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Abstract—Blockchain, an emerging decentralized but trusted
system, has been applied in many applications, such as the
Internet of Things (IoT), supply chains, and smart grid. However,
due to the large amount of computing and storage resources
blockchain typically demands, its wide deployment is faced with
the sustainability issue. To resolve this issue, a viable solution is
to empower the IoT system with fog computing that can offload
the computation-demanding tasks. Due to varieties of mining
tasks and heterogeneous resource capabilities at fog nodes (FNs),
it is not an easy task to schedule mining tasks and manages
resource allocation among FNs of conflicting interests and inde-
pendent IoT devices in a distributed manner. In this article,
under the framework of matching theory, we design a dis-
tributed matching mechanism to maximize the social welfare
of resource-restricted FNs while guaranteeing various mining
requirements of FNs. Besides, we also provide formal proof
regarding the convergence and computational complexity of a dis-
tributed matching algorithm (DMA). Finally, we verify that DMA
not only improves the social welfare of FNs but also reduces the
mining latency compared with the existing algorithms through
extensive simulations.

Index Terms—Blockchain, fog computing, Internet of Things
(IoT), matching.

I. INTRODUCTION
A. Background

ITH the explosive growth of decentralized cryptocur-
W rencies, its key enabler, blockchain, is attracting more
and more attention. Blockchain is a peer-to-peer (P2P) dis-
tributed ledger technology to build trust between multiple
entities without relying on any third parties. Due to this
nice property, blockchain has been applied to many applica-
tions, such as the Internet of Things (IoT) [1], [2], supply
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chain [3], [4], and smartgrid [5]. In IoT networks, IoT devices
produce a large chunk of data in a distributed manner [6].
Due to the lack of a centralized trusted third party, how to
ensure the authenticity and integrity of these data becomes
critical for many IoT systems. Thanks to the consensus pro-
tocol, blockchain thus serves as an ideal candidate to address
these issues. The consensus protocol is deemed as the basis
of blockchain technique [7]. The protocol consists of multiple
stages. First, miners use their computation power to solve a
Proof-of-Work (PoW) puzzle of mining tasks. Once it is done,
the miner broadcasts the mined block so that other miners can
verify the block and reach a consensus. By then, the block is
successfully loaded onto the existing blockchain. The winning
miner obtains a reward.

B. Motivation

The implementation of blockchain is faced with a critical
challenge. It is resource consuming for IoT devices to exe-
cute mining and consensus protocols. Following some prior
works [8]-[10], we propose to incorporate edge computing
into IoT networks to support blockchain. Here, the system is
composed of a large amount of IoT devices, fog nodes (FNs)
with edge computing capabilities, and one primary FN (PFN)
with storage capability [11], [12]. FNs are equipped with dif-
ferent edge computing capabilities that connect to IoT devices
via wireless links [13]-[15]. Additionally, we assume that FNs
can join and leave the network anytime they like. The reason
is while FNs can join and leave the network at the time unit
of a minute. In another word, there is no frequent update of
FN deployment. To accommodate the system dynamics, we
can rerun the proposed algorithm whenever an FN joins or
leaves.

Blockchain applications on IoT devices first release mining
tasks to PFN, which is in charge of collecting tasks from IoT
devices and forwarding them to FNs. FNs equipped with dif-
ferent edge computing serve as miners. FNs collect and verify
tasks and integrate them into blocks by solving the PoW puz-
zle. The newly generated block is then immediately broadcast
to the rest FNs to achieve consensus.

One critical issue of running blockchain on this fog-enabled
IoT network is resource management and scheduling among
FNs. There have been some prior works to tackle these issues,
using, for example, game theory and auction theory. However,
game-theoretic approaches need to know the actions of the
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other players, which is not always practical in a blockchain
system. Auction theory addresses how to elicit miner’s pri-
vate truthful cost so as to maximize the platform’s utility.
However, this issue is not the focus of this work. Recently,
matching theory has attracted great attention for its capacity
of achieving stability in a two-sided market without the need
for a centralized controller.

In this work, we study the problem of mining task allo-
cation among FNs in an edge-computing assisted blockchain
system. Thus, no centralized controller exists. We first formu-
late a social welfare maximization problem. Then, a matching
theory-based distributed mechanism is proposed to transform
the original optimization problem into a two-sided matching
game with one-sided preference. Then, a distributed matching
algorithm (DMA) is designed to find a suboptimal solution.
Analysis and simulations manifest that the proposed DMA
is a flexible and efficient scheme compared with the existing
solutions, such as alternating direction method of multipliers
(ADMMs)-based algorithm [16] and gradient iterative algo-
rithm (GIA) [17].

C. Our Contribution

Our main contributions of this article are summarized as

follows.

1) We Formulate a Social Welfare Maximization Problem:
We explore the implementation of a PoW-based
blockchain in fog-enabled IoT networks, allowing to
offload mining tasks of solving the PoW puzzle to
FNs. The optimization problem takes into account var-
ious constraints on resource availability and mining
requirements at FNs.

