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Predicting synthesizability of crystalline materials
via deep learning
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Predicting the synthesizability of hypothetical crystals is challenging because of the wide

range of parameters that govern materials synthesis. Yet, exploring the exponentially large

space of novel crystals for any future application demands an accurate predictive capability

for synthesis likelihood to avoid a haphazard trial-and-error. Typically, benchmarks of syn-

thesizability are defined based on the energy of crystal structures. Here, we take an alter-

native approach to select features of synthesizability from the latent information embedded

in crystalline materials. We represent the atomic structure of crystalline materials by three-

dimensional pixel-wise images that are color-coded by their chemical attributes. The image

representation of crystals enables the use of a convolutional encoder to learn the features of

synthesizability hidden in structural and chemical arrangements of crystalline materials.

Based on the presented model, we can accurately classify materials into synthesizable

crystals versus crystal anomalies across a broad range of crystal structure types and chemical

compositions. We illustrate the usefulness of the model by predicting the synthesizability of

hypothetical crystals for battery electrode and thermoelectric applications.
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The structure–property relationship often necessitates the
synthesis of a specific crystal structure for a chemical
composition. An essential aspect to guide and accelerate

the discovery of future materials is to predict whether a novel
crystalline material is synthesizable or not. However, providing a
general metric to identify the probability of successful synthesis of
hypothetical crystals is a challenging task because of the broad
range of parameters controlling the synthesis process, including
processing rates and routes, thermodynamic handles, synthesis
techniques, and synthesis scales. While materials synthesis is
traditionally guided by the expert-interpreted knowledge of var-
ious synthesis conditions1,2, recent computational methods and
machine learning approaches provide prospects for predictive
capability and guidelines for the synthesis of future materials3–12.
However, there remains a lack of general and accurate predictive
models for synthesizability across various crystal structure types
and chemical compositions.

A group of pioneering studies has provided metrics of syn-
thesizability based on the relevant thermodynamic free energies
of crystalline materials7,8,13. Sun et al.13 performed a high-
throughput screening of the energy distribution for a large
number of crystal structures by means of density functional
theory (DFT) calculations, indicating that a considerable number
of low-energy hypothetical crystals are not observed for well-
explored chemical compositions and are most likely not
easily synthesizable. Based on the presence of these low-energy
crystals, they concluded that the energy above the ground state
cannot act as a reliable metric for synthesizability. In a later
study7, the energy of the amorphous solid (or super-cooled liquid
state) with a given chemical composition was used as the limit on
the energy scale useful for establishing a necessary condition for
synthesis. The basis of this framework is that the zero-
temperature enthalpy of the amorphous phase provides an
accurate upper bound for the Gibbs energy of synthesizable
crystals at any temperature due to the inevitably larger entropy
of the amorphous solid compared to ordered crystals.
Therefore, crystal structures with enthalpies higher than the
amorphous state are predicted as unsynthesizable. However, this
benchmark of synthesizability is limited to a specific chemical
composition. In other words, while the amorphous solid energy
can evaluate the synthesizability of any crystal structure for a
given chemical composition, a new energy benchmark must be
obtained for a different composition. Additionally, this
approach cannot predict low-energy unsynthesizable crystals or
high-energy synthesizable crystals (e.g., high-pressure crystalline
materials). A detailed discussion is provided in the “Discussion”
section.

Only a few studies have employed machine learning to address
the issue of synthesizability of crystalline materials8–12,14–19.
In one of the earliest studies by Hautier et al.15,16 developed a
probabilistic model built on an experimental crystal structure
database to quantify the likelihood of substitution of certain ions
in a compound leading to another compound with the same
crystal structure. Later Ryan et al.14 used an atomic fingerprint
(which captures the local topology around each crystal-
lographically unique site) alongside other descriptors in a neural
network to anticipate the likelihood of substituting a lattice site
with other components of a given crystalline compound. Aykol
et al.8 modeled the free energy convex hull in the composition
space that encompasses the chronological discovery timeline of
each composition by an evolving network, where the nodes
encode the convex hull and the edges encode the circumstantial
factors. They utilized their model to predict the likelihood of
successful experimental synthesis of hypothetical materials. Some
recent studies utilize expert-knowledge-based parameters instead

of structural or chemical features to predict synthesis success9–12.
For example, Kim et al.10 analyzed the literature text via natural
language processing methods to determine the significant para-
meters involved in the synthesis of titania nanotubes by hydro-
thermal methods, and Raccuglia et al.9 used failed hydrothermal
synthesis experimental data to predict the crystallization of
vanadium selenites. Tang et al.12 utilized machine learning to
optimize synthesis conditions in order to enhance process-related
properties in inorganic crystalline solids.

