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Time-periodic (Floquet) drive is a powerful method to engineer quantum phases of matter, including
fundamentally nonequilibrium states that are impossible in static Hamiltonian systems. One characteristic
example is the anomalous Floquet insulator, which exhibits topologically quantized chiral edge states
similar to a Chern insulator, yet is amenable to bulk localization. We study the response of this topological
system to time-dependent noise, which breaks the topologically protecting Floquet symmetry. Surprisingly,
we find that the quantized response, given by partially filling the fermionic system and measuring charge
pumped per cycle, remains quantized up to finite noise amplitude. We trace this robust topology to an
interplay between diffusion and Pauli blocking of edge state decay, which we expect should be robust
against interactions. We determine the boundaries of the topological phase for a system with spatial
disorder numerically through level statistics, and corroborate our results in the limit of vanishing disorder
through an analytical Floquet superoperator approach. This approach suggests an interpretation of the state
of the system as a non-Hermitian Floquet topological phase. We comment on quantization of other
topological responses in the absence of Floquet symmetry and potential experimental realizations.
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Introduction.—Periodic Floquet drive is an indispen-
sable tool in engineered quantum systems [1–6]. Recently,
Floquet drive has enabled the realization of fundamentally
nonequilibrium phases of matter, such as Floquet time
crystals [7–14] and Floquet symmetry-protected topologi-
cal states (SPTs) [15–28]. A quintessential example of
Floquet SPT is the anomalous Floquet-Anderson insulator
(AFAI), which has topologically protected chiral edge
states similar to a Chern insulator but with a fully
localizable bulk [29–34]. Topologically protected transport
in the AFAI can be measured via current flowing through
the system [30,35], magnetization density in a fully filled
patch within the bulk [36], or quantized transport of
quantum information at the edge [22,37,38].
All of these nonequilibrium states are protected by

discrete time-translation symmetry of the Floquet
Hamiltonian, HðtÞ ¼ Hðtþ TÞ, where T ¼ 2π=Ω is the
driving period. In this Letter, we ask what happens to the
AFAI upon breaking time-translation symmetry via time-
dependent random noise. A similar question has been
studied in the case of a Floquet SPT protected by chiral
symmetry [39,40], where the authors found that edge states
decay at a slow but finite rate set by diffusion. In this work,
we instead find that for the two most realistic experimental
protocols, namely bulk magnetization or current measure-
ments in partially filled samples as illustrated in Fig. 1(a),
the topological response remains fully protected over a
timescale that diverges in the thermodynamic limit. We
trace this topological protection back to Pauli blocking,
which prevents diffusive loss of the topological edge state

pumping up to approximately the Thouless time as shown
in Fig. 1(b). We argue that the results should hold for many-
body localization as well as Anderson localization, and
comment on the potential for experimental realization.
Model.—Throughout this Letter, we study a single-

particle model of the anomalous AFAI with time-dependent
noise. We start from the original AFAI model [30], which
involves a five-step Floquet drive. The first four steps
involve hopping between sites of the two sublattices.
Specifically, for step l ∈ f1; 2; 3; 4g, the Hamiltonian is

(a) (b)

FIG. 1. Illustration of quantized nonadiabatic pumping in the
presence of noise. (a) The two-dimensional system is placed on a
cylinder with the top half filled and bottom half empty, and driven
via a five-step Floquet drive (Fig. 2). Pumped charge Q around
the cylinder per Floquet cycle is quantized without noise due to
topological edge states. The bulk states are localized, undergoing
cyclotronlike orbits during each Floquet cycle (green arrow).
Noise is added by disordering the timings of the five-step drive.
(b) For weak noise, Q goes to a topological plateau after a
nonuniversal short-time transient, before decaying when the edge
states start to depopulate at times of order the Thouless time.
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Hl ¼ −J
P

hijil c
†
i cj, where cj is the fermion annihilation

operator on site j and hijil indicates the bonds that are
“turned on” during step l, as illustrated in Fig. 2(a). During
step 5, a sublattice-dependent potential of strength Δ is
applied: H5 ¼ Δ

P
j ηjc

†
jcj, where ηj ¼ þ1 (−1) on the A

(B) sublattice. Each Hamiltonian Hl is present for time Tl,
which in the absence of temporal order is just Tl ¼ T=5.
The hopping Hamiltonians H1−4 are chosen such that, for
the fine-tuned value J ¼ J0 ≡ 5Ω=4, bulk electrons
undergo a “cyclotron” orbit during each Floquet cycle
and return to their original site, as illustrated in Figs. 1(a)
and 2(a). A static chemical potential disorder is added
throughout the cycle with Hamiltonian Hdis ¼