2) We Design a Distributed Matching Mechanism:
By analyzing the behaviors of all players in a
blockchain system, we then transform the social welfare
maximization problem as a two-sided matching game
with one-sided preference.

3) We Derive a Stable Matching Result With a Suboptimal
Solution: Based on the stability property of matching
theory, a DMA is designed to achieve a suboptimal solu-
tion. The stability and computational efficiency of DMA
are theoretically analyzed. Simulations show the effec-
tiveness of the proposed algorithm compared with two
other existing algorithms.

D. Organization and Notation

The remainder of this article is organized as follows. We
begin with related work in Section II. In Section III, we
briefly introduce the blockchain system model in the fog-
enabled IoT network. We then formulate a social welfare
maximization problem in Section Iv. With the help of matching
theory, we reformulate the original problem into a two-
sided matching game with one-sided preference and design
a distributed matching mechanism integrated with blockchain
technology in Section V. In Section VI, we get a stable match-
ing result and do the computational complexity analysis of
DMA based on edge computing. Simulations are conducted
in Section VII compared with other existing algorithms in
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a blockchain system. Finally, we conclude this article in
Section VIII.

II. RELATED WORK

Recently, there have been more and more studies on resource
management in edge computing-enabled IoT networks [18]-
[20]. Especially, we review the merits and demerits of the
existing offloading strategies for IoT applications in fog-enabled
IoT networks. Wang et al. [ 18] investigated a partial computation
offloading strategy between smart mobile devices and edge
clouds by jointly optimizing the overall energy consumption
of the edge cloud servers. Bibani ef al. [19] designed a hybrid
platform as a service for IoT applications in fog and edge
cloud environments to guarantee low latency. Qiu et al. [20]
proposed agent mining and edge cloud mining approaches to
solve complicated puzzles and propagate blocks. Then, a joint
optimization problem of access selection of users, computing
resources allocation, and networking resources allocation is
formulated in the blockchain-enabled IoT. It can be observed
cloud, edge, and fog computing are wide to solve wireless
resource allocation. Inspired by the existing works, to solve
the limitations of computing resources in IoT devices and
reduce the transmission delay in the blockchain network, we
also adopt fog-enabled network architecture integrated with
blockchain technology in this article.

Then, although there has been a recent surge in works that
propose to use auction theory and game theory to optimize
resource management integrated with blockchain technology,
the matching theory is seldom adopted to solve wireless
resource allocation in fog-enabled IoT networks. For example,
Wu and Ansari [21] proposed the concept of FN clusters, then
the blockchain was customized for FN clusters to reduce the
required computing power consumption and storage spaces.
Jiao et al. [22] focused on the trading between the fog ser-
vice providers and miners, and proposed an auction-based
market model to allocate the computing resource with the
aim of maximizing social welfare in the blockchain system.
Xiong et al. [17] studied the interaction between the fog
providers and miners in a Pow-based blockchain network using
a game-theoretic approach to realize the decentralized resource
management. Sun ef al. [23] jointly considered incentives and
cross-server resource allocation in blockchain-driven MEC by
virtual of the double auction theory.

Nevertheless, these works mainly focused on the mining
strategies, ignoring the effect of varieties of transactions and
the conflicting interests among heterogeneous FNs. As a branch
of the game theory, because of its distribution nature, individ-
uality, stability, and self-organization of the matching theory,
it has been widely used to deal with resource management in
various areas, such as D2D communication [24], [25], spec-
trum allocation [26], [27], and edge computing [28], [29].
Yuan et al. [24] aimed to maximize the throughput of D2D
pairs while suppressing the interference to cellular links and
proposed a novel local-global channel state information dis-
tributed channel-power allocation scheme according to the
many-to-one matching theory. Wang ef al. [25] employed social
networking and D2D communication in the IoT to achieve
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content sharing among smart devices via multihop coopera-
tive D2D communications, aiming at maximizing the overall
success rate by matching theory. Sanguanpuak et al. [26] stud-
ied the nonorthogonal spectrum assignment with the goal of
maximizing the expected weighted sum rate of the coopera-
tors, by adopting the many-to-one stable matching framework.
Chen et al. [27] traded the service providers with spare spec-
trum with who were in urgent demand of additional spectrum
to present a spectrum under both maximum quota and mini-
mum requirements. Jia et al. [28] investigated the computing
resource allocation problem as a double two-sided matching
problem in fog computing networks based on cost efficiency.
Liu et al. [29] studied the task offloading problem from a
many-to-one matching perspective and aimed to optimize the
total network delay by processing the massive workload tasks
in the proximity of vehicles.

In conclusion, different from the existing works, it is signif-
icant to consider maximizing the social welfare of FNs under
the consideration of varieties of mining tasks and the resource-
restricted FNs with heterogeneous edge computing capabilities
in a blockchain system. Then, powered by matching theory it
is the first adopted to design a distributed matching mechanism
integrated with blockchain technology, in the wireless resource
allocation problem and one suboptimal solution is achieved.
Finally, we conduct an extensive analysis to evaluate the
stability and computational complexity of DMA theoretically.

