figures 3e
and 3f show the measured A,(r) and, where it is possible to determine the energy, no
changes have occurred in spatial arrangements of energy gaps either. The cross-correlation
coefficient between the A, (r, 0.14T;) and A, (r, 1.5T;) is 0.685 indicating that the PDW state

found at T < T, remains robustly present at 1.5T; deep into the pseudogap phase.

Temperature Evolution in the QPI Signature of a PDW State
Next, we measure g(r,V,T) for —34 mV < V < 34 mV ata sequence of temperatures 0.17, <
T < 1.5T,. Then Z(r,V) = g(r,+V)/g(r,—V) is evaluated for each temperature, and the

power-spectral-density Fourier transforms Z(q,V) are derived. Hence, A(q,A,) =

Zg;o Z(q,E) is calculated at each temperature where A, = 20 meV is the observed energy
above which dispersive scattering interference is no longer detectablel03>. The measured
temperature dependence of A(q, Ay) for 0.1T, < T < 1.5T, is shown in the left column in Fig.
4. The initial A(g, A,) features at T=4.2K are exactly as expected from theory and as observed
by experiment at p = 0.17, for a PDW coexisting with a d-wave superconductor!4. As
temperature increases the characteristics remain strikingly unchanged except that the
intensity become significantly weaker. That the passage through T. exhibits almost no

signature in A(q,4,) , is unexpected if the scattering interference in A(q,4,) is only due to
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the d-wave superconductivity. If however, a PDW state exists both below and above T this is
what might logically be expected. Moreover, quantitative theoretical predictions for A(q, A)
foraA = 8a, PDW using the RMFT model, predict Z(q, E) surrounding a point-like scatterer
and hence Ap(q,A,) = Zg;o Z(q,E) (Supplementary Note 5). Comparing our A(q,4,) data
to the RMFT-derived predictions Ap(q, Ay) for a A = 8a, PDW in the right column in Fig. 4
shows how the key features in the experiments are reproduced in the theory over the whole
range of temperatures. Features at q = (+1/4,+1/4) 21t/a, extending in nodal directions
disappear with the transition from superconducting state to pseudogap; this is reproduced
in our theory as a consequence of vanishing DSC component (indicated by red arrow in Fig.
4 and Supplementary Figure 12). Further, the measured length of the A(q, 4,) arc features
about (+1,+1) 21t/a, increase continuously from superconducting to pseudogap phase
(Supplementary Note 6). This temperature evolution of the arclength in Ap(q, 20 meV) from
PDW+DSC state to pure PDW state in the RMFT model, has indistinguishable characteristics
(Supplementary Figure 14). Moreover, superimposing the experimental and theoretical
maps shows nearly identical positioning of dominant QPI features in g-space
(Supplementary Figure 12). The implication is that the PDW state which definitely exists at
lowest temperatures3>-38, continues to exist into pseudogap phase. But in that case, since that
pseudogap is often (but not always) reported to support no supercurrents, it would have to

be in a strongly phase fluctuating PDW phase 32.3350-54,

Comparison of QPI Signature of a CDW and PDW State
Finally, we consider the widely promulgated hypothesis151617 that the pseudogap phase is a

primary CDW state, whose charge density modulation breaks the translational symmetry of
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the cuprate pseudogap phase. First we note the very sharp distinction between these states:

.l.

the mean-field order parameter of a PDW at wavevector Qp is <C,1(-T C ot

0 l), whereas for a
P

CDW at wavevector Q. itis ), <Cl-€l-.0ck+QC ,)- Second, while a periodically modulating energy

gap is a key PDW signature (Fig. 3a), r-space energy gap modulation should be weak in a
CDW state, where it is charge density which modulates. Third, the quasiparticles and their
scattering interference are highly distinct for the two states. A primary CDW order by itself
does not exist as a stable self-consistent solution of the RMFT ¢-] model at any temperatures
or dopings that we have considered. However, we can study STM signatures of the CDW order
non-self-consistently. Figure 5a shows the predicted Ar(q, Ay) = Zg‘;o Z(q,E) fora A = 8q,
PDW in the CuO; pseudogap phase, while Fig. 5b shows the equivalent predictions fora A =
4ay, CDW (Supplementary Note 5). In Fig. 5¢, d we show the measured A(q, A,) at T = 1.25T,
and T = 1.5T, (A(q, A,) analysis details are discussed in Supplementary Note 6). Clearly, the
measured A(q, A,) is in superior agreement with the Ap(q,A,) signature of a A = 8a, PDW
rather than with that ofa 4 = 4a, CDW. The energy evolution of the wavevectors is visualized
in the measured Z(q,V,55 K) from 4 mV to 20 mV (movie S2 and Supplementary Note 7).
The wavevectors evolve dispersively with energy only by a small amount. Finally, The
A(q, 1) in the pseudogap phase forms an open contour near the lines (+1,0)21/a, and (0,
+1)2m/a,; this is consistent with the open contours in the Ap(q, A,) signature of a 1 = 8a,
PDW but distinct from the closed contours ofa A = 4a, CDW. Therefore, predictions of a pure
PDW theory corresponds well and in detail to the complex patterns of the quasiparticle

scattering that are actually observed in the pseudogap phase of Bi2Sr2CaDyCu20s.
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To summarize: strongly underdoped Bi,Sr2CaDyCu20s at p~0.08 and T = 5 K exhibits the
8ao-periodic A;(r) modulations characteristics of a PDW coexisting with
superconductivity3>37.38 (Fig. 2d, Fig 3b). Increasing temperature from the superconducting
into the pseudogap phase, seems to retain these real-space phenomena apparently thermally
broadened but otherwise unchanged (Fig. 3c-f). More obviously, the measured scattering
interference signaturel® A(q) evolves from correspondence with Ap(q) predicted for an 8ao-
periodic PDW coexisting with superconductivity3> into that predicted for a pure 8ao-periodic
PDW above the superconductive T. in the pseudogap phase (Fig. 4). Furthermore, this
signature is highly distinct from A(q) predicted for a 4ao-periodic CDW (Fig. 5). The clear
inference from all these observations is that the Bi;Sr2CaDyCu20s pseudogap phase contains

a PDW state, whose quantum phase is fluctuation dominated.

