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Abstract—Emergency response is highly dependent on the time
of incident reporting. Unfortunately, the traditional approach
to receiving incident reports (e.g., calling 911 in the USA) has
time delays. Crowdsourcing platforms such as Waze provide
an opportunity for early identification of incidents. However,
detecting incidents from crowdsourced data streams is difficult
due to the challenges of noise and uncertainty associated with
such data. Further, simply optimizing over detection accuracy
can compromise spatial-temporal localization of the inference,
thereby making such approaches infeasible for real-world de-
ployment. This paper presents a novel problem formulation
and solution approach for practitioner-centered incident de-
tection using crowdsourced data by using emergency response
management as a case-study. The proposed approach CROME
(Crowdsourced Multi-objective Event Detection) quantifies the
relationship between the performance metrics of incident classifi-
cation (e.g., F1 score) and the requirements of model practitioners
(e.g., 1 km. radius for incident detection). First, we show how
crowdsourced reports, ground-truth historical data, and other
relevant determinants such as traffic and weather can be used
together in a Convolutional Neural Network (CNN) architecture
for early detection of emergency incidents. Then, we use a
Pareto optimization-based approach to optimize the output of
the CNN in tandem with practitioner-centric parameters to
balance detection accuracy and spatial-temporal localization.
Finally, we demonstrate the applicability of this approach using
crowdsourced data from Waze and traffic accident reports from
Nashville, TN, USA. Our experiments demonstrate that the
proposed approach outperforms existing approaches in incident
detection while simultaneously optimizing the needs for real-
world deployment and usability.

Index Terms—Crowdsourcing, Emergency Response, Deep
Learning, Waze, Multi-Objective Optimization

I. INTRODUCTION

Emergency response to incidents like road accidents and
natural disasters is one of the most pressing problems faced
by communities today. Cities resort to diverse responders
like firefighters, paramedics, and police personnel to manage
such incidents. Traditionally, emergency response pipelines
were reactive, responding to incidents after they were reported
officially. However, cities have evolved over the last few
decades and have adopted smart emergency response, which
acts proactively by allocating responders in anticipation of
future incidents [1]. Mukhopadhyay et al. [1] point out that

Ayan Mukhopadhyay
Vanderbilt University, USA
ayan.mukhopadhyay @ vanderbilt.edu

Saideep Nannapaneni
Wichita State University, USA
saideep.nannapaneni @wichita.edu

Sayyed Mohsen Vazirizade
Vanderbilt University, USA
s.m.vazirizade @vanderbilt.edu

Abhishek Dubey
Vanderbilt University, USA
abhishek.dubey @vanderbilt.edu

recently, incident detection has become an essential addition to
the smart emergency response pipeline. To understand the role
of incident detection, consider a traffic accident on a highway.
In such a situation, first responders dispatch resources only
after a call is placed for aid (e.g., a 911 call in the USA).
However, this mechanism can result in loss of time, which
in emergencies could prove to be fatal [2]. This delay is also
problematic for low severity incidents, which can lead to traffic
congestion on the roads if not cleared in time. Based on our
discussions with the Tennessee Department of Transportation,
these kinds of incidents are often detected by the help trucks
on patrol and manually by personnel in transportation manage-
ment centers using cameras. This pipeline results in latency,
which can be avoided if observers passing by incident sites
have access to a convenient mechanism for reporting incidents
(e.g., by using a single click of a button on a smartphone
application). Then, crowdsourced reports can be used to detect
incidents before they are reported officially.

Using crowdsourced data for emergency response is highly
non-trivial as such data is noisy and scattered in space and
time. This uncertainty makes precise spatial and temporal
localization challenging. While early information about inci-
dents is critical, it is difficult to dispatch limited resources to
potential incidents based on uncertain information. Consider
accident reporting through the Waze application that allows
users to press a smartphone button to report accidents. Due
to the vehicle’s motion and traffic, drivers and passengers
often pass the area of an incident before clicking the button
to report it. As a result, by the time the incident is reported,
it typically consists of both spatial and temporal deviations
from the original place and time of the incident. Therefore, an
incident detection model must localize and detect the incident
in the presence of noise and uncertainty.

