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How and why RNA genomes are (partially) ordered

in viral capsids
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There is a long and productive progression of X-ray
crystallographic and electron microscopy studies establishing
the structures of the spherical/icosahedral and cylindrical/
helical capsids of a wide range of virus particles. This is
because of the high degree of order — down to the Angstrom
scale — in the secondary/tertiary/quaternary structure of the
proteins making up the capsids. In stark contradistinction, very
little is known about the structure of DNA or RNA genomes
inside these capsids. This is because of the relatively large
extent of disorder in the confined DNA or RNA, due to several
fundamental reasons: topological defects in the DNA case, and
secondary/tertiary structural disorder in the RNA case. In this
article we discuss the range of partial order associated with the
encapsidated genomes of single-stranded RNA viruses,
focusing on the contrast between mono-partite and multi-
partite viruses and on the effects of sequence-specific and
non-specific interactions between RNA and capsid proteins.
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Introduction: ssRNA versus dsDNA
phenotypes

Viruses are unique among evolving organisms in that
many of them have RNA rather than DNA as their
genetic material. Further, the largest class of viruses
are those with single-stranded (ss) RNA as their genomes
while those with double-stranded (ds, duplex) DNA
genomes constitute the second largest class. And it is
the fundamentally different natures of single-stranded
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versus double-stranded nucleic acids that determine
many of the qualitative differences in the life cycles of
these two predominant classes of viruses. In particular,
their genome packaging and delivery steps involve con-
trasting physical phenomena as direct consequences of
the fact that ssRNA behaves like a compact, flexible,
effectively branched polymer [1,2,3°] whereas dsDNA
behaves like an extended, s7ff and hard-to-compress,
linear polymer [4-6]. These two biomolecule phenotypes
differ greatly for the same genotype (gene coding), as is
illustrated by the cryo- electron micrographs [7] shown in
Figure 1. Each of the red circles in the left image encloses
a ssRNA molecule made by /# vitro transcription of the
dsDNA molecule that runs counter-clockwise from the
middle of the left edge of the image on the right, around
the bottom and up the right edge to the middle of the top,
and then down a bit to the left. Significantly, the ssRNA
contains exactly the same genetic information as the
dsDNA, but is conspicuously more compact and hence
spontaneously packageable into a virus particle in the
presence of capsid protein — as happens in the cytoplasm
of infected cells and 77 vitro under the right pH and salt
conditions [8-10]. For the corresponding dsDNA form of
the gene to be packaged, on the other hand, a large
amount of work (compared to thermally available energy)
has to be done in order to crowd and bend the DNA upon
itself, accounting for why dsDNA viruses need to encode
a motor protein strong enough to push their genome into a
pre-formed capsid, often building up pressures (stored
energy densities) as large 50 atm [11°,12°,13°14-17].

The imperatives of disorder in packaged
dsDNA and ssRNA

In the case of dsDNA, where (in contrast to ssRNA) there
is no issue of largely unknown secondary and tertiary
structure (see below), the impediment to ordering of the
confined genome is the fundamental topological fact that
a long chain cannot be accommodated at high density in a
spherical volume without many regions of non-hexagonal
packaging and of high-curvature [18]. More explicitly,
optimally hexagonal (‘close’) packing of the DNA is
required by the strong confinement, that is, the packing
of the self-repelling genome at almost crystalline densi-
ties (volume fractions on the order of 0.5 [19]). If the
genome consisted of many duplexes with a very special
distribution of lengths, it could be organized in the capsid
with essentially perfect hexagonal order. Butitis instead a
single duplex whose length is hundreds of times greater
than the radius of the capsid. Accordingly, the confined
DNA is unable to achieve the idealized cases of ‘spool’
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Figure 1
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ssRNA and dsDNA gene phenotypes.