P
μjc

†
jcj,

where each μj is uniformly sampled from the interval
½−W;W�. Units are set by Ω ¼ ℏ ¼ 1, and we choose Δ ¼
0.4Ω and J ¼ J0 ¼ 5Ω=4 throughout.
In this work, we modify the Hamiltonian by adding

temporal disorder (noise). Explicitly, noise is introduced
via random modification of the Floquet timing:
Tl ¼ Tð1þ δlÞ=5, where δl ∈ ½−WT;WT � is sampled
uniformly and independently during each Floquet cycle
[41]. Naively, one expects that noise will immediately
destroy the Floquet topological phase, as it breaks the time
periodicity [39]. Yet, as we will show, the topological
response remains robust against weak noise due to special
properties of the AFAI’s topological response.
In our numerics, we measure topologically protected

nonadiabatic charge pumping for a cylinder of Lx ¼ 2L
and Ly ¼ L lattice sites [30]. As shown in Fig. 1(a), the
system is initialized with one half of the cylindrical crystal
filled with particles and the other half left empty. We
measure the charge pumped during each cycle,

Q ¼
Z

t0þT̃

t0

dthψðtÞjJxjψðtÞi; ð1Þ

where Jx is the current in the x direction, T̃ ¼ P
l Tl is the

“Floquet” period appropriately modified by noise, and t0 is
the time at the start of the cycle. In the absence of temporal
disorder, Titum et al. [30] demonstrated quantization of Q
in the presence of spatial disorder. One may think of this
quantization as coming from the single filled edge state,
which pumps Q ¼ 1 per cycle in the topological phase,
while the localized bulk states do not carry current. In the
presence of temporal disorder, the bulk states no longer
remain localized; we now demonstrate how this affects Q.
One-dimensional disorder.—Large two-dimensional

(2D) lattices without translation symmetry are computa-
tionally challenging to simulate. Therefore, as a warmup
problem in which we can address large system sizes, we
begin by implementing one-dimensional (1D) spatial dis-
order in the y direction, meaning that for site j ¼ ðx; yÞ, μj
only depends on the y position.
Some characteristic traces of Q vs t are shown in

Fig. 2(c). For weak temporal and spatial disorder, the
charge approaches a plateau value and remains nearly
perfectly quantized up to more than 2000 drive cycles. As
WT is increased, the plateau value of the pumped charge is
no longer quantized and the pumped charge begins to decay
at late times. To quantify this behavior, we define two
quantities: the plateau value of pumped charge Q� and the
decay timescale τ.
The key to understanding these quantities is their

dependence on system size L, shown in Fig. 3(a). We
see that the plateau value Q� does not depend on system
size, while τ increases sharply with system size. We have
confirmed that this finite-size dependence of τ reflects the
known fact that temporal disorder causes the particles of
the system to undergo a diffusive random walk [40]. The
consequence of this diffusion is that the sharp density edge
separating the top and bottom half of the system spreads
diffusively into a smooth position dependence of the
density, until eventually the edge state starts to depopulate
on a timescale of order the Thouless time, tD ¼ L2=D with
diffusion constant D. We have confirmed that this diffusive
behavior behaves independently of the initial configuration
of occupied sites through magnetization calculations in
Supplemental Material [42]. Since nonadiabatic charge
pumping comes entirely from the edge state, the loss of
edge state occupation corresponds to a loss of the signal in
Q, and thus τ will be proportional to the Thouless time.

We can now draw two important conclusions about the
system with one-dimensional disorder. First, the pumped
charge reaches a plateau that eventually decays on a
timescale τ ∼ L2. Importantly, this implies that the plateau
will be infinitely long-lived in the thermodynamic limit,
where the topological phase is defined. Second, we learned
that the plateau valueQ� loses quantization as either spatial

