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Correlated electron systems, particularly iron-based superconductors, are extremely sensitive to
strain, which inevitably occurs in the crystal growth process. Built-in strain of this type has been
proposed as a possible explanation for experiments where nematic order has been observed at high
temperatures corresponding to the nominally tetragonal phase of iron-based superconductors. Strain
is assumed to produce linear defect structures, e.g. dislocations, which are quite similar to O
vacancy chainlets in the underdoped cuprate superconductor YBCO. Here we investigate a simple
microscopic model of dislocations in the presence of electronic correlations, which create defect
states that can drive magnetic anisotropy of this kind, if spin orbit interaction is present. We
estimate the contribution of these dislocations to magnetic anisotropy as detected by current torque
magnetometry experiments in both cuprates and Fe-based systems.

I. INTRODUCTION

Defects in strongly correlated electron systems often
behave quite differently from their weakly interacting
counterparts[1]. In particular, if a system is close to a
phase transition, defects can tip the balance between
two competing states. For example, it is well known
that impurities can create local magnetic states, or in-
duce other types of local electronic order. Similarly, it is
well known that strain can tune the competition between
two or more orders[2]. The use of strain as a tool to tune
the electronic properties of correlated materials is rising
quickly, particularly in materials where there is strong
coupling between lattice and magnetic degrees of free-
dom, where the prospect control of magnetic properties
and spin-polarized currents by strain is a long-standing
goal. Applied strain has been used to study electronic
nematic order, which influences transport currents, as
well[3, 4].

At the same time, interest in ways of studying built-in
or internal strain, which also affects electronic properties,
has grown. In this regard, local probes like STM have
been particularly powerful. Internal strain can occur in
the crystal growth process, and pin local order more effi-
ciently than point defects. One particular instance where
strain has been invoked is the observation of nematic or-
der, i.e. breaking of C4 symmetry of the Fe-based super-
conductors at temperatures above the global tetragonal-
orthorhombic transition temperature Ts[5]. The conclu-
sions of these authors were based on torque magnetom-
etry experiments on very small, possibly single-domain
orthorhombic platelike crystals glued to sample holders.
Rather than proposing an explanation in terms of ex-
trinsic strain physics, Kasahara et al. proposed a “meta-
nematic” transition based on a Ginzburg-Landau theory,
where depending on the magnitude of a phenomenolog-
ical coupling between lattice orthorhombicity and elec-
tronic nematic order, a C4-breaking transition could oc-
cur at a higher temperature T ∗, but yield only a very
small symmetry breaking nematic field until the lower
transition Ts detected by x-rays. To our knowledge, there

is no microscopic theory justifying such a picture. Similar
signals of nematic order in the Fe-based superconductor
NaFeAs were detected above the structural transition Ts,
but in this case these were indeed attributed to strain[6].

In cuprates, a very similar situation exists in under-
doped YBCO. Strong indications of electronic nematic-
ity have been reported in transport[7] and low energy
inelastic neutron scattering experiments[8], in samples
where the lattice orthorhombicity is extremely weak be-
cause the Cu-O chains are highly disordered. The mag-
netic anisotropy measured by neutrons, which has a peak
around O concentrations of about 6.4, is nevertheless
found to correlate strongly with the remanent b direction
of the chains, and is thought to be related to correlation-
induced magnetism in the partially filled chains. The in-
fluence of O vacancy “chainlets”, short vacancy segments
in the chains that are inevitably formed in the doping
process[9], was invoked in the transport work[7], and has
been investigated theoretically in connection with the un-
usual low-temperature NMR lineshape[10].

Recently, torque magnetometry was performed on
YBCO, showing that magnetic anisotropy was directly
observable in experiment, and increased sharply below
the pseudogap temperature[11]. Unfortunately, these
measurements were only performed for O dopings where
the chains should be fairly developed, above O6.5. In
this region it is believed that the trivial symmetry break-
ing in the electronic structure induced by the chains, to-
gether with spin-orbit coupling, controls the susceptibil-
ity anisotropy. Indeed, the torque magnetometry signal
is found to decrease as one underdopes.

We expect that the O vacancy chainlets will induce
1D local magnetism and thereby control the nematicity
observed at very low O concentrations. These defects
have in fact been imaged in STM[12], and observed by
NMR[13]. As discussed in Refs. 10, 14, and 15, as one
underdopes the correlations increase, thereby leading to
enhanced magnetic effects. These 1D defect structures
are therefore a natural source of magnetic anisotropy.

On the other hand, in neither the Fe-based nor the
cuprate case has there been an attempt to understand
how strain or chain-driven electronic anisotropy can cou-
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ple to an external magnetic field as in, e.g. a torque mag-
netometry experiment, which measures magnetic suscep-
tibility anisotropy, i.e. χxx−χyy. Even in a system with
anisotropic (C2 symmetric) electronic structure of what-
ever origin, local or global, no torque will be produced
unless the electronic anisotropy couples to the spin re-
sponse, i.e. there must be significant spin-orbit coupling
to produce a torque.

