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Abstract

Predicting user intent and detecting the corre-
sponding slots from text are two key problems
in Natural Language Understanding (NLU).
Since annotated datasets are only available for
a handful of languages, our work focuses par-
ticularly on a zero-shot scenario where the tar-
get language is unseen during training. In the
context of zero-shot learning, this task is typ-
ically approached using representations from
pre-trained multilingual language models such
as mBERT or by fine-tuning on data auto-
matically translated into the target language.
We propose a novel method which augments
monolingual source data using multilingual
code-switching via random translations, to en-
hance generalizability of large multilingual
language models when fine-tuning them for
downstream tasks. Experiments on the Mul-
tiATIS++ benchmark show that our method
leads to an average improvement of +4.2% in
accuracy for the intent task and +1.8% in F1
for the slot-filling task over the state-of-the-art
across 8 typologically diverse languages. We
also study the impact of code-switching into
different families of languages on downstream
performance. Furthermore, we present an ap-
plication of our method for crisis informatics
using a new human-annotated tweet dataset of
slot filling in English and Haitian Creole, col-
lected during the Haiti earthquake.1

1 Introduction

A cross-lingual setting is typically described as a
scenario in which a model trained for a particular
task in one source language (e.g. English) should
be able to generalize well to a different target lan-
guage (e.g. Japanese). While semi-supervised so-
lutions (Muis et al., 2018; FitzGerald, 2020, inter

1To appear at Multiliingual Representation Learning Work-
shop at EMNLP 2021. Implementation and dataset are
available at https://github.com/jitinkrishnan/
Multilingual-ZeroShot-SlotFilling.

alia) assume some target language data or trans-
lators are available, a zero-shot solution (Eriguchi
et al., 2018; Srivastava et al., 2018; Xu et al., 2020)
assumes none is available at training time. Having
models that generalize well even to unseen lan-
guages is crucial for tackling real world problems
such as extracting relevant information during a
new disaster (Nguyen et al., 2017; Krishnan et al.,
2020) or detecting hate speech (Pamungkas and
Patti, 2019; Stappen et al., 2020), where the target
language might be of low-resource or unknown.

Intent prediction and slot filling are two NLU
tasks, usually solved jointly, which learn to model
the intent (sentence-level) and slot (word-level) la-
bels. Such models are currently used extensively
for goal-oriented dialogue systems, such as Ama-
zon’s Alexa, Apple’s Siri, Google Assistant, and
Microsoft’s Cortana. Finding the ‘intent’ behind
the user’s query and identifying relevant ‘slots’ in
the sentence to engage in a dialogue are essential
for effective conversational assistance. For exam-
ple, users might want to ‘play music’ given the slot
labels ‘year’ and ‘artist’ (Coucke et al., 2018), or
they may want to ‘book a flight’ given the ‘airport’
and ‘locations’ slot labels (Price, 1990). A strong
correlation between the two tasks has made jointly
trained models successful (Goo et al., 2018; Hai-
hong et al., 2019; Hardalov et al., 2020; Chen et al.,
2019). In a cross-lingual setting, the model should
be able to learn this joint task in one language and
transfer knowledge to another (Upadhyay et al.,
2018; Schuster et al., 2019; Xu et al., 2020). This
is the premise of our work.

Highly effective transformer-based multilingual
models such as mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020a) have found success
across several multilingual tasks in recent years. In
the zero-shot cross-lingual transfer setting with an
unknown target language, a typical solution is to
use pre-trained transformer models and fine-tune to
the downstream task using the monolingual source

https://github.com/jitinkrishnan/Multilingual-ZeroShot-SlotFilling
https://github.com/jitinkrishnan/Multilingual-ZeroShot-SlotFilling


Figure 1: t-SNE plot of embeddings across the 12 multi-head attention layers of multilingual BERT. Parallelly
translated sentences of MutiATIS++ dataset are still clustered according to the languages: English (black), Chinese
(cyan), French (blue), German (green), and Japanese (red).

Figure 2: An original example in English from MultiATIS++ dataset and its multilingually code-switched version.
In the above code-switching example, the chunks are in Chinese, Punjabi, Spanish, English, Arabic, and Russian.
‘atis_airfare’ represents an intent class where the user seeks price of a ticket.

data (Xu et al., 2020). However, Pires et al. (2019)
showed that existing transformer-based represen-
tations may exhibit systematic deficiencies for cer-
tain language pairs. Figure 1 also verifies that
the representations across the 12 multi-head atten-
tion layers of mBERT are still not shared across
languages, instead forming clearly distinguishable
clusters per language. This leads to a fundamental
challenge that we address in this work: enhanc-
ing the language neutrality so that the fine-tuned
model is generalizable across languages for the
downstream task. To this goal, we introduce a
data augmentation method via multilingual code-
switching, where the original sentence in English
is code-switched into randomly selected languages.
For example, chunk-level code-switching creates
sentences with phrases in multiple languages as
shown in Figure 2. We show that mBERT can be
fine-tuned for many languages starting only with
monolingual source-language data, leading to bet-
ter performance in zero-shot settings.