FIG. 2. Noisy AFAI model. (a) First four steps of drive
protocol. Hopping occurs on bonds labeled 1 for 0 < t < T1,
on bonds labeled 2 for T1 < t < T1 þ T2, etc. Filled (empty)
circles are sites of sublattice A (B). (b) Noise is added by
randomly changing the time over which the Hamiltonians are
present, Tl ¼ Tð1þ δlÞ=5. The random noise δl ∈ ½−WT;WT �
is different for each “Floquet” cycle. (c) Charge pumped per
Floquet cycle for 1D spatial disorder withW ¼ 0.2 and L ¼ 100,
averaged over spatial and temporal disorder. Dashed lines show
nonquantized plateau value.
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or temporal disorder are added. We note that this loss of
quantization with W is similar to the Floquet-Thouless
energy pump [44], which is a 1D system where the spatial x
direction and the associated conserved momentum kx in our
system is replaced by an adiabatic pump parameter λ.
Temporal disorder had not been studied earlier, but it causes
a similar smooth reduction of Q� from its quantized value.
We conjecture that this physics is, in fact, exactly captured
by that of the Floquet-Thouless energy pump. Specifically,
we consider the behavior of a related Floquet system
created by randomly sampling the times T1; T2;…; T5 as
before, but then repeating this random sequence for each
Floquet cycle. Such a Floquet system will achieve a plateau
valueQ� and then stay there [44], as there is no diffusion to
prevent localization. We refer to this construction as
“Floquet time disorder.”
We compare the results of actual time disorder and

Floquet time disorder in Fig. 3(b), showing that they match
within error bars after extrapolation to the thermodynamic
limit. Importantly, each realization of the Floquet time

disorder can be analyzed in the language of the Floquet-
Thouless energy pump, meaning that our nontopological
response with time disorder is obtained by averaging over
the nonquantized responses from the Floquet-Thouless
energy pump. This explains why the response is not
quantized, and provides a valuable method for defining
(average) topology in this temporally disordered system.
Two-dimensional disorder.—Having understood one-

dimensional disorder, we can now make predictions for
the actual case of interest, namely full two-dimensional
disorder, in which μj is chosen independently for each site.
The dependence of τ on system size will be the same with
2D disorder, since the mapping to a diffusive random walk
still applies. This means that the plateau value Q� should
again be infinitely long-lived in the thermodynamic limit,
which we have confirmed in Supplemental Material [42].
However, a more interesting fact comes out of thinking
about this plateau value. Unlike the case of 1D disorder, 2D
disorder has a nontrivial topological phase (the AFAI) that
survives to finite disorder, with a sharp transition from
Q ¼ 1 to Q ¼ 0 at finite Wc [30]. Therefore, our analysis
of 1D disorder implies that the nontrivial topological phase
will also survive for weak Floquet time disorder, since this
is a perturbative deformation of the original AFAI model.
Given that time disorder and Floquet time disorder dem-
onstrate identical plateau values for Q� upon averaging
over disorder configurations, we thus predict that the AFAI
is stable to weak temporal noise.
This intuition is confirmed numerically in Fig. 4 using

the a well-established technique introduced by Titum et al.
[30]. Specifically, for a given realization of Floquet time
disorder, we calculate the Floquet quasienergies ϵFn and
determine the statistics of their nearest-neighbor level
spacings: Δn ≡ ϵFnþ1 − ϵFn . We calculate the r statistic [45]:

rn ¼ min ½Δn;Δnþ1�=max ½Δn;Δnþ1�; ð2Þ
whose average over disorder and eigenstates hri is a useful
indicator of level repulsion. hri converges to the Poisson

(a) (b)

FIG. 3. Finite size effects for 1D disorder. (a) System size
dependence of Q for W ¼ 0.5 and WT ¼ 0.6. The dashed lines
show times τ ∼ L2, illustrating that the pumped charge begins to
decay on a timescale of order the Thouless time, which is set by
diffusion. (b) Comparison of plateau value Q� for actual time
disorder and “Floquet time disorder,” in which the same random
pattern of δl is repeated indefinitely. Finite size effects have been
removed by extrapolating to L → ∞ using a linear fit to Q�
versus 1=L at large L. All data shown are averaged over spatial
and temporal disorder.