III. SYSTEM MODEL
A. Network Model

We consider a fog-enabled IoT network with K IoT devices,
one PFN with storage capability at the edge of radio access
networks that can store various transactions. Additionally, con-
sidering that the mining demands of the wide varieties of IoT
devices are in diversities, we deploy a set of M FNs with differ-
ent edge computing capabilities, denoted as M = {1,..., M}
at the edge of the radio access network. Next, since each IoT
device has a mobile blockchain application to record and ver-
ify transactions or data on its device, however, due to the
computing resource limitation on IoT devices, mining tasks
(transactions) are first offloaded to the nearby PFN (mem-
pool). Then, the mining tasks wait for arrangement within
the rounded FNs (miners) and mempool through a matching
mechanism to mine a new block. After a new block is mined,
it is instantaneously propagated across the network for veri-
fication to complete the consensus process. If the consensus
is achieved by the blockchain system, the mined block will
be added to the public blockchain and the miner who first
successfully mines a block will earn the reward.

In this section, we give one network topology to identify
a PFN within a field of mining. Especially, we consider a
network topology: different FNs first form a circle. When
multiple circles are covered with each other, we will choose
one FN covered by all circles as a PFN, then we deploy
adequate storage capability to store and schedule mining
tasks. The other remaining FNs are then served as miners
with limited computation capacity. The detailed deployment
is illustrated in Fig. 1.
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B. Mining Reward Computed by Fog Computing

First, assume the arrival rate of the kth IoT device priority
to submit transactions to PFN follows a Poisson process with
rate yx. Thus, the total number of transactions is I' = ) ; .
Upon those transactions being confirmed, they will be removed
from the PFN updating again. In addition, denote w,, by the
computation power of each FN m. Then, W = {wy, ..., wy}
is the computation power set of all FNs. As a result, the prob-
ability of mining a block for FN m in one consensus round
can be expressed as

: w
Pmme — m (1)
" ZmEM Wm
such that 3 _,, P™i® — 1 and P2 > 0.
In the mining tournament, let S = {§;, S2, ..., Sy} denote

the block size of each FN m mining, and s, be the data size
of transaction n, where n € N. The relationship between the
block size of FN m and transaction n satisfies S,, = >, XumSn.
where x,,;; = 1 means that transaction » is allocated to FN m,
and O otherwise.

In the mining process, assume that the occurrence of obtain-
ing a hash value by FNs can be modeled as a random variable
following a Poisson process with the mean rate of A [22].
Once the FN successfully mines a block, it will broadcast the
mined block to the rest of FNs in the whole network to reach a
consensus. Upon the block is added to the blockchain, the FN
who first mines the block will receive the mining reward (token
reward). The reward consists of two parts: 1) a fixed reward
and 2) a variable reward. Denote by R the fixed reward for
mining a new block, and }_,, Xnmpn as the variable reward, i.e.,
transaction fee. Here, p, is the transaction fee of transaction n.
Thus, FN m’s token reward R,, can be shown as

Rpm = (R + anmpn) P;in
n

where P:i“ is the probability that FN m successfully mines a
new block, we will introduce with more details as follows.

The process of successfully mining a block is composed of
two phases, i.e., the mining phase and consensus phase. In the
mining phase, notice that the probability that FN m mines a
block is P™i" In the consensus phase, when a valid block is
mined, it will be propagated across the whole network to exe-
cute a consensus process. However, there may exist an orphan
block during the consensus phase. Specifically, other FNs also
discover a new block at the same time, only the block which is
first verified by the network will obtain the token reward, and
other candidate blocks will be discarded by blockchain, called
as an orphan block. Suppose the orphaning probability of FN
m is PP thus, the probability of successfully mining p*»
can be derived as

P;in — Pmine(l _ Pg:pha.n)_

2

3)

Here, we regard the total delay in a consensus phase is com-
posed of propagation delay and the verification delay. For the
propagation delay, it can be modeled as ap = (3, Xum/100),
where yp is a scale-related network parameter and a is the
average channel capacity of each link. Also, FN’s verification
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Fig. 1. System model.

delay «, is assumed linear to the block size, i.e., o, = S5y,
where f is a constant parameter determined by network scale
and the average verification speed of nodes [22], [30]. Then,
the propagation delay in the consensus phase for block m is
a, = a,+a,. Additionally, since the generation of new blocks
follows a Poisson process with a parameter A reflecting the
complexity of mining a block, FN m’s orphaning probability
is expressed as

Pg:phan =1— e—.la,,,. (4)
Above all, the expected reward R, of FN m can be
expressed R, with more details as follows:

e—’"“m). Q)

Win

Rm = (R+ anmpn—
. by

meM Wm

C. Service Cost in Mining Phase

1) Mining Transmission Model: When a mining block is
transmitted from PFN to one FN, we need to compute the
transmission rate. Especially, assume that a wireless backbone
is connected between PFN and FNs. Then, assume each FN
m consumes a fixed transmission power Py, and the mining
block is transmitted over an orthogonal channel. Then, the
achievable transmission rate y,, is given by Shannon capacity

P, H,
Vm = Bmlogz(l +—5 "‘) 6)

where Hy, is the channel gain between PFN and FN m and 8%
represents the noise power.

