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ABSTRACT

For over a century, reduced order models (ROMs) have been a fundamental discipline of theoretical fluid mechanics. Early examples include
Galerkin models inspired by the Orr–Sommerfeld stability equation and numerous vortex models, of which the von K�arm�an vortex street is
one of the most prominent. Subsequent ROMs typically relied on first principles, like mathematical Galerkin models, weakly nonlinear
stability theory, and two- and three-dimensional vortex models. Aubry et al. [J. Fluid Mech. 192, 115–173 (1988)] pioneered the data-driven
proper orthogonal decomposition (POD) modeling. In early POD modeling, available data were used to build an optimal basis, which was
then utilized in a classical Galerkin procedure to construct the ROM, but data have made a profound impact on ROMs beyond the Galerkin
expansion. In this paper, we take a modest step and illustrate the impact of data-driven modeling on one significant ROM area. Specifically,
we focus on ROM closures, which are correction terms that are added to the classical ROMs in order to model the effect of the discarded
ROM modes in under-resolved simulations. Through simple examples, we illustrate the main modeling principles used to construct the
classical ROMs, motivate and introduce modern ROM closures, and show how data-driven modeling, artificial intelligence, and machine
learning have changed the standard ROM methodology over the last two decades. Finally, we outline our vision on how the state-of-the-art
data-driven modeling can continue to reshape the field of reduced order modeling.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0061577

I. INTRODUCTION

One of the very first exciting experiences that kids go through is
playing with water; they might throw a stone in a lake, float a rubber
duck in a bathtub, or even stir a straw while enjoying a tasty cup of
juice! They like doing this over and over again because of the magnifi-
cent patterns that keep forming every time. These patterns or coherent
structures are ubiquitous in the world, in general, and in fluid flows, in
particular. They attracted Leonardo da Vinci more than five centuries
ago, resulting in some of his outstanding artwork.1 Fluid dynamicists
are especially lucky to enjoy the beauty of these formations on a daily
basis, but other than their esthetic value, these patterns come with a
practical benefit. In particular, these coherent structures are the cor-
nerstone in the development of reduced order models (ROMs) for fluid
flows. ROMs are built by using available data to identify and rank
these structures, choosing the most effective few of them, and tracking
their dynamical behavior in order to approximate the evolution of the

underlying flow. The computational cost of the relatively low-
dimensional ROMs is dramatically lower than the computational cost
of a direct numerical simulation, which aims at capturing all the flow
scales. Since their introduction to the field of fluid dynamics more
than fifty years ago,2 ROMs have witnessed tremendous changes.
Arguably, data-driven modeling has been the main driving force
behind these changes. Over the last two decades, the state-of-the-art
methods from machine learning (ML) have reshaped the field of
reduced order modeling.

The main objective of this study is to provide an overview of
data-driven reduced order modeling strategies relevant to the fluid
dynamics applications. The topic spans a wide spectrum, and there are
many review articles on the pertinent discussions, methodologies, and
applications in fluids3–19 as well as closely related fields.20–43

Therefore, it is not our intention to include a detailed discussion, but
rather to survey one important ROM research area, closure modeling,
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and provide our subjective perspectives on how data-driven modeling
has made an impact in this area. In particular, given the recent interest
in ML applications in fluid dynamics, our survey is intended to
encourage the cross-disciplinary efforts between the practitioners,
physicists, mathematicians, and data scientists. We hope that our
paper will shed light on the new ideas of integrating both physics in
ML models and ML-enabled capabilities in principled models, a rap-
idly emerging field that came to be known as physics-guided ML
(PGML). These developments are born to conform with the scientific
foundations that are moving rapidly to the industry to enable the next
generation of digital twin technologies.44

This paper first aims at identifying the imminent practical and
mathematical needs in designing closure approaches for ROMs of
nonlinear parameterized fluid dynamics systems, i.e., complex natural
or engineered systems comprising coupled partial differential equa-
tions (PDEs) with variable parameters, and initial and boundary
conditions.45 Such models usually serve as the inner-workhorse for
outer-workflow loops, such as optimal design,46 control,47,48 estima-
tion, and discovery.28,49–52 In particular, there has recently been an
increasing interest in ROMs from the fluid dynamics community,
where the emerging data-driven methods prevail. This is primarily
due to the fact that data and centralized powerful open-source
machine learning and optimization libraries have become widespread,
as indicated in Fig. 1. Although we mainly focus on the incompressible
flows, we emphasize that there have been inspiring works done in the
compressible case.53–67

To begin with, the reduced order modeling can be viewed as the
art of converting existing prior information and collected data into a
dramatically more efficient, yet relatively accurate, surrogate model to
be used on demand. For example, a conceivable strategy of flow

control is to put most of the demanding calculations offline and to
keep only the low-rank updates for fluid flow evolutions online.68,69

Emerging digital twin infrastructures are one of the main beneficiaries
and driving forces behind the efficient surrogate model development
efforts.70,71 Although the ROM concept is not new in fluid dynamics,
there are still many new fronts and opportunities, mainly due to the
recent advances in ML algorithms and easy-to-use open-source pack-
ages that can be utilized in many control and optimization processes.
We also note that, in many fluid dynamics applications, the typical
data sparsity (due to the number of resolved degrees of freedom being
orders of magnitude larger than the number of available sensors) and
corruption (e.g., due to signal noise, interference, and sensor malfunc-
tioning) motivate the physics-informed data-driven modeling.

Among fluid dynamicists, the projection-based linear methods
have become popular. Both proper orthogonal decomposition
(POD)72 and dynamic mode decomposition (DMD)73 enabled
approaches have been exploited. In our work, we mostly focus on
POD-relevant literature and refer the reader to Kutz et al.73 for the
DMD principles. The mathematical foundations behind the POD-
based linear subspace approaches go back to the principal component
analysis (PCA), pioneered by Pierson74 in 1901 and later demon-
strated graphically by Hotelling75 in 1933. This powerful statistical
approach (also known as Kosambi–Karhunen–Loève expansion76,77 or
empirical orthogonal functions78,79) was first introduced in the fluid
dynamics community by Lumley2,80,81 and came to be known as POD.
In practice, the method of snapshots, established by Sirovich,82 was a
key enabler to efficiently determine the POD modes for large-scale
problems, often encountered in fluid dynamics. Of particular interest
when characterizing the dynamics of coherent structures in wall
bounded flows, the beauty of the POD modeling approach was

FIG. 1. An overview of data-driven reduced order modeling in fluid dynamics.
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demonstrated in the seminal works by Aubry et al.83,84 An admittedly
incomplete chronological evolution of projection-based ROMs is given
in Table I.

A key advantage of POD is the guaranteed minimal representation
error for the employed snapshots with respect to all other Galerkin
expansions with the same number of modes. Another advantage is the
orthogonality of the constructed modes that naturally leverages the use
of a Galerkin type projection onto the governing PDEs to obtain a sys-
tem of ordinary differential equations, defining a dynamical system for
the amplitudes of the POD modes. These models are often intrusive in
the sense that both the governing equations and the prerecorded snap-
shot data are required to build a ROM. Postulating an alternative

approach, DMD-based approaches and many other nonintrusive mod-
els bypass this equation dependency in order to construct the ROM
solely based on the prerecorded snapshots.13,14,28,40,85–94

If we adopt the training and testing terminologies from ML, both
POD- and DMD-based models require the training snapshot data to
build the ROM (i.e., data-driven modeling). The fundamental question
in practice is how well these ROMs will perform in testing conditions
(i.e., the conditions that are not included in the training data). The
trade-off performance between training and testing constitutes one of
the crucial questions about the credibility of the proposed ROMs and
motivates more efforts, ideas, and collaborations to push the frontiers
of existing ROM frameworks. Physics-informed ML has also made an

TABLE I. An incomplete chronological list of key contributions to projection-based ROMs in fluid dynamics.

Year Study Key contribution

1915 Galerkin95 Galerkin method for solving (initial) boundary value problems
1962 Saltzman96 Low-dimensional modeling (with 7 modes, see also Ref. 97 for a revisit)
1963 Lorenz98 Low-dimensional modeling (with 3 modes)
1967 Lumley2 Proper orthogonal decomposition (POD)
1987 Sirovich82 Method of snapshots
1988 Aubry et al.83 First POD model: dynamics of coherent structures and global eddy viscosity modeling
1994 Rempfer and Fasel99 Linear modal eddy viscosity closure
1995 Everson and Sirovich100 Gappy POD
2000 Ravindran101 Galerkin ROM for optimal flow control problems
2001 Kunisch and Volkwein102 First numerical analysis of Galerkin ROM for parabolic problems
2002 Willcox and Peraire85 Balanced truncation with POD
2003 Couplet et al.103 Guidelines for modeling unresolved modes in POD-Galerkin models
2004 Sirisup and Karniadakis104 Spectral viscosity closure for POD models
2004 Barrault et al 86 Empirical interpolation method (EIM)
2005 Mezić87 Spectral decomposition of the Koopman operator
2007 Rozza et al.105 Reduced basis approximation
2007 Cao et al.106 Galerkin ROM for four-dimensional variational data assimilation
2008 Amsallem and Farhat107 Interpolation method based on the Grassmann manifold approach
2008 Astrid et al.108 Missing point estimation
2009 Rowley et al.109 Spectral analysis of nonlinear flows
2009 Sapsis and Lermusiaux110 Dynamically orthogonal field equations
2010 Schmid91 A purely nonintrusive perspective: dynamic mode decomposition (DMD)
2010 Chaturantabut and Sorensen90 Discrete empirical interpolation method (DEIM)
2013 Carlberg et al.111 The Gauss–Newton with approximated tensors (GNAT) method
2013 Cordier et al.112 Proof of global boundedness of nonlinear eddy viscosity closures
2014 €Osth et al.113

ffiffiffiffi
K
p

-scaled eddy viscosity concept
2015 Ballarin et al.114 Stabilization of POD Galerkin approximations
2015 Schlegel andNoack115 On bounded solutions of Galerkin models
2016 Peherstorfer andWillcox116 Data-driven operator inference nonintrusive ROMs
2016 Brunton et al.117 Sparse identification of nonlinear dynamics (SINDy)
2016 Sieber et al.118 Spectral POD
2018 Towne et al.119 On the relationship between spectral POD, DMD, and resolvent analysis
2018 Reiss et al.120 Shifted/transported snapshot POD
2018 Loiseau et al.121 Feature-based manifold modeling
2019 Mendez et al.122 Multiscale proper orthogonal decomposition
2021 Li et al.123 and Fernex et al.124 Cluster-based network models
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impact in reduced order modeling. In this hybrid approach, while the
training data provide a set of global basis functions, the underlying
governing equations (i.e., physics) constrain the evolution within the
linear subspace defined by these POD basis functions. Deep discus-
sions on hybrid approaches that combine deterministic and statistical
modeling can be found elsewhere.20,125–131

Projection-based ROMs have been explored for decades, and
these explorations have been paying off in many applications. They
have great promise for flow control of industrial processes, for enlarg-
ing the ensemble size for flow problems with uncertain data, and even
for providing accurate forecasts of fluid behavior. The apparent suc-
cess of the low-rank ensemble nonlinear filtering methods utilized in
weather forecasting centers also suggests that there is a prospect of
using a system whose dimension is substantially lower than the dimen-
sion of the state space. Yet, the ROMs’ potential has been only realized
for a small collection of canonical flows. One of the main roadblocks
for ROMs of realistic flows is that they are not accurate models for the
dominant modes. In practice, a closure or correction term is generally
added.112,113,132–139 In many cases, there are complementary physical,
statistical, and computational challenges that arise in the development
of ROMs and ROM closures, topics that we will systematically survey
in this work toward establishing foundations to close the gap between
what ROMs can do and where they are needed.

II. REDUCED ORDER REPRESENTATION

A reduced order representation (ROR) can be viewed as a general-
ization of the latent space or manifold, i.e., a simplifying kinematic
approximation. For example, the POD procedure introduced in Sec.
II B constitutes a best-fit linear manifold to establish a ROR. The ROR
facilitates a data compression for an ensemble of snapshot data.
Physically interpretable RORs are possible when dominant coherent
structures are present. This is clearly ubiquitous in the fluid flows that
we encounter in our daily life, as introduced in Sec. I, as well as in
large-scale and industrial settings. For spatiotemporal dynamical sys-
tems, the rank-r ROR of the state uðx; tÞ can be simply written as

uðx; tÞ ¼
Xr
i¼1

aiðtÞwiðxÞ; (1)

where x refers to the spatial coordinates, t is the time, wi denotes the
ith mode in the ROR, and ai is the corresponding amplitude or coeffi-
cient. Although it is generally assumed that the basis functions wi are
time-independent and the dynamical evolution is encapsulated in the
coefficients ai, there have been studies that admit time-evolving basis
functions as well.110,140–142

A. Eigenfunction expansion

Any set of n linearly independent vectors can serve as a basis for
an n-dimensional vector space. Any vector in this space can be
expressed as a linear combination of these linearly independent basis
vectors. In an infinite dimensional vector space of functions, there
exists an infinite set of linearly independent basis functions
fwiðxÞgi¼1;2;… such that a given function u in this space can be writ-
ten as a linear combination of these functions. It is straightforward to
show that any periodic, piecewise continuous function can be written
as an infinite sum of sines and cosines (e.g., Fourier series143). The
eigenfunction expansion can be viewed as a generalization of the

Fourier series expansion for arbitrary boundary conditions, where the
Sturm–Liouville theory provides an infinite sequence of eigenvalue–
eigenfunction pairs. ROR also seeks an expansion of an arbitrary func-
tion in terms of a given set of basis functions. However, in contrast to
the methods mentioned in this section, ROR aims at finding a low-
dimensional basis instead of an infinite dimensional one.

To illustrate these concepts, let us consider a linear advection
problem in a spatial domain ½0; L�,

@u
@t
þ c

@u
@x
¼ 0; (2)

where c is the wave speed. To select the appropriate basis functions,
we consider the boundary conditions. For example, if we have homo-
geneous Dirichlet boundary conditions, i.e.,

uðx ¼ 0; tÞ ¼ 0; uðx ¼ L; tÞ ¼ 0 for t 2 0;T½ �; (3)

we might choose a set of orthonormal basis functionswiðxÞ defined as

wiðxÞ ¼
ffiffiffi
2
L

r
sin

ip
L
x

� �
; (4)

in order to approximate u as follows:

uðx; tÞ ¼
Xr
i¼1

aiðtÞwiðxÞ: (5)

In a more sophisticated scenario with the homogeneous
Neumann condition on the left boundary (x ¼ 0Þ and the homoge-
neous Dirichlet condition on the right boundary (x ¼ L ¼ 1), i.e.,

@u
@x

����
x¼0
¼ 0; ujx¼1 ¼ 0 for t 2 0;T½ �; (6)

we can define a set of non-orthogonal functions that satisfy Eq. (6) as
follows:

/iðxÞ ¼ cos ðipxÞ � ð�1Þi; (7)

and apply the Gram–Schmidt orthonormalization process to obtain
the following set of basis functions:

wiðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffi
4i�2
2iþ1

r
ð�1Þiþ1

2i�1 þcosðipxÞþ
2

2i�1
Xi�1
j¼1
ð�1Þiþjþ1cosðjpxÞ

24 35:
(8)

Here, we note that these basis functions are orthonormal, i.e.,ð1
0
wiðxÞwkðxÞdx ¼ dik; (9)

and they are derived from the Fourier harmonics that satisfy the
boundary conditions.

Next, we focus on an illustrative example with periodic boundary
conditions, with the domain length L ¼ 2p, the maximum time
T ¼ 2p, and the wave speed c¼ 1. For a given initial condition
uðx; t ¼ 0Þ ¼ cos ðxÞ, Eq. (2) admits an analytical solution in the
form of a right traveling wave uðx; tÞ ¼ cos ðx � tÞ. Let us approxi-
mate u using a modal expansion with only two Fourier harmonics
defined by
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uðx; tÞ ¼ a1ðtÞ cos ðxÞ þ a2ðtÞ sin ðxÞ: (10)

Substituting Eq. (10) into Eq. (2), we get

@

@t
ða1ðtÞ cos ðxÞ þ a2ðtÞ sin ðxÞÞ

þ @

@x
ða1ðtÞ cos ðxÞ þ a2ðtÞ sin ðxÞÞ ¼ 0: (11)

Once we multiply Eq. (11) with cos ðxÞ and integrate over the domain,
we obtain an equation for a1ðtÞ,

da1
dt
¼ �a2; (12)

and similarly, multiplying Eq. (11) with sin ðxÞ, the evolution equation
for a2 becomes

da2
dt
¼ a1: (13)

Equations (12) and (13) constitute the well-known Galerkin system.
Using the initial condition given at t¼ 0,

a1ð0Þ ¼ 1; a2ð0Þ ¼ 0; (14)

we can obtain an analytical solution of the Galerkin system given by
Eqs. (12) and (13) as

a1ðtÞ ¼ cos ðtÞ; a2ðtÞ ¼ sin ðtÞ: (15)

Therefore, the two-mode Galerkin model approximation given by Eq.
(10) yields a solution

uðx; tÞ ¼ cos ðtÞ cos ðxÞ þ sin ðtÞ sin ðxÞ; (16)

which can be further written as

uðx; tÞ ¼ cos ðx � tÞ: (17)

As we illustrated in this example, the two-mode approximation
retrieves the exact solution. One of the key aspects in such a modal
scheme is, therefore, related to the characteristics of the selected basis
functions, which ultimately provided the best possible expansion in
this example. A central question is how we would know a priori the
appropriate cos ðxÞ and sin ðxÞ basis functions to approximate u.

We also note that the multimodal method utilizes similar argu-
ments to represent the solution as a superposition of an infinite set of
generalized Fourier basis functions and time-dependent coefficients.
The multimodal method has been extensively exploited to study the
sloshing problem,144–146 where a set of natural harmonic functions are
defined to satisfy the boundary conditions. This definition is challeng-
ing since each individual tank shape requires a dedicated applied
mathematical and physical study. Moreover, Faltinsen and
Timokha147 reported that the simple truncation of the infinite sum to
a finite sum r can yield either inaccurate or expensive computations.
Thus, the selection of the dominant modes is a non-trivial task. A
truncation based on employing special asymptotic relationships, pos-
tulated following mathematical or physical arguments, has been
shown to produce good results for the sloshing problem.148–153

Nevertheless, these relations are valid under reasonable assumptions
for specific tank geometries, which poses a fundamental challenge in
the multimodal method’s application in arbitrary settings.147 It is,

therefore, tempting to explore the emerging data-driven tools to miti-
gate such problems. For example, as discussed in Sec. II B, one could
consider the POD procedure, which provides a systematic framework
that yields a set of basis functions (accompanied by a sorting mecha-
nism) from a set of snapshots.

B. Proper orthogonal decomposition: Linear best-fit
basis functions

In addition to the boundary conditions, we might have archival
data (i.e., snapshot fields) to help us construct the basis functions.
PCA74 can be used to construct the basis functions that optimally rep-
resent the data. In 1933, a geometric representation of PCA has been
proposed by Hotelling,75 and this concept has later become popular as
empirical orthogonal functions (EOF)154 in environmental science,
and POD84 in the fluid dynamics community. The method of snap-
shots82 has been instrumental in the development of POD-based
approaches.19 To compute the POD basis functions, let us assume that
we have access tom snapshots uðx; tiÞ for i ¼ 1; 2;…;m. A Reynolds
decomposition-like expansion can be written as

uðx; tiÞ ¼ �uðxÞ þ vðx; tiÞ; (18)

where �uðxÞ is a reference (e.g., ensemble mean) field, which can be
obtained as

�uðxÞ ¼ 1
m

Xm
i¼1

uðx; tiÞ; (19)

and the set of anomaly snapshots vðx; tiÞ for i ¼ 1; 2;…;m can be
defined as

vðx; tiÞ ¼ uðx; tiÞ � �uðxÞ: (20)

For clarity, we introduce the POD procedure for a scalar field
(POD is normally applied to the velocity vector field). Let us denote
tðx; tjÞ a component of the anomaly velocity vector field (e.g., the x-
component). A temporal correlation matrix A ¼ ½aij� can be con-
structed from these anomaly snapshots:

aij ¼
ð

X
tðx; tiÞtðx; tjÞdx; x 2 X; (21)

whereX is the spatial domain, and i and j refer to the snapshot indices.
We define the L2 inner product of two functions f and g as

ðf ð�Þ; gð�ÞÞ ¼
ð

X
f ðxÞgðxÞdx; (22)

which yields aij ¼ ðtðx; tiÞ; tðx; tjÞÞ from Eq. (21). The data correla-
tion matrix A ¼ ½aij� is a non-negative, symmetric m�m matrix, also
known as the Gramian matrix of tðx; t1Þ; tðx; t2Þ; …; tðx; tmÞ. If we
define the diagonal eigenvalue matrix K ¼ diag½k1;…:; km� and a
right eigenvector matrix C ¼ ½c1;…:; cm� whose columns are the cor-
responding eigenvectors of A, we can solve the following eigenvalue
problem to obtain the optimal POD basis functions:101

AC ¼ CK: (23)

In general, most of the subroutines for solving Eq. (23) give C with all
of the eigenvectors normalized to unity. The orthonormal POD basis
functions for the anomaly field, t, can be thus calculated as follows:
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wiðxÞ ¼
1ffiffiffiffi
ki
p

Xm
k¼1

cki tðx; tkÞ; (24)

where ki is the ith eigenvalue, cki is the kth component of the ith eigen-
vector, and wiðxÞ is the ith PODmode.