In this work, we present a deep-learning model that can predict
the synthesizability of hypothetical crystalline materials. The
predictive capability of most existing models for synthesizability
is confined to either a specific crystal structure type or a given
chemical composition. Our model, however, can predict the
synthesizability of any given chemical composition in any given
crystal form (see the “Discussion” section for more details). This
is achieved by our model’s ability to simultaneously capture the
structural and chemical features of synthesizability. Our model
represents crystalline materials with color-coded three-dimen-
sional images, from which a low-dimension set of latent structural
and chemical features are encoded by a convolutional neural
network (CNN). Moreover, we provide instances of the crystal
anomaly class. We define crystal anomalies as the hypothetical
crystalline materials that are highly unlikely to be synthesized. We
select crystal anomalies from the unobserved crystal structures for
the most-studied chemical compositions in the published litera-
ture. This approach ensures the selection of the most pertinent
crystalline materials as anomalies, which would otherwise be very
difficult to identify. The machine learning framework used in this
study can be extended to serve as a predictive tool for the syn-
thesizability likelihood across a wide range of crystalline materi-
als, from elemental, ionic, and covalent crystals to complex
molecular crystals.

Results
The overall framework of the crystal synthesizability model.
Our crystal synthesizability model consists of two main components:
feature learning and classification. Feature learning consists of
encoding the hidden structural and chemical patterns from crys-
talline materials data, here in the form of three-dimensional images,
into a latent space representation. Here, we examine two different
approaches of supervised and unsupervised feature learning. In the
supervised learning, the two tasks of feature learning and classifi-
cation are intertwined, i.e., the feature learning is performed using a
convolutional encoder that is connected to a neural network clas-
sifier, where they share the same parameterization. Consequently,
the latent space is learned throughout the classification of the labeled
crystal images. In the unsupervised learning, the latent space is
learned using a convolutional auto-encoder (CAE) on unlabeled
crystal images. The learned latent space is then used as the input
layer of a neural network classifier, which is trained on labeled
crystal images.

Classification is performed based on the extracted features (or
the latent space representation) of two classes of crystalline
materials: synthesizable crystals and crystal anomalies, the latter
being the hypothetical crystalline materials that are unlikely to be
synthesized. Figure 1 summarizes the overall framework of the
crystal synthesizability model. In the following sections, we
elaborate on data collection and input preparation, model
training and validation, and applications of our model to predict
the synthesizability of candidate crystalline materials for battery
electrodes and thermoelectric applications. Moreover, we apply
our model to predict the synthesizability of different crystal
structures of molybdenum disulfide.
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Crystal data collection
Crystal anomalies. Generating crystal anomalies is challenging
because the unobserved crystals in experimentally synthesized
crystal databases can be either crystal anomalies or synthesizable
crystals that have not been explored yet. In this study, we identify
crystal anomalies to be the unobserved crystal structures for those
chemical compositions that are highly repeated in the literature
(see Fig. 2a). The underlying assumption is that these composi-
tions are explored enough so that all possible synthesizable
crystal structures have already been observed. The hypothetical
crystal structures that are not observed are most likely unsyn-
thesizable, i.e., crystal anomalies. We utilize a natural language
processing model developed by Tshitoyan et al.20 that encom-
passes material science literature knowledge from 1922 to 2018.
We rank the available chemical compositions in the literature
according to their repetition frequency. For example, Fig. 2b
illustrates the 15 most-frequently-repeated chemical composi-
tions in the materials science literature since 1922. The top 0.1%
constitutes the first 108 unique compositions that are repeated at
least 3306 times. We select the unobserved crystal structures for
the top 108 compositions as crystal anomaly samples. For each
selected composition, we balance the number of structures
between the two classes of synthesizable and anomaly by
restricting the number of generated anomaly structures to at most
the same number of distinct structures that have been already
synthesized and are available in the Crystallographic Open
Database (COD, 2019)21–26. Additionally, we ensure that at least
five unobserved structures are generated for each composition.
Figure 2c shows the number of anomaly crystals and synthesized
crystals for the 15 most-studied compositions. A total number of
600 crystal anomaly samples are generated according to the
aforementioned approach. More details about crystal anomaly
generation are provided in the “Methods” section, Supplementary
Note 1, Supplementary Table 1, and Supplementary Fig. 1.

Synthesizable crystals. We collect synthesizable crystal samples
from the COD (2019), an open-access crystallography database of
experimentally synthesized crystalline materials. We select 3000
crystal samples from the COD, five times more than the

600 samples generated for the crystal anomaly class. Within the
3000 samples, we include all the distinct crystalline polymorphs
available in the COD for the 108 chemical compositions that we
have used to generate the crystal anomaly samples, which amount
to 367 crystal samples. This strategy ensures that the classifier is
not overfitted to non-generalizable patterns in the small set of
chemical compositions in the anomaly class. Instead, by including
all structurally distinct polymorphs of the synthesizable class that
share the same chemical compositions with the anomaly class
samples, we provide the necessary structural information that the
classifier needs to learn the distinction between the synthesizable
and anomaly classes. In fact, our studies on a variety of data sets
indicate that including distinct structural polymorphs of the same
composition that belong to the two distinct classes significantly
enhances the predictive performance of the classifier. The
remaining 2633 synthesizable crystal samples are randomly
selected from other chemical compositions. The synthesizable
crystal samples in our data set span across 156 distinct space
groups (see Supplementary Note 2 and Supplementary Fig. 2).
Details about the preparation of crystal samples for each class are
provided in the “Methods” section.