The transmission delay of block m should not exceed
the maximization tolerant delay p,, of FN m, which is
calculated by

— =< 0m- @)
Ym
Finally, we give the transmission cost TC,, in the mining
phase, which is defined as follows:
TCp = 22, ®)
Ym
2) Mining Computation Model: The computation cost of
each FN executing the PoW puzzle varies greatly depend-
ing on the workload of FNs. The power consumption of an
FN is determined mainly by the processor and memory [31].
Assume the processor power of one server m depends on
the frequency v, and the voltage V,, when computing one
block. Thus, the processor power of FN m is defined as
PP, = Mvme,, where A,, is a constant related to the cores
of CPU. Then, the memory power of one FN m is defined as
MP,, = (1 ,:‘2)BmvmVi, where B3, is also a constant decided
by FN. Finally, the computation cost CC,, of an FN is shown
as follows:

CC,, = PP,, + MP,,. )
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To improve the utilization of computing resources, we set
the computing resource schedule constraint. Assume d,, is the
required quantity of CPU cycles when transaction n is con-
firmed by an FN m. Thus, the total CPU cycles needed per
block by FN m should not exceed that supplied by FN m

med,, <V (10)
neN

D. Chain Mining Constraints

To optimize the social welfare of miners in a blockchain
system, we set the first mining requirement about the size of
each transaction, i.e., the size of a transaction being mined
by FN m is at least equal to the minimum acceptable trans-
action size of FN m. Here, we set =, as the minimum
acceptable transaction size of FN m and s,, as the size of trans-
action n. Then, an infinitely negative number C is assigned
in the transaction size constraint, being mainly used to judge
whether picking out the transactions. Additionally, we also
introduce one event function I4. Here, when the event A
is true, the function Iy = 1, and O otherwise. Especially,
Iis,<w,} = 1,Xnm = 0 means when the size of transaction
n is lower than =, of FN m, the transaction n will not be
mined by FN m. Furthermore, I{5, <,,} = 0, Xpm € {0, 1} rep-
resents when the size of transaction n satisfies @, of FN m,
the transaction n will have chances to be mined by FN m.
With the above, the constraint can be given mathematically

C(l - I{s,,<wm]) + Xpm < 0. (11)

To this end, we set the second mining requirement about
the transaction fee, an expense that a business must pay
each FN who confirms a transaction. Especially, the trans-
action fee p, of the transaction n can not be less than the
minimum acceptable transaction fee ¢, of FN m. Note that
Iipy<cm} = 1, Xpm = 0 means if the transaction fee p, is less
than the minimum acceptable transaction fee of FN m, it will
be dropped by FN m. What is more, I{,, <¢,,} = 0, Xum € {0, 1}
represents if and only if the transaction fee p, is higher than
Sm. the transaction n can be selected to mine by FN m

C(1 ~ Iip, <)) + Xom <O. 12)

When the transactions are uploaded to the PFN, FNs will
compete for the priority right to mine one block. However,
only one FN who first mines the block will obtain the reward.
It will inevitably cause waste of computing resources of other
FNs who mine the same block. Thus, to improve the com-
puting resource utilization efficiency, we set the third mining
constraint. Each transaction can be mined at most of D, FNs
during one mining process, given by mathematically

Z Xnm = Dn-

IV. PROBLEM FORMULATION OF SOCIAL WELFARE
MAXIMIZATION

(13)

In this section, we first define the service cost of FN m,
which consists of transmission cost and computation cost,
shown as follows:

Cp = ¢ #TCpy + 0 % CCpy (14)
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where { and ¥ are tunable parameters to keep the balance
between the transmission cost and computation cost.

With the above, we define the social welfare of FNs, i.e.,
the mining expected reward of miners minus the mining ser-
vice cost. Particularly, the following equation is defined as the
objective value of each FN m:

Qm =Ry — Cp. (15)

To this end, we formulate the social welfare maximization
problem as follows. The goal is to maximize the social welfare
of all FNs, by taking into account of network resources in the
mining phase and mining constraints

>
m

s.t. (7) and (10)—(13).

max

Xnm

(16)

V. TwWO-SIDED MATCHING GAME WITH ONE-SIDED
PREFERENCE

In this section, we first propose the two-sided matching
game with one-sided preference. We then design a DMA
for resource management in blockchain applications involving
PoW assisted by FNs and PFN.