Further, we show how code-switching with lan-
guages from different language families impacts
the model’s performance on individual target lan-
guages, even finding some counter-intuitive results.
For instance, training on data code-switched be-
tween English and Sino-Tibetan languages is as
helpful for Hindi (an Indo-Aryan Indo-European
language) as code-switching with other Indo-Aryan

languages, and Turkic languages can be helpful for
both Chinese and Japanese.

Contributions: a) We present a data augmenta-
tion method via multilingual code-switching to
enhance the language neutrality of transformer-
based language models such as mBERT for fine-
tuning to a downstream NLU task of intent pre-
diction and slot filling. b) By studying different
language families, we show how code-switching
can be used to aid zero-shot cross-lingual learning
for low-resource languages. c) We release a new
human-annotated tweet dataset, collected during
Haiti earthquake disaster, for intent prediction and
slot filling in English and Haitian Creole.

2 Methodology

This section describes our problem definition, code-
switching algorithm, language families, and the
training methodology.

2.1 Problem Definition

Given a source (S) and a set of target (T) languages,
the goal is to train a classifier using data only in
the source language and predict examples from
the completely unseen target languages. We as-
sume the target language is unknown during train-
ing (fine-tuning) time, which makes direct trans-
lation to target infeasible. In this context, we use



Algorithm 1: Data Augmentation via Mul-
tilingual Code-Switching (Chunk-Level)

Input: Xen
ut , yen, yen

sl , lT
Output: Xcs

ut , ycs, ycs
sl

Xcs
ut ← ∅, ycs ← ∅, ycs

sl ← ∅
lset = googletrans.languages− lT
for i ∈ 1.. k do

for j ∈ 1.. len(Xen
ut ) do

Gcs ← ∅, Lcs ← ∅
chunks = slot_chunks(Xen

ut [j], y
en
sl [j])

for c ∈ chunks do
l← random.choice(lset)
t← translate(c, l)
Gcs ← Gcs ∪ t
Lcs ← Lcs ∪ align_label(c, t)

end
Xcs

ut ← Xcs
ut ∪ Gcs

ycs ← ycs ∪ ycs[j]
ycs
sl ← ycs

sl ∪ Lcs

end
end

code-switching (cs) to augment the monolingual
source data. Thus, the input, augmented input, and
output of our problem can be defined as:

Input: XS
ut, y

S , ySsl, lT
Code-Switched Input: Xcs

ut , y
cs, ycssl

Output: yT , yTsl ← predict(XT
ut)

where Xut represents sentences, y their ground
truth intent classes, ysl the slot labels for the words
in those sentences, and lT the set of target lan-
guages. An example sentence, its intent class, and
slot labels are shown in Figure 2.

2.2 Multilingual Code-Switching

Multilingual masked language models, such as
mBERT (Devlin et al., 2019), are trained using
large datasets of publicly available unlabeled cor-
pora such as Wikipedia. Such corpora largely re-
main monolingual at the sentence level because the
presence of intra-sentence code-switched data in
written texts is likely scarce. The masked words
that needed to be predicted usually are in the same
language as their surrounding words. We study how
code-switching can enhance the language neutral-
ity of such language models by augmenting it with
artificially code-switched data for fine-tuning it to
a downstream task. Algorithm 1 explains this code-
switching process at the chunk-level. When using
slot filling datasets, slot labels that are grouped by
BIO (Ramshaw and Marcus, 1999) tags constitute
natural chunks, as shown in Figure 2. To summa-
rize the algorithm, we take a sentence, take each
chunk from that sentence, perform a translation

Group Name Languages

Afro-Asiatic Arabic (ar), Amharic (am), Hebrew
(he), Somali (so)

Germanic German (de), Dutch (nl), Danish (da),
Swedish (sv), Norwegian (no)

Indo-Aryan Hindi (hi), Bengali (bn), Marathi
(mr), Nepali (ne), Gujarati (gu), Pun-
jabi (pa)

Romance Spanish (es), Portuguese (pt), French
(fr), Italian (it), Romanian (ro)

Sino-Tibetan, Koreanic,
& Japonic

Chinese (zh-cn), Japanese (ja), Ko-
rean (ko)

Turkic Turkish (tr), Azerbaijani (az),
Uyghur (ug), Kazakh (kk)

Table 1: Selected language families to evaluate their
impact on a target language.

into a random language using Google’s NMT sys-
tem (Wu et al., 2016), and align the slot labels to fit
the translation, i.e., label propagation through align-
ment as the translated sentence do not preserve the
number and order of words in the original sentence.
At the chunk-level, we use a direct alignment. The
BIO-tagged labels are recreated for the translated
phrase based on the word tokens. More complex
methods could be applied here to improve the align-
ment of the slot labels such as fast-align (Dyer
et al., 2013) or soft-align (Xu et al., 2020), but we
leave this for future work. Code-Switching at the
word-level essentially translates every word ran-
domly, while at the sentence-level translates the en-
tire sentence. During the experimental evaluation
process, to build a language-neutral model using
monolingual source (English) data, all eight target
languages are excluded from the code-switching
procedure to avoid unfair model comparisons, i.e.
removing target languages (lT ) from lset in Algo-
rithm 1.