In other contexts, highly anisotropic emergent lin-
ear defect states arising from pointlike potentials in
strongly nematic superconductors were studied in Ref.
16, and line defects in unconventional superconductors
have been suggested as generators of 1D topological
superconductivity[17]. To our knowledge, torque mag-
netometry has not been applied in these cases, but it is
a promising technique to learn about such systems.

To interpret torque magnetometry and other experi-
ments, one needs a microscopic theory of how 1D-type
defects created by built-in strain or in the doping pro-
cess couple to nematic or magnetic order, and thereby
influence the system’s coupling to external fields. Such
uniaxial defect structures are clearly visible in STM
experiments[6], but their magnetic character has not yet
been probed. Our predictions for induced magnetism in
such cases can then be studied on systems with suffi-
ciently smooth surfaces by spin-polarized STM.

Calculating the local magnetic structure is not suffi-
cient, however; one needs to understand how spin-orbit
coupling allows an in-plane field to couple to strain. Here
we take a first step towards creating a microscopic the-
ory of linear defects useful for studying the effect of strain
on correlated electron systems and predicting the mag-
netic susceptibility anisotropy necessary to calculate the
torque produced by an in-plane field. We establish sim-
ple models of dislocations, with lattice structure in their
vicinity relaxed by molecular dynamics, and calculate
their magnetic character in the presence of Hubbard-like
electronic correlations. We then calculate the torque di-
rectly in the presence of the spin-orbit interaction.

To avoid the computational complications of multior-
bital systems, we begin by studying a simple one-band
model based on the cuprates. Our hope is to make predic-
tions for torque magnetometry experiments on the highly
underdoped regime of YBCO, where torque magnetom-
etry has not yet been attempted. We do not, however,
attempt to model any particular realistic cuprate; rather,
we make a simple model of a dislocation in a correlated
system to see what kind of magnetic states can be cre-
ated, as well as how they couple to an external field via
the spin-orbit coupling in the crystalline environment.
Since torque magnetometry is evidently able to detect
the nematic effect of the full chain at higher O concen-
trations in, we predict that it should be sensitive to the
same enhanced nematic effects driven by magnetism as
detected by neutrons[8] and transport[7].

Mean field theory is used to study the effects of the lo-
cal Coulomb interaction driving magnetism. While such
a method is known to overestimate magnetic order, it is
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FIG. 1. Schematics of a single dislocation in a two dimen-
sional lattice. Away from dislocation, sites are bonded to
four nearest neighbors (NN), as in undistorted lattice. Inter-
stitial space near the dislocation (not because of extra space,
but suitable bond length) can however accommodate addi-
tional atoms mediating additional local bonds and an effec-
tive charge accumulation. Color of the dots represents effec-
tive charge accumulation calculated from valence bond sums
[18]. Thicker bonds indicate larger magnitude of hopping.
Non-zero Burgers b vector is shown by brown arrow.

easily adapted to inhomogeneous problems like the one
at hand. We attempt then to estimate the magnitude
of the torque obtained with a crystal with a reasonable
density of such dislocations, and discuss comparison to
experiments on a variety of materials.

While our approach is fairly crude and aims to cap-
ture qualitative effects, it is to our knowledge, the only
attempt until now to address how strain-induced dislo-
cations can give rise to nematic behavior.

II. MODEL

In presence of strain, an otherwise homogeneous lattice
can undergo dislocation in several ways. Fig. 1 shows a
schematic diagram of a single edge-dislocation in two di-
mensional square lattice. In a homogeneous lattice, each
site is connected to four nearest neighbors (NN), but dis-
location may lead to space available for interstitial atoms,
for example excess oxygen atoms in case of cuprates,
which lead to additional bonds and thereby a correspond-
ing effective charge formation locally, as shown in the fig-
ure. To investigate the interplay of dislocations and ef-
fects of correlations that might induce local magnetism,
we use an effective model Hamiltonian that describes one
electronic state per unit cell and take two effects of the
dislocation into account: a) the changes of the effective
hopping for electrons moving between the lattice sites b)
possible charge accumulation leading to an onsite poten-
tial.
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A. Dislocation pair

Here, we consider almost covalent bonds between the
atoms in the non-defective system, such that missing
atoms lead to a more ionic electronic configuration. In
cuprates, for example, the Cu-O-Cu bridges mediate
the hopping between sites, and excess oxygen atoms
then lead to an effective charge. These charge inho-
mogeneities, which can be calculated crudely by valence
bond sums (see, e.g. Ref. 18), together with locally modi-
fied hopping amplitudes, can contribute to the nucleation
of local magnetic or other orders. Of course, the charge
and the corresponding potential, as well as the hopping
matrix elements, are not only dependent on the number
of bonds, but also on the distance between neighbors. We
include these charge inhomogeneities in the calculations
by considering them in the effective Hamiltonian as on-
site potentials. We will refer in what follows below to a
cuprate model, and discuss prospects for observing these
effects in cuprates, although the model is in fact very
general and can describe similar phenomena in a variety
of systems.