The goals of accurate detection and improved localization
might appear contradictory. Indeed, it seems intuitive that the
accuracy of a data-driven incident detector would degrade with
an increased focus on localization. However, localization is im-
perative to respond to an incident; it is not possible to dispatch
aid to an accident unless its precise location is known. At the
same time, lowering the latency of detection is also critical.



If we wait to acquire more information from various sources,
the uncertainty decreases; however, it increases latency. This
paper focuses on optimizing the balance between the goals of
accurate detection and localization.

Recently, there has been a growing interest in leveraging
crowdsourced data in various public sector domains such
as emergency management and transportation. Crowdsourced
data (such as Twitter, Instagram, Waze, and Foursquare) rep-
resents another source of data that has been used for a variety
of analyses such as emergency disaster response [3] and
traffic management [4]. Lenkei [5] performed a comparative
study of the accidents reported through Waze and the traffic
database in Sweden (Trafikverket) and observed that 27.5% of
the incidents in Trafikverket were detected earlier by Waze.
Recently, Senarath et al. [3] proposed a Bayesian information
fusion approach which fused multiple crowdsourced Waze
reports for early incident detection.

We note that prior works using crowdsourced data for
spatial-temporal incident detection lack: 1) a principled ap-
proach for information fusion noisy data to detect incidents
that can generalize across crowdsourcing platforms because
existing approaches only consider simple aggregation methods
of explicit features without considering impacts of uncertainty
associated with report integration; 2) a systematic investigation
of the effect of hyperparameters (e.g., quality of discretization
of a continuous region of interest) on the quality and accuracy
of the event detection models developed from crowdsourced
data; and 3) a flexible incident detection framework that
accommodates practitioner preferences regarding incident de-
tection accuracy and spatial-temporal localization.

This paper presents CROME: an approach that performs
Crowdsourced Multi-Objective Event Detection. We show
how to combine spatial-temporal crowdsourced data with
arbitrary features to facilitate data-driven modeling. Crucially,
we show how to balance the trade-off between localization and
accuracy. We also show that balancing this trade-off is vital
and naively maximizing accuracy (or F-1 score) is not desir-
able in this problem domain. Through experiments performed
on accident data gathered from Nashville, TN, USA, we show
how our approach can detect accidents sooner than receiving
911 calls and outperforms state-of-the-art approaches.

II. CROME: CROWDSOURCED MULTI-OBJECTIVE EVENT
DETECTION

Consider a set of spatial-temporal incidents D; for example,
D can denote a set of historical road accidents that occurred
in a region of interest during a specific period. In practice,
it is difficult to know the exact time of occurrence of such
incidents. Instead, we assume that the reported time of occur-
rence (for example, through a 911 call) can be used as a proxy
for the actual time of occurrence. Further, we assume access
to a set of crowdsourced reports about the incidents, denoted
by W. Each report w; € W can be represented by the tuple
(ti, ki, l;, ;) where t;, k;, l;, and r; denote the time at which
the report was generated, longitude, latitude, and the reliability
of report, respectively. The reliability of a report is typically

provided by the crowdsourcing platform itself. For example,
the long-term accuracy of the user who generated the report
can be used as a proxy for reliability.

Spatial Discretization: We divide the overall spatial area
of interest into a grid G with square cells of length As. Each
point in space (represented by a pair of latitude and longitude)
can therefore be mapped to a unique cell in G. Upon mapping
crowdsourced reports W to G, each report w; € W is denoted
by (t;,x;,yi, ), where x; and y; represent a specific cell in
G containing the spatial coordinates represented by k; and ;.

Temporal Discretization: Crowdsourced reports are gener-
ated in continuous time. However, incidents of interest, e.g.,
accidents, occur infrequently. Further, multiple crowdsourced
reports are generated in response to the same incident. As
a result, we aggregate crowdsourced reports temporally to
aid analysis. Let At denote the temporal resolution for data
aggregation. We refer to At as the step time-period. The input
data W can be grouped in At time intervals and aggregated
to produce a real number using a specific summary statistic
for temporal discretization. For example, the total number of
reports generated in a time period in a cell or the average
reliability of the reports can be used for aggregation.