Cryoelectron-microscopy images [7] of ssSRNA and dsDNA, and of the
relative sizes of ssRNA genes and the viral capsids that protect them.
LEFT: Each circled molecule is a 2117nt-long ssRNA, while the dsDNA
is 2117 base pairs long — with DNA sequence encoding the ssRNA,
that is, the two molecules contain identical genetic information, but in
ssRNA and dsDNA form, respectively. RIGHT: Here the red circles
highlight copies of the 2774-nt-long ssRNA molecule that comprises
the RNA helicase gene of the plant virus cowpea chlorotic mottle virus
(CCMV), which is packaged by CCMV capsid protein; the black
downward arrow in the lower right highlights one of these virus
particles, a capsid protein shell containing one copy of the 2774-nt
helicase gene.

chain arrangement [20,21] because topological defects are
unavoidable, a result of the continuous nature of the chain
and its need to avoid bending on a scale significantly
smaller than the DNA persistence length (50 nm [4-6]).
And there is necessarily a large number (ensemble) of
these disordered configurations, each consistent with
their packaging constraints and displaying a different
set and distribution of topological defects, for example,
non-parallel ‘crossings’/contacts of neighboring portions
of the chain and/or radii of curvature much smaller than
the persistence length.

In the case of ssRNA, on the other hand, each gene is
naturally compacted [1,2,3°] by the large extent of self-
complementary base-pairing — secondary structure forma-
tion — which ‘gathers in’ distant nucleotides along the
chain. For short (<50-100 nt-long, e.g. transfer and enzy-
matic) RNAs, there are only a few low-energy secondary
structures, often with a dominant ‘ground state’ that
determines the activity of the RNA. But for viral RNAs,
that is, sequences long enough (thousands of nts) to
encode at least one gene, there are hundreds of thermally
accessible secondary structures associated with each RNA
molecule, requiring that it be described as a statistical
object. The preponderant majority of these structures are
those that render the RNA effectively branched and
result in it having a significantly smaller radius of gyration
— size — than it would have without the benefit of

intramolecular base-pairing [1,2,3°]. Additionally, viral
gene sequences have evolved to exploit synonymous
mutations to further minimize the 3D size of the mole-
cule [22], and in particular to bring it down to the size
dictated by the packing of the capsid protein. One
expects then, to zeroth approximation, that the disorder
associated with the large ensemble of native
(‘unconfined/free-state’) secondary structures will carry
over into the encapsidated state of the RNA, with weak
‘corrections’/ordering arising from interactions between
the RNA and capsid protein.

Confinement of ssRNA genomes

As is clear from the right-hand image of Figure 1, when
equilibrated in its ‘free state’ before addition of capsid
protein, each encapsidated molecule that ends up being
packaged by itself (e.g. the 2774nt-long 2nd gene of
CCMV) is only slightly larger than the shell of protein
that confines it. In this sense the RNA is only ‘weakly
confined’ and we expect that its native secondary and
tertiary structures are largely conserved upon encapsida-
tion. Consistent with this, an asymmetric reconstruction
of brome mosaic virus (BMV), a bromovirus closely
related to CCMV, discussed below as an example of
‘Weak Ordering’ of packaged RNA, shows that only a
small fraction of the virion-confined RNA is ordered. A
larger degree of RNA ordering is found in the cases of
bean pod mottle virus (BPMV), satellite tobacco mosaic
virus (STMV) and Pariacoto virus (PaV), mentioned in
the same section. Substantively more RNA ordering is
found for the bacterial virus MS2 (discussed in the
‘Substantial Ordering’ section), because of the ‘extra’
constraints introduced by specific RNA-protein interac-
tions and by co-localization of the RNA ends at a sym-
metry-breaking protein in an otherwise icosahedral cap-
sid, resulting in a majority fraction of the RNA being
ordered.

In this article we discuss the necessarily limited extent to
which ssRNA genomes are ordered inside their protective
capsids, how this is related to the nature of the spontane-
ous co-self-assembly of RNA and protein, and how it can
be determined by high-resolution structural studies using
X-ray crystallography and electron microscopy — much as
has been done for individual protein subunits. Indeed,
structural virology has a history [23] that is as old as that of
protein crystallography: as early as the mid/late 1930s X-
ray diffraction was reported from concentrated solutions
of tobacco mosaic virus (TMV), a cylindrical-capsid posi-
tive-sense ssRINA virus [24]. This was a time when it was
not even clear that the TMV virus particles contained
both protein and RNA, and twenty years before RNA was
understood to be the ‘messenger’ between DNA and
protein sequence. But by the early 1940s these X-ray
studies were able to provide important information about
the sizes and shape of the TMV virions (18nm-by-300 nm
cylinders), soon corroborated by low-resolution electron