A solitary edge-dislocation as shown schematically in
Fig. 1 has a nonzero Burgers vector for any loop sur-
rounding the region of dislocation. But in a realistic
macroscopic sample, a second nearby dislocation often
cancels the effect of the first, such that the effect of dis-
location diminishes rapidly as one moves away from the
defect. As a result it is useful and much easier compu-
tationally to study a dislocation-antidislocation pair, to
ensure that the Burgers vector is zero. Such pairs can
occur in other configurations, such as the edge disloca-
tions discussed in TiN by Yadav et al.[19], which we do
not discuss in this proof of principle work.

Fig. 2 shows such a dislocation-antidislocation pair.
The lattice site positions ri as a result of dislocation
and subsequent distortion were simulated with Large-
scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS)[20]. For this, sites in the lattice were as-
sumed to be bonded to the nearest and next nearest
neighbors via unstretched springs of the same strength
in absence of any dislocations. Then lattice sites were
selectively removed and the system was allowed to relax
under a harmonic potential of the stretched springs with
periodic boundary conditions using a nonlinear conjugate
gradient method [21] (Fig. 2).

This approach gives a reasonable configuration close
to the dislocation but is simpler than usual approaches
with pair potentials. Note that the final result does not
depend on the initial positions of the lattice points. Ir-
respective of whether the boundary is kept fixed (which
would mean external strain) or allowed to relax, the ef-
fect of interest, i.e. appearance of local magnetism as
described in later sections, remains in the vicinity of the
dislocation. The thickness and color of the bonds each
independently represents the magnitude of the hopping
between sites, such that a thicker and greener bond rep-
resents a stronger hopping. Dotted bonds (with the same
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FIG. 2. Distortion and charge formation for a 4 site long
dislocation-antidislocation pair in a 12×12 lattice. Thickness
of the bonds parameterize the strength of the intralayer hop-
ping matrix elements t(rij), while the color of the dots (shown
in the colorbar) at sites represents the effective charge value in
units of the electron charge at sites as determined by valence
bond sums. Only hoppings within a range of |rij | = 1.5 are
shown. Dashed hoppings at sample border are periodically
continued to the other side of the lattice.

thickness scheme and color scheme as solid bonds) repre-
sent hopping at the periodic boundary. The color of the
dots represent the effective accumulated charge due to in-
terstitial atoms calculated via valence bond sums. Sites
that are separated by a distance |ri − rj | = |rij | < 1.3
(where ri is the two dimensional position of the ith site)
are accounted for in valence bond sums, and hoppings
of range more than 2.05 are truncated. The precise pro-
tocols adopted for the construction of these sums and
the hoppings t (in plane), t⊥(rij) (out of plane) in the
dislocated system are discussed below.

Fig. 2 clearly shows how some hoppings are removed
in the vicinity of the dislocated sites due to the increase
in nearest neighbor distances induced by distortion, and
how additional bonds are mediated by interstitial atoms,
again accommodated by distortion, that contribute to
the valence bond sums.

B. Homogeneous system: cuprate bilayer

It is convenient to consider a bilayer rather than a sin-
gle layer system, because it is significantly simpler to
introduce the lattice version of spin-orbit coupling re-
quired to create anisotropy in the magnetic response,
and thus to make predictions for torque magnetome-
try experiements. In addition, we may then make con-
tact specifically with experiments performed on bilayer
cuprates such as YBCO-123 and Bi-2212. The Hamilto-
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FIG. 3. Fermi surface of the homogeneous bilayer system
in presence of spin-orbit coupling. The bilayer hybridization
splits each of the four fermi surfaces into two in a momentum
dependent way keeping the four-fold degeneracy of the elec-
tronic states intact at four points in the (|kx|, |ky|) = (π, π)
directions. Spin-orbit term increases the splitting and lifts
the degeneracy from four-fold to two-fold at the (|kx|, |ky|) =
(π, π) directions.

nian for a homogeneous bilayer system includes intralayer
hoppings,

Htb =
∑

|rij |≤2,σ

(t(rij)− µδi,j) c†i,σcj,σ , (1)

where i, j are in a single layer, and we have taken non-
zero hopping up to next next nearest neighbors (NNNN),

i.e. the in-plane vector |rij | = 1,
√

2, 2, within the same
layer. The NN, NNN and NNNN intralayer hoppings for
the homogeneous lattice are respectively t = −0.15 eV,
t′ = 0.044 eV, t′′ = −0.002 eV. The interlayer hopping
terms are given by

H⊥tb =
∑

|rij |≤2,σ

t⊥(rij)c
†
i,σcj,σ . (2)

where now the amplitude t⊥ includes the hopping from
the NN of i in the other plane, and we include terms
hopping to NN, NNN, and NNNN sites, with corre-
sponding values t⊥(1, 0, 0.5, 0.25) with t⊥ = 0.012 eV. In
Fourier space these terms give the usual interlayer dis-
persion ∝ (cos kx − cos ky)2 [22]. These choices describe
a cuprate-like Fermi surface with small bilayer splitting
of the two bands, as shown in Fig. 3.

The spin-orbit interaction in the bilayer[22]

HSO = (−1)νγ
{∑
〈i,jy〉

i
(
c†i,↑cjy,↓ − c

†
jy,↑ci,↓

)
+
∑
〈i,jx〉

(
c†i,↑cjx,↓ − c

†
jx,↑ci,↓

)}
+ h.c.