We also assume access to other potential determinants of
incidents, e.g., weather and traffic congestion have been shown
to be correlated with accident occurrence [1]. We assume that
information about such covariates is available at the same
granularity at which we choose to discretize space and time.
We refer to the covariates used (including the summary statis-
tics of the crowdsourced reports) as features. For example,
features in the case of accidents can correspond to the number
of crowdsourced reports, weather, congestion, and so on. For
each time period (say a time period ending at t;), using a
specific aggregation on W produces a multi-dimensional array
(i-e., a tensor) x; of dimensions (N,, N,, Ny), where N, and
N, denote the number of cells along the horizontal and vertical
directions in G, and Ny is the number of features. We show
the overall process of discretization in Figure 1. Note that as
As changes, the realizations of N, and IV, change as well.

Fig. 1: The overall process of data discretization and aggrega-
tion. This diagram represents three time steps (At) aggregated
to form X; and the corresponding labels (L;) at time ;.

In practice, once an incident occurs, crowdsourced reports
are generated for some extended duration of time after the
incident. Consider an accident for example; as people pass
through the scene of the incident, they observe it and log



the presence of the accident on a relevant crowdsourcing
platform. The reporting can continue till the scene of the
accident is responded to by first responders and cleared. In
order to accumulate reports generated over time, we use X;
to denote (x;_7v...%:), where T” is an arbitrary period
that practitioners can choose based on the frequency of the
reports, the number of incidents, and so on. Therefore, X; is
a collection of tensors that provides a temporal snapshot of
reports generated from ¢; — T to t;.

Label Assignment: Our goal is to detect incidents based
on crowdsourced reports and other potential determinants.
While such a problem can be framed as unsupervised anomaly
detection, historical reports generated through crowdsourcing
platforms and ground-truth data about past incidents can be
used to create a labeled dataset that can be used for supervised
learning. Ground truth information about accidents can be
obtained through historical records; for example, information
about accidents can be retrieved through first responders or
traffic/safety organizations. Based on such data, we assign a
label to each X; generated by accumulating crowdsourced re-
ports. Intuitively, we say that a set of crowdsourced reports X;
match with an actual incident (observed through ground truth
historical data) if there was an actual accident in proximity of
the set, for some definition of spatial-temporal proximity.

We define proximity using two temporal hyper-parameters
« and B and a spatial hyper-parameter §. Each X; (recall
that X; denotes a set of reports accumulated until time ¢;) is
assigned a positive label (marked as 1) if there was an actual
incident in the time frame ¢; — « to ¢; + § within a spatial
proximity of 4. It is reported a negative label (marked as 0)
otherwise. On a cursory glance, it might seem non-intuitive to
assign a crowdsourced report with an actual incident that might
have occurred after it; although X; consists of a set of reports
obtained until time ¢; but duration ¢+ 8 might consist of inci-
dents that occurred after it. However, our preliminary analysis
revealed that in practice, it is not possible to retrieve the true
time of occurrence of incidents. For example, consider traffic
accidents. Once an accident occurs, some time elapses before
the victim (or an observer) calls for help and officially reports
an estimated time of occurrence. Crowdsourced reports, on the
other hand, can be generated as soon as the accident occurs,
thereby precluding the officially reported time of occurrence
of the accident. Therefore, we use the hyper-parameter [ to
accommodate such scenarios.

A. Problem Formalization

Given an aggregation of crowdsourced reports and other
relevant features, our goals are the following: 1) early detection
of the locations of spatial-temporal incidents like accidents
through crowdsourced reports, and 2) determine the best
practitioner’s parameters regarding localization that can be
used for deployment. It is crucial to optimize parameters from
the perspective of first responders and practitioners since the
optimal model (based on some definition of optimality as
defined in the context of data-driven learning, like maximum
likelihood) might not be the best choice for deployment.

For example, consider a model that detects accidents early
in a city accurately most of the time, but does poorly on
spatial localization. First responders would not be able to
service the incident even if they are provided with an alert.
Similarly, consider a pipeline that detects accidents accurately
at the temporal resolution of a day; even if the pipeline
shows accurate spatial localization, it does not aid emergency
response because of the temporal delay it might incur. Below,
we show how we formulate our objective in terms of learning
performance (accuracy or some measure of it) as well as
practitioner-centric parameters.