Methods

Single crystals of Bi2Sr2CaDyCu20s with hole doping level of p * 8% and T = 37+3 K were
synthesized using the floating zone method with doping controlled by oxygen depletion. The
samples were cleaved in cryogenic ultrahigh vacuum at T = 4.2 K to reveal an atomically flat
BiO surface, and then inserted into STM. All measurements are carried out using tungsten
tips in a variable temperature (the range is T = 4.2 K - 55 K) spectroscopic imaging STM
system with thermal fluctuations less than 1 mK. The PG gap map A, (r) were measured with
the resolution of 128 pixels x 128 pixels. The experimental parameters include setpoint
voltage 800 mV, setpoint current 800 pA, bias voltage Vz = -800 mV - 800 mV and 161
discrete energy layers. The QPI images were measured with the resolution of 256 pixels x

256 pixels. The experimental parameters of the QPI measurements include spectroscopic
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setpoint voltage 200 mV, setpoint current 200 pA, bias voltage V; =-34 mV - 34 mV and 35
discrete energy layers. The topography T'(r) of the six temperatures studied in this paper
are shown in Supplementary Figure 4. The presented QPI patterns were symmetrized to
reduce the noise. In the QPI pattern, a circle with a locus located at q = 0 and a radius of 25

pixels is fitted to 2D Gaussian function and then removed.
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FIG. 1 Temperature dependence of cuprate broken-symmetry states.

a. Schematic phase diagram of hole-doped cuprates. The Mott insulator phase with long range
antiferromagnetic order (AF) is replaced by the pseudogap phase (PG) with increasing hole
doping p below the onset temperature T*. The PG phase is characterized by the suppression
of magnetic susceptibility, electronic specific heat, the c-axis conductivity and the average
density of electronic states, and the appearance of a truncated Fermi surface. The d-
symmetry Cooper-paired high-temperature superconductivity state (DSC) is indicated
schematically in a blue “dome”. The range of temperature T, in which the PG state is studied
in this paper is indicated by the white arrow.

b. Topograph T(r) at the BiO termination layer at T=1.25T¢ in the PG phase of Bi2Sr2CaDyCu20s
for p ~ 0.08.

c. Differential conductance map g(r, +150 mV)was obtained at the same field of view as Bat T
=1.25T: = 45 K. The g(r, E) manifests A = 4qa, charge modulations.

d. Evolution of the spatially averaged tunneling conductance spectra of BizSr2CaDyCu20s with
increasing T, here characterized by Tc. The gap A;(T) is the energy of the coherence peak
that is identified by a local maximum in g(V) for V>0 (indicated by a black vertical arrow).
The energies Ay (T) (gray dashed line) are identified as the extinction energy of Bogoliubov
quasiparticles (see movie S1). The two characteristic energies Ay(T) and A, (T) appear more
subtle at higher temperatures due to thermal broadening. Note the tunneling spectra at 4.2

K (» 0.1T¢) is multiplied by 1.4.
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Fig. 2 Predicted temperature-evolution of the average local density of states (N(r)), hole
density (§) and d-wave gap order parameter (A) for the PDW state.

a. Continuum LDOS N(r, E) spatially averaged over a period of PDW (8a,) at low-temperatures
(T=0 and T=0.04t) and pure PDW state at a high temperature (7=0.09t) obtained using
parameter set doping p = 0.125, t =400 meV, t’ = -0.3t and J = 0.3t. PDW+DSC state exhibits
V-shaped nodal LDOS due to presence of the DSC component. Pure PDW state has
Bogoliubov-Fermi pockets (in contrast to nodes in PDW+DSC state), which leads to a large E
= 0 LDOS. The LDOS is obtained after the effects of linear inelastic scattering i0* + il" is
incorporated, where I' = ¢|E| and a = 0.25 using the experimental fits in Ref. [48]. A non-
zero LDOS at zero-bias in PDW+DSC state is a consequence of the finite artificial broadening
i0t.

b. g-space schematic showing the most prominent wavevectors Qp, = [(x¥1/8, 0); (O,
*1/8)]2m/ao and 2Qp appearing in the Fourier transform of the mean-fields and other
related quantities.

c. Spatial variation of hole density (§) in PDW+DSC state (at T=0 and T=0.04t) and pure PDW
state (at 7=0.09t). Hole density modulates with a periodicity of 8a, in PDW+DSC state due
to presence of the DSC component and a periodicity of 4a, in pure PDW state due to the
absence of the DSC component, as expected from Ginzburg-Landau theories.

d. Spatial variation of d-wave gap order parameter in PDW+DSC state (at T=0 and T=0.04t) and
pure PDW state (at T=0.09t) exhibiting 8a,-periodic modulations corresponding to the PDW
component of the gap.

e. Temperature evolution of the uniform (g = 0) and PDW (q = Q) components of the d-wave
gap order parameter in PDW+DSC state (0<7T<0.085t) and pure PDW state (0.085t<T<0.11t).
The uniform component of the gap decreases sharply with temperature becoming negligibly
small, but finite, compared to the PDW component for 0.05¢t<T<0.085t. This ‘fragile
PDW+DSC’ state is shown in white background. For T7>0.085¢t PDW+DSC state becomes
unstable and only pure PDW state (shown in pink background) exists as a stable solution of
the RMFT equations.

f. Temperature evolution of the ¢ = Qp and q = Q. = 2Qp, components of hole density (8) in

PDW+DSC and pure PDW state in the same temperature range as in (e). The q = Qp
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component mirrors the temperature evolution of the uniform component of the gap (panel
(e), as expected from Ginzburg-Landau theories. ¢ = Q; component is the dominant

component at all temperature leading to 4a,-periodic charge density wave.
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FIG 3. Energy-gap Modulations from Superconductive to Pseudogap Phase.