Limited availability of crystal anomalies. Crystal synthesizability
prediction, as the focus of this study, is inherently limited by the
availability of crystal samples that could be labeled as unsynthe-
sizable or anomalies with high confidence. Our case studies
suggest that including more than a couple hundred of the most-
studied chemical compositions in the anomaly class will hamper
the predictive power of the classifier. This indicates that while
including a wider range of chemical compositions can reduce the
sample bias, it increases the risk of mislabeling positive samples as
negative. The increased risk of mislabeling arises from the lower
confidence we have in labeling the unobserved crystal poly-
morphs of a composition that is not repeated enough in the
literature, or explored enough, as anomaly.

Data set. The final data set consists of 3000 synthesizable crystals
(i.e., positive samples) and 600 crystal anomalies (i.e., negative
samples), which are randomly partitioned into the training (49%),

Fig. 1 The overall framework of the synthesizability likelihood prediction model. a Crystal samples for the synthesizable class are obtained from the
Crystallographic Open Database (COD). We prepare crystal anomaly samples by using the crystal structure prototype database (CSPD) to generate
crystal structures for the most-studied compositions in the published literature that are absent in the COD. b The crystal information files (CIFs) (extracted
from the COD or generated by the CSPD) are converted into digitized three-dimensional images, which are used as the inputs for the convolutional
encoder or convolutional auto-encoder. c Supervised and unsupervised feature encoding of three-dimensional images are performed using a convolution
encoder followed by a multi-layer perceptron (MLP) classifier, referred to as the CNN classifier, and a convolutional auto-encoder (CAE), respectively. The
unsupervised latent space representation of crystals from the auto-encoder is used as the input in an MLP classifier, referred to as the CAE+MLP classifier.
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validation (21%), and test (30%) sets. To correct the dispropor-
tion in the number of positive and negative samples, we randomly
duplicate the negative samples in the training set, resulting in an
equal number of samples between the two classes.

Crystal representation by three-dimensional images. We
represent the atomic structure of crystals by three-dimensional
pixel (or voxel) images that incorporate both the structural and
chemical patterns embedded within crystals. Each crystal unit cell
is replicated to fill a cube with a side length of 70Å, which is then
digitized into 128 voxels on each side. If a voxel is occupied by an
element, i.e., a chemical component lies inside a voxel, then the
normalized atomic number, periodic row number, and periodic
group number are assigned as its three channels. Otherwise, all
the channels are set to zero. The three-dimensional image
representation of crystals in this study enables the use of CNNs to
encode the latent space representation as features of synthesiz-
ability. More details about preparing three-dimensional image
representation of crystals are presented in the “Methods” section.

Supervised feature learning and classification. In the supervised
model, the features of synthesizability are learned from labeled

crystal images. A CNN or convolutional encoder is used to map
the high-dimensional information embedded in raw crystal
images into the reduced dimension latent space representation.
The encoder is connected to a multi-layer perceptron (MLP)
classifier with the latent space representation as the input layer.
The parameters of the encoder and the classifier are optimized
simultaneously over the labeled crystal images using a single loss
function. Hereafter, we refer to this model as the CNN classifier.
Supplementary Figure 7a illustrates the detailed architecture of
the CNN classifier. More details about the CNN classifier opti-
mization are provided in the “Methods” section.

To evaluate the predictive power of the CNN classifier, we use
the area under the receiver operating characteristic curve (ROC-
AUC). Figure 3 illustrates the ROC curve for the CNN classifier,
evaluated on the test set with 1080 crystal images. The ROC-AUC
value is 0.981 and the calculated accuracy is 93.7%. The decision
threshold is set to 0.5, which means that a synthesizability
likelihood prediction equal to or above 0.5 is labeled as
synthesizable and below 0.5 is labeled as anomaly.

Unsupervised feature learning and classification. In the unsu-
pervised model, we utilize a CAE for learning the latent structural
and chemical features in unlabeled crystal images. The CAE maps
the voxels of crystal images to the latent representation vector by
an encoder and then maps the latent representation vector onto a

Fig. 2 The logic for crystal anomaly generation in this study. a We select
the unobserved hypothetical crystal structures of well-studied
compositions in the literature and label them as crystal anomalies. b The
total repetitions of the 15 most-studied compositions in materials science
literature are shown as an example. We use the top 108 compositions to
generate crystal anomalies in this study. c The number of distinct crystal
anomalies and observed/synthesized crystal structures for the 15 most-
studied compositions are shown by blue and orange bars, respectively. The
15 most-studied compositions are shown as an example while we use the
108 most-studied compositions to generate the anomaly and synthesizable
crystal samples.