In this article, considering that matching theory has emerged
as a promising technique for wireless resource management
integrated with blockchain technology, it not only can take
advantage of local information of each player, such as its trans-
action size, transaction fee, and QoS to design player’s prefer-
ence function but also can achieve the stability and optimality
accurately reflecting different player’s objective. Besides, it
can also capture not only the cooperative interactions between
players on different sides but also the competitive interactions
between players on the same side. Thus, reaping the bene-
fits of matching theory for wireless networks, we develop a
practical DMA based on edge computing in our blockchain
system. On the one hand, it eliminates competition among IoT
devices. On the other hand, it improves the limited computing
resource utilization among FNs of conflicting interests and the
probability of successful mining. Furthermore, the two-sided
matching game with one-sided preference also captures local
information of multiple devices to solve the social welfare
maximization problem.

Especially, we first design FNs’ preference profiles cor-
responding to their local information. But since the mining
tasks are items that do not have preference choices once
being dropped into PFN, the preference profiles of transactions
are not considered in this article. Thus, the matching the-
ory is applied to reformulate the social welfare maximization
problem into a distributed matching game with one-sided pref-
erences. Finally, we design DMA based on edge computing to
maximize the social welfare of FNs under the consideration of
limited computing resources and various mining constraints,
converging to a stable solution.

A. Matching Game Formulation

According to the local information collected from PFN and
FNs, we assume that the FNs have strict priority for transac-
tions, and PFN can schedule the transactions to FNs randomly.
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Additionally, in terms of mining requirements, we find that one
transaction can be mined by multiple FNs simultaneously and
one FN can mine a block consisting of multiple transactions.
Therefore, we design a matching game with one-sided pref-
erence given by the tuple (N, M, (>, Om+ Vm)meM, (An)nen)-
Here, >, is the set of strict preference relation of FN m over
the transactions and it is a linear ordering over NU{m}. A, € M
represents a set of acceptable FNs for transaction n, derived
by formulas (11) and (12). Formally, we define the matching
game as follows.

Definition 1: A matching n is a mapping from the set NUM
into the set N UM, which is an assignment of transactions to
FNs such that:

1) p(n) e M, if and only if p(m) € N;

2) for all n € N, there exists m € M such that p(n) € M;

3) for all m € M, there exists n € N such that u(m) € N;

4) [, Snpe(m))/ymll < om and | ), dpp(m)| < v}

5) |@mp@)| < S, |Smpm)| < pp and |}, p(n)| < Dy.

B. Preference Profiles of FNs

In the matching game with one-sided preference, ¢y(m)
denotes the preference profiles of FN m for transaction n.
Particularly, the preference profiles are achieved by the esti-
mated profit of FN m when picking the transaction n. It can be
seen that the preference function of FN m picking transaction
n is expressed as follows:

m e_m"]—[Bin+19fs,,] a7

p —
" ZmeM Wm

where B,, is the bandwidth allocated to transaction n by FN m.

‘prz (m) =

C. Distributed Matching Algorithm

To solve the social welfare maximization problem, in
terms of a noticeable property of matching theory [32] and
blockchain technology, we now develop the DMA based on
edge computing to obtain a stable matching result. Before
describing the implementation process of DMA, we first define
stable matching as follows.

Definition 2 (Stable Matching): A matching p is stable if
no players are matched to an unacceptable partner and there is
no unmatched pair (n, m), where each of them either strictly
prefers the other to his partner in p.

DMA is an extension of the deferred acceptance algorithm,
proposed by Gale and Shapley [33]. Only when the reduced
preference ordering of FNs is empty, the stable matching
exists. We now present the algorithm with more details. First,
given a instance m = (N, M, ¢y (M)) of DMA. Second, notice
that the algorithm conducts PFN to manage the schedule of
all the transactions, and FN m tentatively chooses the one it
likes best and becomes engaged to the corresponding transac-
tion n. Then, FN m will reject the rest of the proposals and
declare them to be unacceptable. Besides, we repeat iterations
until the algorithm halts when no more proposals can be made.
Notice that when existing some FN m who has received a pro-
posal but is not matched in matching p, the stable matching
result will not exist, but we will still repeat it until all the FNs
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Algorithm 1 DMA

1: Input: # = (N, M, ¢y (M)), Yk, @m. Sm-
2: Output: p
3: Initialize: flag (m)<— false,vm € M;
transaction set of FN m in the blockchain:

Ry = 0;
4: repeat
5:  while transaction n not engaged do
6: PFN schedules n to at most D, FNs randomly
7 if s, = @y, or p, = ¢, then
8 updating $R,,;
9: flag (m) < true;
10: end if
11: if ¢,(m) > ¢, (m), n,n’ € R,, then
12: if | ), XamSnl < Sm¥m OF |}, Xumdn| < vm then
13: R = Ryn/1';
14: end if
15: end if

16: end while

17: until ¢,(m) =B, Vm e M,n € N;

18: if every FN is engaged then

19:  w and new block of each FN received;
20: else

21:  return “false”

22: end if

23: Output: p is a stable matching.

are matched, deriving an engagement mapping, i.e., a stable
matching result.