a. Measured A, (r) within 20 nm x 20 nm FOV at T= 0.11T, = 4.2K. The energy-gap is measured
from the energy of the coherence peak at E > 0. The inset shows the linecuts from q = (0, 0)
to (0.5, 0)2m/ap and from q = (0, 0) to (0, 0.5)2m/ao in the measured A, (q) after subtraction
of the disorder core. q = [(£1/8,0); (0,+1/8)] 2t/a, peaks are present in both directions.
The white areas represent regions where it is impossible to determine the coherence peak
position A;.

b. Gap modulations A;,(r) from 3(a). these are visualized at wavevectors q = [(£1/
8,0); (0,+1/8)] 2m/a, by Fourier filtering A;(r) at the 1/8 peaks as shown in inset of 3a.
The Gaussian filter size o4 = 1.45 pixels (or equivalently 0.455 nm-1) in g-space, which
corresponds to 2.2 nm in r-space.

c. Measured g(r,60 mV) at T = 0.14T, = 5 K within 9.9 nm x 9.9 nm FOV. The g(r, 60 mV)
manifests unidirectional charge modulations.

d. Measured g(r,60 mV) at T = 1.5T, = 55 K in the identical FOV as (c). No change has been
detected in g(r, 60 mV) at T=55 K.

e. Measured A (r) at T = 0.14T, = 5 K shows the spatial variation of the coherence peak at E >
0.

f. Measured A,(r) at T = 1.5T, = 55 K in the identical FOV as (c), (d) and (e). The spatial

variation of the coherence peak is highly similar to (e).
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FIG 4. Temperature Dependence of QPI Signature of a PDW

a-f. Measured QPI signature A(q,20 meV) for BizSr2CaDyCu20g (doping level p = 0.08) at
temperatures T = (a) 0.1T¢, (b) 0.4T, (c) 0.8T¢, (d) T, (e) 1.25T¢, and (f) 1.5T-.

g-j. Predicted QPI signature Ap(q, 20 meV) of 8a, PDW state that coexists with DSC state at
temperatures T = (g) 0.01¢, (h) 0.02¢, (i) 0.04¢, and (j) 0.05¢t. Theoretically, it is assumed that
the short-range discommensurate nature of the charge order, as seen in the experiments+,
will lead to reduced intensity of the density wave Bragg peaks compared to the long-range
PDW driven charge order obtained in our mean-field analysis. Accordingly, the non-
dispersing charge order Bragg peaks at wavevectors q = +nQ,, n =0, 1, 2, ...,7, in PDW+DSC
state and q = +n(2Qyp), n = 0, 1, 2, 3, in the pure PDW state are suppressed by a factor of 100
in Ap(q,20 meV), which helps in highlighting much weaker wavevectors emerging from
impurity scattering. Ap(q,20 meV) is computed for unidirectional PDW in a 56x56 lattice
and symmetrized for plotting. Features at q =~ (+1/4,+1/4) 2nt/a, extending in nodal
directions are labeled by a red arrow.

k-1. Predicted Ap(q, 20 meV) of pure 8a, PDW state at temperatures T = (k) 0.085¢ and (1) 0.09¢.
Measured A(q,20 meV) in (a-f) for T = 0.1T; ~ 1.5T¢ are in good agreement with the
simulation results in (g-1). The length of the arc-like feature (indicated by blue curves) near
(+1,41) 2m/a, increases from PDW+DSC to pure PDW state, which is a key feature of charge
order driven by PDW. The intensity of A(q,20 meV) and Ap(q, 20 meV) decreases as the

temperature increases.
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FIG 5. Discrimination of CDW from PDW QPI Signature in the Pseudogap State

a. Predicted QPI signature Ap(q, 20 meV) of pure 8a, PDW state at T = 0.09¢t.

b. Predicted A-(q, 20 meV) of pure 4a, CDW state at T = 0.09t. The CDW states show very
different features compared to the PDW state.

c. Measured A(q, 20 meV) of Bi2Sr2CaDyCu20s (p = 0.08) for the pseudogap phase at T=1.25T-..

d. Measured A(q, 20 meV) of BizSr2CaDyCu20s (p = 0.08) for the pseudogap phase at T = 1.5T-.
The measurements of the pseudogap phase agree much better with the pure PDW scenario

(a) than with the pure CDW (b).
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Supplementary Note 1
Renormalized mean-field theory of the extended t-J model

The extended t-] model on a square lattice is given by

H = _Z(i,j),O'PGtij(ClTJCjO' + h. C.)PG +]Z<i,j> Sl'S', (1)
T
Lo
taken to be t and t’ when i, are the nearest-neighbor (NN) and next-nearest-neighbor
(NNN) sites, respectively. < i,j > and (i, j) denotes only NN, and both NN and NNN sites,

respectively. The Gutzwiller projector P; projects out all configurations with doubly

where ¢, creates an electron at the lattice site i with spin 0. The hopping amplitude ¢;; is

occupied sites from Hilbert space. Finally, §; represents the spin operator at site i, and |
is the superexchange coupling between spins residing at NN sites. The no-double-
occupancy constraint can be implemented by employing the Gutzwiller approximation,
in which the projection operator P; is replaced by site-dependent Gutzwiller
renormalization factors gt and g¢° for hoppings and superexchange coupling,
respectively. The resulting renormalized Hamiltonian now reads,

Sxy SiS;+S7St
H= =Ypo 9t (cheo + hc.) +] T jslai SIS + 9;77 D] (2)

Further progress can be made by mean-field decoupling of the renormalized Hamiltonian
in density and pairing channels with ensuing mean-fields hole density §;, bond-field y;;,

magnetic moment m;, and pair potential 4;;, defined as

Ajjo= 0 < Wocipis|Wo >, (3)
Xijo =< Wolclcio|Wo >, (4)
0; = 1-< ¥ X6 nis|W¥o >, (5)
m; =< W|SE|¥, >, (6)



where, |, > is the unprojected ground state wavefunction. A direct diagonalization of
the resulting mean-field Hamiltonian will not yield the lowest energy state, however, as
the Gutzwiller factor themselves depend on the local mean-fields. Instead, the ground
state energy E; =< W)|H|¥; > has to be minimized with respect to |¥, > under
constraints that the total electron density is fixed and |¥, > is normalized!. This leads
to following renormalized mean-field Hamiltonian for paramagnetic states (m; = 0).