Current Opinion in Virology 2022, 52:203-210

www.sciencedirect.com



How and why RNA genomes are (partially) ordered in viral capsids Knobler and Gelbart 205

microscopy imaging [25]. And in the mid-1950s the heli-
cal nature of these particles [26] and the icosahedral
symmetry of spherical viruses [27] were established,
followed by the first atomic-resolution X-ray crystallo-
graphic studies of icosahedral RNA viruses in the late
1970s and early 1980s [28,29]. While this work showed the
detailed organization of the capsid proteins in the shell
surrounding the genome, no strong electron density — let
alone structure — could be ascribed to the RNA. The
presence of a shell of RNA inside the capsid was identi-
fied by small-angle neutron scattering [30] but it was only
a decade later that a viral structure was determined in
which order associated with the RNA could be identified
[31]. In the ensuing forty years a thousand icosahedral
virus structures have been placed in the Protein Data
Bank [32] (with the number increasing rapidly upon the
advent of cryoelectron reconstructions), and several pro-
tein structural ‘folds’ —like the ‘jelly-roll’ [33] — have been
shown to be common to groups of viruses. But despite
these significant advances in our knowledge of viral
capsid structure, allowing us to deduce the position of
essentially every amino acid residue, we still know little
about the structure of the RNA within them — as has been
put succinctly, ‘[encapsidated] viral RNAs are the dark
matter of structural virology’ [34].

The case of perfect genome ordering

As an outlier we have the singular case of TMV - and a
small handful of other cylindrical viruses, for example,
Ebola [35] — in which the ssRNA is perfectly ordered in its
virion. This comes about because of the unique way in
which the RNA is packaged into its capsid protein. More
explicitly, instead of being a hollow (icosahedrally sym-
metric) sphere, the TMV capsid shell is a hollow (helically
symmetric) ¢y/inder, with a thickness of 7nm and inner
and outer radii of 2 and 9nm. But the overwhelmingly
important difference between this virion and virtually all
others is that the RNA is not contained in the hollow
interior of the shell but is instead embedded iz the protein
irself. Remarkably, as reported in classic back-to-back
papers [36] by Rosalind Franklin and Donald Caspar in
which they compared the radial density profiles of TMV
cylinders with and without RNA, the RNA is buried
2—4nm into the shell. Further, its string of nucleotides
has the full helical symmetry of the capsid, and is in this
way stripped of all its native secondary/tertiary structure
and is perfectly ordered.

An inescapable consequence of perfect order for the RNA
in its TMV-packaged state is the huge increase in its free
energy from its ‘free state’, equilibrated in physiological
solution. The packaged RNA - with its single helical,
hydrogen-bond-free, configuration — has none of the
benefit of the self-complementary base-pairings or ter-
tiary-structure interactions it enjoys in its free state, nor of
the free-state entropy arising from the many configura-
tions associated with each of the large number of

thermally accessible secondary structures. Of course,
what offsets these free energy gains is the strong stabili-
zation of the ssRNA helix by the capsid proteins in which
it is embedded, three nucleotides per subunit. Clearly
these RNA-capsid interactions are huge compared to
those present in the usual case of RNA confined in the
hollow interior of the majority of spherical viruses and of
cylindrical viruses as well.

Partial genome ordering

In principle the 3D structure of partially ordered RNA in a
viral capsid, that is, the structures present in sufficiently
large subsets of the RNA configurations, can be deter-
mined by asymmetric reconstruction of cryoelectron
microscopy images. Among the few such studies that
have been carried out, two reconstructions, that of the
plant virus BMV and that of the bacteriophage MS2,
provide interesting contrasts even as their capsids are
closely identical in diameter, have 7'=3 triangulation
numbers, and package RNAs ~3000 nt in length.