The eigenvalues are often stored in descending order for practical
purposes, i.e., k1 � k2 � � � � � km � 0, and the eigenvectors are nor-
malized in such a way that the basis functions satisfy the following
orthonormality condition:

ðwi;wjÞ ¼
1; i ¼ j;
0; i 6¼ j:

�
(25)

Now, we can linearly represent the anomaly field variable tðx; tÞ using
the PODmodes as follows:

tðx; tÞ ¼
Xr
i¼1

aiðtÞwiðxÞ; (26)

where ai are the time-dependent (pseudo) modal coefficients, and r is
the total number of retained modes after the truncation, with r � m.
These r modes with the largest energy content correspond to the larg-
est eigenvalues (k1; k2;…; kr). In general, adding more POD modes
reduces the POD-ROM error. We note, however, that this is not
always true. For example, adding POD modes that are polluted by
numerical noise can actually decrease the POD-ROM error (see, e.g.,
the numerical investigation in Ref. 155). Often, the value of r is deter-
mined by using the relative information content (RIC) index,156 which
is defined as

RIC ¼

Xr
i¼1

ki

Xm
i¼1

ki

; (27)

where RIC ¼ 1 refers to a complete representation of the data snap-
shots. For example, if one records a set of snapshots from the field
given by Eq. (17) [i.e., the solution of the advection problem in Eq.
(2)], let us say,m¼ 100 or more equally distributed snapshots between
t¼ 0 and t¼T, the POD analysis could offer a perfect representation
with RIC ¼ 1 using only two retained modes (r ¼ 2Þ since the under-
lying dynamics can be constructed by a linear superposition of two
harmonics. Of course, that is not always the case, and RIC becomes
smaller than unity even if we retain a substantial number of modes,
especially for turbulent flows.

This need for a large number of modes is one of the chief motivat-
ing factors for developing closure models to compensate the effects of
the truncated modes in ROMs. However, it is believed that there is no
separation of scales in turbulence, and therefore, most turbulent flow
problems cannot be characterized by a high RIC index. Specifically, if
there is no significant pattern in the evolution dynamics, there is a slow
decay rate for the eigenvalues kk, and retaining only a few modes cannot
capture the essential dynamics of turbulence. Thus, it is not surprising
that many ROM practitioners have often demonstrated their proposed
methodologies for problems that show somehow an underlying pattern
(e.g., a shedding pattern in simulating the von Karman street).

This picture can be linked to the Kolmogorov barrier,157 where
the linear reducibility (i.e., representing the underlying fluctuation field

as a linear superposition/span of a finite/limited number of basis func-
tions) is hindered. Modal expansions have an elliptic nature by con-
struction, and using such tools for convection-dominated flows with
higher degrees of hyperbolicity might often add another level of complex-
ity when designing projection ROMs. Then, a central question might
arise about these data-driven procedure: Do we really get any benefit
using the POD basis functions generated from prerecorded snapshots?
Although there might be a trade-off between storage, accuracy, and
efficiency, the answer probably depends on the problem at hand. It
might be a big yes if there is an underlying pattern (e.g., limit cycles or
quasi-periodic oscillations), and might be a no if the flow is highly tur-
bulent in a statistically non-equilibrium and chaotic state. In the latter
case, one might consider a standard local discretization (e.g., finite dif-
ference/element/volume) method or a pseudo-spectral method (sup-
ported by the harmonics that satisfy the boundary conditions) without
attempting to perform the POD procedure to compute a set of data-
driven global basis functions.

For instance, the fast Fourier transform (FFT) provides an
extremely efficient computational framework for models with such
global basis functions without requiring any additional storage for pre-
computed or measured snapshots to generate a set of data-driven basis
functions. The trade-off between the accuracy and computational effi-
ciency should always be considered carefully in generating data-driven
models like Galerkin ROMs. The complexity of a typical right-hand
side (RHS) computation of a pseudo-spectral solver becomes slightly
bigger thanOðnÞ, where n refers to the number of grid points. In con-
trast, the complexity of a typical Galerkin ROM is Oðr3Þ (there are
also additional costs associated with, e.g., collecting and processing
snapshots or solving an eigenvalue problem to generate a set of basis
functions). Therefore, the Galerkin ROM becomes a computationally
feasible approach if and only if a few number of retained modes are
utilized. As a rule of thumb, r should be significantly less than the
number of grid points in each direction for a canonical 3D problem
(e.g., r � 256 for a 2563 problem). Otherwise, it would be hard to jus-
tify that the model is indeed reduced order, since instead we could sim-
ply use the FFT algorithm to integrate the dynamical system equations
in the harmonic space. Same arguments hold true for using a more
flexible and convenient localized model, especially for problems with
more complicated geometries (e.g., with the finite element, finite dif-
ference, or finite volume method, where the RHS can be obtained in
OðnÞ computations).

C. Leveraging Reduced Order Representation

One of the major reasons for the inaccuracy of current ROMs in
the numerical simulation of complex flows is the quality of ROR,
which is the ability or inability of the ROM framework to represent
the underlying complex dynamics. Specifically, in order to determine
whether there is a valid ROR of the given system, we need to answer
the following questions: (i) Is the ROM basis able to accurately
approximate the dynamics? (ii) Is the Galerkin projection yielding an
accurate ROM?

Furthermore, the issue of the selection of a convenient domain
often comes into play. If the domain of influence is too small, there
might be no good dynamical prediction. On the other hand, when it is
too large, there could be too many uncorrelated events that have to be
lumped in global modes. These uncorrelated events might work
against the modeling accuracy since they often increase the
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deformation of modal expansion or degradation of the model repre-
sentation. In other words, the domain should be as small as possible
and as large as necessary. The correlation length might be a good ini-
tial reference scale to define the domain of interest. Dynamic mode
adaptation, parameter-space-time domain partitioning as well as smart
clustering ideas have been explored, although we believe this topic is
still in its infancy.

In practice, the construction of a good low-order space is a cor-
nerstone in projection-based ROM. That said, the representability of
POD basis functions becomes questionable for non-stationary,
strongly evolving, and convection-dominated flows. Being a linear-
based approach, PODmight not be sufficient to describe the nonlinear
processes. More importantly, using a Galerkin projection based on
elliptical ansatz for a hyperbolic problem could generate numerical
oscillations. Moreover, the POD is optimal globally in the sense that it
minimizes the averaged L2 error across all the snapshot data. This
raises the issue of modal deformation by the rapidly varying flow field
state in such a way that the resulting modes are not representative of
any of the system’s states. Furthermore, since the POD modes are
ranked based on their energy content, excursions in state spaces that
contain a small amount of energy can be overlooked by POD even if
these excursions might have significant impact on the dynamical evo-
lution (see Cazemier et al.,158 for example). Similar scenarios arise for
parameterized systems spanning a large parameter space when the sys-
tem’s behavior highly depends on the parameter value. Therefore, we
devote the rest of this section to the efforts aimed at enhancing the
basis representability by either improving the offline construction
stages or efficiently updating the ROM during online deployment.

One of the simplest approaches to improve the quality of the
POD basis functions is to enrich the snapshot data matrix with extra
information. For example, in addition to the exact flow field data, the
scaled difference between the consecutive snapshots (i.e., the difference
quotients) can be utilized such that the time derivative information is
better represented in the resulting modes.102,159 Moreover, instead of
collecting snapshot data at arbitrary time intervals and/or parameter
values, more effective sampling techniques should be pursued. In Ref.
160, a ROM is integrated into a Markov chain Monte Carlo (MCMC)
framework, where the posterior distribution estimated by the MCMC
algorithm is utilized to adaptively select the parameter values at which
snapshots are evaluated.

In an effort toward the accurate identification of coherent struc-
tures from experimental or numerical data, a spectral POD approach
has been developed,118 and its relationship to DMD and resolvent
analysis has been established.119 These studies use a technique that
performs several PODs on individual frequencies obtained from
Fourier-transformed windows of snapshot data. Thus, the modes we
get for each frequency correspond to a coherent frequency domain
structure. If an analysis of the eigenvalue spectrum for each frequency
reveals coherent structures, it can indicate that there is a physical pro-
cess which is occurring at that frequency. Hence, this becomes a useful
data analysis tool on top of providing orthogonal modes for ROMs. In
addition, transported snapshots POD approaches120,161 have been
introduced for convection-dominated transport systems. In particular,
these studies use a shifting operator on the snapshots (requiring inter-
polation on unstructured grids and some knowledge of the transport
speed) to allow POD or DMD to (more) efficiently approximate
advective systems. In their recent works, Mendible et al.162 employed

an unsupervised traveling wave identification with shifting and trunca-
tion (UnTWIST) algorithm161 to discover moving coordinate frames
into which the data are shifted, thus overcoming the limitations
imposed by the underlying translational invariance and allowing for
the application of traditional dimensionality reduction techniques.
Etter and Carlberg163 proposed a novel online adaptive basis refine-
ment mechanism for efficiently enriching the trial basis in a manner
that ensures convergence of the ROM to the FOM.

Localization methods have been successfully pursued to mitigate
the modal deformation of the POD basis by partitioning the state
space,164–167 time domain,157,168–175 physical domain,176–179 or param-
eter space180–182 using multiple local, piecewise affine subspace
approximations instead of a single global approximation. These parti-
tioning or time-varying approaches work by parsing the available
snapshot data into a few overlapping or non-overlapping groups (e.g.,
based on solution value, time, parameter, geometry, or component)
and applying standard modal decomposition techniques (e.g., POD)
for each region separately. This eventually yields a library of compact
ROMs, each suitable for a specific region and/or dynamics, and inter-
polation methods can be utilized when the region of interest does not
exist in the available library.

In this context, clustering techniques can be also utilized to effec-
tively perform such partitioning. Indeed, cluster-based reduced order
models (CROMs) have been proposed to tackle some of the potential
pitfalls of classical GROMs (e.g., the mismatch between the modal
expansion approach and the underlying dynamics, see Noack183);
CROMs start by sorting the snapshot data into a small number of
clusters (e.g., using k-means approach) with centroids being the repre-
sentative states in each cluster. Conceptually, this is similar to coarse-
graining the state-space (or generally the feature-space) into centroidal
Voronoi tessellation (CVT) generators.184 The transition dynamics
between these centroids can be modeled as a probabilistic Markov
model185–187 or a deterministic-stochastic network model.123,124,188

As highlighted in Sec. II B, POD provides an efficient way to
compress the data and explain the variance of the data better than
any other linear combination.189 Indeed, from a linear algebra per-
spective, it can often be formulated as a singular value decomposi-
tion, providing an optimal low-rank matrix approximation. This can
leverage highly performant and scalable algorithms to handle
extremely large datasets, benefiting from the rich legacy of linear
algebra investigations. From a statistical point of view, this orthogo-
nal projection provides linearly uncorrelated features. However, it
cannot reveal nonlinear correlations in the data. In contrast, mani-
fold learning (or representation learning) techniques aim at account-
ing for such nonlinear correlations to further reduce the
dimensionality of the problem. The generalizations of PCA to non-
linear settings often define a curve in the latent space which mini-
mizes the mean squared error of all variables. Yet, the smoothness of
the curve can be varied by the method. For example, an autoassocia-
tive or autoencoding neural network model190–192 and a kernel
PCA193 are two successful approaches of such a nonlinear PCA
(NLPCA) framework. We refer the reader to recent works194–196 for
excellent discussions on autoencoder technology in fluid dynamics
(see Fig. 2). We also note that other nonlinear dimensionality reduc-
tion techniques, such as principal curves,197 locally linear embed-
ding,198 isomap,199 and self-organized map200 approaches, can also
be regarded as a discrete version of NLPCA.
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It is worth noting that during the modal truncation step (reduc-
ing the dimensionality of the system), dependencies among the
retained and discarded modes generally yield inaccurate results if the
closure problem is not addressed. In this regard, persistent homology
(PH)201–205 provides a delicate balance between data simplification
and intrinsic structure extraction. PH is a tool in topological data anal-
ysis that aims at studying and extracting the features that persist across
multiple scales by casting the multiscale organization into a mathemat-
ical formalism. In particular, PH measures the lifetime of intrinsic
topological features using a filtration process to distinguish between
the long-lived features and the short-lived ones (which are considered
topological noise).206

However, the application of PH has been largely dedicated to
qualitative data classification and analysis, and its utility for quantita-
tive modeling and prediction (including ROM) is scarce.207 PH has
been utilized to characterize the time series from dynamical systems
based on topological features that appear in the solution manifold or
attractor.208–210 Rieck and Leitte211 used PH as an evaluation tool to
compare the performance of different dimensionality reduction algo-
rithms (e.g., PCA and isomap mentioned earlier). One of the major
challenges of employing PH is its prohibitive computational cost (for
the worst-case scenario). To increase the PH efficiency, Moitra et al.212

utilized a clustering technique to represent similar groups of data
points with their cluster centroid and applied PH onto these clusters.

III. FIRST-PRINCIPLE GALERKIN METHOD

Finite dimensional low-order models routinely arise when we
apply Galerkin type projection techniques to infinite dimensional
PDE models.213–215 We formalize the model reduction problem for
fluid flow systems, considering a generic prognostic equation as
follows:

@u
@t
¼ Fðu; x; tÞ; (28)

where u denotes the discrete approximation of a three-dimensional
(3D) dependent variable (e.g., density, velocity, temperature, mois-
ture); x denotes the independent spatial variables (e.g., latitude, longi-
tude, and height); and F defines the model’s dynamical core (e.g.,

semi-discretized PDEs representing mass, momentum, and energy
conservation), all written in vector form. Specifically, we explore the
autonomous dynamics case for a quantity of interest u, with F being
decomposed into linear L and nonlinearN operators as

du
dt
¼ LuþNðuÞ; (29)

where u 2 Rn and n is the number of degrees of freedom in the spa-
tial discretization. Considering the Navier–Stokes equations as a typi-
cal mathematical framework for fluid flow modeling, we highlight that
the linear and nonlinear operators often represent the diffusive and
convective effects, respectively.

In order to build the projection-based ROM, the solution u is
approximated in a low-dimensional affine subspace of dimension r via
the Galerkin ansatz as follows:

uðtÞ � �u þWaðtÞ; (30)

where �u 2 Rn is a reference solution representing the affine offset,
W 2 Rn�r denotes the trial basis, and aðtÞ 2 Rr is the vector of
reduced (generalized) coordinates, also called modal weights or
coefficients. The reference solution �u as well as the basis W are con-
structed during an offline stage from a collection of FOM evalua-
tions (called snapshots). Without loss of generality, we suppose that
the time-averaged field defines the reference solution, �u, and the
basis W is constructed using the POD technique. Then, the low-
rank approximation given by Eq. (30) is substituted into Eq. (29)
and an inner product with a test basis is performed to yield a system
of ODEs for the unknown modal coefficients, aðtÞ. In Galerkin
projection-based ROM (GROM), the test basis is chosen to be the
same as the trial basis. We make use of the orthonormality property
(i.e., W>W ¼ Ir , where Ir is the r� r identity matrix and the super-
script > denotes the matrix transpose, assuming a Euclidean state
space) as follows:

W>
d
dt

�u þWað Þ ¼ W>L �u þWað Þ þW>N �u þWað Þ: (31)

Since both �u and W are considered time-independent, Eq. (31) reduces
to

W>W
da
dt
¼ W>L�u þW>LWaþW>N �u þWað Þ: (32)

Note that W>L�u and W>LW can be precomputed during the offline
construction stage, reducing the online computational cost of evaluat-
ing the first two terms on the right-hand side to O(r), which is inde-
pendent of the FOM dimension, n. However, generally speaking,
computing the third term representing the system’s nonlinearity
depends on n, limiting the computational benefit of ROM. In order to
mitigate this limitation, hyperreduction approaches have been devel-
oped to alleviate this dependency on n, by approximating, rather than
evaluating, the nonlinear term in a reduced order subspace.63,216,217

Examples of hyperreduction include the empirical interpolation
method (EIM),86 its discrete version (DEIM),90,218 the gappy
POD,100,111,219 and the missing point estimation (MPE),108,220 where
the approximation is performed using sampling techniques. On the
other hand, tensorial ROM can benefit from the quadratic (or gener-
ally polynomial) nonlinearity, which is ubiquitous in fluid flow sys-
tems, to rewrite Eq. (32) as follows:

FIG. 2. A schematic diagram for an autoencoder (AE) for latent space construction,
where the input X is the full field, the output Y designates its reconstruction, and
Z represents the latent space (compressed) variables.
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da
dt
¼ Bþ Laþ a>Na; (33)

where the vector B, the matrix L, and the tensor N are precomputed
during the offline stage, reducing the computational cost of solving the
GROM defined in Eq. (33) toOðr3Þ in the case of quadratic nonlinear-
ity (which is the case for the Navier–Stokes equations). When the true
underlying dynamics of the system are non-polynomial, lifting trans-
formations can be exploited to yield a finite-dimensional coordinate
representation in which the system dynamics have quadratic struc-
ture.221–224 Although such transformation is not universally guaran-
teed, a large class of smooth nonlinear systems that appear in
engineering applications (e.g., elementary functions like exponential
and trigonometric functions or polynomials) can be equivalently lifted
to quadratic form.

A. POD Galerkin projection: Burgers equation

To illustrate the POD Galerkin approach for flow systems with
quadratic nonlinearity, let us consider the Burgers equation,

@u
@t
þ u

@u
@x
¼ � @

2u
@x2

; (34)

which is often used as a simplified prototype by fluid dynamicists. Using
the POD procedure outlined in Sec. II B, we can define the u field as a
linear superposition of the mean field and the POD basis functions,

uðx; tÞ ¼ �uðxÞ þ
Xr
i¼1

aiðtÞwiðxÞ; (35)

and substitute this approximation of our field variable into Eq. (34).
Once we perform an orthonormal Galerkin projection, the resulting
dynamical system for akðtÞ can be written as

dak
dt
¼ Bk þ

Xr
i¼1

L
i
kai þ

Xr
i¼1

Xr
j¼1

N
ij
kaiaj; (36)

where

Bk ¼ �
@2�u
@x2
� �u

@�u
@x
;wk

� �
;

L
i
k ¼ �

@2wi

@x2
� �u

@wi

@x
� wi

@�u
@x
;wk

� �
;

N
ij
k ¼ �wi

@wj

@x
;wk

� �
:

(37)

This tensorial system consists of r coupled ODEs and it is often written
as Eq. (33), where a is the vector of unknown coefficients
akðtÞ; k ¼ 1; 2;…; r; B is a scaling vector coming from the reference
mean field with entries Bk; L is an r� r matrix with entries Li

k for
the contribution stemming from the linear viscous term, and N is an
r � r � r tensor with entries Nij

k arising from the nonlinear advection
term, 1 	 i; j; k 	 r. In this tensorial form, the corresponding model
coefficients Bk; L, and N are precomputed from the available snap-
shots. Alternatively, there are a number of online approaches where
we can compute the nonlinear part using hyperreduction or principled
sampling strategies to approximate the full nonlinear state from a
small number of measurement or collocation points.86,90,100,225–227

Ştef�anescu et al.216 performed a comparative study between the direct
(online) and tensorial (precomputed) methods. Moreover, Karas€ozen
et al.228 recently discussed the structure preserving ROMs and com-
pared the direct and tensorial POD approaches.

B. Projection-based ROMs

Computational models for the Navier–Stokes equations could
make a tremendous impact in critical applications, such as the biomedi-
cal and engineering applications that we describe next. Despite their
enormous potential, FOMs have not fully transitioned to engineering
practice. The main roadblock is the extraordinary computational cost
incurred by computational models in many applications. For example,
although preliminary studies of aortic dissections showed that uncertain-
ties in the geometry and inflow conditions have a fundamental role, per-
forming an uncertainty quantification study requires a huge number of
computational model runs. Similarly, performing a shape optimization
study to determine the optimal vascular configuration for the total cavo-
pulmonary connection surgery requires again many computational
model runs. Also, in renewable energy applications, performing data
assimilation to incorporate the available observations in the control of
wind-power production requires numerous model runs.