In the algorithm, we need to pay attention to two details.
First, “deleting the pair (n, m)” means that a transaction should
be deleted from the preference ordering of an FN. Second,
“flag (m)” represents the matching event about FN m is true
or false.

VI. PERFORMANCE ANALYSIS OF DMA

In this section, we will analyze the performance of DMA
from two aspects, stability and computational complexity of
DMA, respectively.

A. DMA to Find Stable Matching

The optimality property of the stable matching of DMA will
be derived with the aid of several lemmas in this section.

Lemma 1: A matching p is feasible for two-sided matching
with one-sided preference if for each m € M, u(m) # m
implies p(m) € N.

Proof: Note that for each n € N and eachm € M, u(m) €

N U {m}. If u(m) € N, then FN m is matched to transactions
under p. If p(m) = m, then FN m is said to be unmatched
under . Thus, if p(m) # m, it must satisfy p(m) € N. [ |

Lemma 2: If the pair (n, m) is deleted during the execution
of algorithm DMA, then the pair cannot block any matching
pairs that are never deleted.

Before proving Lemma 2, we first introduce the definition
of block pair, expressed as follows.
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Definition 3 (Block Pair): A pair (n,m) is a blocking pair
with respect to matching p if transaction n and FN m are not
engaged together, but they prefer each other to other engaged
partners.

Proof: According to the analysis of DMA, notice that
under the constraint (13), PFN schedules a sequence of
transactions to FNs randomly. For those eligible matchings,
according to the preference profiles of FNs, FN makes deci-
sion in terms of constraints (11) and (12) in the blockchain.
They will delete those pairs that are strict successors of current
entries. For example, suppose transaction sequence (1, 2, 3) is
available to FN m satisfying ¢1(m) > ¢2(m) > ¢3(m) and
Qm = ¢1(m) + ¢2(m) + ¢3(m). If there is another transaction
sequence (1, 2, 4) being available to FN m, it satisfies ¢ (m) >
¢$a(m) > ¢a(m) and ¢4(m) > ¢3(m). Thus, the FN m will
delete the pair (3, m) and derive Q), = ¢1(m)+¢2(m)+ds(m).
Finally, we draw a conclusion Q) > €, and the deleted
pair (3,m) cannot block any matching pairs that are never
deleted. |

Lemma 3: No stable matching is ever deleted during the
execution of DMA based on edge computing.

Proof: Suppose that (p(m), m) is a stable matching but
is deleted during the execution of DMA. For a contradiction,
assume (p(m), m) is a stable matching for FN m. If there
exists another FN denoted by n?', it is also becoming engaged
to transaction set p(m) and satisfying €2, < €,,. Assume
there is a stable matching for FN m', which strictly prefers
n(m') to p(m). Suppose the social welfare of FN m' for sta-
ble matching is € ,, which must satisfy @,y < @/ . Thus,
for FN m', its matching (u(m), m") would have been deleted
before (u(m'), m'). Since the matching (u(m), m) is a stable
matching, which will be never deleted, according to Lemma 2,
giving a contradiction. |

Corollary 1: DMA converges to a stable matching.

Proof: According to Lemma 3, note that the output of
our DMA algorithm is a stable matching. Let p be the sta-
ble matching by DMA. Assume for contradiction, p is not a
stable matching in all the engagement relations at the termina-
tion of DMA. Then, suppose matching x’ is a stable matching
and there must be an FN m, who strictly prefers u’ to p. To
this end, due to Lemma 2, matching (u’, m) will be deleted
before the FN m is engaged to u. Finally, we know that no
stable matching is deleted during the execution of the algo-
rithm DMA by Lemma 3, giving a contradiction. Thus, we
say p is a stable matching. |

B. Computational Complexity Analysis of DMA

In this section, we will analyze the computational complex-
ity of Algorithm 1. It can be seen that our designed algorithm
always tries to search for a stable matching in the bipartite
graph formed by the engagement relation. Considering that
our search is limited to some constraints, it becomes difficult
to find a standard maximum cardinality matching. However,
the key to bound the total iteration times of work done is
to analyze the engagement graph of Algorithm 1 in finding
maximum cardinality matching, called as the computational
complexity of DMA.
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Note that with the help of [34], note that for men and
women marriage problems, the total number of operations dur-
ing the execution of the Gale/Shapley algorithm is bounded
by a calculation. Especially, constant times the number of
pairs deleted. It is clear that the lower bound of the computa-
tional complexity of the algorithm of [34] is O(n?). Inspired
by the analysis of the bound in the worst case, we do a
similar analysis in the current Algorithm 1. Thus, the com-
putational complexity of DMA is essentially bounded via a
calculation, where constant times the number of deleted pairs
as well.