Let the random variable I denote incident occurrence that
the decision-maker is unaware of (I would denote the labels
we generated for each X). It is important to note that such
incidents have already occurred but have not been reported
when we make inferences about them; as such, the problem
we are interested in is not a canonical forecasting problem.
Our goal is to learn a function f(I | X, @), where f denotes
some measure of accuracy of detecting incidents I conditional
on features X and a set of parameters 6. For example, f
could represent the F-1 score of the model or its detection
accuracy. In order to balance the accuracy of detection with
the temporal and spatial granularity that the model uses, we
choose to maximize the accuracy of the model while simul-
taneously aiming for higher spatial and temporal resolutions
for detection. Naturally, any approach to detection is difficult
at finer spatial and temporal resolutions. Formally, we define
practitioner-centric incident detection as the following multi-
objective optimization problem:

meax%f(l | X,0) + r%ltn'72Z1<At) + HAISH’Y?,ZQ(AS) (1)

where 1,72, and 3 denote the relative importance of each
term in the optimization problem. In the simplest case, v; =
v¥2 = 73 = 1. The functions z; and 25 denote arbitrary
(increasing) functions that practitioners can choose over spatial
and temporal discretization. In the simplest case (the one
we use later in our approach), z; and z, denote identity
functions. While our problem structure is general for any type
of spatial-temporal incident and crowdsourced report, we use
road accidents as a case study. We use crowdsourced reports
from Waze that facilitates users to upload observed accident
locations.

B. Solution Approach

1) Optimizing Detection Capability: Our goal is to solve
optimization problem 1. We begin by describing the function
f. An approach to detecting incidents must be able to bal-
ance between the precision and the recall of detection. First
responders typically work under resource constraints; while
early detection is imperative to minimizing response times,
responders cannot be dispatched to attend to falsely generated
alerts. As a result, we choose to use F-1 score as our metric of
interest, which is the harmonic mean of precision and recall.
Given our choice of f, we now focus on the first term in
Formula 1, which seeks to find the parameters #* such that
0* = argmax, f(I | X, 0).
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Fig. 2: Performance of models against different spatial and temporal resolutions using the test data sets. We observe that the
CNN model (part of CROME) significantly outperforms the baseline approaches.

We leverage the structure of the incident detection problem
while choosing a model that can draw inferences from spatial-
temporal crowdsourced data. Intuitively, we try to capture the
proximity of observation and reporting in this domain. After
users observe an incident, they move in space and a certain
amount of time elapses before they report it. However, it
is natural to assume that the displacement (both spatial and
temporal) is not very high; it is unlikely that users move
many miles and report an incident hours after they observe
it. Therefore, reports generated in a cell (say ¢; € G) are
most likely to have been observed in cells that lie in close
proximity to g;. In principle, it is possible to flatten X to
a vector and minimize some loss function (e.g., least square
loss) that measures prediction accuracy. However, to leverage
the spatial structure of the problem, we use a convolutional
neural network (CNN) [6] to maximize f. We implement two
convolutional layer neural network with a max-pooling layer in
between. The last convolutional layer is followed by a ReL.U
activated layer and a sigmoid layer. The CNN architecture
enables us to consider how alerts generated in a cell are
correlated with incidents that occur in its spatial proximity.

2) Optimizing Practitioner Parameters: Our goal is to
maximize the accuracy of detection while also improving
spatial and temporal localization. The very structure of our
formulation dictates that no single solution can optimize
all the objectives simultaneously. Indeed, we show through
experimental evaluation that as the spatial resolution increases,
the accuracy of the model degrades. As a result, we seek to find
the set of Pareto-optimal solutions. A solution is called Pareto-
optimal or non-dominated if none of the objective functions
can be improved without sacrificing the value of at least one
of the other objective functions [7]. To find the Pareto optimal
solution, we use a multi-objective evolutionary algorithm [7]
based on the concept of e-dominance [8]. The idea of e-
dominance maintains a well distributed set of non-dominated
solutions by not allowing two solutions with a difference
less than an exogenously specified threshold (¢; in the ith
objective) to be non-dominated to each other. We refer readers

to work by Deb et al. [7] for a detailed description of multi-
objective optimization.