Weak RNA ordering: BMV

Plant viruses are unique in that a significant fraction (30—
40%) of them are — like BMV — multipartite, that is, their
genes are not all contained in the same virion [37]. In
particular, the BMV genome consists of three single-
stranded positive-sense RNAs: RNA1 (=3200nt) and
RNAZ2 (/2800 nt) which code for the replicase and heli-
case proteins, and RNA3 (=2100 nt) which codes for the
movement and capsid proteins. These gene molecules
are packaged into identical capsids, one containing
RNAI, one containing RNAZ and a third containing
RNA3 and a subgenomic RNA4 (=700 nt) that provides
redundant coding for the CP. Transfer of the BMV
genetic information to a cell therefore requires infection
by no less than three types of capsids, each containing
~3000 nts.

The capsid shells, composed of 180 copies of a =20 kDa
protein, are indistinguishable. This fact, and the near
equivalence of the mass of the RNA they contain, make
it nearly impossible to isolate one virion type from
another by physical means such as sedimentation. Sepa-
ration by electrophoresis is also precluded because the
electrophoretic mobility of BMV is independent of the
charge of the encapsidated cargo [38]. As a result, any
measurements reported for purified BMV represent an
average of those properties over the three virus types,
which substantively limits the resolution of structural
studies of the RNA. This limitation has been overcome
by Chakravarthy ez a/. [39°°] who produced BMV virions
with unique RNA content by agrobacterial infection in
plants. Using this strategy, BMV virions containing only
RNA3 + RNA4 were synthesized and their structure
determined by cryoEM reconstructions [40°°].
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Figure 2

Figure 3
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Average icosahedral order of encapsidated BMV RNA.

Symmetric reconstruction of BMV illustrating how the RNA (orange)
appears as rings of density around each of the capsid pentamers. (a):
Entire virus. (b): Back half, showing the capsid interior [40°°].

Figure 2 shows BMV reconstructions in which icosahe-
dral symmetry has been imposed. This symmetry impo-
sition necessitates that any RNA density resolved adhere
to icosahedral symmetry, and as such, it cannot resolve
any asymmetric RNA density. The RNA density
(orange) is seen only at the interior surface of the capsid
and, notably, the only RNA density resolved is found to
be interacting with the positively charged N-termini of
the CP, a result of the electrostatic attraction between
the protein N-termini and the negatively charged phos-
phate backbone of the RNA. More specifically, the RNA
interacts with the N-termini of the hexameric CP sub-
units, which extend outward from the threefold symme-
try axes along the twofold symmetry axes at the ‘edges’
of the pentamers (the fivefold symmetry axes), resulting
in the formation of RNA ‘rings around the pentamers’.
The fact that the interior of the particle appears empty
indicates that much of the RNA is disordered and hence
does not survive icosahedral averaging: it is estimated
that less than 50% of the total RNA density is resolved in
the icosahedrally symmetric (orange) structure shown
here. We note further that no features like double-helix
grooves are discernible, and certainly fitting to nucleo-
tide models is not possible. The fact that the resolved
RNA density lacks a particular structure implies that the
CP and RNA are interacting through non-specific inter-
actions that do not depend on the presence of a unique or
predominant RNA configuration, and that this density
represents instead an ensemble of RNA secondary/ter-
tiary structures.

Surprisingly, attempts at carrying out an asymmetric
reconstruction — both with and without capsid subtrac-
tion — produced little new information about the struc-
ture; in other words, the symmetric and asymmetric
reconstructions of BMV are nearly identical, suggesting
that the RNA density is not sufficiently ordered, and

Current Opinion in Virology

Absence of a dominant RNA configuration in BMV virion.
Asymmetric reconstruction of the internal density associated with the
N-termini CP and RNA at the twofold axis. Shown are six of twenty
similar but distinct representative three-dimensional RNA
conformations, indicative of the lack of a specific organization [40°°].

therefore, cannot be reconstructed. As such, the internal
RNA genome was examined wusing ‘subparticle
reconstruction’ which focuses on the CP N termini
and the RNA at each of the three symmetry axes. In
each instance there is no unique configuration, as shown
for example in Figure 3. The structures generated
through the subparticle analysis at the twofold axis have
been divided into 20 classes, and an asymmetric recon-
struction has been carried out separately for each of
them, thereby allowing for only the signal in this sub-
particle region to contribute to the final reconstruction.
The RNA density for six representative classes is shown,
from which it is clear that there is no unique or dominant
configuration. Further, the generated classes were
almost equally populated, suggesting strong diversity
in structure across the reconstructions. A similar result
was found for subparticle reconstructions at the threefold
and fivefold axes. These cryoEM results make clear that
in BMV there is no unique RNA configuration, but rather
an ensemble of conformations associated with the pack-
aged genome.