Fig. 3 Classification performance evaluation of the supervised and
unsupervised models. The receiver operating characteristic (ROC) curves
for the (a) CNN and (b) CAE+MLP classifiers shown by the red line. Each
classifier’s ROC is compared with a dumb classifier, which randomly assigns
class labels, shown by blue dashed lines. The normalized distribution of
synthesizability likelihood of crystals in the test set are represented for (c) the
CNN classifier and (d) the CAE+MLP classifier. e The main classification
metrics based on a decision threshold of 0.5. AUC stands for the area under
the ROC curve.
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reconstructed crystal image using a decoder. The learned latent
space representation is a set of reduced-dimension patterns
underlying the raw crystal images that can be used to reconstruct
them. Since the CAE has no explicit knowledge of the labels, the
learned features can be interpreted as a more general set of fea-
tures to be used as the feature space for any learning task that
maps structural and chemical patterns at the atomic level to a
class label or property. Supplementary Figure 6 illustrates the
detailed architecture of the CAE used to encode and decode the
three-dimensional crystal images.

The latent space representation is flattened and is then passed
as the input to a separate MLP classifier. The MLP architecture is
identical to the fully-connected layers of the CNN classifier (see
Supplementary Fig. 7). The MLP classifier is optimized using the
pre-trained latent space representation from the CAE. The latent
space representation provides cues about how to group the crystal
image examples in the training set. Hereafter, we refer to this
model as the CAE+MLP classifier. More details about the design
of the CAE+MLP classifier and its optimization are provided in
Supplementary Fig. 7b and in the “Methods” section.

In general, neural networks tend to overfit to the training data
due to the large number of fitting parameters in their complex
non-linear structure. In the CAE, the number of fitting
parameters is large because of the size of three-dimensional
images and the design of the hidden layers. Therefore, we apply
dropout layers for regularizing the CAE. The regularization helps
to avoid overfitting to the training data and renders the CAE
+MLP model to generalize better (see more details in the
“Methods” section).

Figure 3 illustrates the ROC curve for the CAE+MLP classifier,
evaluated on the test set with 1080 crystal images. The ROC-AUC
value is 0.968 and the calculated accuracy is 91.9% for a decision
threshold of 0.5.

Importance of feature learning. To assess the importance of
feature learning in our models, we design an MLP classifier that
uses flattened raw images as the input layer. Instead of using a
convolutional encoder to learn the latent space representation of
three-dimensional crystal images, we flatten raw crystal images
and pass them to the input layer of an MLP classifier. Here, the
MLP classifier has the same design as in the CNN and the CAE
+MLP models. Hereafter, we refer to this model as the raw image
classifier. The raw image classifier is overfitted to the training
data, as shown by its low accuracy on the validation data during
training in Supplementary Fig. 9. This overfitting is inevitable
because of the design of the raw image classifier. Supplementary
Table 2 shows the details of the raw image classifier design. As
shown in Supplementary Table 2, the raw image classifier has
more than 80 million trainable parameters, making it a highly
over-parameterized model for such limited training data. This
result indicates the importance of the feature learning step in our
model as an efficient dimension reduction technique, which
avoids over-parameterization and the consequent overfitting. As
expected, the performance of the raw image classifier is poor
compared to the CNN and CAE+MLP classifiers. As shown in
Supplementary Fig. 9, for the raw image classifier, the ROC-AUC
and the classification accuracy on the test data are 0.685 and 80%,
respectively. A classifier that assigns a synthesizable label to all the
samples in the test set reaches an accuracy of 83%. The accuracy
of the raw image classifier is below such classifier. See Supple-
mentary Note 8 for more detail.

Comparison of supervised and unsupervised feature learning.
Figure 3e compares the performance of the CNN and the CAE
+MLP classifiers on the test data. The accuracy and sensitivity of

the two classifiers are almost the same; however, the specificity of
the CNN classifier is higher than the CAE+MLP classifier. The
out-performance of the CNN specificity stems from the super-
vised nature of the feature learning process, in which the latent
space has been trained with the explicit knowledge of the class
labels. Considering that the unsupervised feature learning in the
CAE has no knowledge about the class labels, the CAE+MLP
prediction is very accurate in the context of a binary classification
task. This accurate classification shows that the auto-encoder can
successfully extract the correct latent features.

To compare the generalization of the CNN and the CAE+MLP
classifiers, we predict the synthesizability of two sets of crystal
samples beyond the test set, namely electrodes and thermoelectric
crystalline materials. By going outside the test data, we can
evaluate the generality of the model for a set with a different
distribution of samples. Because we randomly partition the
samples between the training and test sets, the distribution of
crystal samples in the test set is more similar to the training set
than the distribution of samples in the electrode and the
thermoelectric sets (see Supplementary Note 5 and Supplemen-
tary Fig. 5).

As detailed in the following subsections, the CAE+MLP shows
a stronger generalization compared to the CNN classifier on both
the electrode and thermoelectric materials. This indicates the
power of unsupervised learning, which does not overfit to a
particular data set. In other words, the general nature of the
features that are learned by the CAE in an unsupervised manner
leads to the stronger generalization of the CAE+MLP classifier.
This result is remarkable and further encourages the use of
unsupervised learning for different tasks, given that proper
unsupervised learning methods are used. Supplementary Note 9
and Supplementary Fig. 10 provide a more detailed comparison
of the two classifiers.