(3)

is also included in the homogeneous system, with suit-
ably chosen γ (here taken to be 4.5 meV in our cal-
culation), where 〈i, jx/jy〉 represents intralayer nearest
neighbors of ith site along +x or +y direction and
ν = 0, 1 is the layer index. When transformed into a
momenum space representation, this spin-orbit term can
be interpreted as an in-plane momentum dependent mag-
netic field with components hx,eff = 2(−1)νγ sin(ky) and
hy,eff = 2(−1)νγ sin(kx) which flips sign from one layer
to the other.

C. Electronic structure of dislocation

In a lattice distorted because of dislocation, the dis-
tinction among NN, NNN, NNNN is blurred and one
needs to obtain both intralayer and interlayer hoppings
as continuous functions of in-plane vector distance be-
tween sites rij = ri− rj , i.e. as t(rij) and t⊥(rij). These
maps are shown in Fig. 4. The map for t(rij) has been
generated by computing the expectation value of the ki-
netic energy −∇2/(2m∗) for overlapping atomic dx2−y2
orbitals, and the effective mass m∗ adjusted such that
the NN and NNN hoppings for the homogeneous lattice
agree roughly with those found in cuprate materials[23].
While this approach does not capture all details of wave
functions on neighboring atoms, unlike e.g. the Slater-
Koster method, it does generate hopping elements as
function of rij with the right symmetry and angle de-
pendence. Both intralayer and interlayer hoppings in the
distorted lattice are truncated beyond |rij | = 2.05 for
the numerical calculations presented here since these are
small in magnitude beyond the the dashed circles in Fig.
4.

The spin-orbit term also undergoes modification be-
cause new NN bonds are formed which were neither
‘x-neighbors’ or ‘y-neighbors’ in the undistorted lattice.
A neighbor in the distorted system is considered ‘x-
neighbor’ or ‘y-neighbor’ if it is closer to the ‘x-axis’ or
the ‘y-axis’ respectively. So, the spin-orbit part of the
Hamiltonian in the distorted system looks like

HSO =
∑

|rij |<1.3,σ

(−1)νγijc
†
i,σcj,σ̄ , (4)

where |γij | = γ with sign decided by the proximity to
x-axis or y-axis, as just described, and the spin index, by
analogy to Eq. 3.

Finally, dislocation contributes an effective onsite po-
tential in the Hamiltonian:

HQ =
∑
i,σ

Veff Qic
†
i,σci,σ (5)
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FIG. 4. Map, as discussed in model section, of (a) intralayer hopping integrals t(rij) as function of the distance rij = (xij , yij)
calculated from overlap of atomic dx2−y2 orbitals at sites and then re-normalized to match cuprate t, t′, t′′ model [23] (b)

interlayer hopping integrals t⊥(rij), as function of the distance rij = (xij , yij), interpolated from what would be t⊥(rij) in
undistorted lattice [22]. The circles represent range of hoppings retained in numerical calculations.

An effective potential Veff = 1.5 eV was used in our cal-
culation. The effective charge Qi at ith site, accumu-
lating due to change in neighborhood and neighborhood
distances rij caused by dislocation, was calculated via
valence bond sums [18]

Qi = QCu +A
∑

|rij |<1.3

QO exp(−|rij |2/λ2) , (6)

where QCu, QO are copper and oxygen charges at ith
site in case of cuprates. QO was taken to be −2 and
QCu was taken to be +4, representing effective charge of
the copper ion along with the charge reservoir layers. A
and λ are two constants adjusted in such a way that Qi
vanishes in undistorted lattice.

Thus the Hamiltonian used to study the dislocation is
identical in form to Eqs. (1-3) except for the distorted
lattice positions {ri}, the ranges of the hoppings allowed,
and the sign modifications of a small number of short
bonds in the spin-orbit coupling. In addition, it contains
onsite potential terms due to charge transfer effects. We
have verified that results do not depend sensitively on
small changes in the hopping and charging truncation
ranges.

D. Electronic correlations

As discussed in the introduction, defects can play an
extraordinary role in correlated electron systems in prox-
imity to competing ordered phases. We consider here the
situation, explored extensively in the cuprates[1, 14, 15],
where defects can freeze antiferromagnetic spin fluctua-
tions locally in magnetic islands or other structures. We
account for the short-range Coulomb repulsion with a

spin-rotationally invariant mean-field decoupling HU of
the usual Hubbard interaction

HU = U
∑
i

{
〈c†i,↑ci,↑〉c

†
i,↓ci,↓ + 〈c†i,↓ci,↓〉c

†
i,↑ci,↑

− 〈c†i,↓ci,↓〉〈c
†
i,↑ci,↑〉 − 〈c

†
i,↑ci,↓〉c

†
i,↓ci,↑

− 〈c†i,↓ci,↑〉c
†
i,↑ci,↓ + 〈c†i,↓ci,↑〉〈c

†
i,↑ci,↓〉

}
.