Hur = Y0 €ijoCihCio + hoc.+ Yci oo 0D}j5CisCig + h.C. — X lic Nig (7)
where,
3 .
€ijo = —gijtij — Oij<ij> Z]glsj)(ija (8)
3,5
Dijo = =6ij<ij>7)9ijAijo (9)
3 2 dgy; NH,
Hic = p+7] Yio(|Aijer|” + |Xija’|2)?i:r + tij Xjor(Xijor + Xijo-’)?i:_ (10)

Here, 8i<ij> = 1 for NN sites and 0 otherwise. In this work, we have focused only on
paramagnetic states since we are interested in charge ordering without any long-range
spin ordering as very few experiments suggested the presence of any long-range
magnetic order coexisting with charge order in Bi2Sr2CaCu20s+s. In this scenario, the
Gutzwiller renormalization factors are simply given by the following expressions?

26;
Gije = 9ij = 9i9}: 90 = |15 (11)

g7 = 95 = 95 = 97} 98 = 15 (12)
Here, we have assumed that the above expressions are valid at all temperatures of
interest?. In other words, we have approximated T # 0 Gutzwiller factors by their values
at T = 0. Temperature effects enter the calculations via Fermi functions used in the
evaluation of the mean-fields [Supplementary Eq. (3-6)]). The renormalized mean-field
Hamiltonian in Supplementary Eq. (7) can be diagonalized by using a spin-generalized
Bogoliubov transformation, yielding the following Bogoliubov-de Gennes (BdG) equation

€ijn - Dijn \ (W' _ (u{‘)
Zf(n;” _em> <vj" =E, ey (13)

The BdAG equation has to be solved self-consistently as the matrix elements depend on the
mean-fields, which, in turn, depend on the eigenvalues (u}’, v;*) and eigenvectors En. The
paramagnetic ground state of the t-/ model treated within aforementioned renormalized
mean-field theory (RMFT) is a uniform d-wave superconductor (DSC). However, we are
interested in pair density wave (PDW) solutions which have been shown to be very close
in energy to the DSC state within RMFT1-3 as well as in more rigorous numerical schemes
like variational Monte-Carlo*> and tensor networks®. PDW states can be obtained by
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initializing BAG equation [Supplementary Eq. (13)] with modulating pair-field (keeping
other mean-fields uniform) with the following form.

Ajivz= Do + Agcos(Qp - R;) (14)
Apisy= —Do = Agcos(Qp - R; —2) (15)

Here, the modulation wavevector is chosen to be Qp = (+1/8, O)Z—” based on
0

experimental evidences’8%. A bond-centered PDW state with coexisting d-wave
superconductivity (PDW+DSC) can be obtained as a self-consistent solution using a finite
Ay< Ay, whereas a pure PDW state can be obtained by setting A,= 0 in the initial seed.
We note that a computationally more efficient scheme to study unidirectional modulating
states (in absence of disorder) is obtained by exploiting translational invariance in
direction orthogonal to modulations. Here, BdG equations on 2D lattice are Fourier
transformed in the orthogonal direction to yield quasi-1D BdG equations. Details of this
scheme can be found in Ref. [3]. Fig. 2(a), (c)-(f) in the main-text have been obtained using
this scheme.

Results presented in the main-text were obtained using the parameter set t = 400 meV,
t' = —0.3t, ] = 0.3t. Further, we chose hole-doping p = 0.125, which is larger than the
doping p = 0.08 at which experiments discussed in the main-text were performed
because of the following reasons. First, it has long been known that the t-J model
overestimates the doping scale of DSC dome by almost a factor of two. Experiments find
the DSC dome to be in hole doping range p ~ 0.05-0.3 whereas in the RMFT ¢-] model
(with the aforementioned parameter set) it turns out to be in the range 0.01-0.45 (at T =
0)3. If we account for this scale difference, then p = 0.125 will be closer to the
experimental doping of p = 0.08. Second, it's hard to get converged PDW solutions at
very low dopings as the derivatives of Gutzwiller factors, entering in the on-site potentials
[Supplementary Eq. (10)], fluctuate strongly even with a small change in local doping?®.
This is more severe when solving the impurity problem. Finally, our conclusions mainly
depend on just one premise: the low-temperature state is PDW+DSC and the high-
temperature state is pure PDW, which does not depend on the actual doping level as long
as it remains below a critical level (p ~ 0.18 at T = 0) to realize these states.

For the aforementioned parameter set, a self-consistent pure PDW state is obtained in
temperature range 0 < T < 0.11t whereas the PDW+DSC state is found as a stable
solution for 0 < T < 0.085t. Both PDW and PDW+DSC states have almost equal energy
per site, which is a few meV larger than the uniform DSC statel23.11, This tiny energy
difference between PDW+DSC and DSC state can be overcome by a variety of means, such
as disorder which is not accounted for in the calculation. We have effectively assumed
such effects to be present, leading to the PDW+DSC state at low-temperatures (in the
range 0 < T < 0.085t) and the pure PDW state at higher temperatures (in the range
0.085t < T < 0.11t). In the PDW+DSC state, increasing temperature leads to a sharp

3



decrease in the uniform DSC component (A(q = 0)) as shown in the main-text Figure 2e.
For 0.05¢t < T < 0.085t, A(q = 0) is very small but finite. This ‘fragile PDW+DSC’ state is
a stable solution of the RMFT equations and not a computational artefact. This result is
verified by the observation that lowering the self-consistency tolerance by an order of
magnitude yields the same state.

