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We study a disordered one-dimensional fermionic system subject to quasiperiodic driving by two modes
with incommensurate frequencies. We show that the system supports a topological phase in which energy is
transferred between the two driving modes at a quantized rate. The phase is protected by a combination of
disorder-induced spatial localization and frequency localization, a mechanism unique to quasiperiodically
driven systems. We demonstrate that an analogue of the phase can be realized in a cavity-qubit system
driven by two incommensurate modes.
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Periodic driving can be used as a tool for quantum control
[1–14] and can even induce new phases of matter with no
equilibrium analogues [15–30]. Recently, it was discovered
that quasiperiodically driven systems also support their own
unique phases of matter [31], despite having neither con-
tinuous nor discrete time-translation symmetry.
In this work, we report the discovery of a topological

phase of matter in quasiperiodically driven systems. We
study a one-dimensional (1D) fermionic system driven by
two modes with incommensurate frequencies, ω1 and ω2.
With spatial disorder, the system supports a phase which is
characterized by quantized energy transport and a nonzero
value of an integer-valued topological invariant ν. When
one end of the system is fully occupied by fermions while
the other end is empty [as depicted in Fig. 1(a)], the system
transfers energy between the driving modes at the quan-
tized average rate νP0, where P0 ≡ ω1ω2=2π denotes the
“quantum of energy transfer” (with ℏ ¼ 1 throughout). We
refer to this phase as the quasiperiodic Floquet-Thouless
energy pump (QFTEP).
The absence of time-translation symmetry gives the

QFTEP features which have no analogue in equilibrium
orFloquet systems. In particular, theQFTEP is protected by a
combination of spatial and frequency localization [31–36],
meaning the index ν can only change if this localization is
destroyed. Here frequency localization is a phenomenon
unique to quasiperiodically driven systemswhich arises only
for sufficiently irrational ω2=ω1. The condition of irrational
ω2=ω1 means the QFTEP features a fractally structured
phase diagram (see Fig. 2 and discussion below for details).

The same “quantum of energy transfer” that we observe
was recently encountered in Refs. [37–39]. In particular,
Ref. [37] studied the same class of systems we consider

here, in the limit where the second driving mode is
adiabatic: ω2 → 0. For fine-tuned parameters, and in the
absence of disorder, this system was shown to exhibit a
similar quantized energy pumping phenomenon to that we
observe here. Unlike the phenomena in Refs. [37–39], the
QFTEP does not require adiabatic driving, is robust to
disorder, and occupies a finite region of parameter space.
Hence the QFTEP, in contrast to these earlier phenomena,
constitutes a genuine phase of matter.
We propose an experimental realization of a dimension-

ally reduced version of the QFTEP in a two-level system
(qubit) coupled to a quantized cavity mode and driven by

(a)

(c)

(b)

FIG. 1. (a) The quasiperiodic Floquet-Thouless energy pump
for a fermionic chain driven by incommensurate frequencies ω1

and ω2. When one end of the chain is fully occupied (green),
energy is pumped between the two modes at the rate νP0

(P0 ¼ ω1ω2=2π), where ν ∈ Z is the topological winding num-
ber of the phase. The quantization persists as long as the system is
localized in both real and frequency space. (b) An analogue of the
phase can be realized with a bichromatically driven qubit-cavity
system. (c) 4-step driving protocol that realizes the phase. A
particle tunneling along (against) the arrow acquires a phase
e−iω2t (eiω2t).
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two incommensurate frequencies [see Fig. 1(b)]. Our
results indicate that such a simple physical setup inherits
the topological properties of the QFTEP, suggesting the
possibility of realizing this phase in cavity quantum
electrodynamics.
Model.—Here we present a particular model that realizes

the QFTEP. We consider a 1D bipartite tight-binding system
with L unit cells, with Hamiltonian Ĥ0ðt; λÞ ¼ Ĥdrðt; λÞþ
Ĥdis. Here, for fixed λ ∈ R, Ĥdrðt; λÞ describes time-
dependent tunneling with period T1, while Ĥdis ¼P