Complexity. The augmentation process is re-
peated k times per sentence producing a new aug-
mented dataset of size k × n, where n is the size
of the original dataset, i.e. space complexity of
O(k × n). For T translations per sentence, Algo-
rithm 1 has a runtime complexity of O(k× n× T )
assuming constant time for alignment. Word-level
requires as many translations as the number of
words but sentence-level requires only one. An in-
crease in the dataset size also increases the training
time, but the advantage is one model appropriate
for many languages.

2.3 Language Families
A language family is defined as a group of related
languages that likely share a common ancestor.
For example, Portuguese, Spanish, French, Italian,



and Romanian are all derived from Latin (Rowe
and Levine, 2017). We use language families to
study their impact on the target languages. We aug-
ment the source language with code-switching to
a particular language family. For instance, code-
switching the English dataset with Turkic language
family and testing on Japanese can reveal how
closely the two are aligned in the vector space
of a pre-trained multilingual model. We work
with 6 language groups: Afro-Asiatic (Voegelin
and Voegelin, 1976), Germanic (Harbert, 2006),
Indo-Aryan (Masica, 1993), Romance (Elcock and
Green, 1960), and Turkic (Johanson and Johan-
son, 2015), also grouping Sino-Tibetan, Koreanic
and Japonic (Shafer, 1955; Miller, 1967).2 Ger-
manic, Romance, and Indo-Aryan are genera of the
Indo-European family. Language groups and cor-
responding languages are shown in Table 1. Each
group is selected based on a target language in the
dataset, and the Afro-Asiatic family is added as an
extra group. In experiments, lset in Algorithm 1
will be assigned languages from a specific family.

2.4 Joint Training

Joint training is traditionally used for intent pre-
diction and slot filling to exploit the correlation
between the two tasks. This is done by feeding the
feature vectors of one model to another or by shar-
ing layers of a neural network followed by training
the tasks together. So, a standard joint model loss
can be defined as a combination of intent (Li) and
slot (Lsl) losses. i.e., L = αLi + βLsl, where α
and β are corresponding task weights. Prior works
(Goo et al., 2018; Schuster et al., 2019; Liu and
Lane, 2016; Haihong et al., 2019) that use BiL-
STM or RNN are now modified to BERT-based
implementations explored in more recent works
(Chen et al., 2019; Hardalov et al., 2020; Xu et al.,
2020). A standard Joint model consists of BERT
outputs from the final hidden state (classification
(CLS) token for intent and m word tokens for slots)
fed to linear layers to get intent and slot predictions.
Assuming hcls represents the CLS token and hm
represents a token from the remaining word-level
tokens, the BERT model outputs are defined as

2Each of the Sino-Tibetan, Koreanic, and Japonic fami-
lies have a single high-resource member (Chinese, Korean,
Japanese respectively). We only group them as an additional
interesting data point, not because we ascribe to any theories
that link them typologically.

(Chen et al., 2019; Xu et al., 2020):

pi = softmax(W ihcls + bi)

pslm = softmax(W slhm + bsl) ∀m
(1)

with a multi-class cross-entropy loss3 for both in-
tent (Li) and slots (Lsl). We will use this model as
our baseline for joint training. Our goal will be to
show that code-switching on top of joint training
improves the performance. The output of Algo-
rithm 1 will be the input used for joint training on
BERT for code-switched experiments.

3 Datasets

Benchmark Dataset. We use the latest multilin-
gual benchmark dataset of MultiATIS++ (Xu et al.,
2020), which was created by manually translat-
ing the original ATIS (Price, 1990) dataset from
English (en) to 8 other languages: Spanish (es),
Portuguese (pt), German (de), French (fr), Chinese
(zh), Japanese (ja), Hindi (hi), and Turkish (tr). The
dataset consists of utterances for each language
with an ‘intent’ label for ‘flight intent’ and ‘slot’
labels for the word tokens in BIO format. A sample
datapoint in English is shown in Figure 2. Table
2 presents the dataset statistics for the benchmark
dataset of MultiATIS++ as well as for the newly
constructed dataset for disaster NLU.

New Dataset for Disaster NLU. We construct
a new intent and slot filling dataset of tweets col-
lected during natural disasters, in two languages:
English (en) and Haitian Creole (ht). The tweets
originally were released by Appen.4 For En-
glish, a language expert labeled the tweets, and
for Haitian Creole, we used Amazon Mechanical
Turk with five annotators. Intent classes include:
‘request’ and ‘others’. Slot filling consists of 5 la-
bels: ‘medical_help’, ‘food’, ‘water’, ‘shelter’, and
‘other_aid’. Table 2 provides the dataset statistics.