In the main-text Fig. 2c and 2d, we showed spatial variation of hole density and d-wave
gap order parameter, respectively. To complete the discussion of mean-fields,
Supplementary Figure 2a-c show the spatial variation of NN bond mean-field y;; in
PDW+DSC (at T = 0.01¢,0.04t) and pure PDW state (at T = 0.09t). We find that the
modulations in y;; are typically of the size ~0.1t in PDW+DSC at low temperatures and
~0.05t in pure PDW states at higher temperatures. The bare bond fields are not physical
observables, however. The physical expectation value of the bond operator (cit,cjo) in the
Gutzwiller projected state is the bond mean-field scaled by the Gutzwiller hopping factor:
)({’j = gfj)(l-j 12, We can define the NN bond order at a given lattice site i as x{ = (x;1% +
Xii-z t Xii+g + Xii—5)/% where i £ X (¥) represent NN sites to i along x(y)-direction.
As evident from Supplementary Figure 2d, the size of modulations in the bond order turns
out to be an order of magnitude smaller than the bare mean-field. Similar to the case of
hole density, the reduction in the modulation amplitude of bond variables for higher
temperatures is a consequence of the reduction in the PDW gap order parameter (Fig. 2e
in the main-text). Finally, we note that the bond order in both PDW and PDW+DSC states
has a dominant d-form factor!™.

In order to compute local density of states (LDOS), we first obtain lattice Green'’s
functions G;;(E) using the eigenvalues and eigenvectors of the BdG matrix
[Supplementary Eq. (13)].

s (16)

Gij(E) = 9ij Xn g0
Here, 07 is a small artificial broadening set to be 0.01¢, and the sum runs over all the

eigenvalues. The diagonal lattice Green'’s function yields total LDOS at a site:
2
Ni(E) = ——Im[Gy(E)], (17)

where, Im represents imaginary part and the factor 2 accounts for spin degeneracy.
Differential conductance measured in an STM experiment is, however, proportional to
the sample’s LDOS evaluated at the STM tip position!3. Thus, we must compute the
continuum LDOS few angstroms above the exposed BiO layer in Bi2Sr2CaCu20s+s for a
meaningful comparison with the experimental data. Accordingly, we obtain continuum
Green’s function G (r,r’; E) via a basis transformation!4 from lattice to continuum space
where the matrix elements of the transformation are given by the Wannier function W; (1)
centered at lattice site i.



G(r, 1 E) = X Wi(m) Gy (E)W) (") (18)

The imaginary part of the diagonal continuum Green’s function yields LDOS at a
continuum point 7.

N(r,E) = —=Im[G(r,T; E)] (19)

We have obtained the continuum LDOS at a height ~4A above the BiO layer in
Bi2Sr2CaCu20s+s employing a first-principles Cu-3dxz-y2 Wannier function obtained using
the Wannier90 package, identical to that used in Ref. [3,15] and very similar to that in
Ref. [16].

Supplementary Fig. 1a shows the continuum LDOS map at E = A, in the pure PDW state
at T = 0.09t. The LDOS shows a periodicity of 4a,. Supplementary Fig. 1b shows spectra
at eight Cu positions marked in the panel 1a. Sharp features present at higher energies
are expected to be broadened by inelastic scattering, which has been shown in Ref. [17]
to be essential to account for the spectral lineshapes in underdoped cuprates. In that
work, it was shown that the effects of inelastic scattering can be simply incorporated by
adding a linear-in-energy term iI" = ia|E| to the constant artificial broadening i0* used
in calculation of lattice Green’s function [Supplementary Eq.(16)]. Using the experimental
fits presented in Ref. [17], we set @ = 0.25. Supplementary Fig. 1c shows the continuum
LDOS incorporating the linear inelastic scattering. All LDOS, Z(q, E), and Ap(q, A,) results
presented in the main-text, and gap map results presented in Supplementary Figure 7
have been obtained after accounting for the inelastic scattering.

We note that a finite value of artificial broadening i0* used in our calculations is
responsible for non-zero LDOS at zero bias in the PDW+DSC state, as seen in Fig. 2a.
Indeed, with decreasing artificial broadening, the zero-bias LDOS in PDW+DSC state
approaches 0 due to presence of nodes in the quasiparticle spectrum!8, as evident from
Supplementary Figure 3. On the contrary, the zero-bias LDOS saturates at a finite value
in pure PDW state due to the presence of Bogoliubov-Fermi surfacel18,

Supplementary Note 2
PG gap A;(r) modulation detection

We determine the gap map A4 (1) by measuring the energy of the coherence peak in each
dl/dV spectrum at E > 0. Supplementary Figure 5b shows the magnitude of the power-
spectral-density Fourier transform A;(q) of the gap map A;(r) in Figure 5a. There is
strong disorder in A;(q) surrounding q = 0. The feature at a length of 1/5 in the (0, 0)-
(1, 1) direction is related to the BiO supermodulation. The feature at about 20 degrees off
the (0, 0)-(1, 0) direction at a length about 1/6 is possibly related to the electronic
disorder. In Supplementary Figure 5, we show A;(q) intensities before and after the
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exponential background has been subtracted. After the background is subtracted, the
maxima at Qp = (0, +1/8)2m/ao and Qp = (¥1/8, 0)2m/ao become clearly visible. This
analysis provides one type of experimental evidence of the 8ao modulations in A; (7).

We apply a computationally two-dimensional lock-in technique to obtain the amplitude
A4, (1) of the gap modulation A, () at q;. A, () is multiplied by e'iT and integrated over
a Gaussian filter to obtain the complex-values lock-in signal®1°

Aq,(1) = 70— [ dRA; (R)e' e 202 (20)
Where q denotes the wavevector of interest and o the average length-scale in r-space.
This technique is implemented in g-space

2

A4,(1) = F144,(q) = FHF (B (r)e' D) ';e_ZZT] (21)

2mog
where g, = 1/0 is the cut-off length in g-space. o is specified to capture only the relevant
image distortions.