(7)

One should note that the constant mean field terms,
which are sometimes discarded for studying the dynam-
ics, are important here to compare the energy of various
states.

Finally, placing the system into an in-plane magnetic
field B will induce a Zeeman term in the Hamiltonian

HB = −
∑
i

{
hx

(
c†i,↑ci,↓ + c†i,↓ci,↑

)
+ hy (−i)

(
c†i,↑ci,↓ − c

†
i,↓ci,↑

)
+ hz

(
c†i,↑ci,↑ − c

†
i,↓ci,↓

)}
,

(8)

where h = gµBB with the gyromagnetic ratio g and the
Bohr magneton µB. Thus, the full Hamiltonian that we
consider is

H = Htb +H⊥tb +HQ +HSO +HU +HB . (9)

III. RESULTS

A. Phase diagram of homogeneous system

As discussed above, the intralayer and interlayer hop-
pings, together with the spin-orbit interaction, produce
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in the homogeneous system the standard low-energy elec-
tronic structure of a bilayer cuprate (Fig. 3). The inter-
layer hoppings induce a momentum dependent splitting
(the violet and cyan lines) of the Fermi surface of the
monolayer system maintaining the four-fold degeneracy
at the four nodal points in the (|kx|, |ky|) = (π, π) di-
rections. Further introduction of the spin-orbit term in-
creases the splitting overall and lifts the degeneracy from
four-fold to two-fold at the (|kx|, |ky|) = (π, π) directions.

The tight-binding density of states for the homoge-
neous monolayer system, important in determining the
ultimate magnetic response of the system we construct,
is shown in Fig. 5. The critical Hubbard repulsion Uc
for long-range AFM order in the homogeneous lattice in
absence of any dislocation or/and charge build up is lo-
cated at 0.37 eV for this particular choice of parameters,
as seen in the figure.

Note that the choice of interactions and filling of the
model considered here does not correspond to any specific
cuprate. While disorder-induced magnetism has been ob-
served, e.g. in LSCO up to approximately 15% doping, of
the same order as the doping chosen here, the exact val-
ues of these parameters are not particularly important.
Our aim is simply to generate a magnetic state by choos-
ing U sufficiently close to the critical U for homogeneous
magnetism as shown in Fig. 5. Note further that the
quantity U in mean field theory, which generally overes-
timates magnetic order, is an effective parameter[24], not
to be compared to bare U values from Hubbard model
simulations.

B. Local dislocation-induced magnetic states

We expect that local defect-induced magnetic states,
if stable, will be nucleated for correlations slightly less
than this value. Note that the position of the chemical
potential above the van Hove singularity is important
within the current model, as the buildup of excess charge
around the defect reduces the chemical potential locally
and therefore drives the system towards the van Hove
singularity and through the Stoner instability. We believe
that a treatment of the disorder-induced magnetic effects
beyond mean field would not require this fine tuning,
but the current approach is simple, transparent, and one
of the few methods applicable to treat inhomogeneous
systems.

Choosing a U that is below but sufficiently close
(0.34 eV) to Uc, we can study local AFM order both
in monolayer and bilayer distorted lattices. Fig. 6 shows
the configuration of magnetization direction, magnitude,
and electron charge for one layer of a bilayer lattice in
presence of both interlayer hybridization and spin-orbit
coupling for a dislocation of ten sites. In our model in-
cluding spin-orbit coupling, the second layer is related to
the first by reversing the direction of the effective (in-
plane) magnetic field, thus without external field, the
in-plane magnetization of the converged systems is also

0.35 0.4 0.45 0.5 0.55 0.6

0.05

0.1

0.15

0.2

0.25

0.3

M
S
(2

Uc

FIG. 5. Average staggered magnetization Ms in the homo-
geneous monolayer 30 × 30 system as a function of Hub-
bard repulsion U at a filling of n = 0.80 and temperature
kT = 0.015 eV. The orange solid curve in the inset is the
DOS for the homogeneous monolayer with hoppings as dis-
cussed in the text, at filling n = 0.80.

just reversed and therefore not presented here. In Fig.
6, one can see that although the magnetization is highly
localized, there is some weak oscillating large distance
component of magnetization normal to the plane. This
may possibly reflect some finite size effect, due to the
interference of the defect state with its periodically re-
peated copies. One can eliminate this effect by working
at significantly larger lattices; however, in a real system
with a high concentration of defects with an inter-defect
distance comparable to the system size shown, such in-
terference will certainly exist.