Since running current computational models hundreds and
thousands of times can take days and weeks on high performance
computing (HPC) platforms, a brute-force computational approach
for these biomedical and engineering applications is simply not possi-
ble. Therefore, what is needed is a modeling strategy that allows model
runs that take minutes to hours on a laptop.

For structure-dominated systems, ROMs can decrease the FOM
computational cost by orders of magnitude. ROMs are (extremely)
low-dimensional models that are trained (constructed) from available
data. As explained in Sec. III, in an offline phase, the FOM is run for a
few parameters values to construct a low-dimensional (e.g., 10-dimen-
sional) ROM basis fw1;…;w10g, which is used to build the ROM:

da
dt
¼ f ðaÞ; (38)

where a is the vector of coefficients in the ROM approximationP10
i¼1 aiðtÞwiðxÞ of the variable of interest and f comprises the ROM

operators (e.g., vectors, matrices, and tensors) that can be preassem-
bled from the ROM basis in the offline phase. In the online phase, the
low-dimensional ROM given by Eq. (38) is then used for parameters
values that are different from those used in the training stage. Since
ROM is low-dimensional (10-dimensional), its computational cost is
orders of magnitude lower than the FOM cost. Thus, for the biomedi-
cal and engineering applications described above, ROMs appear as a
natural alternative to the prohibitively expensive FOMs.

Unfortunately, current ROMs cannot be used in clinical and
engineering practice, since they would require too many modes
(degrees of freedom). For example, to capture all the geometric scales
in aortic dissection, one might need hundreds or even thousands of
ROM modes (e.g., see Table II). Similarly, to cope with the high
Reynolds number in the wind farm optimization, a large number of
ROM modes are necessary. Thus, although ROMs decrease the FOM
computational cost by orders of magnitude, they are still too expen-
sive: current ROMs cannot be run in minutes or hours on a laptop
and thus cannot be used easily in clinical and engineering practice.
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TABLE II. A non-exhaustive list illustrating the energy characteristics and range of the number of retained modes r for m given snapshots.

Study Problem r m Comment

€Osth et al.113 Ahmed body 10–100 2000 The first 500 modes resolve 60% of the kinetic energy.
San and Borggaard171 Marsigli flows 6–30 400 The first 30 modes resolve 90% of the kinetic energy.
Rahman et al.229 Quasigeostrophic flows 10–80 400 The first 50 modes resolve 80% of the kinetic energy.
Ballarin et al.230 Hemodynamics 50 400 O(10–100) modes are required to obtain a reliable approximation.
VerHulst andMeneveau231 Wind farm N/A 7200 430 POD modes are required to capture 80% of the total energy.
Shah and Bou-Zeid232 Atmospheric boundary layer N/A 2500 500 POD modes are required to capture 80% of the total energy.
Zhang and Stevens233 Atmospheric boundary layer N/A 5000 2000 POD modes are required to capture 80% of the total energy.

TABLE III. A chronological list of key contributions to ROM closure modeling.

Year Study Key contribution

1988 Aubry et al.83 First closure model: global eddy viscosity modeling
1994 Rempfer and Fasel99 Linear modal eddy viscosity closure
1995 Selten252 Time-averaging closure modeling
1997 Selten253 A statistical closure of a barotropic model
1998 Cazemier et al.158 Penalty term closure model based on the energy conservation principles
2003 Couplet et al.103 Guidelines for modeling unresolved modes in POD-Galerkin models
2004 Sirisup andKarniadakis104 Spectral viscosity closure for POD models
2008 Noack et al.254 Finite time thermodynamics and ensemble averaging closure models
2009 Bergmann et al.255,256 Residual-based variational multiscale POD
2011 Borggaard et al.257 First numerical analysis of closure models: artificial viscosity model
2011 Akhtar et al.239 Nonlinear eddy viscosity model based on the Frobenius norm of the Jacobian
2011 Wang et al.258 Two-level discretization model
2012 Wang et al.135 Eddy viscosity variational multiscale and dynamic Smagorinsky closures
2013 Balajewicz et al.259 Subspace calibration using the Navier–Stokes equations
2013 Cordier et al.112 Proof of global boundedness of nonlinear eddy viscosity closures
2014 €Osth et al.113

ffiffiffiffi
K
p

-scaled eddy viscosity concept
2014 Iliescu andWang260 Projection-based eddy viscosity variational multiscale POD
2014 San and Iliescu261 Smagorinsky and Chollet-Lesieur spectral vanishing eddy viscosity models
2015 Stinis,262 Chorin and Lu,263 and Li et al.264 Mori–Zwanzig (MZ) formalism
2017 Gouasmi et al.265 MZ ROM closures
2017 Rebollo et al.266 Reduced basis methods for the Smagorinsky closure model
2017 Xie et al.267 Approximate deconvolution reduced order modeling
2017 Benosman et al.137 Lyapunov control theory to design learning-based closure models
2018 San andMaulik268 Extreme learning machine closure model
2018 San andMaulik269 Neural network closures for ROM
2018 Pan andDuraisamy270 Sparse polynomial regression and neural network for closure model
2019 Rahman et al.229 Dynamic closure model based on a test (secondary) truncation approach
2019 Stabile et al.138 Reduced order variational multiscale approach for turbulent flows
2020 Imtiaz andAkhtar271 Nonlinear closure model based on the Jacobian of the Galerkin model
2020 Reyes and Codina139 Variational multiscale ROMs
2020 Xie et al.272 Residual neural network closures
2020 Wang et al.273 Recurrent neural network closures
2021 Mou et al.274 Data-driven variational multiscale ROMs
2021 Gupta and Lermusiaux275 Neural closure models
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With the evolution of ROM approaches outlined in Fig. 3 in
mind, the ROM community is at a crossroads. On the one hand, cur-
rent ROMs can be used for academic test problems for which a hand-
ful of ROM modes can model simple dynamics with substantial
success. On the other hand, realistic, complex flows require high-
dimensional ROMs that cannot be used in clinical and engineering
practice. What is needed is low-dimensional, efficient ROMs that are
accurate so that they can be utilized in such vital applications.

One of the main reasons for the notorious inaccuracy of current
ROMs in complex clinical and engineering settings is the drastic ROM
truncation: instead of using many (e.g., 100) ROM modes
fw1;…;w100g, current ROMs use only a handful of ROM modes
fw1;…;w10g to ensure a low computational cost. This drastic trunca-
tion yields acceptable results in simple, academic test problems, but
produces inaccurate results in practical clinical and engineering set-
tings.113 Thus, for accurate results, the ROM closure problem needs to
be solved: one needs to model the effect of the discarded ROM modes
fw11;…;w100g on the ROM dynamics, i.e., on the time evolution of
resolved ROMmodes fw1;…;w10g,

da
dt
¼ f ðaÞ þ C; (39)

where C is a low-dimensional term that models the effect of the dis-
carded ROM modes fw11;…;w100g on fw1;…;w10g. The closure
term is also known as unresolved tendency or model error in different
disciplines.

The closure problem is prevalent in numerical simulation of
complex systems. For example, the classical numerical discretization
of turbulent flows (e.g., finite element or finite volume methods) inevi-
tably takes place in the under-resolved regime (e.g., on coarse meshes)
and requires closure modeling (i.e., modeling the subgrid scale effects).
In computational fluid dynamics (CFD), e.g., large eddy simulation
(LES), there are hundreds (if not thousands) of closure models.234 This
is in stark contrast to reduced order modeling, where only relatively
few ROM closure models have been investigated. The reason for the
discrepancy between ROM closure and LES closure is that the latter
has been mostly built around physical insight stemming from
Kolmogorov’s statistical theory of turbulence (e.g., the concept of eddy
viscosity), which is generally posed in the Fourier setting.234,235 Much
of this physical insight is not generally available in a ROM setting.

Thus, current ROM closure models have been deprived of this power-
ful methodology that represents the core of most LES closure models.
To construct low-dimensional and efficient ROMs that are accurate, a
set of principled, mathematical, and/or data-driven ROM closure
modeling strategies need to be utilized (Table III). In Sec. IV, we sur-
vey the main types of closure models developed in the reduced order
modeling community.

IV. CLOSURE MODELING

Although the solution of Eq. (33) becomes independent of the
FOM dimension n, the cubic scaling with respect to r hurts the turn-
around of such ROMs. This is especially true for fluid flows of practi-
cal interest (e.g., turbulent and convection-dominated flows), where
the FOM solution manifold is characterized by a large and slowly
decaying Kolmogorov n-width.236,237 Thus, a large number of modes
are required to maintain the solution accuracy, resulting in excessive
computational overhead, which may even exceed the FOM computa-
tional cost. Therefore, in these complex settings, ROM will always
incur a degree of under-resolution by sacrificing some degree of accu-
racy for the sake of computational efficiency. This under-resolution
has direct and indirect consequences. The direct outcome is the pro-
jection error affecting the Galerkin ansatz [Eq. (30)], where some of
the underlying flow features are lost. The indirect ramifications are
related to the nonlinearity of the system, implying that the discarded
modes indeed interact with the retained ones. By performing severe
modal truncation (remember, computational efficiency is a priority!),
we suppress these interactions and Eq. (33) no longer captures the
projected trajectory, decreasing the solution accuracy.238

To illustrate the above discussion, consider a state variable
uðtÞ 2 Rn, which can be exactly written as a superposition of n
basis functions as uðtÞ ¼ WaðtÞ þ UbðtÞ, where W 2 Rn�r and
U 2 Rn�ðn�rÞ represent the modes to be retained and truncated,
respectively, and aðtÞ 2 Rr and bðtÞ 2 Rðn�rÞ are the corresponding
time-dependent coefficients. A Galerkin projection of the governing
equations ontoW andU yields the following:

d
dt

a

b

" #
¼

f aða; bÞ
f bða; bÞ

" #
: (40)

We note that Eq. (40) is an exact representation of the system’s
dynamics. In reduced order modeling, we are only interested in the
resolved part of the dynamics, which can be written as

da
dt
¼ f aða; bÞ: (41)

Nevertheless, Eq. (41) is not practical because its solution requires the
knowledge of the unresolved variable, b. In a classic truncated ROM, it
is often assumed that f aða; bÞ ¼ f aða; 0Þ ¼ f ðaÞ. However, for non-
linear cases, this relation does not hold [i.e., f aða; bÞ 6¼ f aða; 0Þ].

Following the Kolmogorov hypotheses242,243 from turbulence
modeling and assuming an analogy between POD and Fourier modes
(see Fig. 4), it is commonly agreed in the ROM community that the
first POD modes resolve the large energy-containing flow scales, while
the last modes correspond to the low-energy dissipative scales. Indeed,
this analogy has been demonstrated theoretically and numerically for
different flow scenarios (e.g., flow over a cylinder244 and a turbulent
flow past a backward-facing step103) Thus, truncating the low-energy

FIG. 3. Evolution of the Galerkin ROM approaches.
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scales is believed to result in a pileup of energy levels, leading to the
solution instability. We also highlight that this argument has been
recently the focus of scientific revisits. For instance, Grimberg et al.245

state, using mathematical arguments and analogies from finite element
analysis, that the solution instabilitiy observed in most studies dealing
with GROM is a by-product of the Galerkin projection step.
Moreover, they show that a ROM based on Petrov–Galerkin projec-
tion, where the test basis differs from the trial basis, yields a more
accurate and stable solution than standard Galerkin projection.
However, the test basis needs to be updated at each iteration and time
step, increasing the computational complexity of the resulting ROM.
As a highly promising approach, an adjoint Petrov–Galerkin method
for nonlinear model reduction has been recently put forth by Parish
et al.246 Rather than constructing a low-dimensional subspace for the
entire state space in a monolithic fashion, Hoang et al.247 recently pro-
posed a dynamic methodology to construct separate subspaces for the
different subdomains. Although the Petrov–Galerkin projection248

could mitigate some of the challenges the Galerkin ROMs have to face
in the under-resolved simulation of turbulent flows, we limit ourselves
to Galerkin projection-based ROMs in the current review, where clo-
sure models have been mainly developed to improve the solution accu-
racy and stability properties. The major aim of closure models is to
make up for the effects of discarded modes onto the dynamics of
resolved modes. Specifically, the objective is to modify Eq. (33) to cor-
rectly resolve the time dynamics of W,

da
dt
¼ Bþ Laþ a>Naþ C; (42)

where C represents the closure model that needs to be determined.
The closure problem has historical roots in CFD, in particular in

turbulence modeling, including the Reynolds averaged Navier–Stokes
(RANS) and LES. There are relatively few closure models that have
been investigated in a ROM context. In general, the ROM closure
modeling approaches can be classified into (1) functional (phenome-
nological), which use physical insights to postulate a model form for
the closure term (e.g., a dissipative term) and (2) structural (mathe-
matical), which often rely on filtering techniques to reveal the closure
term without using any physical assumptions or additional

phenomenological arguments. We emphasize that placing a given
ROM closure model in one of these categories is not always straight-
forward, as these categories sometimes overlap. We also refer the read-
ers to the unified exposition of several mean field modeling ideas249 as
well as other closure techniques for probability density function
(PDF)250 or moment closures for kinetic theories.251

A. Functional closure models

The functional, or phenomenological, closure modeling investi-
gations have been largely focused on the concept of eddy viscosity,
which is added to the physical viscosity of the system to drain the
excessive energy. This modeling concept is inspired by Kolmogorov’s
ideas242,243 about the energy spectrum and energy cascade. In this sec-
tion, we outline several functional (phenomenological) ROM closure
modeling strategies centered around the concept of eddy viscosity.

1. Mixing-length ROM closure

The first mixing-length ROM closure model was proposed by
Aubry et al.,83 who studied the wall region of the turbulent boundary
layer and used a simple generalization of the Heisenberg spectral
model in homogeneous turbulence to provide the eddy viscosity clo-
sure term. Specifically, the authors assumed that the deviatoric compo-
nent of the Reynolds stress bs of the unresolved field (represented by
truncated modes), acting on the resolved field (i.e., retained modes), is
proportional to the strain rate S of the resolved field,

bs ¼ �2a�eS; (43)

where �e is the eddy viscosity parameter and a is a dimensionless
adjustable parameter. Moreover, they expressed the eddy viscosity
term as a function of the eigenvalues and eigenfunctions of the first
neglected modes based on the assumption that the energy decreases
rapidly with increasing mode index. The adequacy of this model was
quantitatively validated using numerical simulations in Ref. 276, and
further investigations have been performed by Podvin and Lumley
(e.g., for minimal flow unit277 and channel flow278) and also in Refs.
135 and 279. The two main drawbacks of the global eddy viscosity
modeling approach are as follows:

FIG. 4. Closure modeling analogy between LES and ROM, where the higher values of k and m refer to the smaller scales (adapted from Refs. 239–241). Shaded areas in
energy spectra represent the discarded scales that must be modeled.
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(i) This formulation is equivalent to using Navier–Stokes equa-
tions at a lower Reynolds number.

(ii) In this formulation, a linear closure term models the non-
linear turbulence dynamics.

2. Smagorinsky ROM closure

As an improvement of the mixing-length model in Ref. 83, the
celebrated Smagorinsky model280 developed for LES has been utilized
for the ROM closure problem. The eddy viscosity coefficient adapts in
time in the Smagorinsky ROM closure model, but not in the mixing-
length ROM closure model. Thus, the former is expected to be more
accurate than the latter. To our knowledge, the first Smagorinsky
ROM closure model was proposed in Noack et al.281 (see also Ref.
282). UllmannandLang283 used the same Smagorinsky closure model
of the original FOM simulations for ROMs based on LES snapshots of
the turbulent flow around a circular cylinder. However, the eddy vis-
cosity term does not appear explicitly in their ROM equation. Instead,
the reconstructed velocity field is utilized to update the (spatially vary-
ing) Smagorinsky eddy viscosity term in the FOM space, which in
turn updates the corresponding model coefficients at each time step of
the time integration of the ROM. Borggaard et al.257 proposed the
inclusion of an artificial viscosity term in the ROM equation that
resembles the one used in the Smagorinsky model even if the original
FOM (for data generation) does not involve such a term.
Rebollo et al.266 investigated the Smagorisnky ROM closure model in a
reduced basis method (RBM) setting. A rigorous numerical analysis of
the Smagorinsky ROM closure model was performed in Ref. 257,
where error estimates for the time discretization were proven. To our
knowledge, this represents the first numerical analysis of ROM clo-
sures. Error estimates for the time and space discretizations of the
Smagorinsky ROM closure model were later proven in Ref. 266 in
RBM context.

3. Dynamic SGS ROM closure

The dynamic SGS model284 is the state-of-the-art closure model
in LES. The main improvement in the dynamic SGS model over the
standard Smagorinsky model is that it uses an eddy viscosity coeffi-
cient that is updated in time by using a secondary filtering operation.
The dynamic SGS closure model was extended for the first time to a
ROM setting by Borggaard et al.282 and was later investigated by
Wang et al.135 in the numerical simulation of a 3D flow past a cylinder,
where it yielded significantly more accurate results than both the
mixing-length and the Smagorinsky ROM closure models. A more
efficient numerical discretization of the dynamic SGS ROM closure
model was proposed by Rahman et al.229

4. Mode-dependent eddy viscosity closure

Rather than adopting a single global eddy viscosity value �e for
all the modes (as in the mixing-length ROM closure model), a mode-
dependent eddy viscosity was proposed by Rempfer285 and Rempfer
and Fasel286 to use a different amount of dissipation for each scale. In
Refs. 285 and 286, the effective viscosity is calculated by requiring the
energy variation of different modes in ROM to match the energy vari-
ation of the coherent structures in FOM. A modification to the

mixing-length model can be incorporated by introducing a mode-
dependent kernel. The importance of such a mode dependent kernel
was first stressed by Rempfer.99,285,286 Sirisup andKarniadakis104

applied a vanishing viscosity kernel, which adds a small amount of
mode-dependent dissipation that satisfies the entropy condition, yet
retains spectral accuracy. The intrinsic stabilization scheme proposed
in Ref. 132 utilizes information from available snapshots and POD
modes to define a mode-dependent stabilization. In Ref. 261, linear,
quadratic, and squareroot kernels were investigated for the 1D
Burgers problem.

5. Variational multiscale eddy viscosity ROM closure

The variational multiscale (VMS) methods developed by Hughes
and his collaborators287–289 have made a significant impact in classical
CFD. The VMS methods center around the principle of locality of
energy transfer, which states that energy is transferred mainly between
neighboring scales or modes. Since ROMs use hierarchical bases in
which the large and small structures are clearly displayed, the VMS
framework was naturally extended to the ROM setting. Next, we pre-
sent some of the eddy viscosity ROM closure models developed in a
VMS framework. Borggaard et al.282 proposed the first VMS ROM
closure model, which was later investigated in Wang et al.135 in the
numerical simulation of a 3D flow past a circular cylinder. The VMS
ROM in Refs. 135 and 282 used a three-scale decomposition of the
flow field into resolved large, resolved small, and unresolved scales,
and employed the Smagorinsky model to dissipate energy only from
the resolved small scales. A two-scale decomposition of the flow field
into resolved and unresolved scales was used by Bergmann et al.256 to
develop a VMS ROM closure model with a residual based eddy viscos-
ity component. Iliescu andWang260,290 put forth a three-scale VMS
ROM closure model, in which the ROM projection was used to con-
struct an eddy viscosity term that acts only on the small resolved
scales.

A similar three-scale VMS ROM was proposed by Roop291 for
a generalized Oseen problem. Eroglu et al.292 developed a different
three-scale VMS ROM that uses the ROM projection to add an
eddy viscosity term acting only on the small resolved scales in a
modular fashion. This VMS ROM was successfully tested in the
numerical simulation of a turbulent channel flow at Res ¼ 395292

and was extended by Eroglu et al.293 to the Darcy–Brinkman equa-
tions with the double diffusive convection. Stabile et al.138 proposed
a two-scale residual-based VMS ROM closure model in which the
VMS strategy is used at both the FOM and the ROM levels to
ensure model consistency. Reyes andCodina139 (see also Ref. 294)
developed a two-scale VMS ROM which is equipped with time-
dependent orthogonal subgrid scales that leverage the orthonormal
nature of the POD basis. Two-scale VMS-ROMs based on the
orthogonal subgrid scales were used by Reyes et al.295 for thermally
coupled low Mach flows and by Tello et al.296 for a fluid structure
interaction problem. The first numerical analysis of VMS ROMs
was performed in Refs. 260 and 290, where the stability and con-
vergence were rigorously proven. A numerical analysis of VMS
ROMs was also performed by Roop291 and Eroglu et al.292 We also
refer to the recent studies by Rubino and his co-workers297,298 for
multistage ROM stabilization approaches in advection-dominated
problems.