Supplementary Note 3
Atomic precision image registration

In the temperature dependence experiments, T(r,5 K) and T (7,55 K) are measured in
the same field of view with sub-unit-cell resolution. The data are processed by performing
the Lawler-Fujita procedure?0 that maps the data onto a perfectly periodic lattice without
lattice distortions. The data are subsequently corrected using shear transformation to
maintain the C4 symmetry of the CuOz crystal lattice. After the topographs are corrected,
T(r,5K) and T(r,55K) are registered to the exact same FOV with atom-by-atom
precision as shown in Supplementary Figure 6a and b. Subtraction of T (7,5 K) from
T(r,55K) gives rise to 8T (r) in Supplementary Figure 6c. The differences between
T(r,5K) and T(r,55 K) are noise and distortions in individual unit cells. They are not
relevant to the demonstration from 6T (r) that the FOVs of 5 K and 55 K are identical.

The differential conductance map g(r, V) is simultaneously acquired with T (7). Applying
the same image processing procedures of correcting T(r) to g(r,V) gives rise to the
temperature induced electronic structure changes. The electronic structures are
measured in a wide energy range from -800 mV to 800 mV which includes the PG energy
range. The cross-correlation coefficient between g(r,V) at 5 K and 55 K are around 0.9
in the large energy range (Supplementary Figure 6d). This method provides meaningful
subtraction of high (T > T,.) and low (T < T,.) temperature data to detect temperature
induced differences of the electronic structures at atomic scale.



Supplementary Note 4
Predicted temperature-evolution of gap map A1(r)

We calculated the temperature evolution of the gap map A, (r). A,(r) is defined as the
energy of the coherence peak at E > 0, i.e.,, the same definition as the experimental
measurement in main-text Figure 3. The gap modulation in the PDW+DSC state has a
periodicity of 8ao (Supplementary Figure 7a and b). The amplitude of the y-averaged gap
modulation is ~0.14t at T = 0 and ~0.13t at T = 0.04t. The gap modulation in the pure
PDW state has a periodicity of 4ao (Supplementary Figure 7c). The amplitude of the y-
averaged gap modulation is ~0.05¢t at T = 0.09¢, which is much smaller compared to the
PDW+DSC state. This is a consequence of the reduction in the PDW gap order parameter
with increasing temperature (Fig. 2d). In this prediction the modulation periodicity of
A; (1) changes from 8ao to 4ao in the transition from the PDW+DSC state to the pure PDW
state. In experiments we have observed that A, () modulates at 8ao (inset in main-text
Figure 3a) at T « T.. However, the modulation periodicity of A,(r) could not be
determined at T = 55K = 1.5T, due to the presence of large regions with indeterminate
coherence peaks (see white regions in Figure 3f). Therefore, the predicted temperature-
evolution of the gap map A; (r) could not be tested.

We note that the gap modulation is also possible in a state with coexisting charge density
wave (CDW) and uniform DSC. In particular, a d-form factor (dFF) bond density wave
(BDW) with wavevector Q. = (+1/4, O)z—: is often considered as a main candidate of
charge order in underdoped cuprates both below and above Tc212223, These states
(Supplementary Figure 8), however, cannot account for the presence of gap modulations
with wavevectors ~ (£1/8, 0) i—: and (0,+1/8) i—: in the experimental data (main-text Fig.

3a).

Supplementary Note 5
Bogoliubov quasiparticle scattering interference calculations

Bogoliubov quasiparticle scattering interference (BQPI) is a consequence of impurity
scattering. To study the BQPI characteristics of the PDW+DSC and PDW states, we
consider a point-like potential scatterer with impurity potential V;;,,,, located at the lattice

site i* in the middle of an N X N square lattice. The resulting system is described by the
following Hamiltonian

H = HMF + Himp, (22)

where, Hyr is given by Supplementary Eq. (7), and the impurity Hamiltonian can be
expressed as



Himp = Vimp Yo Ni*gs (23)

Weset N = 56 and V;,;, = 3t. The Hamiltonian H can be diagonalized following the same
procedure used for diagonalizing Hyr. The resulting BdG equations have the same form
as the clean system [Supplementary Eq. (13)] with only difference that the onsite
potentials [Supplementary Eq. (10)] are changed to u;; = Uig — Vimpdiiv, where §;; is the
Kronecker delta function. We solve the BAG equations self-consistently to obtain the
PDW+DSC and pure PDW states in presence of an impurity. Subsequently, we compute
continuum LDOS N(r, E) and thereby Z(r,E) = N(r,+E)/N(r,—E) for E > 0 using the
procedure outlined in Supplementary Note 1. QPI Z(q, E) maps are obtained by taking
Fourier transform of the Z(r, E) maps. Finally, energy integrated BQPI maps are obtained
by summing Z(q, E) maps over the range 0 < E < A,.

Ap(q,00) = Y20 Z(q, E) (24)

The upper cut-off of the energy sum is set to Ay= 0.05¢t = 20 meV (t = 400 meV) to
match with the experiment.

The as obtained Z(q, E) maps exhibit largest intensity at PDW driven charge order Bragg
peaks q = +nQp,n =0,1,2,...,7 in PDW+DSC state and q = +n(2Q,),n=10,1,2,3, in
the pure PDW state (the fundamental charge order harmonic occurs at Q. = Qp in
PDW+DSC state and at Q. = 2Qp in pure PDW state as explained in the main-text), see
Supplementary Fig. 9a, d. Accounting for the discommensurate short-range nature of the
charge order in Bi2Sr2CaCu20s+s 24 will smear the Bragg peaks and reduce their intensity.
The exact amount of suppression is not clear, though. In order to emphasize the QPI
wavevectors emerging from impurity scattering, we have chosen to suppress the Bragg
peaks by a factor F = 100 (Supplementary Fig. 9b, e). Finally, the resulting Z(q, E) maps
are symmetrized by adding their 90°-rotated versions to account for the orthogonal
domains of unidirectional charge modulations seen in the experiments2> (Supplementary
Fig. 9¢, ). To further illustrate the effects of suppression of charge order Bragg peaks we
show Ap(q,Ay)-maps with suppression factors F =1,10,50,100,1000, in
Supplementary Fig. 10. Clearly, if shown to scale (F = 1), the Bragg peaks will obscure all
wavevectors emerging from impurity scattering. We found that a better match with the
experimental result can be obtained by using F = 100, although the qualitative features
do not change significantly with F once the Bragg peaks are suppressed somewhat,
around F = 50.