3) Feature Generation: We collect a set of crowdsourced
reports about roadway accidents through the Waze application.
We remove duplicate reports that had the same identifier (ID).
Then, we generate input-output pairs {X, I'} based on the spa-
tial discretization, temporal discretization, report aggregation,
and label assignment as described in section II-A. We use
three major categories of features for incident detection —
crowdsourced reports, traffic information, and weather. Our
choice is guided by prior work in the domain of accident
prevention and analysis [I]. To capture the volume as well
as the reliability of the crowdsourced reports, we generate
the following three features: 1) Volume: the total number of
crowdsourced reports, 2) Sum of Reliability: the sum of the
reliability scores of the crowdsourced reports, and 3) Mean of
Reliability: the average reliability score of the crowdsourced
reports. We gather reliability scores for the reports from the
crowdsourcing platform (Waze) itself.

We generate two additional features from traffic and weather
information. For a point in space and time (based on the
spatial-temporal discretization), we gather the amount of pre-
cipitation from the nearest weather station. We also calculate
the mean traffic congestion in a cell through a two-step
process. First, for each roadway segment in a cell, we calculate
congestion by computing the ratio of the difference between
free flow speed and the current speed to free flow speed. Then,
we average the value of congestion across all the roadway
segments within the cell.

III. DATA

We use the following data sources for learning the incident
detection model: 1) Crowdsourced data: Waze is a GPS navi-
gation application and crowdsourcing platform [9]. We look at
user reports concerning roadway accidents from Sep/01/2019
to Dec/31/2009; 2) Ground-Truth Incident Data: we collect
accident data from the public safety office of Nashville, USA,
with a size of about 500 sq. miles We consider such incidents
as the ground truth. To remove noise, we map each incident



to its closest roadway segment (typically at a distance of
less than 25m); 3) Traffic Data: we collect roadway traffic
data in a time resolution of 5-minute intervals for the area
under consideration, resulting in approximately 270 million
measurements; and 4) Weather Data: we collect weather
information from Weatherbit [10].

IV. EXPERIMENTAL EVALUATION
A. Setup, Baseline, and Implementation

As indicated in Section III, we collect crowdsourced data
from the Waze platform for the period between Sep/01/2019
to Dec/31/2019. We divide the data between training sets
of three months and a test set of one month in a manner
that each month is used as the test set in an independent
evaluation. Hyper-parameters of the CNN (number of epochs
and threshold for classification) are tuned through k-fold cross-
validation. We use 256 filters with filter size of 2 x 2 for both
convolutional layers. Moreover, max pooling size is set to 2Xx 2.
Last two dense layers contain 2x N, and NN, units accordingly.
Moreover, we set o and 3 equal to 1 hour and 7’ equal
to 30 minutes based on empirical analysis. To compare the
performance of CROME, we use our earlier implementation
using Bayesian Information Fusion (BF) shown in [3]. Our
implementation for CROME as well as the baseline approach
is available at https://github.com/ysenarath/CROME.

B. Evaluation Measures

In order to evaluate the performance of the proposed ap-
proach, we use four metrics chosen based on the priorities
of first responders and practitioners. Specifically, we evaluate
using F-1 score (harmonic mean of precision and recall),
average early prediction ratio (the ratio of correctly early-
predicted incidents to total incidents reported), average early
prediction distance (the geodesic distance between the de-
tected location of the incident and the actual location), and the
average early prediction time (the average time difference
between the actual reported time of the incident obtained
through ground-truth report and the time of detection).

C. Results

1) Detection Accuracy: We begin by comparing the de-
tection accuracy of the CNN model (the first component of
CROME) with respect to the baseline approaches. We vary
the spatial and temporal resolutions (As and At) for this
comparison and present the results without using the Pareto
optimization framework (we present complete results later).
Our purpose of doing so is two-fold. We seek to examine the
robustness of the models with respect to varying discretization
parameters and also validate our hypothesis that detection ac-
curacy can suffer as spatial and temporal resolutions increase.
We present the results in Figure 2a and Figure 2b that show
the influence of time and space resolution on F1 score. We
have the following major findings: 1) CROME significantly
outperforms the baseline models in terms of F-1 score in all
cases. 2) As the spatial resolution increases and localization
becomes more challenging, the F-1 score of all the models
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Fig. 3: We show the non-dominated set of solutions obtained
through CROME (in red triangles). The learned CNN models
are shown in blue squares. We also show the baseline models
(in gray circles).

decrease. 3) Surprisingly, temporal discretization does not
affect the performance of any of the models (barring minor
variations). We hypothesize that this is due to the effects of
aggregating features over multiple time steps (7).