Physics of Fluids REVIEW scitation.org/journal/phf

Phys. Fluids 33, 091301 (2021); doi: 10.1063/5.0061577 33, 091301-13

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


6. Finite-time thermodynamics ROM closure

In the majority of the aforementioned studies, the closure term
eventually appears as a linear term in the GROM (i.e., C ¼ ~B þ ~La).
(The Smagorinsky and dynamic SGS ROM closure models are notable
exceptions.) Noack et al.299 highlighted that the energy transfer is actu-
ally caused by nonlinear mechanisms. Thus, they introduced a nonlin-
ear eddy viscosity term �eðaÞ that is state dependent. A finite-time
thermodynamics (FTT)254 approach was utilized to quantify the non-
linear eddy viscosity by matching the modal energy transfer effect as
follows:

�eðaÞ ¼ �0
ffiffiffiffiffiffiffiffiffi
KðtÞ

�K

r
; (44)

where KðtÞ ¼
Pr

i¼1
1
2 aiðtÞ

2 represents the total turbulence kinetic
energy resolved by the Galerkin expansion and �K denotes its time-
averaged value. This led to damping levels more consistent with energy
fluctuations than those defined by a linear eddy viscosity model. The
FTT-based nonlinear eddy viscosity with an energy-based scaling
model was successfully applied to a 3D turbulent jet300 and a 2D mix-
ing layer.112 It was further extended to a mode-dependent nonlinear
eddy viscosity for a high Reynolds number flow over a square-back
Ahmed body.113

7. Efficient numerical discretization of ROM closures

Although the eddy viscosity closure models discussed in this sec-
tion can significantly improve the ROM accuracy, their brute-force
numerical discretization can be extremely inefficient. For example, the
Smagorinsky ROM closure model depends on the Frobenius norm of
the deformation tensor, which is a non-polynomial nonlinearity that
cannot be preassembled in the offline stage. Thus, alternative, efficient
numerical discretizations have been proposed over the last decade,
which we outline next. Wang et al.258 proposed a two-level method to
avoid the brute-force discretization of the closure term onto the FOM
fine mesh. Specifically, the POD bases constructed from the original
fine grid resolution snapshot data were interpolated onto a coarse grid,
and then they were used to efficiently compute the ROM closure term.
To avoid the assembly of the FOM strain rate tensor at each time step,
Akhtar et al.239 used the Jacobian of the GROM right-hand side as an
eddy viscosity coefficient. A precomputed eddy viscosity approach was
adopted by San and Iliescu301 by simplifying the nonlinear interaction
in the original Smagorinsky model. San and Iliescu261 also explored
various closure approaches including constant, polynomial, and spec-
tral vanishing viscosity models. Rebollo et al.266 were the first to use an
efficient hyper-reduction method63 (i.e., EIM86) to discretize the
Smagorinsky ROM closure in an RBM setting.

B. Structural closure models

Structural closure models are generally derived through mathe-
matical rather than phenomenological arguments. This often includes
a filtering procedure, where the filtered field is assumed to have larger
spatial structures than those in the original one. Therefore, the filtered
flow variables require fewer modes in the ROM approximation. In
other words, for the same number of modes, ROM is capable of
approximating the filtered flow field more accurately than the unfil-
tered field. This approach is similar to LES, where the filtered flow

variables can be approximated on the given coarse mesh more accu-
rately than the original unfiltered flow variables. In this section, we
survey ROM closure models developed by using different types of
ROM filtering.

1. Spatial filtering: Projection

Given the hierarchical nature of the ROM basis, not surprisingly,
the most popular type of ROM filtering has been the ROM projection,
i.e., the projection of various (nonlinear) terms living in the r-dimen-
sional ROM space spanned by the first r ROM basis functions onto a
smaller, s-dimensional ROM space spanned by the first s ROM
basis functions, where s< r. A classical example of ROM closure
models constructed by using the ROM projection is the VMS-
ROMs,138,139,294,302 which are discussed in Sec. IV A. The ROM
projection, however, has been used to develop other types of ROM
closures. For example, the ROM projection has been utilized to con-
struct parametrized manifolds ROM closures,303,304 which are based
on dynamical systems approaches, e.g., approximate inertial mani-
folds. The ROM projection has also been used to build ROM closures
based on stochastic dynamical systems ideas.305–307

2. Spatial filtering: Differential filter and approximate
deconvolution

Using the analogy between LES and ROM, we mention that a lot
of ideas and techniques in image and signal processing are also appli-
cable in ROM, and vice versa! In LES, the approximate deconvolution
(AD) represents one of the most popular techniques in this class. It is
based on the deconvolution approaches developed in the image proc-
essing and inverse problems communities to recover the original signal
from a blurred filtered signal.

In stark contrast to the abundance of functional closure studies
(beginning in the 1980s), there are only a few structural closure models
in the ROM literature. The AD-ROM was proposed by Xie et al.267 for
the three-dimensional flow past a circular cylinder. To construct the
AD-ROM, a ROM differential filter is applied to the Navier–Stokes
equations, followed by a Galerkin projection of the filtered equations.
It is usually assumed that the filtering and differentiation operators
commute, and the repercussions of this assumption are investigated in
Ref. 308. It is well known that, in general, nonlinearity and ROM spa-
tial filtering do not commute. Therefore, the resulting equations
include a filtered nonlinear term of the unfiltered variables [i.e., dNðuÞ,
where the hat operator denotes the filtering process], rather than a
nonlinear operator of the filtered variables [i.e., NðbuÞ�. A regularized
deconvolution is adopted to provide the ROM approximation of the
unfiltered flow variables in order to compute the nonlinear term.
Thus, the filtering process increases the accuracy of the ROM in the
sense that the filtered field contains larger spatial structures, and thus
can be accurately captured by the ROM approximation. In addition,
the AD technique solves the ROM closure problem by providing an
estimate of the unfiltered flow variables.

Remark. We note that ROM spatial filtering has also been used
to develop regularized ROMs (Reg-ROMs), i.e., ROMs in which spatial
filtering is used to smoothen (regularize) various terms in the
Navier–Stokes equations and increase the numerical stability of the
ROM. We emphasize that, while related, regularization and closure
are different: the latter adds a closure term, whereas the former usually
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does not. ROM spatial filtering has been used to develop various types
of Reg-ROMs: Wells et al.309 proposed, for the first time, an evolve-
then-filter approach in which the GROM [Eq. (33)] is integrated
(evolved) for one time step, after which a ROM spatial filter is applied
to filter the intermediate solution obtained in the evolve step. This fil-
tering reduces the numerical oscillations of the flow variables (i.e.,
adds numerical stabilization to the ROM). Gunzburger et al.310 pro-
posed an evolve-filter-relax approach that considers the additional
step of relaxation, which averages the unfiltered and filtered flow varia-
bles to control the amount of numerical dissipation introduced by the
filter. Recently, Girfoglio et al.311,312 have investigated the evolve-filter
approach in a finite volume setting. The ROM differential filter has
also been used to develop the Leray Reg-ROM in Refs. 313–315.

3. PDF filtering: Mori–Zwanzig formalism and memory
effects

A different type of filtering, based on filtering with respect to the
PDF of the initial conditions, has been instrumental in adding mem-
ory effects to ROM closures, with a rationale based on the
Mori–Zwanzig (MZ) formalism.316–318 Recently, the MZ formalism
has been intensely used to define closures for both LES and ROM set-
tings. Next, we outline some of these developmemnts. Stinis262 intro-
duced a generalized MZ framework for the construction of ROMs for
systems without scale separation. For example, assume that Eq. (40)
defines the following linear system:265,270,273,319

d
dt

a

b

" #
¼

A11 A12

A21 A22

" #
a

b

" #
: (45)

The evolution of the unresolved state b can be evaluated as follows
(assuming that a is known):265,273,320

bðtÞ ¼
ðt
0
eA22ðt�sÞA21aðsÞdsþ eA22tbð0Þ: (46)

Therefore, Eq. (41) for the dynamics of a can be written as

da
dt
¼ A11aþ A12b

¼ A11aþ A12

ðt
0
eA22ðt�sÞA21aðsÞdsþ A12e

A22tbð0Þ: (47)

Equation (47) expresses the dynamics of the resolved scales using a
Markovian term (i.e., A11a, which depends only on the current value
of a), a memory integral term depending on the history of the resolved
scales a, and a term describing the contribution of the initial condi-
tions. This derivation can be extended to nonlinear settings where, for
instance, the nonlinear ordinary differential equation can be written as
a linear partial differential equation using the Liouville operator. The
exact evolution equations for the reduced state can be written as

da
dt
¼ f aða; 0Þ þ

ðt
0
KðaðsÞ; t � sÞdsþOðað0Þ; bð0ÞÞ; (48)

� f ðaÞ þ C; (49)

which is the closure term in Eq. (42). In Eq. (48), K is called the mem-
ory kernel and O designates the contribution from the initial condi-
tions. The memory integral term implies that the accurate resolution

of a comprises a non-Markovian contribution. However, the direct com-
putation of Eq. (48) is generally prohibitive, and the estimation of the
memory effect is often sought. Li et al.264 included a great discussion on
the incorporation of memory effects in coarse-grained modeling via the
MZ formalism. A discrete approach to stochastic parametrization,
dimension reduction, and their connections to the MZ formalism of sta-
tistical physics has been proposed by Chorin and Lu.263 In an LES set-
ting, Parish andDuraisamy320 framed the MZ closure modeling
approach by exploiting similarities between two levels of coarse-graining
via the Germano identity of fluid mechanics and by assuming that mem-
ory effects have a finite temporal support. The concept has been also gen-
eralized to provide a mathematically consistent framework for the
construction of ROMs of dynamical systems.265 Moreover, Parish and
Duraisamy321 established an analogy betweenMZ and VMS approaches.

4. Ensemble averaging

Noack et al.299 were the first to use the ensemble averaging to con-
struct a finite-time thermodynamics (FTT)254 framework. Gunzburger
et al.322 built ensemble-based POD ROMs, where the nonlinear advec-
tion term in the Navier–Stokes equations is replaced by a linear term in
the equations for the resolved scales. This linearization is performed by
using an ensemble of solution trajectories by propagating an ensemble
of ROMs with varying parameters and/or initial conditions and updat-
ing the ensemble average at each time step. Later on, this ensemble-
based approach was equipped with Leray regularization to develop reg-
ularized ROMs for convection-dominated flows.315

5. Time averaging

Selten252,253 used time averaging to develop ROM closures. In
particular, by estimating the rate at which the ROM trajectory drifts
away from the projection of the FOM solution on the ROM subspace,
Selten252 added a linear damping to expand the doubling-time of the
error resulting from the modal truncation. Berselli et al.323 developed
mathematical support for eddy viscosity modeling of time-averaged
ROM closures. While being interested in a statistical equilibrium prob-
lem exploring possible forward and backward average transfer of
energy among ROM basis functions, they proved that the time-
averaged energy exchange from low index POD modes to high index
POD modes is positive for long enough time intervals. This study pro-
vides, for the first time, mathematical support for the ROM eddy vis-
cosity methodology, where the energy transfer to the truncated modes
is modeled by employing extra viscous dissipation.

6. Calibrating the POD space with a Navier–Stokes
based side constraint

The last modeling approach that we discuss in this section is that
proposed by Balajewicz et al.259 Although this approach does not add
a ROM closure model, it does leverage mathematical arguments to
model the effect of the truncated modes. In this approach, the POD
subspace is subjected to a Navier–Stokes based side constraint.
Specifically, the power balance for the fluctuation energy is required to
be satisfied by the attractor data after the Galerkin projection on the
adjusted POD space. This procedure can be conceptualized as rotating
the POD subspace into a more dissipative regime, in which the extra
dissipation is now performed by more dissipative PODmodes.
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C. Stochastic closure models

Although we are mainly focusing on deterministic closure model-
ing in this review, we emphasize that the need for stochastic modeling
was already formulated in Aubry et al.83 to avoid statistically nonsta-
tionary behavior for some homoclinic orbits. The dynamics of the
unresolved scales and hence their interactions with the resolved scales
are unknown. Thus, we can only form an approximate idea of how the
truncated modes behave and affect the ROM solution. Even with the
best closure model, we can never be certain about its accuracy in prac-
tical settings. Thus, it is natural to model the dynamics of the unre-
solved modes using a random or stochastic process, from which we
can infer the unresolved modes’ contribution to the evolution of large
scales in a statistical sense. We refer to Leith,324 Chorin and Hald,325

Majda et al.,305 Majda and Harlim,306 Harlim et al.,307 Majda,326

Resseguier et al.,327 Chorin and Lu,263 Lu et al.,328 Lu,329 Sieber
et al.,330 and Chekroun et al.,303 for detailed discussions on the proba-
bilistic modeling of such random/chaotic systems as well as the devel-
opment of statistically accurate ROMs and stochastic closure
models.110,331–338 We also note that nonparametric stochastic model-
ing approaches have been proposed for representative stochastic Itô
drift diffusion forecast models.339 Next, we briefly outline a few of
these strategies.

Stochastic closure approaches seek to account for the effects of
the unresolved scales on the long-term statistics of the resolved scales.
In particular, the closure term is modeled by a stochastic process, usu-
ally represented by Markovian and/or non-Markovian dynamics with
a random forcing (e.g., random noise). For a truncated ROM of the
Kuramoto–Sivashinsky system, Lu et al.328 defined a discrete-time clo-
sure term zn at time tn as follows:

zn ¼ Un þ nn; (50)

where n is a sequence of independent identically distributed random
variables, which are sampled from Gaussian distributions and charac-
terize the stochastic component of the closure, while U is a function of
current and past values of the resolved scales a and the forcing n. The
authors used the nonlinear autoregression moving average with exoge-
nous input (NARMAX) approach to parameterize U. A similar
approach was adopted in Ref. 263 for the Lorenz 96 model and Ref.
329 for the stochastic Burgers equation. The multiscale Lorenz 96
model,340 which has been considered as a nontrivial test problem for
stochastic parametrization in geophysical fluid dynamics studies, can
be written as

dXi

dt
¼ �Xi�1ðXi�2 � Xiþ1Þ � Xi �

hc
b

XJ
j¼1

Yj;i þ F; (51)

dYj;i

dt
¼ �cbYjþ1;iðYjþ2;i � Yj�1;iÞ � cYj;i þ

hc
b
Xi; (52)

where Eq. (51) represents the evolution of slow, high-amplitude varia-
bles Xi ði ¼ 1;…; IÞ, and Eq. (52) describes the evolution of coupled
fast, low-amplitude variables Yj;i ðj ¼ 1;…; JÞ. In order to investigate
different closure approaches, X can be considered as the resolved
scales, while Y can be considered as the unresolved ones. Therefore,
Eq. (52) is assumed to be unknown and is only used for generating
true data. Furthermore, the form of the term� hc

b

PJ
j¼1 Yj;i, represent-

ing the contribution of Y to the dynamics of X, is also assumed to be

unknown. A closure term is parameterized as a function of the
resolved scales. Although the Lorenz 96 equations are deterministic,
Wilks331 showed the existence of multiple closure values that are con-
sistent with any given large-scale variable, i.e., that different values of
the closure term yield statistically similar results. Therefore, Wilks331

defined the closure term using both deterministic and stochastic com-
ponents. Specifically, the author used a fourth-order polynomial fitting
for the deterministic part that represents the average trend, and a first-
order auto-regression model for the stochastic part that defines the
deviation of different realizations from the fitted curve. Arnold et al.335

explored several parametrization schemes for the stochastic compo-
nent, including the additive and multiplicative noise.

Although the distinction between the resolved and unresolved
variables in the multiscale Lorenz 96 system is not driven by a
Galerkin truncation as is the case for most projection-based ROMs
(which is the focus of the current review), the same arguments apply
in both scenarios. For example, M�emin341 assumed that the flow field
is decomposed into a deterministic resolved component and a general-
ized random field that models the unresolved flow component and all
the uncertainties in the flow. In other words, the projection of the flow
field onto the truncated space is treated as a realization or sample of
the stochastic component of the flow and is modeled using Brownian
motion. Resseguier et al.327 provided numerical investigations of this
methodology using POD-Galerkin projection for flow past a cylinder.
Nonetheless, we believe that this is an open research area that needs
fresh ideas to translate statistical closure strategies342 from turbulence
modeling to the ROM arena.

V. DATA-DRIVEN CLOSURE MODELING

With the abundant supply of big data, open-source cutting
edge and easy-to-use machine learning libraries, cheap computational
infrastructure, and high quality, readily available training resources,
data-driven closure modeling has become very popular. Since
projection-based ROMs are usually constructed from snapshot data
(either collected experimentally or computationally), it is natural to
further exploit this set of data to estimate the closure term efficiently.

In this section, we survey data-driven closure modeling
approaches in which the closure problem is cast into a regression task.
The majority of the recent data-driven closure studies can be viewed
as a regression task, where the closure model is defined partially or
completely as a function of available information (e.g., resolved scales).
We first discuss the early investigations based on classical least squares
approaches. Then, we introduce ML tools that perform this regression
task using neural networks and Gaussian processes regression. Finally,
we explore legacy data assimilation, parameter estimation, and system
identification tools that can efficiently be used to solve the closure
problem. We note that some subsections are entirely devoted to clo-
sure modeling (Secs. V A and V B), some only partially address closure
modeling (Secs. V C and V E), and some do not address closure
modeling at all (Secs. V D, V F, and V G). Although the approaches in
the latter subsections have not yet been used for closure modeling, we
believe that they will soon make an impact in this dynamic research
field.

A. Trajectory regression vs model regression

There are two main schools of thought in data-driven ROM clo-
sure modeling: (i) trajectory regression and (ii) model regression.
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The trajectory regression approach aims at finding the ROM clo-
sure model C in the closed ROM [i.e., the dynamical system in Eq.
(42)] that yields the best ROM trajectory. In this approach, the follow-
ing constrained regression problem is solved:

minimize
C parameters

jjaROM � aFOMjj2;

subject to aROM solves closed ROM Eq: ð42Þ½ �
(53)

where aFOM is the vector of ROM coefficients computed with the
FOM data and aROM is the vector of ROM coefficients yielded by the
closed ROM. [i.e., Eq. (42)]. We note that the trajectory regression
approach is reminiscent of the a posteriori testing used in LES.234

The model regression approach aims at finding the ROM closure
model C that is the best approximation of the “true” closure model. In
this approach, the following unconstrained regression problem is solved:

minimize
c

jjCROM � C
FOMjj2; (54)

where CFOM is the ROM closure model computed with the FOM data,
C
ROM is the postulated ROM closure model form, and c is the vector

of parameters used to define the ROM closure model form. We note
that the model regression approach is similar in spirit to the a priori
testing used in LES.234

We emphasize that the two approaches are fundamentally differ-
ent. The trajectory regression is a black-box approach in which the
precise formula for the ROM closure term, C, is not actually known.
Instead, the trajectory regression first postulates a model form for C
(e.g., by using one of the functional models in Sec. IV A) and then sol-
ves the constrained optimization problem Eq. (53) to find the closure
model parameters that yield the most accurate ROM trajectory (i.e.,
the trajectory aROM that is closest to the projection of the FOM data
on the ROM basis, aFOM). In contrast, the model regression first
employs one of the filters described in Sec. IV B to determine a precise
formula for the ROM closure term, CFOM. Then, it postulates a model
form forCROM. Finally, it solves the unconstrained optimization prob-
lem Eq. (54) to find the closure model parameters that yield the most
accurate ROM closure model (i.e., the closure model CROM that is
closest to the “true” closure model,CFOM, computed from FOM data).

There are pros and cons for both approaches. The trajectory regres-
sion is conceptually simpler than the model regression since it does not
need to determine the “true” form of the ROM closure term. The trajec-
tory regression is also more flexible than the model regression since it can
model not only the ROM closure term, but also other sources of ROM
uncertainty, such as the numerical discretization error and the missing
data. Finally, according to Noack’s conjecture,343 the model regression is
more accurate in the predictive regime (i.e., outside the training interval),
whereas the trajectory regression is more accurate in the reconstructive
regime (i.e., inside the training interval). Noack motivated his conjecture
by noting that using data to matchmodels appearsmore robust to pertur-
bations than using data to match trajectories. To our knowledge, Noack’s
conjecture has not been investigated numerically.

B. Least squares regression

In this section, we survey the data-driven ROM closure models
that use a least squares formulation in the optimization problems
given by Eqs. (53) and (54).