Energy integrated BQPI map A.(q,4,) in CDW state is constructed non-self-consistently
via two independent methods. The first method is setting gap order parameter in self-
consistent PDW state (at T = 0.09t) to zero while keeping bond order and on-site
potential modulations intact (Supplementary Fig. 11a and main-text Fig. 5b). The other
method is taking the normal state Hamiltonian from the uniform DSC state solution (at
T = 0.09t) and adding a term producing a d-form factor bond ordered charge density



wave (dFF-BDW) with wavevector Q. = (1/4, O)Z—n (Supplementary Fig. 11b). The
0

amplitude of the charge density wave is set to be the same as the uniform DSC state gap
field. This state becomes equivalent to that in Supplementary Fig. 8 if the coexisting DSC
state in the later is removed. To calculate A-(q,A,), an impurity Hamiltonian is added
and subsequently the corresponding total Hamiltonians are diagonalized in the real
space. This procedure is equivalent to a T-matrix calculation. A-(q,4,) in the pure CDW
state obtained from both methods exhibit features very different from the A(q,4,)
observed in experiments. We have presented A-(q, A,) map from Supplementary Figure
11a in the main-text Figure 5b.

Supplementary Note 6
Comparison between theoretical and experimental A(q, A,) data

Here we compare the theoretical and experimental A(q,A,) data in detail. The feature
extending in the nodal directions (red arrow in Supplementary Figure 12a and c) is a
signature of the uniform DSC component in the PDW+DSC state (below T,.), which
disappear in the pure PDW state (above T.). Supplementary Figure 12e-f shows
superimposing the predicted Ap(q, Ay) of PDW+DSC state onto the measured A(q, A,) of
the superconducting phase, and superimposing the Ap(q, A,) of pure PDW state onto the
A(q,A,) of the pseudogap phase, respectively. The positions of the experimental and
theoretical QPI features are nearly identical.

Moreover, we measure the arc-like feature in the experimental A(q,A,) and theoretical
Ap(q,A). The extension of the arc is quantified by the angle subtended by the arc. We fit
each arc of a circle about (+1, £1) 2m/a, point using least square fit (see Supplementary
Figure 13). This procedure is carried out for six temperatures in both the theory and the
experiment. The measured arc extension increases as a function of temperature from
superconducting to pseudogap phase (Supplementary Figure 14a). This measurement
agrees with the predicted arc extension in Ap(q,A,) from PDW+DSC state to pure PDW
state (Supplementary Figure 14b).

Supplementary Note 7
Energy-evolution of QPI signatures of the pseudogap phase and the PDW state

To avoid the ‘setup’ effect in the experiments, we calculate the ratio of the total density of
states

,+V
2(r,v) = £510 (25)



We take the power spectral density Fourier transform Z(q, V) of Z(r,V). The Z(q,V) are
summed up to Ao, the energy that the Bogoliubov quasiparticles cease to exist?6. Ao is
around 20 meV in the 8% hole-doped Bi2Sr2CaDyCu20s sample studied in this paper. The
energy evolution of the experimental Z(q,V) maps from 8 meV to 20 meV and the
corresponding calculated Z(q, V) maps are presented in Supplementary Figure 15. The
energy evolution of the wavevectors are visualized in a supplementary movie of
Z(q,V,55K) from 2 mV to 20 mV. The wavevectors evolve dispersively with energy only
by a small amount.

Legends of Additional Supplementary Files

Supplementary Movie 1. Determination of A, from a movie of Z(q,V) atT = 4.2 K. A, is
defined as the energy that the Bogoliubov quasiparticles cease to exist.

Supplementary Movie 2. Energy evolution of quasiparticles in the pseudogap phase
shown in a movie of of Z(q,V) atT = 55 K.
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Supplementary Figure 1. Continuum LDOS in PDW state over a period of PDW (8ao).
a. Continuum LDOS map N(r, E = A;) in the pure PDW state at T = 0.09t over a 4aox8ao
area, obtained using Supplementary Eq. (19), for the same parameter set as in Fig. 2a of
the main-text. The location of a Cu atom is indicated by a black cross.

b. Continuum LDOS spectra N(r, E) above Cu positions, marked in the panel (a), without
incorporating inelastic scattering.

c. Continuum LDOS spectra N(r,E) at the same positions as in (b), obtained after
incorporating I' = «|E| inelastic scattering (¢ = 0.25).
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Supplementary Figure 2. Variation of bond mean-fields and bond order in
PDW+DSC and pure PDW states. Nearest-neighbor bond mean-fields in PDW+DSC state
at (a) T = 0.01¢, (b) T = 0.04t, and (c) in pure PDW state at T = 0.09¢; and (d) bond
order parameter y; at these temperatures.
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Supplementary Figure 3. Variation of average continuum LDOS at zero-energy with
artificial broadening factor 0* employed in the calculation of the lattice Green’s function
[Supplementary Eq. (16)].
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Supplementary Figure 4. Topography T'(r) in a 40 nm x 40 nm FOV of the underdoped
Bi2Sr2CaDyCu20s sample. The six QPI A(q,A,) maps from 0.1T, to 1.5T, are measured
therein.
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Supplementary Figure 5. Spatial variations and modulations in cuprate pseudogap
energy gaps.

a. 20 nm x 20 nm topographic image T (r) of BiO termination of p 8% hole-doped
Bi2Sr2CaDyCu20s surface at T = 0.11T, = 4.2K. The gap map A4(r) in Figure 3a in the
main-text is taken simultaneously from this FOV.