Case study: electrode materials. We apply our model to predict
the synthesizability likelihood for hypothetical crystals in the
Battery Explorer database of the Materials Project27–29, which are
electrode candidates satisfying critical criteria such as high vol-
tage, high volumetric capacity, and high energy density. We
selected 2088 crystal samples of electrode materials, out of which
264 samples exist in the COD database. As shown in Fig. 4, the
CNN and the CAE+MLP classifiers predict the synthesizability
likelihood for the battery materials that exist in the COD (i.e.,
samples that are positive, or synthesizable) with an accuracy of
82% and 89%, respectively. The prediction accuracy for COD
samples is a measure of the recall of the classifier, which is slightly
lower than the recall for the test data (93% versus 82% for the
CNN classifier and 94% versus 89% for the CAE+MLP classifier).
The lower recall on electrode samples is likely due to the larger
statistical error arising from the small sample size (264 samples
here versus 1080 samples in the test set). Additionally, the test set
samples are more similar to the crystal samples in the training set
because they have been partitioned randomly, unlike the elec-
trode samples that belong to a different range of chemical com-
positions (see Supplementary Fig. 5). This similarity between the
training and test set samples lead to a higher recall on the test set.
The CNN and the CAE+MLP classify 73% and 85% of the non-
COD samples as synthesizable, respectively.

To illustrate the usefulness of our model, we show the
synthesizability predictions against a second property of interest,
inspired by Ashby charts30, where synthesizability likelihood can
serve as a design parameter or a parameter for materials selection.
For example, Fig. 5 shows the synthesizability of samples,
predicted by the CAE+MLP, against their total volumetric
capacity and average voltage. These plots can be utilized to
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identify the best materials, where the ideal candidates lie near the
top right on the charts in this case. The top right region in Fig. 5a
corresponds to a high volumetric capacity combined with a high
likelihood of synthesizability. Similarly, the top right region in
Fig. 5b corresponds to a high voltage combined with a high
likelihood of synthesizability. For more synthesizability predic-
tions for electrode materials, refer to Supplementary Fig. 11,
Supplementary Table 3, and Supplementary Note 10.

Case study: thermoelectric materials. As a second case study, we
employ our synthesizabilty prediction model on hypothetical
crystal structures that have been proposed as thermoelectric
materials by Tshitoyan et al.20. To discover promising thermo-
electric materials, Tshitoyan’s model encodes the knowledge in
the published literature into vector representation of words. They
proposed a total of 9483 chemical compositions with cosine
similarities to the word “thermoelectric”, of which the top 10
thermoelectric composition candidates (not crystal structures)
were identified for each year from 2001 to 2018. We selected all
the available crystal structures in the Materials Project and the

COD databases for the yearly proposed candidate compositions,
which resulted in 122 crystal samples. As shown in Fig. 6, we
predicted the synthesizability likelihood of these samples based
on the CNN and the CAE+MLP classifiers. The classification
recall on the COD thermoelectric samples (56 out of 122 crystal
samples), which indicates the rate of positive predictions to the
total true positive samples, is 64.3% and 78.6% for the CNN and
the CAE+MLP classifiers, respectively. On the other hand, the
classification recall of the test data set is 93% and 94% for the
CNN and the CAE+MLP classifiers, respectively (see Fig. 3e).
The lower recall of the classifiers for the thermoelectric samples is
a likely result of larger statistical errors due to smaller sample size
(56 versus 1080) and a possible out-performance of predictions
on the test data due to their similarities with the training set
samples (see Supplementary Fig. 5).

We ranked the synthesizability likelihood for a subset of the
thermoelectric crystals in Table 1. The synthesizability likelihood
predictions for all the thermoelectric crystal candidates from 2002
to 2018 are presented in Supplementary Data 1 and Supplemen-
tary Note 11.

Case study: molybdenum disulfide. Our model can be used to
identify synthesizable crystal structures for a given chemical
composition. For example, Fig. 7 illustrates different crystal
structures of molybdenum disulfide, or MoS2, sorted from bottom
to top according to their synthesizability likelihood (predicted by
the CAE+MLP model). According to Pauling’s rules, one can
obtain some insight about the most probable cation and anion
coordination in ionic compounds. For MoS2, the cation to anion
radius ratio is 65

184 ¼ 0:35. According to the radius ratio rule, the
cation (or Mo4+) coordination number should be 4. This results
in an electrostatic bond strength of 1 to each coordinated anion
(i.e., 44 ¼ 1). According to the electrostatic valence rule, the anion
(or S2−) coordination number is 2. Therefore, Pauling’s rules
suggest a fourfold cation and a twofold anion coordination.

For MoS2, the experimentally reported bulk crystal structures
include three different polytypes, namely 1T (1 atomic layer of
tetragonal structure), 2H (2 atomic layer of hexagonal structure),
and 3R (3 atomic layer of rhombohedral structure)31. Natural and
stable MoS2 is composed of 2H (space group P63/mmc) with less
than 3% of 3R (space group R3m). As shown in Fig. 7, the
predicted synthesizability likelihood of the hexagonal P63/mmc is
0.82, which we label as synthesizable. The formation of this
hexagonal structure is consistent with the Pauling’s guideline
because it has a cation and anion coordination of 4 and 2,
respectively. Additionally, we predict three tetragonal structures
as synthesizable, consistent with the experimentally reported
metastable tetragonal structures31.