1. Trajectory regression

Given its conceptual simplicity, the trajectory regression has been
used from the earliest days of reduced order modeling to develop clo-
sures. The general idea used to develop these closure models is simple:
(i) postulate a ROM closure model form, either functional (such as the
eddy viscosity models surveyed in Sec. IV A) or structural (such as the
models surveyed in Sec. IV B) and (ii) use a least squares problem in
Eq. (53) to determine the various parameters in the postulated model
form.

a. Functional models. Probably the first functional trajectory
regression closure is the mixing-lengthmodel proposed in the pioneer-
ing work by Aubry et al.,83 in which trajectory regression is used to
determine the mixing-length constant (see Ref. 135 for related work).
A least squares trajectory regression was also used by Wang et al.135 to
determine the eddy viscosity constants in the Smagorinsky and VMS
closure models. Further improvements to the least squares trajectory
regression of eddy viscosity ROM closure models were proposed by
€Osth et al.113 and Protas et al.136 The eddy viscosity trajectory regres-
sion has also been used by Stabile et al.,138 Reyes and Codina,139 and
Bergmann et al.256

b. Structural models. Probably the first structural trajectory
regression closures are those constructed with calibration methods,
which have been introduced to directly modify (or calibrate) the
GROM polynomial coefficients (i.e., B; L, and N), rather than intro-
ducing an additional closure term. Buffoni et al.344 calibrated the con-
stant and linear terms (i.e., B and L), while leaving the nonlinear
term, N, as derived from the Galerkin projection step. The modified
coefficients are then found using a pseudo-spectral method such that
the model prediction is as close as possible to the actual reference solu-
tion.345 An extension to calibrate all the polynomial coefficients (linear
and quadratic) was employed by Couplet et al.,346 where the cost func-
tion is defined to penalize the deviation of the calibrated ROM behav-
ior with respect to the projection of true snapshot data. Moreover,
Perret et al.347 considered a cubic polynomial to represent the dynam-
ics of the POD modal amplitudes for supersonic jet-mixing layer data,
and adopted a least squares regression to define the coefficients of the
polynomial. Baiges et al.348 used a calibration method in a VMS frame-
work to build a structural trajectory regression closure. Specifically, the
authors postulated a linear model for the unresolved sub-scale term as
a function of the resolved field (i.e., C ¼ ~B þ ~La) and then solved the
constrained least-square problem Eq. (53) for the components of ~B
and ~L.

An assessment of various calibration techniques using the two-
dimensional flow around a cylinder can be found in Ref. 349. A vital
merit of the calibration methods is that the computational costs of
these methods are reasonable since they employ the temporal part of
the POD information for the regression task, while the Galerkin pro-
jection method exploits the much more voluminous spatial POD
information to construct the ROM polynomial.

2. Model regression

These closure models are constructed as follows: (i) use the filters
surveyed in Sec. IV B to determine a mathematical formula for the
true closure model, CFOM, computed from FOM data; (ii) postulate a
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ROM closure model form for the ROM closure model, CROM; and (iii)
use the least squares problem in Eq. (54) to determine the various
parameters in the postulated model form. To our knowledge, the vast
majority of ROM closure model forms that have been proposed in this
direction are of structural type. A notable exception is the model pro-
posed by Hijazi et al.,350 which uses the finite volume RANS data in
conjunction with a model regression approach to determine the eddy
viscosity component of the ROM.

A model regression closure that uses the ROM projection as a
spatial filter is the data-driven VMS-ROM model proposed by Mou
et al.302 A two-scale version was investigated in Refs. 351 and 353, and
a three-scale version was proposed in Ref. 302. The behavior of the lin-
ear,352 quadratic,302,351 and even cubic353 terms were studied. A data-
driven VMS-ROM to increase the pressure accuracy was proposed in
Ref. 354. The verifiability of the data-driven VMS-ROM was rigor-
ously proven by Koc et al.355 Other model regression closures that use
the ROM projection as a spatial filter were employed to build parame-
terized manifold closures by Liu and his collaborators,303 and by Lu
and his co-workers328,329,356 to construct stochastic ROM closures. A
model regression closure that uses the ROM differential filter was pro-
posed by Koc et al.308 The resulting data-driven LES-ROM uses the
ROM differential filter to determine a mathematical formula for the
true closure model, CFOM, computed from FOM data. To our knowl-
edge, the data-driven LES-ROM in Koc et al.308 is the only model
regression approach that utilizes a spatial filter (i.e., the differential fil-
ter) instead of the commonly used ROM projection.

A model regression closure that uses the PDF filtering in an MZ
setting was proposed by Duraisamy e tal.246,265,357 In the MZ frame-
work, PDF filtering is used to express the true closure model, CFOM, as
a memory term, which is then approximated by using the FOM data
and solving the least squares problem in Eq. (54). Moreover, a model
regression closure that uses time filtering was proposed by Selten253

and utilized in the numerical simulation of a barotropic model.
Mohebujjaman et al.358 used physical constraints in the model regres-
sion closure to improve the stability and accuracy of the data-driven
VMS-ROM model.302 Specifically, they equipped the least squares
problem in Eq. (54) with physical constraints to enforce the regressed
matrix and tensor to have similar characteristics as the GROM opera-
tors (e.g., ~L being negative semi-definite and ~N being energy conserv-
ing). A similar quadratic formula was adopted in Ref. 359 to recover
the hidden physical processes (e.g., source terms) for a system with
incomplete governing equations.

C. Neural network regression

The introduction of neural network regression into ROM was
highly motivated by the desire to construct purely data-driven nonin-
trusive ROM (NIROM) frameworks,8,360 which solely rely on data to
learn the dynamics of the relevant solution manifold without the need
to access the governing equations. Nonintrusive approaches are attrac-
tive due to their portability since they do not necessarily require the
exact form of the equations or the methods used to generate the data.
In addition, nonintrusive models offer a unique advantage in multidis-
ciplinary collaborative environments, where only data can be shared
without revealing the proprietary or sensitive information.
Nonintrusive approaches are also useful when the detailed governing
equations of the problem are unknown. This modeling approach can
benefit from the enormous amount of data collected from

experiments, sensor measurements, and large-scale simulations to
build NIROMs based on the assumption that data are a manifestation
of all the underlying dynamics and processes.

Machine learning tools, in particular the artificial neural
networks (ANNs) equipped with the universal approximation theo-
rem,361 have been widely exploited in this regard. A typical feed-
forward neural network is depicted in Fig. 5, where a mappingM
from the input X to the output Y ¼MðXÞ is inferred through a
learning algorithm. For transient flows, a single-layer feed-forward
neural network was proposed by San et al.362 to provide accurate pre-
dictions of the ROM coefficients with varying control parameter val-
ues, using sequential and residual approaches. In the sequential
approach, a mapping from the current values of a to their future values
is approximated. Moreover, the input layer is augmented with the act-
ing Reynolds number and the time. That is, X ¼ fRe; tn; aðtnÞg,
whileY ¼ faðtnþ1Þg. On the other hand, the residual implementation
relies on learning the deviation of the future state from its current
value (i.e., Y ¼ faðtnþ1Þ � aðtnÞg). Pawar et al.363 employed deep
neural networks (DNN) to bypass the Galerkin projection step and
build a fully NIROM for the two-dimensional Boussinesq equations
with a differentially heated cavity flow setup at various Rayleigh num-
bers. In particular, the evolution of the POD modal amplitudes
aðtnþ1Þ was predicted from their past values using residual and back-
ward difference scheme formulas. The application of variants of
ANNs as regression models for the dynamics of low-order states (e.g.,
POD amplitudes) has gained substantial popularity,364–366 owing to
the availability of open-source and user-friendly ML libraries. This is a
hot topic and dozens of new papers appear every week in different
journals and conferences all over the world, dealing with different
aspects of NIROM based on ANNs (e.g., different architectures, test
bed problem, and error bounds).

Recurrent neural networks (RNNs) are very effective for
sequence predictions in numerous applications, e.g., speech

FIG. 5. A schematic diagram of a typical feed-forward neural network with an input
layer, hidden layers, and an output layer. We note that these general-purpose
dense deep network architectures have been evolving to more specific neural net-
work designs.367 We discuss some of them briefly in Sec. VI.
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recognition and translation. RNNs contain loops that allow them to
retain information from one time step to another so as to enforce the
temporal dependencies. A deep residual RNN was utilized by Kani
and Elsheikh368 for the model reduction of nonlinear dynamical sys-
tems. However, one of the limitations of RNNs is vanishing (or
exploding) gradient to capture the long-term dependencies, stemming
from the repetitive multiplication of gradient with potentially ill-
conditioned weight matrices during the backpropagation learning
algorithm. The long short-term memory (LSTM) neural networks
mitigate this issue by employing a gating mechanism that allows infor-
mation to be forgotten. Vlachas et al.369 trained an LSTM to predict
the derivative of a with respect to time from a short history of a values,
where a first-order forward difference scheme was adopted to repre-
sent the temporal derivative. They also combined the LSTM with a
mean stochastic model to cope with attractor regions that are not cap-
tured in the training set. Mohan and Gaitonde370 explored the bidirec-
tional variant of LSTM, employing two LSTM networks: one in the
forward and the other in the reverse direction, for NIROM of forced
isotropic turbulence and magneto-hydrodynamic turbulence using the
Johns Hopkins turbulence database.371 Rahman et al.372 utilized
LSTMs for the NIROM implementation of the two-dimensional sin-
gle-layer quasi-geostrophic ocean circulation model. A sliding window
approach was adopted to predict the evolution of the POD amplitudes.
In another interesting article, Wang et al.273 utilized a conditioned
LSTM for the memory term in the GROM equations, representing the
closure model, for parametric systems.

Instead of using ML to entirely replace the GROM with
NIROM, data-driven ML can be utilized along with the physics-
based GROM to construct the closure model. This hybrid approach
was adopted in Ref. 268, which used a dissipative term employing an
eddy viscosity coefficient and utilized a single layer extreme learning
machine (ELM) to estimate a modal �e as a function of the mode
index, GROM right-hand side (RHS), and modal amplitudes.
Furthermore, a clipping procedure was carried out by discarding the
negative values of �e. ML tools can be exploited to provide the
numerical value of the closure term, without constraints on the func-
tional form of the closure model. San andMaulik269,373 utilized an
ELM374 to learn the value of the closure term as a function of the
GROM RHS, i.e., C ¼ f ðBþ Laþ a>NaÞ. For training purposes,
the true closure term is computed from the projection of the pure
evolution of the PDE onto the reduced space. In other words, Eq.
(29) is first evaluated in the FOM space, then projected onto the basis
functions, while the GROM RHS [Eq. (33)] is computed directly in
the reduced space.

Wan et al.375 utilized LSTM architectures to learn the mis-
match resulting from the imperfect GROM RHS as a function of the
sequence of past values of the resolved state. The ML model is
exploited to assist the imperfect model whenever data are available,
while for locations with sparse data, the GROM still provides an
acceptable baseline for the prediction of the system state. The esti-
mation of the closure term as a function of the time history of the
resolved scales has roots in the Mori–Zwanzig formalism,325,376 and
the memory embedding of LSTM implementation for closure
modeling is supported by the Takens embedding theorem.377

Gupta and Lermusiaux275 employed RNNs to learn the non-
Markovian term appearing in Eq. (48) using the neural delay differ-
ential equations with discrete delays as follows:

da
dt
� f ðaÞ þ gRNNðaðtÞ; aðt � s1Þ;…; aðt � sKÞ; hÞ; (55)

where K is the number of discrete-delays and h represents the neural
network weights. For distributed delays, the ROM evolution is written
as

da
dt
� f ðaÞ þ g

�
aðtÞ;

ðt�s1

t�s2

hðaðsÞ; sÞds; t
�
; (56)

where the delay is distributed over past time periods t � s2 and t � s1.
Gupta andLermusiaux275 approximated the g and h functions defining
the delay term using two different coupled neural networks as follows:

da
dt
� f ðaÞ þ gNNðaðtÞ; yðtÞ; t; hgÞ; (57)

dy
dt
� hNNðaðt � s1Þ; t � s1; hhÞ � hNNðaðt � s2Þ; t � s2; hhÞ; (58)

where the memory effect can be embedded without the use of any spe-
cific recurrent neural network. The authors showed that the non-
Marovian closure outperforms its Marovian counterpart (with no time
delays).

D. Kernel regression

Gaussian process regression (GPR)378 has the advantage of the
simultaneous prediction of both the system’s dynamics and the associ-
ated uncertainty. Although GPR provides a powerful tool for probabil-
istic inference that enables modelers to strike a balance between model
complexity and data fitting,379 its use is often limited to relatively small
training datasets due to the well-known cubic scaling characteristics of
the Gaussian processes. However, fast algorithms using approximate
matrix-vector products can be utilized for large datasets.380,381 GPR
has gained prominence providing surrogate models for complex and
multidimensional systems.382–384 In ROM applications, these confi-
dence measures can be particularly informative when the ROM
dimension is lower than the intrinsic dimension of the system. Wan
and Sapsis385 formulated a stochastic model based on GPR dynamics
and utilized a Monte Carlo framework for the forecast of the system’s
state and corresponding uncertainty. Maulik et al.386 utilized a
Gaussian process emulator for the dynamical evolution of the latent
space state variables, obtained from POD and autoencoder compres-
sion, for the shallow water equations. We also note that Raissi and
Karniadakis379 developed a Gaussian process framework to learn
PDEs from relatively small quantities of data. Xiao et al.387 applied a
second-order Taylor series scheme and a Smolyak sparse grid colloca-
tion method to calculate the POD modal coefficients at each time step
from their values at earlier time steps. A radial basis function (RBF)
multidimensional interpolation was used in Ref. 388 for similar pur-
poses. RBF interpolations have been also utilized for parameterized
problems as mappings from the parameter space to the ROM space.389

E. Data assimilation and error correction

An excellent discussion of the similarities between ML and data
assimilation (DA) tools has been recently provided by Alan Geer.390

The synergistic integration of ML and DA is essential for developing
improved approaches.391–402 Looking at the ROM framework from a
data assimilation point of view opens up innovative avenues to tackle
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the closure problem. Ideas from optimal control theory, data assimila-
tion, and parameter estimation were proven to be valuable in this
regard. DA is a generic framework combining the available observa-
tions with the underlying dynamical principles governing the system
to estimate the physical quantities of interest. This is usually accom-
plished by starting from a background solution and computing an
optimal estimation of the true state of the system that minimizes the
discrepancy between the model predictions and collected observations.
This minimization problem is solved while taking into account the
respective statistical confidence of different observations, background
solution, and model uncertainty.401 In order to emphasize the model’s
error (due to truncation), D’Adamo et al.402 added a Gaussian variable
to the ROM equation. This is similar to the weak variational data
assimilation framework implemented in Ref. 403 for ROMs using real
experimental conditions with noisy particle image velocimetry data.
The GROM is augmented with an additive stochastic control variable,
representing the model’s uncertainty that reflects the effect of unre-
solved scales on the resolved dynamics. Estimating such an uncertainty
function can be incorporated to improve the ROM predictions. Zerfas
et al.404 utilized the nudging algorithm to improve predictions by add-
ing a feedback control term that nudges the ROM approximation
toward the reference solution corresponding to the observed data. The
authors also presented a strategy to dynamically adjust the nudging
parameter by controlling the dissipation arising from the nudging
term as well as a numerical analysis of the proposed DA-ROM. A
combination of the nudging methodology and LSTM framework was
adopted by Ahmed et al.405,406 to correct the ROM trajectory, consid-
ering the initial condition mismatch and GROMmodel deficiency.

DA has been also utilized to calibrate the ROM coefficients so
that the ROM predictions agree with the available observations.
Cordier et al.112 adopted a four-dimensional variational (4DVAR) for-
mulation to tune the computed ROM coefficients, where the back-
ground values were obtained from standard Galerkin projection. The
projection of snapshot data onto the POD basis was treated as syn-
thetic observations of the reduced system’s state. Although a good
match was observed within the assimilation window, the model’s sta-
bility on the forecast window was not ensured. This is similar to the
strong variational formulation in Ref. 402 aiming at directly correcting
the model’s coefficients assuming a deterministic dynamical model.

DA tools can also be exploited to provide a good estimate of the
free parameters in classical closure models. For example, Cordier
et al.112 adopted the nonlinear eddy viscosity model from Refs. 254
and 300 and applied the 4DVAR framework to estimate the eddy vis-
cosity parameter to increase the physical reliability of the model
beyond the assimilation window. More recently, Ahmed et al.407 used
a linear eddy viscosity model and exploited the forward sensitivity
method (FSM) to compute and update the mode-dependent eddy vis-
cosity parameters. Given the plummeting costs of sensors and the
potential of ROM in the real-time monitoring and control, we empha-
size that DA appears to be a good candidate for future developments
leveraging the increasingly available heterogeneous measurement data
to build more robust ROM closures.

F. Operator inference approaches

An operator inference (OI) approach was proposed by
Peherstorfer and Willcox116 to infer the ROM operators from data.
Next, we briefly outline the OI approach. First, we note that the

quadratic term in Eq. (33) can be written as ½a>Na�k
¼
Pr

i¼1
Pr

j¼1 Nijkaiaj. In Ref. 116, this is rewritten as a matrix-vector
product to exploit the commutative property of multiplication and
avoid redundancy (i.e., we consider a single term aiaj as a representa-
tive of both aiaj and ajai) as follows:

da
dt
¼ Bþ LaþDa2; (59)

where D 2 Rr�rðrþ1Þ=2 is the quadratic operator and
a2 ¼ ½að1Þ> ; að2Þ

>
;…; aðrÞ

> �> 2 Rrðrþ1Þ=2, with aðiÞ 2 Ri defined as

aðiÞ ¼ ai

a1
..
.

ai

264
375: (60)

Then, the components ofB; L, andD are computed by solving r least
squares problems, corresponding to each mode dynamics (i.e., dak

dt ).
The OI algorithm in Ref. 116 can be extended to any arbitrary polyno-
mial nonlinear terms in the state. However, the computational cost
grows exponentially with the order of the polynomial nonlinear term
rendering it feasible only for low-order polynomials. We highlight that
even if the Galerkin projection step is not often required in the previ-
ous calibration (and OI) studies, it is generally assumed that the true
governing equation has a quadratic (or polynomial) structure. This
limitation was addressed in Ref. 408, which introduced a lift & learn
approach, where the ROM polynomial coefficients are efficiently cali-
brated even if the high-dimensional dynamics are not quadratic
using lifting transformations. Recent OI developments are discussed in
Refs. 409–412.

G. System identification approaches

In many fluid dynamics applications, system identification
approaches become viable tools to identify nonlinear low-order mod-
els.413 However, robust identification of realistic dynamical systems
constitutes a grand challenge. For example, let us decompose the flow
into two parts:

Flow ¼ resolvedþ unresolved dynamics (61)

or

u ¼ v þ w: (62)

Then, the evolution equation for v can be abstracted as follows:

dv
dt
¼ f ðv;wÞ¼: f ðv; 0Þ þ gðv;wÞ: (63)

The unresolved dynamics term, g , has a high-frequency stochastic
component important for short-term dynamics and an energy-
absorbing component important for long-term boundedness. The first
component can be modeled by a stochastic term, and the second by an
eddy viscosity model, as we discussed earlier.

In general, data-driven model identification (without priors)
requires full data. With full data a k-nearest neighbor (k-NN) model
for kinematics and dynamics should work. With sparse data, no model
identification might work. The lack of data has to be compensated by
priors/knowledge. There are two issues here:
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Warning 1. Lack of resolution (unknown w) leads to one closure
problem. Lack of data (under-resolved v) leads to another closure
problem.
Warning 2. The model complexity and data richness are strongly
interwoven.414

That being said, there are many methods for model identifica-
tion, starting with brute-force data interpolation.121 Although many of
the methodologies presented in Sec.V E can be viewed as system iden-
tification approaches, we dedicate the following discussion to the
efforts and potential opportunities that aim at revealing the mathemat-
ical representation of the closure term. This strategy is fundamentally
different from assuming a specific form for model closure and fitting it
to data to compute the unknown parameters and/or coefficients. In
this regard, symbolic regression (SR) techniques have been recently
exploited to identify interpretable closed form approximations of the
governing equations, by observing the dynamical behavior and
response of the system of interest.415,416 SR techniques can be largely
classified into two categories: (1) approaches that utilize compressed
sensing and sparsity-promoting techniques to choose a few functions
from a large feature library of potential basis functions that have the
expressive power to define the dynamics; (2) evolutionary algorithms
that search for functional abstractions with a preselected set of basic
mathematical operators and operands. Examples that belong to the
first category include the sparse identification of nonlinear dynamics
(SINDy) framework,117,417 the sequential threshold ridge regression
(STRidge) algorithm,418 and the PDE-functional identification of non-
linear dynamics (PDE-FIND) technique,418 while genetic programing
(GP)419–421 and gene expression programing (GEP)422 represent the
major drivers for evolutionary SR explorations. Loiseau et al.423 uti-
lized SINDy to identify a system of nonlinearly coupled ODEs govern-
ing the evolution of the first pair of POD modes’ amplitudes (i.e., a1
and a2) for the 2D flow over a cylinder. Considering monomials of a1
and a2, a library of candidate functions is constructed as follows:

H ¼ 1 a1 a2 a21 a1a2 a22 a31 a21a2 a1a22 a32
� �

: (64)

The identified ROM equations thus take the form

da
dt
¼ Hf; (65)

where f encapsulates the coefficient of each candidate function, com-
puted using a sparsity-promoting regression problem. Note that the
library H can be enriched with any arbitrary functions that potentially
describe the system’s dynamics. Since the system given in Eq. (65) is
distilled from data, the effect of truncated modes on a1 and a2 (i.e., the
closure model) is inherited in the identified model. Indeed, the results
of integrating the model derived by SINDy outperformed those from
standard GROM. A recent innovation,424 trapping SINDy, identifies
dynamics with a trapping region, i.e., guarantees boundedness of the
solution.115 This innovation is particularly important for higher-
dimensional dynamics, where sparse identification is prone to give rise
to unbounded solutions otherwise.