4 Experimental Setup

We use the traditional cross-lingual task setting
where each experiment consists of a source lan-
guage and a target language. A model is trained
on the source data (English) and evaluated on the
target data (8 other languages). For code-switching
experiments, the English dataset is augmented with
multilingual code-switching before training. Our

3L = − 1
n

∑︁n
i=1[y log ŷ]

4https://appen.com/datasets/
combined-disaster-response-data/

https://appen.com/datasets/combined-disaster-response-data/
https://appen.com/datasets/combined-disaster-response-data/


Language Utterances Tokens Intents Slots
train dev test train dev test

MultiATIS++ (Xu et al., 2020)
English 4488 490 893 50755 5445 9164 18 84
Spanish 4488 490 893 55197 5927 10338 18 84

Portuguese 4488 490 893 55052 5909 10228 18 84
German 4488 490 893 51111 5517 9383 18 84
French 4488 490 893 55909 5769 10511 18 84
Chinese 4488 490 893 88194 9652 16710 18 84
Japanese 4488 490 893 133890 14416 25939 18 84

Hindi 1440 160 893 16422 1753 9755 17 75
Turkish 578 60 715 6132 686 7683 17 71

Disaster Tweets (New Dataset)
English 3518 490 - 16369 4242 - 2 5

Haitian Creole - - 520 - - 2834 2 5

Table 2: Datasets & Statistics.

implementation is in PyTorch (Paszke et al., 2019)
and we use the pre-trained bert-base-multilingual-
uncased with BertForSequenceClassification (Wolf
et al., 2020) model. Maximum epochs is set to 25
with an early stopping patience of 5, batch size of
32, and Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 5e−5. We select the best
model on the validation set. Consistent with the
metrics reported for intent prediction and slot fill-
ing evaluation in the past, we also accuracy for
intent and micro F15 to measure slot performance.

4.1 Baselines & Upper Bound
Since we assume that target language is not known
before hand, Translate-Train (TT) (Xu et al.,
2020) method is not a suitable baseline. Rather,
we set this to be an upper bound, i.e. translating
to the target language and fine-tuning the model
should intuitively outperform a generic model. Ad-
ditionally, we add code-switching to this TT model
to assess if augmentation negatively impacts its
performance. The zero-shot baselines for the code-
switching experiments use an English-Only (Xu
et al., 2020) model, which is fine-tuned over the
pre-trained mBERT separately for each task and an
English-only Joint model (Chen et al., 2019).

5 Results & Discussion

Effect of Multilingual Code-Switching. Table
3 describes performance evaluation on the Multi-

5To address class imbalance for slots, we use Micro F1
instead of Macro F1, which is why our F1 scores are inflated
when compared to scores in (Xu et al., 2020).

ATIS++ dataset. When compared to the state-of-
the-art jointly trained English-only baseline, we
see a +4.2% boost in intent accuracy and +1.8%
boost in slot F1 scores on average by augmenting
the dataset via multilingual code-switching with-
out requiring the target language. From the sig-
nificance tests, except for Spanish and German, all
other languages were helped by code-switching
for intent detection. For slot filling, improvement
on Portuguese and French is insignificant. This
suggests that code-switching primarily helped lan-
guages that are morphologically more different
from the source language (English). For exam-
ple, Hindi and Turkish have the highest intent per-
formance improvement of +16.1% and +9.8% re-
spectively. And for slots, Hindi and Chinese with
+6.0% and +4.3% respectively. Japanese showed
+4% improvement for intent and +3.4% for slots.

The runtime of the models in Table 5 (Appendix
B) shows that code-switching is expensive, tak-
ing up to five hours for five augmentation rounds
(k = 5). This is because there are k times more
data compared to the monolingual source data. In-
creasing the number of code-switchings (k) for a
sentence from 5 to 50 improves the performance by
+1%, while increasing the run-time by a large mar-
gin. Hence, such tradeoffs should be considered
when picking k for real-world applications where
time to deployment might be of the essense.

In the translate-train (upper bound) scenario, it
is not immediately clear if augmentation helps,
since data in the same language as the target are al-
ways preferable to other language or code-switched



Intent Acc. m es de zh ja pt fr hi tr AVG

English-Only Baseline* 1 94.42 94.29 79.53 73.75 92.90 93.86 67.06 69.71 83.19
Jointen−only Baseline* 1 95.03 94.51 80.54 73.57 93.48 93.33 73.53 71.05 84.38
Word-level CS† 1 94.18 93.92 81.67 75.48 92.54 94.18 81.19 74.22 85.92
Sentence-level CS 1 94.60 93.53 81.21 75.01 93.10 93.24 82.37 75.11 86.02
Chunk-level CS (CCS) 1 95.12 95.27 83.88 74.27 94.20 93.48 82.73 77.51 87.06
Jointen−only* + CCS 1 95.48 94.51 84.43♠ 76.48♠ 94.15♠ 94.89♠ 85.37♠ 78.04♠ 87.92

Upper Bound

Translate-Train (TT)* 8 94.02 93.84 90.21 84.19 95.66 94.54 85.08 85.79 90.42
JointTT * 8 94.16 94.24 91.56 85.98 95.75 95.01 86.45 84.95 91.01
JointTT * + CCS 8 95.48 95.41 91.60 87.17 95.34 94.60 87.94 85.93 91.68