This lack of preference for a particular configuration of
the encapsidated RNA3 + RNA4 is consistent with the
fact that RNA1 and RNAZ2 - involving very different
sequences and ensembles of secondary and tertiary struc-
tures from RNA3 + RNA4 — need also to be accommo-
dated in/packaged by identical capsid shells. Accordingly,
there is evolutionary pressure on the virus for its capsid
protein to bind and package RNA using non-specific
mechanisms, for example, the nucleotide-sequence-inde-
pendent electrostatic  interactions associated with
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phosphate charge on the RNA backbone and the cationic
residues in the CP N-termini that end up lining the inside
of the capsid.

Bean Pod Mottle Virus is the first virus in which struc-
tured RNA was identified. It has a bi-partite genome
consisting of 3500 nt and 5800 nt ssRNA positive-sense
RNAs packaged into separate but identical T = 3 capsids
identified on the basis of sedimentation as, respectively,
the M (medium) and B (bottom) components; 20 % of the
capsids formed 77 vivo are empty and constitute the light
(L) component. Chen, et al. [31], using x-ray crystallog-
raphy, solved the structure of the M component and
found that about 20% of the RNA has a single-stranded
helical structure with base stacking in the form of 33 nt
arranged in trefoil rings around the 20 three-fold axes.
From analysis of the nucleotide sequence of this compo-
nent it was concluded [41] that there were “no reiterated
structures which might obviously account for the appear-
ance of ordered RNA” in its three-dimensional structure;
Lin, et al. [42], however, noted that there are numerous
pentameric sequences of the form APuPyPyPy dispersed
through the genome, but without any regular order, which
may interact with the protein and function as packaging
signals. Interestingly, a study [42] of the B component
showed an RNA structure that, except for subtle differ-
ences, is virtually identical to that of the M component. In
the case of single-molecule-genome ssRNA viruses like
STMV [43] and two-molecule-genome-but-single-capsid
Pariacoto virus (PaV) [44], there is more organization of
the RNA than in the multipartite bromoviruses, specifi-
cally involving the ordering of duplexes near the inner
capsid surface. (The ‘satellite’ virus STMV has a 1058-nt-
long RNA genome packaged in a 7'= 1 60-subunit protein
shell, and Pariacoto has a pair of 3011-nt and 1311-nt RNA
genes packaged together in a 7= 3 180-subunit shell.) But
the ordered RNA portions still encompass only a fraction
of the RNA, with disordered connections between the
duplexes that are not resolvable in reconstructions. There
are, unfortunately, very few studies in which the second-
ary structures before and after packaging have been
probed. One example [45°] is that of STMV, where
differences in the secondary structures of ‘free’ and ‘in
virio’ forms of the genome show that the packaged form
involves more branching of the RNA and larger, more-
flexible, single-stranded loops between duplexes, consis-
tent with the susceptibility of these helices to being
icosahedrally ordered through interaction with the capsid
edges. Indeed, X-ray crystallographic studies show that a
significant fraction of the packaged RNA is organized into
icosahedrally ordered double-helical segments, though it
is important to note that the imposition of icosahedral
symmetry obfuscates any non-icosahedrally ordered den-
sity [43]. This reorganization of the RNA upon packaging
is also consistent with cryo-EM imaging showing that
STMV is unusually extended when free in solution [46].
Similarly, icosahedrally averaged X-ray crystallographic

and cryoEM reconstructions of Pariacoto virus show that
about a third of the RNA is organized into a dodecahedral
cage of co-linear duplexes at the inner surface of the
capsid — again, this cage structure may be the result of
imposing symmetry on the RNA density resolved [44]; in
this case, as with BMV, the cationic N-termini of CPs
penetrate the capsid interior and interact nonspecifically
with the anionic RNA. Clearly it is important to elucidate
further the changes in the ensemble of secondary struc-
tures undergone as these ssRNA viral genomes are pack-
aged through interactions with their capsid proteins and
become partially ordered.