Discussion
The predictive power of the presented synthesizability framework
lies in its ability to combine generality and accuracy, due to the
highly non-linear and flexible design of the neural networks used
in the feature learning and classification tasks. However, gen-
erality and accuracy are gained at the expense of losing the
interpretability of the features of synthesizability. The learned
features by the CNN or CAE (which are black-box models) are
too complicated and not easily understandable in terms of
common physical parameters. Translating these complex features
into simpler and more understandable features can be achieved
through additive feature attribution methods, such as layer-wise
relevance propagation32, which is the subject of a future study by
the authors.

The framework of our model enables synthesizability predic-
tion across any crystal structure type for any given chemical

Fig. 4 Synthesizability likelihood predictions of the candidate crystalline
materials for electrodes. The probability distribution function of the 2088
electrode crystals from the Battery Explorer database of the Materials
Project (MP) is predicted by (a) the CNN and (b) the CAE+MLP classifiers,
respectively. The green and yellow bars show the samples from the COD
and those absent in the COD, respectively. Synthesizability refers to the
ratio of predicted synthesizable samples to the crystal samples in the non-
COD electrode data. The sensitivity (or recall) is calculated based on the
264 electrode samples that belong to the COD.
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composition. This distinguishes our model from most of the
existing predictive models for synthesizability, which are limited
to either a specific crystal structure type or a given chemical
composition. To further illustrate this capability of our model, in
what follows, we compare it with two existing methods, namely
an energy-based threshold model by Aykol et al.7 and a deep
network model by Ryan et al.14.

The crystal synthesizability model by Aykol et al.7, hereafter
referred to as the stability skyline model, proposes the DFT
energy of the amorphous solid phase as the thermodynamic
upper limit on the energy scale of synthesizable crystalline
materials. The stability skyline model introduces a simple energy-
based metric for crystal synthesizability, and because it provides
an upper limit for the thermodynamic scale of synthesizability, it
can accurately predict high energy crystal anomalies (although it
misses high energy synthesizable crystals such as high-pressure
phases). However, this model is expected to perform poorly in
predicting low-energy crystal anomalies. More specifically, all
crystals with an energy lower than the amorphous solid energy
are predicted as synthesizable. An earlier high-throughput
study13 calculated the DFT energies on a large-scale data set of
inorganic crystalline phases and revealed that many low-energy
compounds are absent in experimental databases while many
high-energy polymorphs are observed or synthesized experi-
mentally. This suggests that the thermodynamic energy scale
cannot act as the sole reliable synthesizability metric, i.e., it is an
oversimplified descriptor for crystal synthesizability. This stems
from the fact that thermodynamic stability cannot be individually
mapped into synthesizability, where a range of other parameters,
such as kinetic limitations, synthesis routes, and synthesis pre-
cursors, can affect the synthesizability likelihood of a given

crystalline solid. The advantage of our model is that it can predict
low-energy unsynthesizable crystals and high-energy synthesiz-
able crystals according to more complicated chemical and
structural patterns, which is not achievable by the upper limit
energy approach. In Fig. 8a, we compare the prediction outcomes
of our model with those from the stability skyline model. Both the
synthesizable crystals and crystal anomalies predicted by the CAE
+MLP classifier span over a range of energies above the ground
state. The stability skyline model predicts the crystals below the
skyline limit as synthesizable and those above it as unsynthesiz-
able, with some categorical exceptions described in ref. 7. As
shown in Fig. 8b, our model projects that same energy distribu-
tion above the ground state for the predicted crystal anomalies
and synthesizable crystals as the stability skyline model7 (com-
pare Fig. 8b with Fig. 2B of ref. 7). This indicates that our model
can correctly predict the exceptions in the stability skyline model,
which are low-energy crystal anomalies and high-energy syn-
thesizable crystals. The synthesizable crystals distribution shows a
higher peak at low energies compared to anomalies, which show a
more uniform distribution at higher energy values. Additionally,
in the stability skyline model, a new amorphous limit must be
calculated for each composition, which limits its predictability to
a given chemical composition.

Aside from energy-based models, some studies use machine
learning to predict the probability of crystal formation. The study
by Ryan et al.14 predicts the probability of an individual crystal-
lographic site to be occupied by various elements in the periodic
table. While their model cannot explicitly predict the synthesiz-
ability of a hypothetical crystal structure, it can predict the
probability of element substitution for each crystallographic site
within an observed crystal structure. This implicitly confines their

Fig. 5 Predicted synthesizability likelihood versus electrode materials properties. Synthesizability likelihood of selected electrode samples against their
(a) volumetric capacity and (b) average voltage. Each crystal sample is identified by its chemical formula followed by the space group number in
parenthesis. For the sake of visualization, each working-ion is color-coded differently: Li as green, Na as orange, and Ca as blue. These plots can be utilized
similarly to Ashby charts for materials selection. In this case, the ideal candidates lie near the top right of each plot to increase the synthesizability and the
desired electrode property.
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model’s predictive power to a specific crystal structure and its
minor structural variations. This arises from the architecture of
their model, in which crystal information is represented by multi-
perspective atomic fingerprints, which serve as descriptors in a
neural network model. More specifically, the atomic finger-
print can encode the local topology in the vicinity of each site by
translating the high-dimensional position-composition space into
a lower dimension radial distance space, which can lead to
information loss. Our model surpasses this limitation by com-
bining a more global structural and chemical pattern representa-
tion using voxel-wise images. Additionally, feature learning
through the convolutional encoder used in this study is a suitable
design because of the inherent long-range transnational symmetry
of crystals.