Slot F1 m es de zh ja pt fr hi tr AVG

English-Only Baseline* 1 96.16 96.73 83.12 78.81 95.63 95.40 77.05 88.09 88.87
Jointen−only Baseline* 1 96.12 96.76 84.95 79.60 95.76 95.76 77.63 88.92 89.44
Word-level CS† 1 95.81 96.33 85.46 79.33 96.27 95.08 79.10 86.86 89.28
Sentence-level CS 1 96.57 96.92 86.32 79.52 96.65 95.84 81.94 89.84 90.45
Chunk-level CS (CCS) 1 96.68 96.82 87.10 80.00 96.46 96.31 80.95 91.60 90.51
Jointen−only* + CCS 1 96.09 96.56 88.61♠ 82.28♠ 96.01 95.94 82.28♠ 90.45♠ 91.03

Upper Bound

Translate-Train (TT)* 8 96.89 96.04 93.48 85.29 96.35 96.02 82.03 91.21 92.16
JointTT * 8 96.92 95.66 93.64 87.84 96.11 95.95 82.98 91.15 92.53
JointTT * + CCS 8 96.98 96.27 93.37 85.87 95.88 95.44 82.00 91.31 92.14

Table 3: Performance evaluation of code-switching with setting k = 5. CS: Code-Switching. Reported scores
are average of 5 independent runs (including a separate code-switched data for each run). m = number of distinct
models to be trained. *: modified BERT-based implementations (Chen et al., 2019; Xu et al., 2020). †: Similar to
Qin et al., 2020 but modified for slot-filling task and also excluding target language from randomized switching.
♠: The difference is significant with p < 0.05 using Tukey HSD (conducted between Jointen−only + CCS versus
Jointen−only Baseline for each language).

Intent Acc. ht

English-Only Baseline* 56.12
Translate-Train (TT) 62.58
Chunk-level CS (CCS) 63.15
Jointen−only* + CCS 63.73

Slot F1 ht

English-Only Baseline* 68.72
Translate-Train (TT) 69.96
Chunk-level CS (CCS) 70.27
Jointen−only* + CCS 70.02

Table 4: Performance on disaster data in Haitian Creole
(ht). CS = Code-Switching. Reported scores are aver-
age of 5 independent runs (*: modified BERT-based).

data. At a minimum, augmentation does not hinder
upper-bound performance (Table 3).

For both intent and slot performance, the chunk-
level model remained robust across the languages.
For intent, the difference between word-level and
sentence-level was insignificant. For slot, sentence-
level was in par with chunk-level on average. Thus,
we think that code-switching at chunk-level is safer
for avoiding semantic discrepancies (which are a
danger in the word-level) while also better encour-
aging intra-sentence language neutrality.

Evaluation on Disaster Dataset. We found that
disaster data is more challenging than the ATIS
dataset for transfer learning in NLU. The predictive
performance is shown in Table 4. Code-Switching
improved intent accuracy by +12.5% and slot F1
by +2.3%, which is quite promising considering

the domain mismatch (tweets vs airline guides).
Joint training added +0.9% improvement to intent
accuracy, however did not seem to help slot F1.
This might imply a weaker correlation between
the two tasks in real-world data, i.e. a mention of
‘food’ or ‘shelter’ in a tweet may not always mean
that there is a ‘request’ or vice-versa. The upper
bound of translate-train method did not perform
any better than the randomly code-switched model
which seemed counter-intuitive. This might be due
to the lack of strong representation for Haitian Cre-
ole in the pre-trained model, although it is similar
to French, or due to the limitation of the machine
translation system.

Impact of Language Families. Results of lan-
guage family analysis are shown in Figure 3 for
the 4 languages that showed significant improve-
ments for both intent and slots in Table 3. The
input in English is independently code-switched
using 6 different language families. Note that the
target language is always excluded from the group
when evaluating on the same, i.e. Hindi is excluded
from Indo-Aryan family when that family is being
evaluated on it. Translate-train model is provided
as a frame of reference and upper bound. Gen-
erally, as expected, we found that language fami-
lies helped their corresponding languages, i.e. Ro-
mance helped Spanish, Germanic helped German,



Figure 3: Impact of different language groups on the
target languages.

Figure 4: Performance as k (augmentation rounds) in-
creases (on mBERT).

and so on. An exception is our loose group of Sino-
Tibetan, Koreanic, and Japonic languages –for both
Chinese and Japanese, languages from the Turkic
language family helped more than others. On the
other hand, the Sino-tibetan, Japonic, and Koreanic
group helps Hindi more than other Indo-European
languages. We believe this highlights the necessity
for methods like the one of Xia et al. (2020) that
can a priori identify the best helper language or
group of languages that can benefit downstream
tasks for low resource languages.