Substantial RNA ordering: MS2

In contrast, asymmetric reconstructions of MS2 can be
made without recourse to subtraction of the icosahedral
capsid contribution. In particular, two recent studies, one
at a resolution of 8.7 A [47°] and the other at 4.4 A [48°°]
reveal a high degree of ordering of the ssRNA genome in
this virion. More explicitly, unlike for BMV, when the
data sets in the higher-resolution study [48°°] were
divided into 10 classes and subjected to refinement,
the resulting RNA density maps were almost identical,
consistent with a single dominant structure. A significant
portion of the genome could be resolved to sufficient
resolution that the electron density shows prominent
major and minor grooves, indicating the presence of
dsRNA. In addition, as many as fifty stem loops can be
identified, most of which contact the capsid at their tip,
and sixteen of these stem loops were sufficiently resolved
to permit individual nucleotides to be identified, which
allowed the backbone of 80% of the genome to be traced
and a model of its structure to be constructed: see
Figure 4. Further, several long-range base-pairs and kis-
sing-loop interactions were determined.

Figure 4 points up the asymmetry of the MS2 RNA
structure in a very particular way, as seen in the conspic-
uously higher density (and number of highly ordered
stem loops) proximal to the maturation protein, and
the extended distribution of resolved RNA stem loops
across the interior of the particle. The ordering of the
structure arises from two main sources that go beyond the
simple confinement of the genome. First, there are specific
interactions — ‘packaging signals [PSs]’ — associated with
the stem loops that interact strongly with the CP (in
particular, three conserved motifs of CP-RNA interac-
tions were determined from the cryoEM structure).
These structures and their role in genome packaging
have been extensively investigated for MS2 and argued
to both drive the self-assembly process and determine the
unique RNA configuration arising from a special distri-
bution of the PSs throughout the genome [49,50°]. The
second extra layer of constraint on the genome organiza-
tion in MS2 arises from the presence of a maturation
protein that replaces two of the CPs at one of the
icosahedral twofold axes, breaking the capsid symmetry,
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Figure 4
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Reconstruction of the dominant RNA configuration in MS2 virion.

Backbone structure of the MS2 RNA and its maturation protein (magenta) [48°°]. The blue-to-red coloring indicates 5’ to 3’ direction. The 16 high-

resolution stem loops are indicated by ribbons.

and extending out of the capsid for binding host cells and
initiating infection. Although in the asymmetric recon-
struction the protein appears to bind only to the 3’ end of
the RNA (see Figure 4), it has been demonstrated that
there is also binding at the 5’ end, effectively circularizing
the RNA [51] (with a similar situation for the related
phage QB [52]). These results make clear how and why, in
contrast to BMV where the RNA is uniformly distributed
at the capsid surface and is described by an ensemble of
secondary/tertiary structures, a single dominant configu-
ration is present within the MS2 virion. In other words, a
majority fraction of the MS2 ssRNA genome transitions
from an ensemble of secondary/tertiary structures in
solution to essentially a single configuration after
encapsidation.

Conclusions

The ordering of the RNA genomes in BMV and MS2
represent two extreme scenarios — an ensemble of struc-
tures in BMV, and a predominant ordered structure in
MS2. It appears that the order in MS2 is due primarily to
the constraining influence of the maturation protein and
its effective circularizing of the RNA and ‘tying up’ of its
ends at a particular point on the inside surface of the
capsid. In this connection it would be interesting to
compare the genome order in MS2 with that of an
vitro reconstituted capsid that does not include the mat-
uration protein.

It is likely that partial order associated with ensembles of
RNA structures is the more common scenario for single-
stranded genomes. The next several years are likely to
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feature many new high-resolution efforts to identify and
characterize the nature and extent of genome order in
RNA viruses, with the challenge of relating this order
(and lack thereof) to the genome packaging and delivery.
These studies will further elucidate, and be informed by,
the role of ‘packaging signals’ — (sequence-) specific RNA
structures that bind capsid protein with high affinity and
direct the assembly of and stabilization of capsids.
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