2) Choosing the Pareto Frontier: Having shown that the
CNN model we propose as part of CROME outperforms the
baseline approaches (in terms of F-1 score), we now focus
on evaluating CROME in its entirety. Recall that our goal is
to simultaneously aid detection and localization by solving
optimization problem 1. We first show how calculating the
Pareto frontier helps us solve optimization problem 1 (see
Figure 3). The plot shows the three dimensions over which
CROME optimizes, namely the spatial resolution (As), the
temporal resolution (At), and the F-1 score. Each point in
the three-dimensional plot represents a specific learned model.
We show the non-dominated set in red triangles. Notice that
the non-dominated set consists of several learned models. We
leave the final choice of selecting one (or more) models for
deployment from the non-dominated set to the practitioners
based on the relative importance of the specific objective
functions (f, As, and At).

Our key findings are as follows: 1) While BF outperforms
CROME in terms of early detection, 85% of the alerts that
it generates are incorrect (false positives). Using such an
approach is infeasible in practice as responders cannot be
dispatched based on incorrect alerts. CROME on the other
hand, balances precision and recall to detect more than 40%
of the incidents early. 2) CROME performs nearly on-par with
the baseline approach in terms of localization. 3) We find that
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TABLE I: Early detection performance of models. The F1 score is evaluated on the test set.

Avg. Earl
Model As (km) At (min) F1 Score Early Pred % Avg Distance (km) Yg ar.y Precision  Recall
Time (min)
Best Early Pred %

BF 1 5 0.60 77.56 3.27 15.02 0.00 0.14
CROME 5 5 41.00 40.28 2.96 13.94 0.32 0.56
Best Avg. Distance
BF 5 5 10.56 35.00 3.16 15.02 0.06 0.33
CROME 1 5 16.41 18.35 2.67 14.32 0.16 0.18
Best Avg. Early Time
BF 3 20 6.49 47.69 3.25 15.45 0.04 0.40
CROME 3 30 30.40 24.67 3.03 14.92 0.23 0.45

while tailoring models to specifically maximize precision or REFERENCES

recall can maximize certain metrics associated with incident
detection, the lack of consideration of practitioner-specific
parameters can lead to detrimental consequences. We note
the need to consider a combination of F-1 score and the
metrics pertaining to detection and localization. Consider a
model that generates alerts at all time-steps on all cells.
Such a model would detect all possible incidents early with
remarkable localization (since localization is measured with
respect to the ground-truth incidents). As a result, the balance
of precision and recall is crucial in this setting. Table I shows
the results of our experiments. We have selected the best
model of each approach (BF, CROME) with respect to three
practitioner-centric metrics. The model is considered better
if there is a higher early prediction rate, higher avg. early
prediction time, or lower avg. distance. Based on Table I, we
conclude that the proposed approach, which seeks to include
practitioner-centric parameters in incident detection, results in
a significantly higher F-1 score, significantly lower number of
false alerts, and competitive spatio-temporal localization.

V. CONCLUSION

This paper proposes a novel multi-objective optimization
problem for early detection of spatial-temporal incidents using
crowdsourced data. We show how crowdsourced data, his-
torical ground-truth incident data, and relevant determinants
can be combined to detect potential incidents before they are
reported. We also show how practitioner-centric parameters
can be incorporated into our approach. The proposed approach,
CROME (Crowdsourced Multi-objective event detection), uses
a combination of convolutional neural networks and Pareto
optimization to solve the optimization problem. While crowd-
sourced data is often noisy and uncertain, we show that mining
such non-traditional data can benefit emergency incident re-
sponse through a principled modeling approach like CROME.
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