Control Experiments on k. Hyperparameter k
controls the amount of code-switched data. k = 0
represents original size with no code-switching,
k = 1 represents original size with code-switching,
and k = 10 means 10-times more code-switched
data than the original. The main experiments in
Table 3 use k = 5. Figure 4 shows how varying
k affects performance. For this analysis, we con-
sider 4 target languages on which code-switching
produced significant results in Table 3 on both In-

tent Accuracy and Slot F1: Chinese, Japanese,
Hindi, and Turkish. Intuitively, we observe that
as k increases, too much code-switching becomes
expensive in terms of runtime, while performance
improvement slowly plateaus. For Slot F1 perfor-
mance in all four cases, unlike Intent, we observe
an interesting dip when k = 1, which represents
the augmentation having just one copy of code-
switching (without the original non-code-switched
data), as compared to k = 0. Adding the original
data to one round of code-switched data (k = 2)
leads to big improvements. Overall, we see im-
provement for both tasks, with Slot F1 plateauing
earlier. Table 5 and Figure 10 in Appendix B show
the impact of code-switching on training runtime,
which increases as k increases. Thus, finding an
optimal value of k and specific language groups
are essential for downstream applications.

mBERT versus XLM-R. Additional perfor-
mance evaluations and benefits of code-switching
on XLM-R (Conneau et al., 2020a), a stronger
multilingual language model, are provided in Ap-
pendix A. Note that XLM-R is trained using
Common-Crawl and is likely to be exposed to
some code-switched data. Thus, we focus primar-
ily on mBERT which largely remains monolingual
at the sentence-level to identify the unbiased im-
pact of code-switching during fine-tuning. Further-
more, runtime and hyperparameter tuning along
with insights into layers to freeze before training
are shown in Appendix B.

Error Analysis. Selecting intent classes with
support > 10, Figure 5 shows how each class is pos-
itively or negatively impacted by code-switching.
Improvement was primarily on ‘airfare’, ‘distance’
‘capacity’, ‘airline’, and ‘ground_service’ which
had longer sentences such as ‘Please tell me which
airline has the most departures from Atlanta’ when
compared to ‘abbreviations’ and ‘airport’ classes
that included very short phrases like ‘What does EA
mean?’ However, note that Spanish and German
did not improve much, aligning with our results in
Table 3. For slot labels in Figure 6, we selected
the ones with support > 50 and that have different
characteristics, e.g. ‘name’, ‘code’, etc. The over-
all trend in slot performance shows improvements
for labels such as ‘day_name’, ‘airport_code’, and
‘city_name’ and slight variations in labels such as
‘fight_number’ and ‘period_of_day’, implying tex-
tual slots benefiting over numeric ones.



Figure 5: Impact of code-switching on intent classes.

Figure 6: Impact of code-switching on slot labels.

6 Related Work

Cross-Lingual Transfer. Researchers have stud-
ied cross-lingual tasks in various settings such
as sentiment/sequence classification (Wan, 2009;
Eriguchi et al., 2018; Yu et al., 2018), named en-
tity recognition (Zirikly and Hagiwara, 2015; Tsai
et al., 2016; Xie et al., 2018), parts-of-speech tag-
ging (Yarowsky et al., 2001; Täckström et al., 2013;
Plank and Agić, 2018), and natural language under-
standing (He et al., 2013; Upadhyay et al., 2018;
Xu et al., 2020). The methodology for most of the
current approaches for cross-lingual tasks can be
categorizes as: a) multilingual representations from
pre-trained or fine-tuned models such as mBERT
(Devlin et al., 2019) or XLM-R (Conneau et al.,
2020a), b) machine translation followed by align-
ment (Shah et al., 2010; Yarowsky et al., 2001;
Ni et al., 2017), or c) a combination of both (Xu
et al., 2020). Before transformer models, effective
approaches included domain adversarial training
to extract language-agnostic features (Ganin et al.,

2016; Chen et al., 2018) and word alignment meth-
ods such as MUSE (Conneau et al., 2017) to align
fastText word vectors (Bojanowski et al., 2017).
Recently, Conneau et al., 2020b show that having
shared parameters in the top layers of the multi-
lingual encoders can be used to align different lan-
guages quite effectively on tasks such as XNLI
(Conneau et al., 2018).

Monolingual models for joint slot filling and in-
tent prediction have used attention-based RNN (Liu
and Lane, 2016) and attention-based BiLSTM with
a slot gate (Goo et al., 2018) on benchmark datasets
(Price, 1990; Coucke et al., 2018). These methods
have shown that a joint method can enhance both
tasks and slot filling can be conditioned on the
learned intent. A related approach iteratively learns
the relationship between the two tasks (Haihong
et al., 2019) . Recently, BERT-based approaches
(Hardalov et al., 2020; Chen et al., 2019) have im-
proved results. On the other hand, cross-lingual
versions of this joint task include a low-supervision
based approach for Hindi and Turkish (Upadhyay
et al., 2018), new datasets for Spanish and Thai
(Schuster et al., 2019), and recently Xu et al. (2020)
creating MultiATIS++, a comprehensive dataset in
9 languages. The joint task mentioned above in
a pure zero-shot setting is one of the motivations
for our work. A Zero-shot is the setting where the
model sees a new distribution of examples only
during test (prediction) time (Xian et al., 2017;
Srivastava et al., 2018; Romera-Paredes and Torr,
2015). Thus, in our setting, we assume that target
language is unknown during training, so that our
model is generalizable across multiple languages.