It is interesting to examine how the magnetic state in-
duced by a localized nonmagnetic perturbation here dif-
fers from the usual picture of an impurity-induced mag-
netic “puddle” or “island”[1]. As shown in Fig. 7(a),
already for a single site defect, the response in our model
differs substantially from the response of the metallic sys-
tem to a strong impurity placed on the regular lattice.
In the absence of a gap in the system, a single strong
impurity does not produce a bound state due to its cou-
pling to the metallic continuum, and this renders the
formation of magnetic islands quite unlikely. Clusters of
strong impurities on regular lattices are known to create
localized defect states and magnetism, however[15]. In
our model, the lattice relaxes around the central miss-
ing site, and creates an extended one-body perturbation
of the homogeneous Hamiltonian in both hoppings and
onsite potentials. This is analogous to the cluster of po-
tentials on the regular lattice, and so indeed a magnetic
state is created. Fig. 7(b) and (c) show further how this
magnetic state evolves as sites are removed along a line.
It is important to note that the range of the magnetic
impurity state is several times larger than the length of
the dislocation itself.
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FIG. 6. Dislocation induces a local magnetization for a repulsion strength just below Uc with a system energy of E =
−2.0403673 × 10−1 eV: Layer ν = 1, kT = 0.015 eV, U = 0.34 eV, n = 0.8, N = 30, h = 0. (a) Magnetization (the
arrows and the color scale show magnetization parallel and normal to the lattice respectively), |M|xy,max = 0.25426 , Avg.
M = (−5.6119× 10−8, −1.4211× 10−6, 9.6084× 10−9), (b) Magnitude of magnetization, |M|max = 0.25429, (c) density.
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FIG. 7. Evolution of the magnitude of the magnetization as dislocation length increases (layer ν = 1): kT = 0.015 eV, U =
0.34 eV, n = 0.8, N = 30 (a) point dislocation (b) 5 site dislocation (c) 6 site dislocation. The case of a point dislocation
(removed site, with accompanying relaxation of the lattice and charging) is C4 symmetric.

C. Response to Zeeman field

Even if the magnetic structures shown in Figs. 6 and
7 break C4 symmetry in the case of dislocation of length
> 1, the system exhibits anisotropy in the response to an
external magnetic field only if the spin-orbit interaction
is present. The magnetic response and corresponding
energy on application of an in-plane magnetic field both
normal and parallel to the line of dislocation are shown
in Figs. 8 and Fig 9. In the figures we show only the
configuration of layer ν = 1, but they are based upon
calculations for a bilayer; we give the energies for the
entire system. The layer ν = 0 exhibits again a mag-
netization that would correspond to that of layer ν = 1
if additionally the in-plane direction of the external field
was flipped. The local magnetic structure without any
field has inversion symmetry and also mirror symmetry
w.r.t. both x and y axes within the layer as far as the
magnitude of the magnetization is concerned. For a mag-
netic field applied normal to the line of dislocation, one

can see that the mirror symmetry is lifted slightly but
the inversion symmetry still persists. The small but ob-
servable difference in total energies in presence of same
magnetic field in x and y directions will result in a de-
tectable torque in magnetometry experiments.

IV. COMPARISON WITH EXPERIMENTS

Our goal here is to estimate whether magnetic struc-
tures created by such defects, e.g. in Fe-based super-
conductors, can for a reasonable defect density create an
observable effect in torque magnetometry experiments.
To estimate the torque, we consider the energy difference
∆E = Ehx

− Ehy
of the systems converged in presence

of magnetic fields applied along x and y directions and
divide this by the rotation angle of π/2 to get an average
torque for one dislocation in our system of 30×30 lattice
points. If a 30×30 lattice, which spans ∼ 12 nm×12 nm,
contains one dislocation, as we assumed in our simula-
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FIG. 8. Perturbing the locally magnetic configuration with a magnetic field along x axis, leads to a system energy of Ehx =
−2.0404780× 10−1 eV: Layer ν = 1, kT = 0.015 eV, U = 0.34 eV, n = 0.8, N = 30, h = (0.002, 0, 0) eV. (a) Magnetization
(the arrows and the color scale show magnetization parallel and normal to the lattice respectively), |M|xy,max = 0.26754, Avg.
M = (0.015133, −8.6289×10−6, 1.3013×10−8), (b) Magnitude of magnetization, |M|max = 0.26763. A slight enhancement of
the magnetic order normal to the plane is visible in the top right and bottom left part of the magnetic region in (a). Magnetic
order parallel to the plane enhances slightly at the top left and bottom right part, also reflected in the magnetization magnitude
in (b).
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FIG. 9. Perturbing the locally magnetic configuration with a magnetic field along y axis, leading to a system energy of
Ehy = −2.0405118 × 10−1 eV: layer ν = 1, kT = 0.015 eV, U = 0.34 eV, n = 0.8, N = 30, h = (0, 0.002, 0) eV. (a)

Magnetization, |M|xy,max = 0.25505, Avg. M = (−3.3947× 10−6, 0.015442, 1.4112× 10−8), (b) Magnitude of magnetization,
|M|max = 0.25505.

tion, a thin film of size ∼ 100 µm × 100 µm which is
in the typical range [25] for thin film torque magnetom-
etry, would have ∼ 108 dislocations that would crudely
give rise to more than 2.2× 10−17 N m/rad of torque per
bi-layer, i.e. ∼ 2.2 × 10−13 N m/rad in the entire sam-
ple well within the measurable range [26]. In most of
the cuprate phase diagram, however, the conditions to
realize the magnetic state may not be present. Our cal-
culations may apply best to bilayer systems like YBCO
or BSCCO in the so-called spin glass state between the

Mott insulator and the onset of superconductivity, where
µSR experiments have reported signals of considerable
magnetic disorder.