SR approaches have been also pursued to discover discrepancy
models and reveal the hidden physics and dynamical processes that are
not represented in the available governing equations. Vaddireddy
et al.425 applied the GEP and STRidge algorithms to recover the hid-
den physics (e.g., source or forcing terms) in the 2D Navier–Stokes

equations using Eulerian sensor measurements. Likewise, Kaheman
et al.426 utilized SINDy to model the mismatch between simplified
models and measurement data. With particular relevance to closure
modeling, Vaddireddy et al.425 also demonstrated the application of
GEP and STRidge to identify the truncation error due to numerical
discretization, and recover the eddy viscosity kernels, manifested as
source terms in the LES equations. With the ongoing advancement
and maturity of SR tools, great leaps in closure modeling are expected,
especially given the lack of physical intuition in a ROM context.

VI. PHYSICS-INFORMED DATA-DRIVEN MODELING

In most of the works related to NIROMs, the general idea is to
employ the ML model to learn the temporal evolution of the field vari-
able in the reduced order subspace and thereby bypass the intrusive
Galerkin projection. Gao et al.427 proposed a framework that utilizes a
fully connected neural network to approximate the nonlinear velocity
function in the ROM equations by leveraging the same data used for
the reduced basis construction. They illustrated the stable performance
of the framework in the parametric viscous Burgers equation and two-
dimensional premixed H2-air flame model. Xu and Duraisamy428 pro-
posed a data-driven framework composed of a convolutional encoder
to identify nonlinear basis functions, a temporal convolutional encoder
to learn the temporal dynamics of latent variables, and a fully con-
nected neural network to learn the mapping between the parameters
of the system and the latent variables. They demonstrated the predic-
tive performance of this framework for problems involving disconti-
nuities, wave propagation, and coherent structures. Although
NIROMs have been successful for many complex nonlinear problems,
the typical sparsity of data motivates the physics-informed data-driven
modeling.

Remark. We note that most computational modeling approaches
require (a) data and (b) physics knowledge. The evolution equations
are computationally too demanding and numerical discretization
methods are not feasible for multi-query tasks. The data-driven meth-
ods are computationally efficient, but data-hungry in nature. For
example, the autoencoders require a lot of data to build a generalizable
ROM that cannot be derived from first principles. However, the
reduced dynamics on the autoencoder need to follow first-principles
dynamics, which can be imposed as a prior given sparse data.

The neural networks are one of the most popular algorithms for
learning the reduced order dynamics of nonlinear problems. However,
as the complexity of the system increases, the depth of the neural net-
work also grows to learn the complicated nonlinear dynamics, and the
number of trainable parameters explodes quickly. In the presence of
sparse data, deep neural networks exhibit high epistemic uncertainty,
and this adversely affects the trustworthiness of NIROMs. In these sit-
uations, it is important to inject physical relationships explicitly or
implicitly in the training process or the model architecture. For exam-
ple, partial differential equations, conservation laws, and symmetries
can be exploited toward building physics-informed data-driven mod-
els. This will allow the training of deep neural networks with limited
training data, speed up the training process, and also ensure physically
consistent prediction. To this end, different approaches have been pro-
posed in scientific machine learning, e.g., cost function modification to
accommodate the model Jacobian,429 grow-when-required network,430

physics-informed neural networks,431–434 embedding hard physical
constraints in a neural network,435,436 physics-based feature
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extraction,437 leveraging uncertainty information,438 developing visual-
ization tool of the network analysis,439 physics-guided machine learn-
ing,440,441 and hybrid modeling.20,238,406,442 Readers are referred to the
recent review article by Karniadakis et al.434 for a detailed discussion
of embedding physics into machine learning for tackling scientific
problems. In recent years, innovative applications of tailored neural
network architectures have become increasingly common among fluid
dynamicists. A central question in many studies is often how to exploit
prior knowledge about the problem at hand to build more trustworthy
models.443 Various hybrid modeling principles that aim at combining
the machine learning and data-driven models with the physics-based
models have been recently discussed by San et al.20

The physics-informed data-driven modeling has been successful
in many applications, such as turbulence closure modeling,444 super-
resolution of turbulent flows,445,446 and generative modeling of
dynamical systems,447–449 and it holds a great potential for ROMs.
Next, we present several recent developments in physics-informed
data-driven modeling. Chen et al.450 built the physics-reinforced neu-
ral network (PRNN) trained by minimizing the mean squared residual
error of the reduced order equations, and the mean squared error
between the neural network prediction and the projection of high-
fidelity data on the reduced basis. The incorporation of reduced order
equations in the loss function can be considered as a physics-based
regularization. The PRNN was demonstrated to be more accurate than
a purely data-driven neural network for complex nonlinear problems.
Mohan et al.435 proposed a physics-embedded convolutional autoen-
coder (PhyCAE) in which the divergence-free condition is imposed as
a hard constraint through non-trainable layers after the decoder. The
PhyCAE combined with a recurrent neural network for modal coeffi-
cients prediction can provide a physics-constrained NIROM that satis-
fies the conservation laws. Lee and Carlberg451 developed a framework
that computes the lower-dimensional embedding using a convolu-
tional autoencoder and enforces physical conservation laws by model-
ing the latent-dynamics as a solution to a constrained optimization
problem. The objective function of the optimization problem is
defined as the sum of squares of conservation-law violations over a
control volume of the finite volume discretization.

Kaptanoglu et al.452 developed a physics-constrained low-dimen-
sional model for magnetohydrodynamics by enforcing symmetries
derived from global conservation laws into data-driven models.
Sawant et al.453 proposed a physics-informed regularizer and structure
preserving (such as symmetry and definiteness in linear terms) OI for-
mulation and demonstrated their framework’s performance in terms
of improved stability and accuracy for nonlinear systems. The OI
framework with physics-based regularization has also been applied for
building predictive ROMs for rocket engine combustion dynamics.454

A constrained sparse Galerkin approach has been introduced by
Loiseau andBrunton.413 Finally, Mohebujjaman et al.358 used physical
constraints to increase the stability and accuracy of their data-driven
variational multiscale ROM closure framework.

There are a number of limitations of data-driven methods,
including extrapolation beyond the training dataset, the curse of
dimensionality, stability issues, and boundedness of the model. Many
of these potential challenges can be mitigated using the decades of pro-
gress in physics-based modeling. For example, one way to address the
curse of dimensionality, i.e., when the optimization problem can
become highly non-convex and computationally expensive for very

high-dimensional systems, is to tailor the feature space based on prior
knowledge about the system.455 Furthermore, the extrapolation
beyond training dataset, which is a central challenge in many data-
driven methods, can be effectively tackled by enforcing conservation
laws or by using a custom neural network architecture that incorpo-
rates prior information about the system at hand. Finally, as the
research in physics-informed data-driven modeling is rapidly pro-
gressing, reproducible research through open-source benchmark data-
sets and test cases should also be developed.

VII. CONCLUSIONS AND OUTLOOK

The ever-increasing need for computational efficiency and
improved accuracy of many applications leads to very large-scale
dynamical systems whose simulations and analyses make unmanage-
able demands on computational resources. Significantly simplifying
the computational complexity of the underlying mathematical model,
ROMs offer promise in many applications, like shape optimization,
uncertainty quantification, and control. Over the past decades, for
example, DNS, LES, and RANS have made a tremendous impact in
the numerical simulation of turbulent flows. However, these FOMs
cannot be generally used in many query applications because of their
prohibitively high computational cost.

ROMs are efficient, relatively low-dimensional models often cre-
ated from available data. In fluid dynamics, ROMs have been success-
fully used as surrogate models for structure-dominated problems,
mainly in simple, academic test problems. However, traditional ROMs
generally fail for more realistic flows because a low-dimensional ROM
basis cannot accurately represent the complex dynamics, a topic that
vastly waits for new explorations. Our paper provides a glimpse into
various approaches to generating accurate ROMs, focusing on phe-
nomenological, mathematical, and data-centric closure modeling
approaches. We primarily focus on subspace projection-based meth-
ods and discuss their feasibility for various nonlinear problems in fluid
dynamics. A chief emphasis is given to closure models and, in particu-
lar, to the analogy between LES and ROMs. Various methodologies
are leveraged and examples are included to provide a broader overview
of forward-looking reduced order modeling practices in the age of
data. Of course, our paper is only a first step in an exhaustive discus-
sion of ROM closure modeling. Although we tried to include as many
relevant contributions as possible, we left out important developments
(e.g., stochastic closure modeling, compressible flows, and ROM pres-
sure approximations). We hope, however, that our paper will serve as
a stepping stone toward a more comprehensive discussion of the excit-
ing research areas of data-driven modeling and ROM closures, where
these and many other new developments will be carefully presented.

We envision that ROMs will be a key enabler in the development
of a big data cybernetics infrastructure, an approach to controlling an
asset or process using real-time big data. These tools and concepts
offer many new perspectives to our rapidly digitized society and its
seamless interactions with many different fields. With the recent wave
of digitalization, the latest trend in every industry is to build systems
and approaches that will help not only during the conceptualization,
prototyping, testing, and design optimization phase but also during
the operation phase with the ultimate aim to use them throughout the
whole product life cycle. While the numerical simulation tools and
lab-scale experiments are clearly important in the first phase, the
potential of real-time availability of data in the operational phase is
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opening up new avenues for monitoring and improving operations
throughout the life cycle of a product. We believe that ROMs will be
crucial to the improvement of emerging digital twin technologies.

Currently, the development of robust monolithic ROMs for a sin-
gle operating condition with adequate data is a well-established art.
We remark that “sufficient data” for post-transient dynamics implies
that all snapshots will be approximately revisited multiple times. This
is already quite a challenge for turbulent flows given the stochasticity
of the dynamics.

A much more common task is modeling transient, controlled, or
multiparametric dynamics. For instance, an airplane needs to be
designed to prevent flutter under a large range of operating conditions,
e.g., velocity, angle of ascent or descent, position of flaps, and maneu-
vers. There will never be enough data for these cases and the large terra
incognitae (oceans of missing data) have to be replaced by prior
knowledge or clever guesses. Hence, physics-informed data-driven
ROMs will become a necessity for most applications.

Most likely, such a range of dynamics will not be facilitated by a
single “monolithic” reduced order representation, but a large set of
representations, leading to a large set of ROMs with overlapping
domains of validity. This trend is already foreshaddowed for the tran-
sient cylinder wake. An accurate reduced order representation requires
about 50 POD modes121 or, staying in the Galerkin framework, a set
of adjustable mean-field and adjustable Galerkin expansion modes.456

Another requirement is human interpretability of the kinematics
and dynamics. In an ideal case, this leads to a low-dimensional mani-
fold for the data and a sparse representation for the dynamics. Most
likely, only cartographic visualization of the state space and the
dynamics will be achievable. One example is the cluster-based network
with many centroids for many operating conditions and a transition
network for the dynamics.

As the treasures of high-quality experimental and numerical data
and the spectrum of increasingly powerful methods are evolving, an
open-source distribution of data and methods becomes of increasing
importance. Hitherto, sharing of data andmethods is still in its infancy
and requires dedicated efforts. A noteworthy positive development is
ever-increasing number of journals that encourage the publication of
data and methods.

We conclude with two guidelines which are independent of the
field but may easily be overlooked. First, there is the need for a well
chosen set of guiding benchmark problems serving as lighthouses for
model development. The second advice is best formulated by
Harrington Emerson (1853–1931, efficiency engineer):

“As to methods there may be a million and then some, but
principles are few. The man who grasps principles can
successfully select his own methods. The man who tries
methods, ignoring principles, is sure to have trouble.”
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87I. Mezić, “Spectral properties of dynamical systems, model reduction and
decompositions,” Nonlinear Dyn. 41, 309–325 (2005).

88M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera, “Efficient reduced-
basis treatment of nonaffine and nonlinear partial differential equations,”
ESAIM: Math. Modell. Numer. Anal. 41, 575–605 (2007).

89S. Gugercin, A. C. Antoulas, and C. Beattie, “H2 model reduction for large-
scale linear dynamical systems,” SIAM J. Matrix Anal. Appl. 30, 609–638
(2008).

90S. Chaturantabut and D. C. Sorensen, “Nonlinear model reduction via dis-
crete empirical interpolation,” SIAM J. Sci. Comput. 32, 2737–2764 (2010).

91P. J. Schmid, “Dynamic mode decomposition of numerical and experimental
data,” J. Fluid Mech. 656, 5–28 (2010).

92M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data–driven approxi-
mation of the Koopman operator: Extending dynamic mode decomposition,”
J. Nonlinear Sci. 25, 1307–1346 (2015).

93K. Carlberg, C. Bou-Mosleh, and C. Farhat, “Efficient non-linear model
reduction via a least-squares Petrov–Galerkin projection and compressive
tensor approximations,” Int. J. Numer. Methods Eng. 86, 155–181 (2011).

94J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz,
“On dynamic mode decomposition: Theory and applications,” J. Comput.
Dyn. 1, 391–421 (2014).

95B. G. Galerkin, “Series-solutions of some cases of equilibrium of elastic beams
and plates,” Vestn. Inshenernov 1, 897–908 (1915).

96B. Saltzman, “Finite amplitude free convection as an initial value problem-I,”
J. Atmos. Sci. 19, 329–341 (1962).

97S. Lakshmivarahan, J. M. Lewis, and J. Hu, “Saltzman’s model. Part I:
Complete characterization of solution properties,” J. Atmos. Sci. 76,
1587–1608 (2019).

98E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130–141
(1963).

99D. Rempfer and H. F. Fasel, “Dynamics of three-dimensional coherent struc-
tures in a flat-plate boundary layer,” J. Fluid Mech. 275, 257–283 (1994).

100R. Everson and L. Sirovich, “Karhunen–Loeve procedure for gappy data,”
J. Opt. Soc. Am. A 12, 1657–1664 (1995).

101S. S. Ravindran, “A reduced-order approach for optimal control of fluids using
proper orthogonal decomposition,” Int. J. Numer. Methods Fluids 34,
425–448 (2000).

102K. Kunisch and S. Volkwein, “Galerkin proper orthogonal decomposition
methods for parabolic problems,” Numer. Math. 90, 117–148 (2001).

103M. Couplet, P. Sagaut, and C. Basdevant, “Intermodal energy transfers in a
proper orthogonal decomposition-Galerkin representation of a turbulent sep-
arated flow,” J. Fluid Mech. 491, 275 (2003).

104S. Sirisup and G. E. Karniadakis, “A spectral viscosity method for correcting
the long-term behavior of POD models,” J. Comput. Phys. 194, 92–116
(2004).

105G. Rozza, D. B. P. Huynh, and A. T. Patera, “Reduced basis approximation
and a posteriori error estimation for affinely parametrized elliptic coercive
partial differential equations,” Arch. Comput. Methods Eng. 15, 229 (2007).

106Y. Cao, J. Zhu, I. M. Navon, and Z. Luo, “A reduced-order approach to four-
dimensional variational data assimilation using proper orthogonal decom-
position,” Int. J. Numer. Methods Fluids 53, 1571–1583 (2007).

107D. Amsallem and C. Farhat, “Interpolation method for adapting reduced-
order models and application to aeroelasticity,” AIAA J. 46, 1803–1813
(2008).

108P. Astrid, S. Weiland, K. Willcox, and T. Backx, “Missing point estimation in
models described by proper orthogonal decomposition,” IEEE Trans.
Automat. Control 53, 2237–2251 (2008).
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(Universitat Politècnica de Catalunya, 2020).

295R. Reyes, R. Codina, J. Baiges, and S. Idelsohn, “Reduced order models for
thermally coupled low mach flows,” Adv. Model. Simul. Eng. Sci. 5, 28 (2018).

296A. Tello, R. Codina, and J. Baiges, “Fluid structure interaction by means of
variational multiscale reduced order models,” Int. J. Numer. Methods Eng.
121, 2601–2625 (2020).

297S. Rubino, “Numerical analysis of a projection-based stabilized POD-ROM
for incompressible flows,” SIAM J. Numer. Anal. 58, 2019–2058 (2020).

298M. Aza€ıez, T. C. Rebollo, and S. Rubino, “A cure for instabilities due to
advection-dominance in POD solution to advection-diffusion-reaction equa-
tions,” J. Comput. Phys. 425, 109916 (2021).

299B. R. Noack, M. Morzynski, and G. Tadmor, Reduced-Order Modelling for
Flow Control (Springer-Verlag, Berlin, 2011), Vol. 528.

300M. Schlegel, B. R. Noack, P. Comte, D. Kolomenskiy, K. Schneider, M. Farge,
D. M. Luchtenburg, J. E. Scouten, and G. Tadmor, “Reduced-order modelling
of turbulent jets for noise control,” in Numerical Simulation of Turbulent
Flows and Noise Generation (Springer, Berlin, 2009), pp. 3–27.

301O. San and T. Iliescu, “A stabilized proper orthogonal decomposition
reduced-order model for large scale quasigeostrophic ocean circulation,” Adv.
Comput. Math. 41, 1289–1319 (2015).

302C. Mou, B. Koc, O. San, L. G. Rebholz, and T. Iliescu, “Data-driven variational
multiscale reduced order models,” Comput. Methods Appl. Mech. Eng. 373,
113470 (2021).

303M. D. Chekroun, H. Liu, and S. Wang, Stochastic Parameterizing Manifolds
and non-Markovian Reduced Equations: Stochastic Manifolds for Nonlinear
SPDEs II (Springer, Berlin, 2014).

304M. D. Chekroun, H. Liu, and S. Wang, Approximation of Stochastic Invariant
Manifolds: Stochastic Manifolds for Nonlinear SPDEs I (Springer,
Berlin, 2015), Vol. 1.

305A. J. Majda, J. Harlim, and B. Gershgorin, “Mathematical strategies for filtering
turbulent dynamical systems,” Discrete Contin. Dyn. Syst. 27, 441–486 (2010).

306A. J. Majda and J. Harlim, “Physics constrained nonlinear regression models
for time series,” Nonlinearity 26, 201 (2013).

307J. Harlim, A. Mahdi, and A. J. Majda, “An ensemble kalman filter for statisti-
cal estimation of physics constrained nonlinear regression models,”
J. Comput. Phys. 257, 782–812 (2014).

308B. Koc, M. Mohebujjaman, C. Mou, and T. Iliescu, “Commutation error in
reduced order modeling of fluid flows,” Adv. Comput. Math. 45, 2587–2621
(2019).

309D. Wells, Z. Wang, X. Xie, and T. Iliescu, “An evolve-then-filter regularized
reduced order model for convection-dominated flows,” Int. J. Numer.
Methods Fluids 84, 598–615 (2017).

310M. Gunzburger, T. Iliescu, M. Mohebujjaman, and M. Schneier, “An evolve-
filter-relax stabilized reduced order stochastic collocation method for the
time-dependent Navier–Stokes equations,” SIAM/ASA J. Uncertainty Quantif.
7, 1162–1184 (2019).

311M. Girfoglio, A. Quaini, and G. Rozza, “A POD-Galerkin reduced order model
for a LES filtering approach,” J. Comput. Phys. 436, 110260 (2021).

312M. Girfoglio, A. Quaini, and G. Rozza, “Pressure stabilization strategies for a
LES filtering reduced order model,” preprint arXiv:2106.15887 (2021).

313F. Sabetghadam and A. Jafarpour, “a regularization of the POD-Galerkin
dynamical systems of the Kuramoto–Sivashinsky equation,” Appl. Math.
Comput. 218, 6012–6026 (2012).

314X. Xie, D. Wells, Z. Wang, and T. Iliescu, “Numerical analysis of the Leray
reduced order model,” J. Comput. Appl. Math. 328, 12–29 (2018).

315M. Gunzburger, T. Iliescu, and M. Schneier, “A Leray regularized ensemble-
proper orthogonal decomposition method for parameterized convection-
dominated flows,” IMA J. Numer. Anal. 40, 886–913 (2020).

316H. Mori, “Transport, collective motion, and Brownian motion,” Prog. Theor.
Phys. 33, 423–455 (1965).

317R. Zwanzig, “Problems in nonlinear transport theory,” in Systems Far from
Equilibrium (Springer, Berlin, 1980), pp. 198–225.

318A. J. Chorin, O. H. Hald, and R. Kupferman, “Optimal prediction and the
Mori–Zwanzig representation of irreversible processes,” Proc. Nat. Acad. Sci.
U. S. A. 97, 2968–2973 (2000).