Code-Switching. Linguistic code-switching is a
phenomenon where multilingual speakers alternate
between languages. Recently, monolingual models
have been adapted to code-switched text in entity
recognition (Aguilar and Solorio, 2019), part-of-
speech tagging (Soto and Hirschberg, 2018; Ball
and Garrette, 2018), sentiment analysis (Joshi et al.,
2016) and language identification (Mave et al.,
2018; Yirmibeşoğlu and Eryiğit, 2018; Mager et al.,
2019). Recently, KhudaBukhsh et al., 2020 have
proposed an approach to sample code-mixed docu-
ments using minimal supervision. Qin et al., 2020
allows randomized code-switching to include the
target language, as shown in their Figure 3. In
our context for example, if the target language is
German, we ensure that there is no code-switching
to German during training. We consider this dis-



tinction essential to evaluate a true zero-shot learn-
ing scenario and prevent any bias when compar-
ing with translate-and-train. Yang et al. (2020)
present a non-zero-shot approach that performs
code-switching to target languages, and Jiang et al.
(2020) present a code-switching based method to
improve the ability of multilingual language mod-
els for factual knowledge retrieval. Contemporary
work by Tan and Joty, 2021 makes use of both word
and phrase-level code-mixing to switch to a set of
languages to perform adversarial training for XNLI.
Code-switching and other data augmentation tech-
niques have been applied to the pre-training stage
in recent works (Chaudhary et al., 2020; Kale and
Siddhant, 2021; Dufter and Schütze, 2020). How-
ever, pre-training is outside the scope of this work.
In addition to studying cross-lingual slot filling and
language families, another key distinction of our
method is that we completely ignore the target lan-
guage during training to represent a fully zero-shot
scenario. The main advantage is that with enhanced
cross-lingual generalizability, it can be deployed
out-of-the-box, as our training is conducted inde-
pendently of the target language.

7 Conclusion & Future Work

Our study shows that augmenting the monolingual
input data with multilingual code-switching via
random translations at the chunk-level helps a zero-
shot model to be language neutral when evaluated
on unseen languages. This approach enhanced
the generalizability of pre-trained language models
such as mBERT when fine-tuning for downstream
tasks of intent detection and slot filling. Addition-
ally, we presented an application of this method
using a new annotated dataset of disaster tweets.
Further, we studied code-switching with language
families and their impact on specific target lan-
guages. Addressing code-switching with language
families during the pre-training phase and releasing
a larger dataset of annotated disaster tweets in more
languages are planned for future work.

8 Ethical Considerations

The tweet dataset that we constructed for disas-
ter NLU was originally released by Appen6, and
we use it to construct slot labels in two languages:
English (en) and Haitian Creole (ht). Data state-
ment that includes annotator guidelines for the la-

6https://appen.com/datasets/
combined-disaster-response-data/

beling jobs and other dataset information will be
provided with the implementation. From a broader
impact perspective, our code and developed models
are open-source and allows NLP technology to be
accessible to information systems for emergency
services and social scientists in quickly deploying
model during disaster events.
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vision from disparate sources for low-resource part-
of-speech tagging. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 614–620.

Patti Price. 1990. Evaluation of spoken language sys-
tems: The atis domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27, 1990.

Libo Qin, Minheng Ni, Yue Zhang, and Wanxiang Che.
2020. Cosda-ml: Multi-lingual code-switching data
augmentation for zero-shot cross-lingual nlp. arXiv
preprint arXiv:2006.06402.

Lance A Ramshaw and Mitchell P Marcus. 1999. Text
chunking using transformation-based learning. In
Natural language processing using very large cor-
pora, pages 157–176. Springer.

Bernardino Romera-Paredes and Philip Torr. 2015. An
embarrassingly simple approach to zero-shot learn-
ing. In International Conference on Machine Learn-
ing, pages 2152–2161.

Bruce Rowe and Diane Levine. 2017. A concise intro-
duction to linguistics. Routledge. pp. 340–341.

Sebastian Schuster, Sonal Gupta, Rushin Shah, and
Mike Lewis. 2019. Cross-lingual transfer learning
for multilingual task oriented dialog. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 3795–3805.

Robert Shafer. 1955. Classification of the sino-tibetan
languages. Word, 11(1):94–111.

Rushin Shah, Bo Lin, Anatole Gershman, and Robert
Frederking. 2010. Synergy: a named entity recog-
nition system for resource-scarce languages such as
swahili using online machine translation. In Pro-
ceedings of the Second Workshop on African Lan-
guage Technology (AfLaT 2010), pages 21–26.

Victor Soto and Julia Hirschberg. 2018. Joint part-of-
speech and language id tagging for code-switched
data. In Proceedings of the Third Workshop
on Computational Approaches to Linguistic Code-
Switching, pages 1–10.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


Shashank Srivastava, Igor Labutov, and Tom Mitchell.
2018. Zero-shot learning of classifiers from natu-
ral language quantification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
306–316.