Suppose that the total number of iterations is «, during the
ith iteration of the repeat loop, x; pairs are deleted because
those partners are not in both reference ordering set and y;
pairs are participated in the matching process but are deleted
because of certain constraints or successors. Thus, we could
derive the total deleted pairs Z:‘ (x; +y;), and how to derive
the upper bound of the maximum pairs deleted? First, note that
the number of all the possible pairs is MN. Second, suppose
the minimized transaction size is s™" and the allowable maxi-
mized block size is S™ = g, %V, thus, we derive the number
of one block picking transactions at most [ = (S™/s™i"),
Furthermore, suppose the required computing resource is at
least d™", and the maximized computing resource applied
by an FN is D™®. So the number of one block picking
transactions is at most X = (Dma",fdmi“). Simultaneously,
according to the transaction fee and transaction size con-
straint, suppose the number of transactions is dropped from
PEN is at most ¥ = max{}_ (o < cm), 2_,(5n < wm)}
Thus, when all FNs are matched, the maximum cardinality
matching is min{N — ¥, M x min{/, X}}. Thus, the maxi-
mized number of pairs deleted is MN — max{MI, NX}. With
above, note that Y ; (x; + ¥) < MN — min{N — Y, M x
min{/, X}}. Finally, the computational complexity of the algo-
rithm is O((MN — min{N — ¥, M x min{/, X}})). Hence,
the overall computational complexity of Algorithm 1 is
O(MN), a lower bound to find a stable matching in this
article.

The followings are the proof of the upper bound about
DMA, and the upper number of achieving a final stable match-
ing result is bounded by {M xmin{/, X}+MN}, which contains
two parts. Especially, suppose that each FN included in a pair
needs to search min{/, X} times to obtain a stable matching
result based on the analysis of lower bound. Thus, the num-
ber of total searching times for all the FNs is M x min{/, X}.
Furthermore, since the FNs need to search for available trans-
actions to form all the possible pairs, and the maximum
number of pairs deriving a stable matching is MN. Thus, the
upper bound of the computational complexity to find a stable
matching is {M x min{/, X} + MN}.

VII. PERFORMANCE EVALUATION

In this section, a computer simulation is provided to show
the simulation results of the proposed DMA enabled with
edge computing. We first present the simulation settings, then
in terms of the simulation parameters, simulation results are
shown meaningfully.
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TABLE I

SIMULATION PARAMETERS

Parameter Value

The transaction fee of transaction n p,, 60-90

The fixed reward for mining a new block R 12.5

A constant parameter reflecting the impact of

block size f 0.002

The Poisson parameter of the occurrence of

a new block A 0.07

The available bandwidth of FN m B, 5MHz-15MHz
The channel gain between PFN and FN

Hy, 1.0e-16-1.6e-14
The power of noise §2 -174dBm/Hz
The maximization tolerant transmission delay

of FN m gq. 0.3-1.5s

The parameter to estimate the value of

transmission cost ¢

0.0005/per unit cost

The parameter to measure the value of

computational cost 1

0.002/per unit cost

The transaction size sy, 5000-1000B
The number of CPU cores related with

the fog server A, 10-50

A constant parameter decided by the fog server B,,, 10-80

The CPU-cycle frequency of FN m vy,

10-100GHz CPU cycles/s

to the transaction fee p.
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A. Simulation Settings

We conduct our simulation on a MATLAB R2017b to round
each simulation. Furthermore, other parameter settings are
based on the Ethereum, which is illustrated in Table I.

In the wireless network simulation part, assume the network
is covered by mixed picocell FNs, femtocell FNs, and micro-
cell FNs coverage radius of which is 1000 m. The average
computation power of each FN varies from 300 to 1500 w.
Besides, the transmission power of PFN is set to 300 w.
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Fig. 3. Probability of successful mining and the average transaction size

versus the transaction fee p.

Furthermore, to illustrate the impacts of different parameters
from our proposed model on the performance, we consider
100 transactions and 20 FNs at first. Then, if there are other
demands of simulations, the number of transactions and FNs
will vary according to the simulation requests. Then, consider-
ing the PoW from blockchain applications assisted by the fog
servers, we set the transactions that are released by the parame-
ter yx = 5 Poisson distribution. Finally, some other parameters
about the blockchain technology are listed in Table L.

In this article, to verify the performance of our proposed
DMA algorithm, we compare the simulation results with
the other two existing algorithms: 1) ADMMs-based algo-
rithm [16] and 2) GIA [17]. Besides, we discuss the simu-
lations in different situations with more details and evaluate
our proposed algorithm by using the transmission delay of
each block, the probability of successful mining, and the social
welfare of all FNs.

B. Simulation Results

As is shown in Fig. 2, when IoT devices are connected to
FNs, we first explore the effect of the transaction fee parameter
on the social welfare of FNs in a blockchain system. As dis-
cussed in Fig. 2, it shows that with the increasing of the
transaction fee, the social welfare of FNs is also growing
quickly. Then, we change each transaction size, and it is obvi-
ous that social welfare is also decreasing with the increasing
of the average transaction size by observing those three color
lines. This is because when the transaction fee is growing, the
reward for each FN is also increasing, leading to the growth of
the social welfare of the system. Besides, from Fig. 3, as the
probability of successful mining is lower, the transaction fee
is larger. This is because the variable transaction fee increases
the existence of orphan blocks. However, due to the effect of
different transaction sizes on transmission delay, the larger the
transaction size that has the potential incentive to increase the
transmission delay, the lower the probability.