Methods
Crystal Data Collection. The COD (2019) database is used to collect all the
crystallographic information files (CIFs) for synthesizable crystals. For crystal
anomaly samples, the CIF files are generated using the Crystal Structure Prototype
Database (CSPD) toolkit33. Only CIF files that can be successfully parsed by the
Atomic Simulation Environment (ASE) package34,35 are considered as readable
and are included in our data set. Crystals with the minimum inter-atomic
separation below 0.947Å are excluded from our data set (due to the model’s
resolution constraint described below); these are mostly crystals with hydrogen

Fig. 6 Synthesizability predictions of the candidate crystalline
materials for thermoelectric application. The synthesizability likelihoods
evaluated by (a) the CNN and (b) the CAE+MLP classifiers. The total
number of thermoelectric crystal samples are 122, from which 56 are
collected from the COD and the rest are collected from the Materials
Project database. The green and yellow bars show the samples from the
COD and those absent in the COD, respectively. Synthesizability refers to
the ratio of predicted synthesizable samples to the non-COD crystal
samples in our thermoelectric data. The sensitivity is calculated based on
the 56 samples that belong to the COD.

Table 1 Synthesizability predictions of selected
thermoelectric materials.

Material Year ID SG CNN CAE+MLP

Mo3Te4 2002 mp-8601 148 0.38 1.00
SbTm 2002 mp-1002220 221 0.86 1.00
SbTm 2002 cod-9008752 225 0.81 1.00
P2SnZn 2018 mp-4175 122 1.00 1.00
P2SnZn 2018 mp-1215429 115 0.94 1.00
CuTe 2018 cod-1526237 59 0.83 1.00
Cu2Se2Tl 2018 mp-5000 139 0.99 1.00

The candidate thermoelectric compositions are collected from ref. 20, labeled by the associated
year 2002 or 2018. Materials with the same composition are distinguishable by their space group
(SG) number. Crystal structures from the Materials Project or the COD database are identified by
mp- or cod- identifications (ID).

Fig. 7 The synthesizability likelihood prediction of different polymorphs
of molybdenum disulfide. Selected crystal structures of MoS2 are sorted
from bottom to top based on their synthesizability likelihood, predicted by
the CAE+MLP classifier. The crystal type followed by the space group
number is shown for each structure.
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atoms as ligands. Crystal files with partial site occupancy, as a result of config-
uration disorder or positional disorder, are translated into supercell structures
without point disorders by utilizing the Supercell software package36. Anomalies
are selected by eliminating the experimentally synthesized structures in the COD
out of the generated structures by the CSPD for the 0.1% most-studied composi-
tions in the literature, as shown in Fig. 2. More information about anomaly crystal
structures is presented in Supplementary Table 1 and Supplementary Fig. 1.

Crystal representation by three-dimensional Images. All the CIF files are parsed
using the ASE software package and then are converted into three-dimensional
cubic images using our in-house code. To translate the CIF files into three-
dimensional images, each unit cell is replicated as many times as needed to fill a
cube with a side length of 70Å. This choice of cube length ensures that more than
96% of crystals in the COD are replicated at least twice along the largest lattice
vector. Supplementary Figure 3a illustrates the distribution of the three lattice
constants for all the readable crystal files in the COD. The distribution of crystals
with the largest lattice constant higher than 35Å is slightly less than 4%. We
digitize the cubic structures to (128 × 128 × 128) voxel three-channeled images.
Each voxel has three channels, which are the atomic number, the periodic table row
number, and the group number of the chemical element occupying the voxel or
zero otherwise. We consider the group number of 3.5 for the elements of the
lanthanides and actinides. The channels are normalized by dividing them by the
highest atomic number (118), the highest row number (7), and the highest group
number (18) plus the number one (1). To avoid a voxel occupation by more than
one chemical component, we exclude crystal structures with the nearest neighbor
distance less than 0.947Å, which mostly contains lingering hydrogen atoms. The
nearest neighbor distance distribution for all the crystals in the COD is shown in
Supplementary Fig. 3b. Although higher image resolutions are possible by
increasing the number of voxels, the selected resolution ensures sufficient accuracy
in representing the crystal structures while keeping the computational costs of
convolution tasks feasible (see Supplementary Note 3). Supplementary Figure 4
illustrates the translation of diopside (CaMgO6Si2) crystal information into a three-
dimensional image color-coded by its chemical attributes as an example (see
Supplementary Note 4 for more information).