FIG. 4. Topological phase diagram for 2D disorder in the presence of temporal noise. (a) Level spacing ratio r averaged over spatial
disorder for a single realization of Floquet temporal disorder with WT ¼ 0.3. A clear peak is seen at Wc ≈ 2.8, becoming increasingly
sharp with increasing system size. We identify this as the critical point. (b) Data for system size of 60 × 60 sites with 30 different
realizations of Floquet temporal disorder, showing that different realizations lead to different values of Wc. (c) Phase diagram obtained
from peaks of r, plotted as black dots. The value ofWT;c forW ¼ 0, which is indicated with an asterisk, is obtained from the gap closing
of the noise-averaged Floquet superoperator (see Supplemental Material [42]).
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value rP ≈ 0.39 for localized systems that do not display
level repulsion, and to the circular unitary ensemble (CUE)
value rC ≈ 0.6 for delocalized systems. In the present case
of noninteracting particles, both the topologically nontrivial
phase at low W and the topologically trivial phase at high
W are localized, giving rP. Right at the phase transition, the
system delocalizes, creating a sharp peak with CUE level
statistics. This peak was shown to be a sensitive indicator of
the phase transition for the Floquet model [30], and we see
this holds with Floquet time disorder as well [Fig. 4(a)]
[46]. Therefore, for a given realization of Floquet time
disorder, we can obtain the critical disorder value Wc by
finding this peak.
There is one notable effect of Floquet time disorder,

namely that different realizations of time disorder yield
different values for this critical Wc, as seen in Fig. 4(b). In
other words, Floquet time disorder does not self average.
This means that there is not a sharp transition from
topologically nontrivial to trivial, but rather a topologically
nontrivial phase for W < Wc;min, a topologically trivial
phase for W > Wc;max, and a crossover region in between
where the response is not quantized. The full phase diagram
showing these three regions is plotted in Fig. 4(c), with best
estimates for the phase transition lines Wc;min =max.
Floquet superoperator approach.—The topological

transition can be obtained directly from the noise-averaged
Floquet superoperator; an approach, which unlike that of
the level spacing ratio, does not involve the auxiliary
system with Floquet time disorder. The evolution of the
density matrix ρ of a single particle during a noisy Floquet
cycle is described by a superoperator Uρ ¼ UρU†, where
U ¼ e−iT5H5 ;…; e−iT1H1 . While spatial disorder can be
incorporated into this superoperator, we consider a system
with no disorder. Averaging over temporal noise, this
becomes a nonunitary Floquet superoperator F , whose
eigenvalues lie within the unit circle on the complex
plane [39]. We analyze this superoperator in detail in
Supplemental Material [42]. We find that a gap closes
on the real axis at WT;c ¼ 0.535, which is indicated in
Fig. 4(c) with an asterisk, suggesting a topological tran-
sition. Furthermore, one can define a generalized winding
number for this superoperator, which ceases to be quantized
for WT > WT;c due to issues taking a branch cut along the
real axis. This is consistent with the nonquantized cross-
over regime found earlier, and provides a readily general-
izable, complementary perspective on our topological
phase diagram. The Floquet superoperator analysis also
allows us to define our topological system in the language
of non-Hermitian Floquet topological SPTs [47], which
should be readily extensible to other systems and symmetry
classes.
Discussion.—We have shown that the two-dimensional

anomalous Floquet-Anderson insulator is stable to weak
temporal noise. The argument involves constructing a
related Floquet system for a given noise realization and

then arguing that if each such realization is topological,
then their noise average, which is given by the super-
operator approach, is topological as well. This argument
should hold for other types of environmental noise, and
therefore we expect that the AFAI is stable to a wide class
of weak dissipative couplings. Correlated noise would kill
this argument, hence we leave generic non-Markovian
baths for future work. We have begun to explore the
implementation of different types of temporal noise in
Supplemental Material [42]. These responses may also be
stable to quasiperiodic driving, which leads to a variety of
interesting steady states in other contexts [48–50].
While we numerically studied the topological response

via charge pumping in a half-filled system, our arguments
indicate that a similar story should hold for other proposed
experimental measurements of the anomalous Floquet
insulator [36,37,51]. For instance, topologically quantized
magnetization for a filled region of linear size l [51] should
hold up to time τ ∼ l2 and remain measurable by the same
protocols. We have provided data that confirm this quan-
tized magnetization in the supplement [42], even though
the diffusive scaling of τ is not tested explicitly. This fact
will be important in practical experimental realizations, as
there are always finite noise sources—such as laser
fluctuations or spontaneous emission into lattice lasers—
that break the Floquet symmetry of the problem.
It has recently been argued that the AFAI is stable to

interactions [36], and we suspect the same will be true in
the presence of noise. An interesting question is how noise
affects other topological invariants that have been identified
in the AFAI [52], which are also theoretically measurable.
Finally, we speculate that similar ideas may be used to
demonstrate stability in other Floquet topological phases,
such as the Floquet topological superconductor, with
possible implications for robust quantum information
processing and computation [53,54].
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