b. Amplitude Fourier transform A, (q) derived from the gap map A,(r) atT = 0.11T, =
4.2K (Figure 3a in the main-text). The 1/8 peaks are marked by blue and red circles. The
~1/5 peaks related to the supermodulation of the BiO termination are marked by green
circles.

c&d. Measured A;(q) along(c) (0,0)-(0,1) and (d) (0,0)-(1,0). The linecut measurements
are transverse average of 2 or 3 pixels. The measurements are subsequently fitted to an
exponential background.

e & f. The same data as ¢ & d but with the exponential background subtracted. The
intensity due to the PG gap modulation is strongest at the @, ~ (0, £1/8)2m/ao that
represents eight-unit-cell gap modulations in the y direction, and @, = (£1/8, 0)2m/ao
that represents the gap modulations in the x-direction.
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Supplementary Figure 6. Spatial registration of the two datasets at 5 Kand 55 K.

a & b. T(r,5K) and T(r,55K) processed using the Lawler-Fujita algorithm. The
distortions are now corrected and the CuOz lattice are identically periodic.

c. Measured 6T(r) = T(r,55 K) — T(r, 5 K) showing the FOVs are identical.

d. Cross-correlation coefficient between g(r,V,5 K) and g(r,V, 55 K) as a function of bias
voltage. There is strong correspondence between the two g(r,V) maps in the large
energy scale except the PG energy gap scale from 110 to 160 mV.
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Supplementary Figure 7. Predicted temperature evolution of A, (r) gap maps.

a-c. Gap maps in PDW+DSC stateat (a) T = 0, (b) T = 0.04¢, and in pure PDW state at (c)
T = 0.09t over 8ayx4a, area.

d-f. Gap averaged along y-axis (black).
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Supplementary Figure 8. Characteristics of a d-form factor bond density wave
coexisting with uniform d-wave superconductivity (BDW+DSC).

(a) NN bond fields y;;, (b) continuum LDOS N(r, E) at two inequivalent Cu sites, and (c)
gap map A, (r) (in units of t) over 4a,x4a, area in BDW+DSC state. The BDW+DSC state
is constructed “by hand” using a model Hamiltonian which consists of the normal state
term and uniform DSC term derived from the uniform DSC state solution of the RMFT t-]
model at T = 0.01¢, and d-form factor BDW term with the same amplitude as the DSC pair
field, see the Supplementary Information Section D of Ref. [11].
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Supplementary Figure 9.

a. BQPI Z(q, E)-map at energy E = 0.03t in PDW+DSC state at temperature T = 0.01t
obtained using parameters same as in Fig. 4 of the main-text. Largest intensity occurs at
non-dispersing charge order Bragg peaks ¢ = +nQp,n=0,1,2,...,7.

b. Same as in (a) with charge order Bragg-peaks suppressed for a better visualization of
QPI wavevectors emerging from impurity scattering and to account for short-range
discommensurate nature of charge order seen in the experiments.

c. Symmetrized map obtained by adding the map in (b) and its 90° rotated version.

d. BQPI Z(q, E)-map at energy E = 0.03t in pure PDW state at temperature T = 0.09¢t.
Largest intensity occurs at non-dispersing charge order Bragg peaks q = +n(2Qp),n =
0,12,3.

e. Same as in (d) with charge order Bragg-peaks suppressed.

f. Symmetrized map obtained by adding the map in (e) and its 90° rotated version.
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Supplementary Figure 10. Energy-integrated BQPI Ap(q,A,) in PDW+DSC state at T =
0.01t, 0.02t, 0.04¢t, 0.05¢, and in pure PDW state at T = 0.085¢, 0.09¢, for various values
of charge order Bragg peak suppression factors F, mentioned on the top of each column.
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Supplementary Figure 11. A-(q, 20 meV) for 4a, CDW state constructed non-self-
consistently at temperature T = 0.09¢.

a.A-(q,20 meV) for a CDW state constructed by setting the pair field to zero in the pure
PDW state that is obtained self-consistently at T = 0.09¢.

b. A:(q,20 meV) for a CDW state constructed by taking the normal state Hamiltonian
from the uniform DSC state solution at T = 0.09t and, subsequently, adding a d-form
factor charge density wave term.
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Supplementary Figure 12. Discrimination of QPI signature of the pseudogap phase
from the superconducting state.

a. Measured A(q, 20 meV) in the superconducting state at T = 0.1T,. The contrast of the
QPI pattern is maximized for better comparison between the superconducting state and
the pseudogap phase. The arc is highlighted by a blue curve. The lobe extending in the
nodal direction is indicated by a red arrow.

b. Measured A(q, 20 meV) in the pseudogap phase at T = 1.5T,..

c. Predicted Ap(q, 20 meV) of the PDW +DSC state at T = 0.01t. The lobe extending in the
nodal direction is a signature of the presence of DSC component.

d. Predicted Ap(q,20 meV) of the pure PDW state at T = 0.09t. The lobe in the nodal
direction disappears above T¢, as a consequence of vanishing DSC component.

e-f. Superimposition of the calculated Ap(q, 20 meV) onto the measured A(q, 20 meV)
shows excellent coincidence of the positions of dominant QPI features.
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Supplementary Figure 13. The arc feature in A(q, 20 meV) is fit by a circle about
(£1,+£1) 2n/a, point. The angle subtended by this arc is measured versus temperature.
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Supplementary Figure 14. The temperature dependence of the arc feature in (a)
measured A(q, 20 meV) and (b) predicted Ap(q, 20 meV). The arc extension grows with
temperature through T¢ in both measurement and predictions.
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Supplementary Figure 15. Energy dependence of quasiparticle inference Z(q,V) in
the pseudogap phase and the pure PDW state.

a-d. The experimental Z(q, V) maps measured at 55 K.

e-h. The theoretical Z(q, V) maps predicted for the pure PDW state T = 0.09t.
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