CAE design. The encoder and decoder blocks of the CAE learn the latent repre-
sentation of crystal images and reconstruct it based on the latent representation,
respectively. As shown in Supplementary Fig. 6, the design of the CAE consists of
three layers for the encoding and four layers for the decoding, which is imple-
mented using the Keras python package37. Each encoding layer consists of a
convolutional sub-layer with a rectified linear unit (ReLu) as the activation function
and a filter with a size of (3 × 3 × 3). The filter convolves within the three-
dimensional image and constructs a new set of images based on the filter’s feature
maps. A max-pooling sub-layer follows the convolutional sub-layer with a pool size
of (4 × 4 × 4) for the first two layers and (2 × 2 × 2) for the third layer. The max-
pooling sub-layer reduces the size of an image by the rate of the pooling size. The
first two convolutional sub-layers in the encoding block output 32 channels while

the last one outputs 64. The decoder has a reverse layer architecture with up-
sampling sub-layers adopted instead of max-pooling sub-layers. The order of the
sub-layers in the layers remain intact. Each max-pooling or up-sampling sub-layer
is followed by a dropout layer with a 30% dropout rate, which is the probability
that outputs of the preceding layer are dropped out. The dropout layers regularize
the auto-encoder and make the fit network more general. At the end of the
decoder, there is an extra layer compared to the encoding block. This layer has a
convolutional sub-layer outputting three channels followed by a sigmoid activation
function to reconstruct images with three normalized channels. This last layer does
not have an up-sampling sub-layer. Supplementary Figure 6 depicts the detailed
design of the CAE. See Supplementary Note 6 for more information. The con-
volution filters are trained by minimizing the difference between the original and
reconstructed images (or the reconstruction error), measured by the loss function.
The stochastic Adam optimization method38 is used to minimize the per-voxel
binary-cross-entropy loss function of the following form:

L2ðx; x̂Þ ¼ �∑
i
xilog x̂i þ ð1� xiÞlog ð1� x̂iÞ
� �

; ð1Þ

where xi and x̂i represent the ith voxel of the original and reconstructed images,
respectively. The CAE constitutes 281,923 fitting parameters. Supplementary Fig-
ure 8 illustrates the loss function variation during the training. See Supplementary
Note 7 for more information.

CNN design. The CNN encoder consists of three hidden layers. Each layer consists
of a convolutional sub-layer with a ReLu activation function and a (3 × 3 × 3) filter
which outputs 32 channels. A max-pooling sub-layer follows the convolutional
sub-layer with a pool size of (4 × 4 × 4) for all the three layers. The latent space
from the CNN is the input layer for the connected MLP classifier described below
(see Supplementary Fig. 7).

We utilize the stochastic Adam optimizer38 to minimize the binary-cross-
entropy loss between true labels and predicted labels according to the following
equation:

L1ðy; ŷÞ ¼ �1=N∑
i
yilog ŷi þ ð1� yiÞlog ð1� ŷiÞ
� �

; ð2Þ

where yi and ŷi 2 ð0; 1Þ represent the true labels and the predicted values for the ith
crystal sample, respectively, and N is the total number of crystal samples in the
training set. The CNN classifier (i.e., the connected CNN and the MLP classifier)
constitutes 61,703 fitting parameters. Supplementary Figure 8a, b illustrates the loss
function and accuracy convergence of the CNN classifier during the training
process for the training and validation sets.

The MLP classifier design. We use an MLP classifier to classify crystal anomalies
versus synthesizable crystals. The input layer is the latent space representation from
the encoder block of the CNN or the CAE. The classifier has three fully-connected
hidden layers each with 13 nodes (see Supplementary Fig. 7).

Fig. 8 Comparison of synthesizability predictions of the CAE+MLP classifier (this study) with the predictions from the Stability Skyline model of ref. 7.
a The energy above the ground state for a total number of 815 crystalline materials studied in ref. 7, alongside the synthesizability predictions of the CAE
+MLP classifier. The horizontal bars indicate the amorphous energy limit calculated in ref. 7, above which the stability skyline model predicts a crystal as an
anomaly with some exceptions (more details can be found in ref. 7). The lowest computed amorphous energy is represented by the bold black line, while
higher amorphous energies are indicated by thin gray lines. The number in front of each legend label indicates the abundance of samples in each class. All
the energy values are extracted from the Materials Project database27. b The probability distribution function for the energy above the ground state for the
predicted synthesizable crystals and anomalies (based on our model), as well as the amorphous limit obtained from ref. 7.
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Packages. We have used the following Python libraries and software packages for
completing this work: ASE35, Keras37, TensorFlow39, Scikit-Learn40, CSPD33,
Supercell Program36, Pandas41. For visualization of CIFs and three-dimensional
crystal images, we used the Visualization for Electronic and STructure Analysis
(VESTA)42 and the Visual Molecular Dynamics (VMD)43 packages, respectively.

Data availability
The crystal images generated and/or analyzed in this study are available in the GitHub
repository https://github.com/kadkhodaei-research-group/XIE-SPP.

Code availability
The codes generated in this study are available in the GitHub repository https://
github.com/kadkhodaei-research-group/XIE-SPP.
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