One dislocation per 100 nm2 is also roughly the concen-
tration of the linear defects visible in conductance maps
of NaFeAs[6] above the tetragonal-orthorhombic transi-
tion Ts. This is an unusually large density of dislocations
in a simple metal, but may be more generally realistic
in some Fe-based systems, where strong magnetoelastic
couplings are known to exist[3]. If we assume similar
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defects are present in BaFe2(As1−xPx)2 in similar con-
centrations, and account also for the fact that spin-orbit
energies are an order of magnitude larger in FeSC than in
cuprates, it is clear that a single domain sample of ∼100
µm × 100 µm with strain-induced dislocations may in-
deed account for the measurements. Although these esti-
mates are crude, our main goal in this work was to check
the plausibility of the strain scenario, and it appears as
though it cannot be ruled out. More measurements and
visualization methods of the defects present are needed
to clarify this explanation in the systems where nematic
behavior above Ts has been reported.

Let us now estimate the torque to be expected on an
underdoped cuprate sample with in-plane lattice con-
stant ∼ 0.4 nm and typical dimensions 250 × 50 µm3

[11]. For example, a chain in a YBa2Cu3O7−x sample
with x = 0.7 is expected to have a cumulative length
of ∼ 1.87 × 105 lattice constants of remnant single Cu-
O chain (assuming all the oxygen removal happens from
Cu-O chain during doping). NMR studies suggest a min-
imum chainlet defect length of 50 lattice constants [27]
leading to an estimated ∼ 7 × 108 number of chainlet
defects in a single layer of the sample. Since within a
unit cell of c-axis dimension 11.68Å there are two chain
layers, a sample of thickness 50 µm having ∼ 8.56× 104

layers would therefore contain ∼ 6 × 1013 chainlet de-
fects. If a single chainlet defect is assumed to give rise
to similar torque as a single dislocation as found in our
calculation (i.e. ∼ 2 × 10−6eV ≈ 3.2 × 10−25 Nm),
the entire sample film should experience a torque of
∼ 1.19 × 10−11 Nm which agrees roughly with the ob-
served torque response range [11]. The susceptibility

anisotropy η =
Myy−Mxx

Myy+Mxx
≈ 1.011 × 10−2 (where Mxx,

Myy are magnetization normal and parallel to the line
defect (see Fig. 8, 9) for same perturbing field strength)
although slightly large, is also in agreement in order of
magnitude. Thus, we expect magnetic chainlet vacancy
defects for x less than . 0.5 to produce a torque of mag-
nitude equal to or larger than the the observed torque
signal at higher doping despite the near depletion of one
of the chains.

V. CONCLUSIONS

In summary, we have discussed how linear defects in
correlated electron systems can create C2 symmetric lo-
calized magnetic states, which can then couple to an

external field via spin-orbit interaction. We presented
concrete calculations for a bilayer model of the cuprates
appropriate for YBCO-123, where oxygen vacancy chain-
lets are known to produce such magnetic states[10], and
estimated the torque magnetometry signal to be ob-
served in experiments. First we simulated a dislocation-
antidislocation pair in a periodic lattice with molecular
dynamics. Next, we determined the critical Hubbard
repulsion Uc in the corresponding homogeneous lattice
with suitable filling in absence of any kind of disloca-
tion. For correlation strengths U . Uc, localized mag-
netic dislocation states with symmetry lower than C4

are nucleated and couple via spin-orbit coupling to an
external magnetic field. These states are rather inter-
esting in their own right, and may be detected on sys-
tems with atomically smooth surfaces by spin-polarized
STM. Our calculations are crudely consistent with exist-
ing torque magnetometry signals detected in YBCO[11];
moreover, we predict enhanced nematic signals as doping
is lowered further beyond those dopings studied in exper-
iment, to O6.3-6.4 concentrations where strong nematic
signals have been detected in neutron scattering[8] and
transport[7].

We further believe our calculations are also highly rel-
evant for issues of nematicity that arise in the Fe-based
superconductivity field. In particular, we have shown
that built-in strain in a two dimensional lattice can cre-
ate localized magnetic dislocation states with symmetry
lower than that of the surrounding lattice, and thereby
give rise to signals of nematic behavior in the system even
if the system is in a nominal tetragonal phase. Our es-
timates of the torque magnetometry signal arising from
such defects confirm the earlier suggestion[6] of strain as a
possible explanation for nematic signals observed above
the tetragonal-orthorhombic transition in Fe-based su-
perconductors, in the presence of spin-orbit interaction,
and place it on a concrete foundation. While we have
not yet performed realistic multiorbital calculations, our
one-band calculations will be straightforward to general-
ize. The torque on a sample containing a single domain
of aligned dislocations, such as apparently observed by
STM in the Fe-based superconductor NaFeAs, was esti-
mated from the one-band result and found to be easily
detectable by current torque magnetometry techniques.
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[3] A. E. Böhmer and C. Meingast, Electronic nematic sus-
ceptibility of iron-based superconductors, Comptes Ren-
dus Physique 17, 90 (2016), iron-based superconductors
/ Supraconducteurs à base de fer.
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Mathématique et Analyse Numérique 3, 35 (1969).