319R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press,
Oxford, 2001).

320E. J. Parish and K. Duraisamy, “A dynamic subgrid scale model for large eddy
simulations based on the Mori–Zwanzig formalism,” J. Comput. Phys. 349,
154–175 (2017).

Physics of Fluids REVIEW scitation.org/journal/phf

Phys. Fluids 33, 091301 (2021); doi: 10.1063/5.0061577 33, 091301-29

Published under an exclusive license by AIP Publishing

https://doi.org/10.1007/s10444-018-9590-z
https://doi.org/10.1137/18M1177263
https://doi.org/10.1137/18M1177263
https://doi.org/10.1007/s11071-019-05087-2
https://doi.org/10.3390/fluids5010039
https://doi.org/10.1016/j.jcp.2020.109402
https://doi.org/10.3390/fluids6010016
http://arxiv.org/abs/2012.13869
https://doi.org/10.1063/1.1328741
https://doi.org/10.1017/S0022112098008854
https://doi.org/10.1063/1.3068759
http://arxiv.org/abs/2108.02254
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1063/1.857955
https://doi.org/10.1016/S0045-7825(98)00079-6
https://doi.org/10.1016/S0045-7825(98)00079-6
https://doi.org/10.1007/s007910050051
https://doi.org/10.1063/1.1367868
https://doi.org/10.1090/S0025-5718-2013-02683-X
https://doi.org/10.1155/2013/974284
https://doi.org/10.1016/j.cma.2017.07.017
https://doi.org/10.1186/s40323-018-0122-7
https://doi.org/10.1002/nme.6321
https://doi.org/10.1137/19M1276686
https://doi.org/10.1016/j.jcp.2020.109916
https://doi.org/10.1007/s10444-015-9417-0
https://doi.org/10.1007/s10444-015-9417-0
https://doi.org/10.1016/j.cma.2020.113470
https://doi.org/10.3934/dcds.2010.27.441
https://doi.org/10.1088/0951-7715/26/1/201
https://doi.org/10.1016/j.jcp.2013.10.025
https://doi.org/10.1007/s10444-019-09739-0
https://doi.org/10.1002/fld.4363
https://doi.org/10.1002/fld.4363
https://doi.org/10.1137/18M1221618
https://doi.org/10.1016/j.jcp.2021.110260
http://arxiv.org/abs/2106.15887
https://doi.org/10.1016/j.amc.2011.11.083
https://doi.org/10.1016/j.amc.2011.11.083
https://doi.org/10.1016/j.cam.2017.06.026
https://doi.org/10.1093/imanum/dry094
https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1073/pnas.97.7.2968
https://doi.org/10.1073/pnas.97.7.2968
https://doi.org/10.1016/j.jcp.2017.07.053
https://scitation.org/journal/phf


321E. J. Parish and K. Duraisamy, “A unified framework for multiscale modeling
using the Mori-Zwanzig formalism and the variational multiscale method,”
preprint arXiv:1712.09669 (2017).

322M. Gunzburger, N. Jiang, and M. Schneier, “An ensemble-proper orthogonal
decomposition method for the nonstationary Navier-Stokes equations,” SIAM
J. Numer. Anal. 55, 286–304 (2017).

323L. C. Berselli, T. Iliescu, B. Koc, and R. Lewandowski, “Long-time Reynolds
averaging of reduced order models for fluid flows: Preliminary results,” Math.
Eng. 2, 1–25 (2020).

324C. E. Leith, “Stochastic models of chaotic systems,” Physica D 98, 481–491
(1996).

325A. J. Chorin and O. H. Hald, Stochastic Tools in Mathematics and Science
(Springer-Verlag, New York, 2009), Vol. 1.

326A. J. Majda, “Statistical energy conservation principle for inhomogeneous tur-
bulent dynamical systems,” Proc. Nat. Acad. Sci. U. S. A. 112, 8937–8941
(2015).

327V. Resseguier, E. M�emin, and B. Chapron, “Stochastic fluid dynamic model
and dimensional reduction,” in Ninth International Symposium on
Turbulence and Shear Flow Phenomena (Begel House Inc., 2015).

328F. Lu, K. K. Lin, and A. J. Chorin, “Data-based stochastic model reduction for
the Kuramoto–Sivashinsky equation,” Physica D 340, 46–57 (2017).

329F. Lu, “Data-driven model reduction for stochastic Burgers equations,”
Entropy 22, 1360 (2020).

330M. Sieber, C. O. Paschereit, and K. Oberleithner, “Stochastic modelling of a
noise-driven global instability in a turbulent swirling jet,” J. Fluid Mech. 916,
A7 (2021).

331D. S. Wilks, “Effects of stochastic parametrizations in the Lorenz’96 system,”
Q. J. R. Meteorol. Soc. 131, 389–407 (2005).

332T. P. Sapsis, “Attractor local dimensionality, nonlinear energy transfers and
finite-time instabilities in unstable dynamical systems with applications to
two-dimensional fluid flows,” Proc. R. Soc. A 469, 20120550 (2013).

333T. P. Sapsis and A. J. Majda, “A statistically accurate modified quasilinear
Gaussian closure for uncertainty quantification in turbulent dynamical sys-
tems,” Physica D 252, 34–45 (2013).

334T. P. Sapsis and A. J. Majda, “Statistically accurate low-order models for
uncertainty quantification in turbulent dynamical systems,” Proc. Natl. Acad.
Sci. U. S. A. 110, 13705–13710 (2013).

335H. Arnold, I. Moroz, and T. Palmer, “Stochastic parametrizations andmodel uncer-
tainty in the Lorenz’96 system,” Philos. Trans. R. Soc. A 371, 20110479 (2013).

336M. Pulido, P. Tandeo, M. Bocquet, A. Carrassi, and M. Lucini, “Stochastic
parameterization identification using ensemble Kalman filtering combined
with maximum likelihood methods,” Tellus A. 70, 1–17 (2018).

337A. Chattopadhyay, A. Subel, and P. Hassanzadeh, “Data-driven super-
parameterization using deep learning: Experimentation with multiscale
Lorenz 96 systems and transfer learning,” J. Adv. Model. Earth Syst. 12,
e2020MS002084 (2020).

338D. J. Gagne, H. M. Christensen, A. C. Subramanian, and A. H. Monahan,
“Machine learning for stochastic parameterization: Generative adversarial net-
works in the Lorenz’96 model,” J. Adv. Model. Earth Syst. 12,
e2019MS001896 (2020).

339T. Berry, D. Giannakis, and J. Harlim, “Nonparametric forecasting of low-
dimensional dynamical systems,” Phys. Rev. E 91, 032915 (2015).

340E. N. Lorenz, “Predictability: A problem partly solved,” in Proceedings of
Seminar on Predictability (1996), Vol. 1.

341E. M�emin, “Fluid flow dynamics under location uncertainty,” Geophys.
Astrophys. Fluid Dyn. 108, 119–146 (2014).

342Y. Zhou, “Turbulence theories and statistical closure approaches,” Phys. Rep.
(published online) (2021).

343B. R. Noack, P. Papas, and P. A. Monkewitz, “The need for a pressure-term
representation in empirical Galerkin models of incompressible shear flows,”
J. Fluid Mech. 523, 339–365 (2005).

344M. Buffoni, S. Camarri, A. Iollo, and M. V. Salvetti, “Low-dimensional model-
ling of a confined three-dimensional wake flow,” J. Fluid Mech. 569, 141–150
(2006).

345B. Galletti, A. Bottaro, C.-H. Bruneau, and A. Iollo, “Accurate model reduc-
tion of transient and forced wakes,” Eur. J. Mech.-B/Fluids 26, 354–366
(2007).

346M. Couplet, C. Basdevant, and P. Sagaut, “Calibrated reduced-order POD-
Galerkin system for fluid flow modelling,” J. Comput. Phys. 207, 192–220
(2005).

347L. Perret, E. Collin, and J. Delville, “Polynomial identification of POD based
low-order dynamical system,” J. Turbul. 7, N17 (2006).

348J. Baiges, R. Codina, and S. Idelsohn, “Reduced-order subscales for POD mod-
els,” Comput. Methods Appl. Mech. Eng. 291, 173–196 (2015).

349L. Cordier, B. Abou ElMajd, and J. Favier, “Calibration of POD reduced-
order models using Tikhonov regularization,” Int. J. Num. Methods Fluids 63,
269–296 (2010).

350S. Hijazi, G. Stabile, A. Mola, and G. Rozza, “Data-driven POD-Galerkin
reduced order model for turbulent flows,” J. Comput. Phys 416, 109513
(2020).

351X. Xie, M. Mohebujjaman, L. G. Rebholz, and T. Iliescu, “Data-driven filtered
reduced order modeling of fluid flows,” SIAM J. Sci. Comput. 40, B834–B857
(2018).

352C. Mou, H. Liu, D. R. Wells, and T. Iliescu, “Data-driven correction reduced
order models for the quasi-geostrophic equations: A numerical investigation,”
Int. J. Comput. Fluid Dyn. 34, 147–159 (2020).

353C. Mou, “Cross-validation of the data-driven correction reduced order mod-
el,” M.S. thesis (Virginia Tech, 2018).

354A. Ivagnes, “Data enhanced reduced order methods for turbulent flows,”
Ph.D. thesis (Politecnico di Torino, 2021).

355B. Koc, C. Mou, H. Liu, Z. Wang, G. Rozza, and T. Iliescu, “Verifiability of the
data-driven variational multiscale reduced order model,” preprint
arXiv:2108.04982 (2021).

356K. K. Lin and F. Lu, “Data-driven model reduction, Wiener projections, and
the Koopman-Mori-Zwanzig formalism,” J. Comput. Phys. 424, 109864
(2021).

357E. J. Parish, C. Wentland, and K. Duraisamy, “A residual-based Petrov-
Galerkin reduced-order model with memory effects,” preprint
arXiv:1810.03455 (2018).

358M. Mohebujjaman, L. G. Rebholz, and T. Iliescu, “Physically-constrained
data-driven correction for reduced order modeling of fluid flows,” Int. J.
Numer. Methods Fluids 89, 103–122 (2019).

359S. Pawar, S. E. Ahmed, O. San, and A. Rasheed, “An evolve-then-correct
reduced order model for hidden fluid dynamics,” Mathematics 8, 570 (2020).

360S. Fresca, L. Dede, and A. Manzoni, “A comprehensive deep learning-based
approach to reduced order modeling of nonlinear time-dependent parame-
trized pdes,” J. Sci. Comput. 87, 1–36 (2021).

361B. C. Cs�aji, “Approximation with artificial neural networks,” M.Sc. thesis
(Faculty of Sciences, E€otv€os Lor�and University, Hungary, 2001).

362O. San, R. Maulik, and M. Ahmed, “An artificial neural network framework
for reduced order modeling of transient flows,” Commun. Nonlinear Sci.
Numer. Simul. 77, 271–287 (2019).

363S. Pawar, S. Rahman, H. Vaddireddy, O. San, A. Rasheed, and P. Vedula, “A
deep learning enabler for nonintrusive reduced order modeling of fluid flows,”
Phys. Fluids 31, 085101 (2019).

364J. S. Hesthaven and S. Ubbiali, “Non-intrusive reduced order modeling of
nonlinear problems using neural networks,” J. Comput. Phys. 363, 55–78
(2018).

365Q. Wang, J. S. Hesthaven, and D. Ray, “Non-intrusive reduced order model-
ing of unsteady flows using artificial neural networks with application to a
combustion problem,” J. Comput. Phys. 384, 289–307 (2019).

366P. Wu, J. Sun, X. Chang, W. Zhang, R. Arcucci, Y. Guo, and C. C. Pain,
“Data-driven reduced order model with temporal convolutional neural
network,” Comput. Methods Appl. Mech. Eng. 360, 112766 (2020).

367I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press,
Cambridge, Massachusetts, 2016).

368J. N. Kani and A. H. Elsheikh, “DR-RNN: A deep residual recurrent neural
network for model reduction,” preprint arXiv:1709.00939 (2017).

369P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and, and P. Koumoutsakos,
“Data-driven forecasting of high-dimensional chaotic systems with long
short-term memory networks,” Proc. R. Soc. A 474, 20170844 (2018).

370A. T. Mohan and D. V. Gaitonde, “A deep learning based approach to
reduced order modeling for turbulent flow control using LSTM neural
networks,” preprint arXiv:1804.09269 (2018).

Physics of Fluids REVIEW scitation.org/journal/phf

Phys. Fluids 33, 091301 (2021); doi: 10.1063/5.0061577 33, 091301-30

Published under an exclusive license by AIP Publishing

http://arxiv.org/abs/1712.09669
https://doi.org/10.1137/16M1056444
https://doi.org/10.1137/16M1056444
https://doi.org/10.3934/mine.2020001
https://doi.org/10.3934/mine.2020001
https://doi.org/10.1016/0167-2789(96)00107-8
https://doi.org/10.1073/pnas.1510465112
https://doi.org/10.1016/j.physd.2016.09.007
https://doi.org/10.3390/e22121360
https://doi.org/10.1017/jfm.2021.133
https://doi.org/10.1256/qj.04.03
https://doi.org/10.1098/rspa.2012.0550
https://doi.org/10.1016/j.physd.2013.02.009
https://doi.org/10.1073/pnas.1313065110
https://doi.org/10.1073/pnas.1313065110
https://doi.org/10.1098/rsta.2011.0479
https://doi.org/10.1080/16000870.2018.1442099
https://doi.org/10.1029/2020MS002084
https://doi.org/10.1029/2019MS001896
https://doi.org/10.1103/PhysRevE.91.032915
https://doi.org/10.1080/03091929.2013.836190
https://doi.org/10.1080/03091929.2013.836190
https://doi.org/10.1016/j.physrep.2021.07.001
https://doi.org/10.1017/S0022112004002149
https://doi.org/10.1017/S0022112006002989
https://doi.org/10.1016/j.euromechflu.2006.09.004
https://doi.org/10.1016/j.jcp.2005.01.008
https://doi.org/10.1080/14685240600559665
https://doi.org/10.1016/j.cma.2015.03.020
https://doi.org/10.1002/fld.2074
https://doi.org/10.1016/j.jcp.2020.109513
https://doi.org/10.1137/17M1145136
https://doi.org/10.1080/10618562.2020.1723556
http://arxiv.org/abs/2108.04982
https://doi.org/10.1016/j.jcp.2020.109864
http://arxiv.org/abs/1810.03455
https://doi.org/10.1002/fld.4684
https://doi.org/10.1002/fld.4684
https://doi.org/10.3390/math8040570
https://doi.org/10.1007/s10915-021-01462-7
https://doi.org/10.1016/j.cnsns.2019.04.025
https://doi.org/10.1016/j.cnsns.2019.04.025
https://doi.org/10.1063/1.5113494
https://doi.org/10.1016/j.jcp.2018.02.037
https://doi.org/10.1016/j.jcp.2019.01.031
https://doi.org/10.1016/j.cma.2019.112766
http://arxiv.org/abs/1709.00939
https://doi.org/10.1098/rspa.2017.0844
http://arxiv.org/abs/1804.09269
https://scitation.org/journal/phf


371J. Graham, K. Kanov, X. Yang, M. Lee, N. Malaya, C. Lalescu, R. Burns, G.
Eyink, A. Szalay, R. Moser et al., “A web services accessible database of turbu-
lent channel flow and its use for testing a new integral wall model for LES,”
J. Turbul. 17, 181–215 (2016).

372S. M. Rahman, S. Pawar, O. San, A. Rasheed, and T. Iliescu, “A nonintrusive
reduced order modeling framework for quasigeostrophic turbulence,” Phys.
Rev. E 100, 053306 (2019).

373O. San and R. Maulik, “Machine learning closures for model order reduction
of thermal fluids,” Appl. Math. Modell. 60, 681–710 (2018).

374G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory
and applications,” Neurocomputing 70, 489–501 (2006).

375Z. Y. Wan, P. Vlachas, P. Koumoutsakos, and T. Sapsis, “Data-assisted
reduced-order modeling of extreme events in complex dynamical systems,”
PLoS One 13, e0197704 (2018).

376A. J. Chorin, O. H. Hald, and R. Kupferman, “Optimal prediction with memo-
ry,” Physica D 166, 239–257 (2002).

377F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems
and Turbulence, Warwick 1980 (Springer, 1981), pp. 366–381.

378C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer
School on Machine Learning (Springer, New York, 2003), pp. 63–71.

379M. Raissi and G. E. Karniadakis, “Hidden physics models: Machine learning
of nonlinear partial differential equations,” J. Comput. Phys. 357, 125–141
(2018).

380V. C. Raykar, R. Duraiswami, and L. H. Zhao, “Fast computation of kernel
estimators,” J. Comput. Graphical Stat. 19, 205–220 (2010).

381K. Chalupka, C. K. Williams, and I. Murray, “A framework for evaluating
approximation methods for Gaussian process regression,” J. Mach. Learn. Res.
14, 333–350 (2013).

382A. I. Forrester, A. S�obester, and A. J. Keane, “Multi-fidelity optimization via
surrogate modelling,” Proc. R. Soc. A 463, 3251–3269 (2007).

383P. Perdikaris, D. Venturi, J. O. Royset, and G. E. Karniadakis, “Multi-fidelity
modelling via recursive co-kriging and Gaussian–Markov random fields,”
Proc. R. Soc. A 471, 20150018 (2015).

384A. Feldstein, D. Lazzara, N. Princen, and K. Willcox, “Multifidelity data
fusion: Application to blended-wing-body multidisciplinary analysis under
uncertainty,” AIAA J. 58, 889–906 (2020).

385Z. Y. Wan and T. P. Sapsis, “Reduced-space gaussian process regression for
data-driven probabilistic forecast of chaotic dynamical systems,” Physica D
345, 40–55 (2017).

386R. Maulik, T. Botsas, N. Ramachandra, L. R. Mason, and I. Pan, “Latent-space
time evolution of non-intrusive reduced-order models using Gaussian process
emulation,” Physica D 416, 132797 (2021).

387D. Xiao, F. Fang, A. G. Buchan, C. C. Pain, I. M. Navon, and A. Muggeridge,
“Non-intrusive reduced order modelling of the Navier–Stokes equations,”
Comput. Methods Appl. Mech. Eng. 293, 522–541 (2015).

388D. Xiao, F. Fang, C. Pain, and G. Hu, “Non-intrusive reduced-order modelling
of the Navier–Stokes equations based on RBF interpolation,” Int. J. Numer.
Methods Fluids 79, 580–595 (2015).

389D. Rajaram, C. Perron, T. G. Puranik, and D. N. Mavris, “Randomized algo-
rithms for non-intrusive parametric reduced order modeling,” AIAA J.
58(12), 5389–5407 (2020).

390A. J. Geer, “Learning earth system models from observations: Machine learn-
ing or data assimilation?,” Philos. Trans. R. Soc. A 379, 20200089 (2021).

391Y. Tang and W. W. Hsieh, “Coupling neural networks to incomplete dynami-
cal systems via variational data assimilation,” Mon. Weather Rev. 129,
818–834 (2001).

392A. Liaqat, M. Fukuhara, and T. Takeda, “Applying a neural network colloca-
tion method to an incompletely known dynamical system via weak constraint
data assimilation,” Mon. Weather Rev. 131, 1696–1714 (2003).

393J. Brajard, A. Carrassi, M. Bocquet, and L. Bertino, “Combining data assimila-
tion and machine learning to infer unresolved scale parametrization,” Philos.
Trans. R. Soc. A 379, 20200086 (2021).

394J. Brajard, A. Carrassi, M. Bocquet, and L. Bertino, “Combining data assimila-
tion and machine learning to emulate a dynamical model from sparse and
noisy observations: A case study with the Lorenz 96 model,” J. Comput. Sci.
44, 101171 (2020).

395M. Bonavita and P. Laloyaux, “Machine learning for model error inference
and correction,” J. Adv. Model. Earth Syst. 12, e2020MS002232 (2020).

396A. Farchi, P. Laloyaux, M. Bonavita, and M. Bocquet, “Using machine learn-
ing to correct model error in data assimilation and forecast applications,” pre-
print arXiv:2010.12605 (2020).

397M. Bocquet, J. Brajard, A. Carrassi, and L. Bertino, “Bayesian inference of cha-
otic dynamics by merging data assimilation, machine learning and expecta-
tion-maximization,” Found. Data Sci. 2, 55–80 (2020).

398A. Farchi, M. Bocquet, P. Laloyaux, M. Bonavita, and Q. Malartic, “A compar-
ison of combined data assimilation and machine learning methods for offline
and online model error correction,” preprint arXiv:2107.11114 (2021).

399S. Pawar and O. San, “Data assimilation empowered neural network paramet-
rizations for subgrid processes in geophysical flows,” Phys. Rev. Fluids 6,
050501 (2021).