Lukas Stappen, Fabian Brunn, and Björn Schuller.
2020. Cross-lingual zero-and few-shot hate speech
detection utilising frozen transformer language mod-
els and axel. arXiv preprint arXiv:2004.13850.

Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan Mc-
Donald, and Joakim Nivre. 2013. Token and type
constraints for cross-lingual part-of-speech tagging.
Transactions of the Association for Computational
Linguistics, 1:1–12.

Samson Tan and Shafiq Joty. 2021. Code-mixing on
sesame street: Dawn of the adversarial polyglots.
arXiv preprint arXiv:2103.09593.

Chen-Tse Tsai, Stephen Mayhew, and Dan Roth. 2016.
Cross-lingual named entity recognition via wikifica-
tion. In Proceedings of The 20th SIGNLL Confer-
ence on Computational Natural Language Learning,
pages 219–228.

Shyam Upadhyay, Manaal Faruqui, Gokhan Tür,
Hakkani-Tür Dilek, and Larry Heck. 2018. (almost)
zero-shot cross-lingual spoken language understand-
ing. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 6034–6038. IEEE.

Charles Frederick Voegelin and Florence Marie
Voegelin. 1976. Classification and index of the
world’s languages.

Xiaojun Wan. 2009. Co-training for cross-lingual sen-
timent classification. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP, pages 235–
243.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Mengzhou Xia, Antonios Anastasopoulos, Ruochen
Xu, Yiming Yang, and Graham Neubig. 2020. Pre-
dicting performance for natural language process-
ing tasks. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8625–8646, Online. Association for Computa-
tional Linguistics.

Yongqin Xian, Bernt Schiele, and Zeynep Akata. 2017.
Zero-shot learning-the good, the bad and the ugly. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4582–4591.

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A
Smith, and Jaime G Carbonell. 2018. Neural cross-
lingual named entity recognition with minimal re-
sources. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 369–379.

Weijia Xu, Batool Haider, and Saab Mansour. 2020.
End-to-end slot alignment and recognition for cross-
lingual nlu. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 5052–5063.

Jian Yang, Shuming Ma, Dongdong Zhang, ShuangZhi
Wu, Zhoujun Li, and Ming Zhou. 2020. Alternating
language modeling for cross-lingual pre-training. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 34, pages 9386–9393.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2001. Inducing multilingual text analysis
tools via robust projection across aligned corpora.
Technical report, Johns Hopkins Univ Baltimore
MD Dept of Computer Science.
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A mBERT versus XLM-R

We conduct an additional analysis on XLM-R (Con-
neau et al., 2020a) and compare it with mBERT
(Devlin et al., 2019). The implementation is
very similar in PyTorch (Paszke et al., 2019)
but using the pre-trained xlm-roberta-base with
RobertaForSequenceClassification (Wolf et al.,
2020) as the XLM-R model. We observe that,
setting k = 5, XLM-R outperforms mBERT on
average (by 2% Intent Accuracy and 1.5% Slot F1).
Individually, XLM-R improved Chinese, Japanese,
Portuguese, and Turkish for Intent Prediction and
German, Chinese, Japanese, Portuguese, and Hindi
for Slot Filling as shown in Figure 7. We observe a
trend similar to mBERT with k on XLM-R shown
in Figure 8. However, for XLM-R, we observe that
randomized code-switching did not help Chinese
for Intent Prediction and Hindi for Slot F1. If code-
switched to a specific language family, instead of
switching to random languages, it might improve
their performance. A deeper dive into XLM-R and
language families are left for future work.

Figure 7: mBERT vs XLM-R: Performance

Figure 8: Performance as k increases (on XLM-R).

B Hyperparameter Tuning & Runtime

For joint training with same task weights, we tuned
α and β using grid search to see the strength of
correlation between the tasks. For intent, the (α, β)
combination of (1.0, 0.6) performed well, while

(1.0, 1.0) for slots. This suggests that intent benefit-
ing slot might be slightly more than slot benefiting
intent. Additionally, during fine-tuning, freezing
the layers of the transformer affected the model per-
formance as shown in Figure 9. Keeping the first 8
layers frozen gave the best performance. By freez-
ing the earlier layers, the transformer can retain its
most fundamental feature information gained from
the massive pre-training step, and by unfreezing
some top layers, it can undergo fine-tuning. Addi-
tionally, latency for training a code-switched model
is shown in Table 5 and how runtime varies with
an increase in k is shown in Figure 10.

Figure 9: Freezing earlier layers and unfreezing a few
at the top of the transformer appear to be most optimal.

CS (k=5) MTT Jointen Jointcs JointTT

05:04:49 1:31:32 00:11:50 01:06:50 00:11:04

Table 5: Runtime on Google Colab (K80 GPU for train-
ing joint models). MTT : Machine Translation to Tar-
get. Note that MTT and JTT are for one target lan-
guage (averaged).

Figure 10: Training runtime as k increases.