[22] K. Gotlieb, C.-Y. Lin, M. Serbyn, W. Zhang, C. L. Small-
wood, C. Jozwiak, H. Eisaki, Z. Hussain, A. Vishwanath,
and A. Lanzara, Revealing hidden spin-momentum lock-
ing in a high-temperature cuprate superconductor, Sci-
ence 362, 1271 (2018).

[23] M. R. Norman, M. Randeria, H. Ding, and J. C. Cam-
puzano, Phenomenological models for the gap anisotropy
of Bi2Sr2CaCu2O8 as measured by angle-resolved pho-
toemission spectroscopy, Phys. Rev. B 52, 615 (1995).

[24] N. Bulut and D. Scalapino, The effective electron-
electron interaction in the 2d hubbard model, Journal of
Physics and Chemistry of Solids 54, 1109 (1993), special
Issue Spectroscopies in Novel Superconductors.

[25] A. Audouard, C. Jaudet, D. Vignolles, R. Liang, D. A.
Bonn, W. N. Hardy, L. Taillefer, and C. Proust, Multiple
quantum oscillations in the de Haas–van Alphen spec-
tra of the underdoped high-temperature superconductor
YBa2Cu3O6.5, Phys. Rev. Lett. 103, 157003 (2009).

[26] K. A. Modic, T. E. Smidt, I. Kimchi, N. P. Breznay,
A. Biffin, S. Choi, R. D. Johnson, R. Coldea, P. Watkins-
Curry, G. T. McCandless, J. Y. Chan, F. Gandara, Z. Is-
lam, A. Vishwanath, A. Shekhter, R. D. McDonald, and
J. G. Analytis, Realization of a three-dimensional spin–
anisotropic harmonic honeycomb iridate, Nature Com-
munications 5, 4203 (2014).

[27] Z. Yamani, W. MacFarlane, B. Statt, D. Bonn, R. Liang,
and W. Hardy, Cu NMR study of detwinned single crys-
tals of ortho-II YBCO6.5, Physica C: Superconductivity
405, 227 (2004).

https://doi.org/10.1126/science.aab0103
https://doi.org/10.1038/nature11178
https://doi.org/10.1038/nature11178
https://doi.org/10.1038/nphys2870
https://doi.org/10.1038/nphys2870
https://doi.org/10.1103/PhysRevLett.88.137005
https://doi.org/10.1103/PhysRevLett.88.137005
https://doi.org/10.1126/science.1152309
https://doi.org/10.1103/PhysRevB.42.6305
https://doi.org/10.1103/PhysRevB.42.6305
https://doi.org/10.1103/PhysRevB.79.064522
https://doi.org/10.1103/PhysRevB.79.064522
https://doi.org/10.1038/nphys4205
https://doi.org/10.1103/PhysRevLett.69.2967
https://doi.org/10.1103/PhysRevLett.69.2967
https://doi.org/10.1103/PhysRevB.73.212506
https://doi.org/10.1103/PhysRevLett.99.147002
https://doi.org/10.1103/PhysRevLett.99.147002
https://doi.org/10.1088/1367-2630/12/5/053043
https://doi.org/10.1088/1367-2630/12/5/053043
https://doi.org/10.1103/PhysRevLett.113.127001
https://doi.org/10.1103/PhysRevX.11.011041
https://doi.org/10.1103/PhysRevX.11.011041
https://doi.org/10.1038/nphys1687
https://doi.org/10.1038/nphys1687
https://doi.org/https://doi.org/10.1016/j.actamat.2014.04.047
https://doi.org/https://doi.org/10.1016/j.actamat.2014.04.047
https://doi.org/https://doi.org/10.1006/jcph.1995.1039
https://doi.org/https://doi.org/10.1006/jcph.1995.1039
http://www.numdam.org/item/M2AN_1969__3_1_35_0
http://www.numdam.org/item/M2AN_1969__3_1_35_0
http://www.numdam.org/item/M2AN_1969__3_1_35_0
https://doi.org/10.1126/science.aao0980
https://doi.org/10.1126/science.aao0980
https://doi.org/10.1103/PhysRevB.52.615
https://doi.org/https://doi.org/10.1016/0022-3697(93)90151-G
https://doi.org/https://doi.org/10.1016/0022-3697(93)90151-G
https://doi.org/10.1103/PhysRevLett.103.157003
https://doi.org/10.1038/ncomms5203
https://doi.org/10.1038/ncomms5203
https://doi.org/https://doi.org/10.1016/j.physc.2004.02.010
https://doi.org/https://doi.org/10.1016/j.physc.2004.02.010

	 Magnetic anisotropy from linear defect structures in correlated electron systems
	Abstract
	I Introduction
	II Model
	A Dislocation pair
	B Homogeneous system: cuprate bilayer
	C Electronic structure of dislocation
	D Electronic correlations

	III Results
	A Phase diagram of homogeneous system
	B Local dislocation-induced magnetic states
	C Response to Zeeman field

	IV Comparison with Experiments
	V Conclusions
	 References