400S. Pawar, O. San, A. Rasheed, and I. M. Navon, “A nonintrusive hybrid
neural-physics modeling of incomplete dynamical systems: Lorenz equa-
tions,” preprint arXiv:2104.00114 (2021).

401S. E. Ahmed, S. Pawar, and O. San, “PyDA: A hands-on introduction to
dynamical data assimilation with python,” Fluids 5, 225 (2020).

402J. D’Adamo, N. Papadakis, E. Memin, and G. Artana, “Variational assimila-
tion of POD low-order dynamical systems,” J. Turbul. 8, N9 (2007).

403G. Artana, A. Cammilleri, J. Carlier, and E. M�emin, “Strong and weak con-
straint variational assimilations for reduced order fluid flow modeling,”
J. Comput. Phys. 231, 3264–3288 (2012).

404C. Zerfas, L. G. Rebholz, M. Schneier, and T. Iliescu, “Continuous data assimi-
lation reduced order models of fluid flow,” Comput. Methods Appl. Mech.
Eng. 357, 112596 (2019).

405S. E. Ahmed, S. Pawar, O. San, and A. Rasheed, “Reduced order modeling of
fluid flows: Machine learning, Kolmogorov barrier, closure modeling, and
partitioning,” in AIAA AVIATION 2020 FORUM (AIAA, 2020), p. 2946.

406S. E. Ahmed, S. Pawar, O. San, A. Rasheed, and M. Tabib, “A nudged hybrid
analysis and modeling approach for realtime wake-vortex transport and decay
prediction,” Comput. Fluids 221, 104895 (2021).

407S. E. Ahmed, K. Bhar, O. San, and A. Rasheed, “Forward sensitivity approach
for estimating eddy viscosity closures in nonlinear model reduction,” Phys.
Rev. E 102, 043302 (2020).

408E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox, “Lift & learn: Physics-
informed machine learning for large-scale nonlinear dynamical systems,”
Physica D 406, 132401 (2020).

409P. Benner, P. Goyal, B. Kramer, B. Peherstorfer, and K. Willcox, “Operator
inference for non-intrusive model reduction of systems with non-polynomial
nonlinear terms,” Comput. Methods Appl. Mech. Eng. 372, 113433 (2020).

410S. A. McQuarrie, C. Huang, and K. E. Willcox, “Data-driven reduced-order
models via regularised operator inference for a single-injector combustion
process,” J. R. Soc. New Zealand 51, 194–211 (2021).

411B. Peherstorfer, “Sampling low-dimensional Markovian dynamics for prea-
symptotically recovering reduced models from data with operator inference,”
SIAM J. Sci. Comput. 42, A3489–A3515 (2020).

412S. Yildiz, P. Goyal, P. Benner, and B. Karas€ozen, “Learning reduced-order
dynamics for parametrized shallow water equations from data,” Int. J. Num.
Methods Fluids 93(8), 2803–2821 (2021).

413J.-C. Loiseau and S. L. Brunton, “Constrained sparse Galerkin regression,”
J. Fluid Mech. 838, 42–67 (2018).

414Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from Data
(AMLBook New York, 2012).

415M. Quade, M. Abel, K. Shafi, R. K. Niven, and B. R. Noack, “Prediction of
dynamical systems by symbolic regression,” Phys. Rev. E 94, 012214 (2016).

416C. Luo and S.-L. Zhang, “Parse-matrix evolution for symbolic regression,”
Eng. Appl. Artif. Intell. 25, 1182–1193 (2012).

417B. de Silva, K. Champion, M. Quade, J.-C. Loiseau, J. Kutz, and S. Brunton,
“PySINDy: A Python package for the sparse identification of nonlinear
dynamical systems from data,” J. Open Source Software 5, 2104–2104 (2020).

418S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Data-driven discovery
of partial differential equations,” Sci. Adv. 3, e1602614 (2017).

419J. R. Koza, Genetic Programming: On the programming of Computers by
Means of Natural Selection (MIT Press, Cambridge, MA, 1992), Vol. 1.

Physics of Fluids REVIEW scitation.org/journal/phf

Phys. Fluids 33, 091301 (2021); doi: 10.1063/5.0061577 33, 091301-31

Published under an exclusive license by AIP Publishing

https://doi.org/10.1080/14685248.2015.1088656
https://doi.org/10.1103/PhysRevE.100.053306
https://doi.org/10.1103/PhysRevE.100.053306
https://doi.org/10.1016/j.apm.2018.03.037
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1371/journal.pone.0197704
https://doi.org/10.1016/S0167-2789(02)00446-3
https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1198/jcgs.2010.09046
https://doi.org/10.1098/rspa.2007.1900
https://doi.org/10.1098/rspa.2015.0018
https://doi.org/10.2514/1.J058388
https://doi.org/10.1016/j.physd.2016.12.005
https://doi.org/10.1016/j.physd.2020.132797
https://doi.org/10.1016/j.cma.2015.05.015
https://doi.org/10.1002/fld.4066
https://doi.org/10.1002/fld.4066
https://doi.org/10.2514/1.J059616
https://doi.org/10.1098/rsta.2020.0089
https://doi.org/10.1175/1520-0493(2001)129<0818:CNNTID>2.0.CO;2
https://doi.org/10.1175//2557.1
https://doi.org/10.1098/rsta.2020.0086
https://doi.org/10.1098/rsta.2020.0086
https://doi.org/10.1016/j.jocs.2020.101171
https://doi.org/10.1029/2020MS002232
http://arxiv.org/abs/2010.12605
https://doi.org/10.3934/fods.2020004
http://arxiv.org/abs/2107.11114
https://doi.org/10.1103/PhysRevFluids.6.050501
http://arxiv.org/abs/2104.00114
https://doi.org/10.3390/fluids5040225
https://doi.org/10.1080/14685240701242385
https://doi.org/10.1016/j.jcp.2012.01.010
https://doi.org/10.1016/j.cma.2019.112596
https://doi.org/10.1016/j.cma.2019.112596
https://doi.org/10.1016/j.compfluid.2021.104895
https://doi.org/10.1103/PhysRevE.102.043302
https://doi.org/10.1103/PhysRevE.102.043302
https://doi.org/10.1016/j.physd.2020.132401
https://doi.org/10.1016/j.cma.2020.113433
https://doi.org/10.1080/03036758.2020.1863237
https://doi.org/10.1137/19M1292448
https://doi.org/10.1002/fld.4998
https://doi.org/10.1002/fld.4998
https://doi.org/10.1017/jfm.2017.823
https://doi.org/10.1103/PhysRevE.94.012214
https://doi.org/10.1016/j.engappai.2012.05.015
https://doi.org/10.21105/joss.02104
https://doi.org/10.1126/sciadv.1602614
https://scitation.org/journal/phf


420J. Bongard and H. Lipson, “Automated reverse engineering of nonlinear
dynamical systems,” Proc. Natl. Acad. Sci. U. S. A. 104, 9943–9948 (2007).

421M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimen-
tal data,” Science 324, 81–85 (2009).

422C. Ferreira, “Gene expression programming: A new adaptive algorithm for
solving problems,” preprint arXiv:cs/0102027 (2001).

423J.-C. Loiseau, S. L. Brunton, and B. R. Noack, “From the POD-Galerkin
method to sparse manifold models,” Handb. Model-Order Reduct. 2, 1–47
(2020).

424A. A. Kaptanoglu, J. L. Callaham, C. J. Hansen, A. Aravkin, and S. L. Brunton,
“Promoting global stability in data-driven models of quadratic nonlinear
dynamics,” arXiv:2105.01843 (2021).

425H. Vaddireddy, A. Rasheed, A. E. Staples, and O. San, “Feature engineering
and symbolic regression methods for detecting hidden physics from sparse
sensor observation data,” Phys. Fluids 32, 015113 (2020).

426K. Kaheman, E. Kaiser, B. Strom, J. N. Kutz, and S. L. Brunton, “Learning dis-
crepancy models from experimental data,” preprint arXiv:1909.08574 (2019).

427H. Gao, J.-X. Wang, and M. J. Zahr, “Non-intrusive model reduction of large-
scale, nonlinear dynamical systems using deep learning,” Physica D 412,
132614 (2020).

428J. Xu and K. Duraisamy, “Multi-level convolutional autoencoder networks for
parametric prediction of spatio-temporal dynamics,” Comput. Methods Appl.
Mech. Eng. 372, 113379 (2020).

429J.-W. Lee and J.-H. Oh, “Hybrid learning of mapping and its Jacobian in mul-
tilayer neural networks,” Neural Comput. 9, 937–958 (1997).

430S. Marsland, J. Shapiro, and U. Nehmzow, “A self-organising network that
grows when required,” Neural Networks 15, 1041–1058 (2002).

431M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations,” J. Comput. Phys. 378,
686–707 (2019).

432Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, “Physics-con-
strained deep learning for high-dimensional surrogate modeling and uncer-
tainty quantification without labeled data,” J. Comput. Phys. 394, 56–81
(2019).

433S. Pan and K. Duraisamy, “Physics-informed probabilistic learning of linear
embeddings of nonlinear dynamics with guaranteed stability,” SIAM J. Appl.
Dyn. Syst. 19, 480–509 (2020).

434G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,
“Physics-informed machine learning,” Nat. Rev. Phys. 3, 422–440 (2021).

435A. T. Mohan, N. Lubbers, D. Livescu, and M. Chertkov, “Embedding hard
physical constraints in neural network coarse-graining of 3D turbulence,” pre-
print arXiv:2002.00021 (2020).

436T. Beucler, S. Rasp, M. Pritchard, and P. Gentine, “Achieving conservation of
energy in neural network emulators for climate modeling,” preprint
arXiv:1906.06622 (2019).

437K. Meidani and A. B. Farimani, “Data-driven identification of 2D partial dif-
ferential equations using extracted physical features,” Comput. Methods Appl.
Mech. Eng. 381, 113831 (2021).

438C. Leibig, V. Allken, M. S. Ayhan, P. Berens, and S. Wahl, “Leveraging uncer-
tainty information from deep neural networks for disease detection,” Sci. Rep.
7, 1–14 (2017).

439D. Sacha, M. Sedlmair, L. Zhang, J. A. Lee, J. Peltonen, D. Weiskopf, S. C.
North, and D. A. Keim, “What you see is what you can change: Human-

centered machine learning by interactive visualization,” Neurocomputing
268, 164–175 (2017).

440S. Pawar, O. San, B. Aksoylu, A. Rasheed, and T. Kvamsdal, “Physics guided
machine learning using simplified theories,” Phys. Fluids 33, 011701 (2021).

441S. Pawar, O. San, A. Nair, A. Rasheed, and T. Kvamsdal, “Model fusion with
physics-guided machine learning: Projection-based reduced-order modeling,”
Phys. Fluids 33, 067123 (2021).

442S. Pawar, S. E. Ahmed, O. San, and A. Rasheed, “Data-driven recovery of hid-
den physics in reduced order modeling of fluid flows,” Phys. Fluids 32,
036602 (2020).

443M. Bonavita, R. Arcucci, A. Carrassi, P. Dueben, A. J. Geer, B. Le Saux, N.
Long�ep�e, P.-P. Mathieu, and L. Raynaud, “Machine learning for earth system
observation and prediction,” Bull. Am. Meteorol. Soc. 102, E710–E716 (2021).

444J. Ling, A. Kurzawski, and J. Templeton, “Reynolds averaged turbulence
modelling using deep neural networks with embedded invariance,” J. Fluid
Mech. 807, 155–166 (2016).

445A. Subramaniam, M. L. Wong, R. D. Borker, S. Nimmagadda, and S. K. Lele,
“Turbulence enrichment using physics-informed generative adversarial
networks,” arXiv–2003 (2020).

446M. Bode, M. Gauding, Z. Lian, D. Denker, M. Davidovic, K. Kleinheinz, J.
Jitsev, and H. Pitsch, “Using physics-informed enhanced super-resolution
generative adversarial networks for subfilter modeling in turbulent reactive
flows,” Proc. Combust. Inst. 38, 2617 (2021).

447N. B. Erichson, M. Muehlebach, and M. W. Mahoney, “Physics-informed
autoencoders for Lyapunov-stable fluid flow prediction,” preprint
arXiv:1905.10866 (2019).

448J.-L. Wu, K. Kashinath, A. Albert, D. Chirila, H. Xiao et al., “Enforcing statisti-
cal constraints in generative adversarial networks for modeling chaotic
dynamical systems,” J. Comput. Phys. 406, 109209 (2020).

449N. Geneva and N. Zabaras, “Modeling the dynamics of PDE systems with
physics-constrained deep auto-regressive networks,” J. Comput. Phys. 403,
109056 (2020).

450W. Chen, Q. Wang, J. S. Hesthaven, and C. Zhang, “Physics-informed
machine learning for reduced-order modeling of nonlinear problems,” pre-
print (2020).

451K. Lee and K. Carlberg, “Deep conservation: A latent-dynamics model for
exact satisfaction of physical conservation laws,” preprint arXiv:1909.09754
(2019).

452A. A. Kaptanoglu, K. D. Morgan, C. J. Hansen, and S. L. Brunton, “Physics-
constrained, low-dimensional models for magnetohydrodynamics: First-
principles and data-driven approaches,” Phys. Rev. E 104, 015206 (2021).

453N. Sawant, B. Kramer, and B. Peherstorfer, “Physics-informed regularization
and structure preservation for learning stable reduced models from data with
operator inference,” preprint arXiv:2107.02597 (2021).

454R. Swischuk, B. Kramer, C. Huang, and K. Willcox, “Learning physics-based
reduced-order models for a single-injector combustion process,” AIAA J. 58,
2658–2672 (2020).

455S. Beetham and J. Capecelatro, “Formulating turbulence closures using sparse
regression with embedded form invariance,” Phys. Rev. Fluids 5, 084611
(2020).

456S. Siegel, K. Cohen, J. Seidel, D. Luchtenburg, and T. McLaughlin, “Low
dimensional modelling of a transient cylinder wake using double proper
orthogonal decomposition,” J. Fluid Mech. 610, 1–42 (2008).

Physics of Fluids REVIEW scitation.org/journal/phf

Phys. Fluids 33, 091301 (2021); doi: 10.1063/5.0061577 33, 091301-32

Published under an exclusive license by AIP Publishing

https://doi.org/10.1073/pnas.0609476104
https://doi.org/10.1126/science.1165893
http://arxiv.org/abs/cs/0102027
http://arxiv.org/abs/2105.01843
https://doi.org/10.1063/1.5136351
http://arxiv.org/abs/1909.08574
https://doi.org/10.1016/j.physd.2020.132614
https://doi.org/10.1016/j.cma.2020.113379
https://doi.org/10.1016/j.cma.2020.113379
https://doi.org/10.1162/neco.1997.9.5.937
https://doi.org/10.1016/S0893-6080(02)00078-3
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2019.05.024
https://doi.org/10.1137/19M1267246
https://doi.org/10.1137/19M1267246
https://doi.org/10.1038/s42254-021-00314-5
http://arxiv.org/abs/2002.00021
http://arxiv.org/abs/1906.06622
https://doi.org/10.1016/j.cma.2021.113831
https://doi.org/10.1016/j.cma.2021.113831
https://doi.org/10.1038/s41598-017-17876-z
https://doi.org/10.1016/j.neucom.2017.01.105
https://doi.org/10.1063/5.0038929
https://doi.org/10.1063/5.0053349
https://doi.org/10.1063/5.0002051
https://doi.org/10.1175/BAMS-D-20-0307.1
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1016/j.proci.2020.06.022
http://arxiv.org/abs/1905.10866
https://doi.org/10.1016/j.jcp.2019.109209
https://doi.org/10.1016/j.jcp.2019.109056
http://arxiv.org/abs/1909.09754
https://doi.org/10.1103/PhysRevE.104.015206
http://arxiv.org/abs/2107.02597
https://doi.org/10.2514/1.J058943
https://doi.org/10.1103/PhysRevFluids.5.084611
https://doi.org/10.1017/S0022112008002115
https://scitation.org/journal/phf

	s1
	f1
	t1
	s2
	d1
	s2A
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	s2B
	d18
	d19
	d20
	d21
	d22
	d23
	d24
	d25
	d26
	d27
	s2C
	s3
	d28
	d29
	d30
	d31
	d32
	d33
	f2
	s3A
	d34
	d35
	d36
	d37
	s3B
	d38
	t2
	t3
	d39
	s4
	d40
	d41
	f3
	d42
	s4A
	s4A1
	d43
	f4
	s4A2
	s4A3
	s4A4
	s4A5
	s4A6
	d44
	s4A7
	s4B
	s4B8
	s4B9
	s4B10
	d45
	d46
	d47
	d48
	d49
	s4B11
	s4B12
	s4B13
	s4C
	d50
	d51
	d52
	s5
	s5A
	d53
	d54
	s5B
	s5B1
	s5B1a
	s5B1b
	s5B2
	s5C
	f5
	d55
	d56
	d57
	d58
	s5D
	s5E
	s5F
	d59
	d60
	s5G
	d61
	d62
	d63
	d64
	d65
	s6
	s7
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64
	c65
	c66
	c67
	c68
	c69
	c70
	c71
	c72
	c73
	c74
	c75
	c76
	c77
	c78
	c79
	c80
	c81
	c82
	c83
	c84
	c85
	c86
	c87
	c88
	c89
	c90
	c91
	c92
	c93
	c94
	c95
	c96
	c97
	c98
	c99
	c100
	c101
	c102
	c103
	c104
	c105
	c106
	c107
	c108
	c109
	c110
	c111
	c112
	c113
	c114
	c115
	c116
	c117
	c118
	c119
	c120
	c121
	c122
	c123
	c124
	c125
	c126
	c127
	c128
	c129
	c130
	c131
	c132
	c133
	c134
	c135
	c136
	c137
	c138
	c139
	c140
	c141
	c142
	c143
	c144
	c145
	c146
	c147
	c148
	c149
	c150
	c151
	c152
	c153
	c154
	c155
	c156
	c157
	c158
	c159
	c160
	c161
	c162
	c163
	c164
	c165
	c166
	c167
	c168
	c169
	c170
	c171
	c172
	c173
	c174
	c175
	c176
	c177
	c178
	c179
	c180
	c181
	c182
	c183
	c184
	c185
	c186
	c187
	c188
	c189
	c190
	c191
	c192
	c193
	c194
	c195
	c196
	c197
	c198
	c199
	c200
	c201
	c202
	c203
	c204
	c205
	c206
	c207
	c208
	c209
	c210
	c211
	c212
	c213
	c214
	c215
	c216
	c217
	c218
	c219
	c220
	c221
	c222
	c223
	c224
	c225
	c226
	c227
	c228
	c229
	c230
	c231
	c232
	c233
	c234
	c235
	c236
	c237
	c238
	c239
	c240
	c241
	c242
	c243
	c244
	c245
	c246
	c247
	c248
	c249
	c250
	c251
	c252
	c253
	c254
	c255
	c256
	c257
	c258
	c259
	c260
	c261
	c262
	c263
	c264
	c265
	c266
	c267
	c268
	c269
	c270
	c271
	c272
	c273
	c274
	c275
	c276
	c277
	c278
	c279
	c280
	c281
	c282
	c283
	c284
	c285
	c286
	c287
	c288
	c289
	c290
	c291
	c292
	c293
	c294
	c295
	c296
	c297
	c298
	c299
	c300
	c301
	c302
	c303
	c304
	c305
	c306
	c307
	c308
	c309
	c310
	c311
	c312
	c313
	c314
	c315
	c316
	c317
	c318
	c319
	c320
	c321
	c322
	c323
	c324
	c325
	c326
	c327
	c328
	c329
	c330
	c331
	c332
	c333
	c334
	c335
	c336
	c337
	c338
	c339
	c340
	c341
	c342
	c343
	c344
	c345
	c346
	c347
	c348
	c349
	c350
	c351
	c352
	c353
	c354
	c355
	c356
	c357
	c358
	c359
	c360
	c361
	c362
	c363
	c364
	c365
	c366
	c367
	c368
	c369
	c370
	c371
	c372
	c373
	c374
	c375
	c376
	c377
	c378
	c379
	c380
	c381
	c382
	c383
	c384
	c385
	c386
	c387
	c388
	c389
	c390
	c391
	c392
	c393
	c394
	c395
	c396
	c397
	c398
	c399
	c400
	c401
	c402
	c403
	c404
	c405
	c406
	c407
	c408
	c409
	c410
	c411
	c412
	c413
	c414
	c415
	c416
	c417
	c418
	c419
	c420
	c421
	c422
	c423
	c424
	c425
	c426
	c427
	c428
	c429
	c430
	c431
	c432
	c433
	c434
	c435
	c436
	c437
	c438
	c439
	c440
	c441
	c442
	c443
	c444
	c445
	c446
	c447
	c448
	c449
	c450
	c451
	c452
	c453
	c454
	c455
	c456