Furthermore, from Figs. 4 and 5, we explore the social wel-
fare of FNs and the probability of successful mining between
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the number of transactions and the operation power of each
FN. We observe that the social welfare and probability increase
with the growth in the number of transactions. Because when
the number of transactions increases, the number of FNs is
fixed. Thus, social welfare will increase to a stable value.
Then, with the power of FNs increasing, the hash power of
each FN also increases, but the maintenance cost and oper-
ation cost of FNs become larger. As shown in Fig. 4, the
system intends to set the perfect average power of each FN
as 850 w to achieve more social welfare. Additionally, Fig. 5
shows that the increase of the probability is consistent with
mining power. Because of the higher hash power incentives to
the higher probability of successful mining. Since the block
size is limited and the number of transactions is growing, the
number of successful mining block will not increase any more
during the mining process.

To verify the performance of our proposed algorithm based
on edge computing, we investigate the impact of the num-
ber of transactions on DMA, ADMM, and GIA, respectively,
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with ADMM and GIA.

in a blockchain system, which is shown in Figs. 6 and 7.
Especially, we explore the number of transactions from 50 to
250 and set the number of FNs at 20. From Fig. 6, we can
observe that the social welfare of the ADMM is higher than
that of DMA and GIA, but the probability of successful mining
of DMA is the highest. The reason is that the iterative function
of GIA is always changing based on its own iterative standard,
the randomness of the iterative function of GIA may incen-
tive the reduction of social welfare. For the ADMM, although
it does not own the iterative function, the search space is the
largest compared with DMA, and the social welfare of ADMM
is the highest. Furthermore, Fig. 7 illustrates the variation in
the probability associated with the number of transactions. We
find that when N increases, the results under those three algo-
rithms are decreasing to a stable state. This is because the
number of FNs and block size is limited.

In Fig. 8, we investigate the impact of the number of FNs on
the social welfare of DMA compared with ADMM and GIA.
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proposed algorithm compared with ADMM and GIA.

We first fix the number of transactions to 100, then just observe
the variant of the number of FNs. As expected in Fig. 8, it is
clear that the social welfare of FNs increases as the number
of FNs rises. Especially, DMA can improve the social welfare
of FNs at least 50% compared with GIA, but it is lower than
ADMM. Finally, Fig. 9 demonstrates the impact of the number
of FNs on the transmission delay of DMA, ADMM, and GIA.
By comparing curves with different transmission delays, we
find that the transmission delay of DMA is the least compared
with the other two algorithms. It is of great significance to
improve the transmission delay of DMA, because of the high
demand for data recording time for intensive IoT applications.

Next, we give an illustration of the social welfare of FNs
and the number of CPU cores with three schemes, DMA,
ADMM, and GIA, respectively. In Fig. 10, it can be seen
that with the number of CPU cores increasing, the social wel-
fare decreases. The reason is that the increasing of consumed
operation cost of FNs is higher than that of the revenue of
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FNs. Thus, it is important to efficiently schedule computing
resources. Furthermore, since the number of transactions is
fixed, the demanded computing resource and the social wel-
fare of FNs will be stable in the end. In addition, it also finds
that the social welfare of DMA is close to that of ADMM,
which is far more than GIA. Although the ADMM is better
than DMA on social welfare, the transmission delay and the
probability of successful mining of DMA is better.

Finally, we examine the impacts brought by the number of
FNs and the CPU cores, which are shown in Fig. 11. We find
that social welfare increases with the increment of the number
of FNs and the decrease in the number of CPU cores. This
is because the maintenance costs of servers increase when the
CPU cores increase, but the total number of transactions is
not changed, the required maximization computing resource
is also quantitative. Thus, social welfare will converge to a
steady state.
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VIII. CONCLUSION

In this article, we have proposed a social welfare optimized
blockchain for fog-enabled IoT networks. In particular, we first
formulate a social welfare maximization problem while fac-
ing the varieties of mining tasks and heterogeneous resource
capabilities at FNs. Then, we jointly optimize the restricted
computing resource and various mining requirements of FNs,
such as transaction size, transaction fee, transaction utiliza-
tion, and transmission delay together. Besides, in terms of
matching theory, we reformulate the original problem into a
two-sided matching game with one-sided preference. Then, we
design a DMA algorithm based on edge computing to achieve
a suboptimal solution, i.e., the stability. Furthermore, we have
performed the MATLAB to validate the proposed theoretical
model. Additionally, by conducting the simulations, we have
evaluated the network performance, which greatly improves
the social welfare of all FNs. For future work, we will further
study a two-sided matching market, where the online match-
ing mechanism between the diversified resources of fog/cloud
and a variety of computation tasks with IoT devices’ features
under the condition of the complex network environment.
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