2L
x¼1ðΔx=2Þĉ†xĉx describes a static on-site disorder poten-

tial. Here ĉx annihilates a fermion on site x, while eachΔx is
picked randomly from the interval ½−W;W�. We take the
lattice constant to be 1 throughout. The driving term Ĥdrðt; λÞ
is piecewise constant in t over 4 steps of equal length [see
Fig. 1(c)]. In step s, defined as the interval ½ðs − 1Þ=4�T1 ≤
t < ðs=4ÞT1, Ĥdrðt; λÞ ¼ −J

P
L
n¼1ðeiηsλĉ†2nĉ2nþds þ H:c:Þ,

where d1 ¼ d4 ¼ 1, d2 ¼ d3 ¼ −1, η4 ¼ −η2 ¼ 1, and
η1 ¼ η3 ¼ 0. The parameter λ controls the phases of the
tunneling terms. We set J ¼ ð2π=T1Þ such that Ĥdrðt; λÞ
generates tunneling by precisely one site per step when λ
is fixed.
Related versions of the model above were studied in

Refs. [16,22,37]. Reference [37] explored the case where λ
was increased adiabatically, and argued that this cyclic
modulation caused a transfer of energy to the driving mode
at the quantized rate of ω1 ¼ 2π=T1 per cycle. In this work,
we consider the case where λ increases at a finite rate,
λ ¼ ω2t, such that the system is subject to quasiperiodic

driving by two modes with incommensurate frequencies
ω1 and ω2. Defining H̃ðϕ1;ϕ2Þ≡ Ĥ0ðϕ1=ω1;ϕ2Þ, the
Hamiltonian can hence be written as ĤðtÞ ¼ H̃ðω1t;
ω2tÞ, where H̃ðϕ1;ϕ2Þ is 2π-periodic in each of its argu-
ments. Note that the discussion below applies to any
quasiperiodically driven 1D system of noninteracting
fermions whose Hamiltonian can be expressed in this form.
Because of the absence of interactions, time-evolved

many-body states in the system can be resolved in terms of
Slater determinants of time-evolved single-particle states.
For simplicity, below we therefore consider the dynamics
of the system with only a single particle present, unless
otherwise stated. We use calligraphic symbols to denote
many-body operators (acting in Fock space), and italic
symbols for single-particle operators.
Frequency localization.—As a main result, this work

shows that the model above is characterized by an integer-
valued topological invariant when it is localized in the
spatial and frequency domains. The key to understanding
such localization is a generalized Floquet theorem [31–36]:
for the bichromatically driven systems we consider, a
complete orthonormal basis of generalized (single-particle)
Floquet states fjΦnðϕ1;ϕ2Þig can be defined such that the
time evolution of any state takes the form jψðtÞi ¼P

n κne
−iεntjΦnðω1t;ω2tÞi. Here each jΦnðϕ1;ϕ2Þi is 2π

periodic in each of its arguments while εn is real valued and
defines a generalized quasienergy. The structure above is
equivalently captured in the single-particle evolution oper-

ator of the system, ÛðtÞ≡ T e−i
R

t

0
dt0Ĥðt0Þ, where T denotes

the time-ordering operation and ĤðtÞ is the single-particle
Hamiltonian of the system [i.e., ĤðtÞ restricted to the one-
particle sector]. Specifically,

ÛðtÞ ¼ P̂ðω1t;ω2tÞe−iĤeff t; ð1Þ

where P̂ðϕ1;ϕ2Þ≡P
n jΦnðϕ1;ϕ2ÞihΦnð0; 0Þj and Ĥeff ≡P

n εnjΦnð0; 0ÞihΦnð0; 0Þj define a generalized micromo-
tion operator and effective Hamiltonian for the system,
respectively.
The decomposition in Eq. (1) is only useful if each

generalized Floquet state jΦnðϕ1;ϕ2Þi is a continuous
function of ϕ1 and ϕ2, or, equivalently, if the two-
dimensional Fourier decomposition of jΦnðϕ1;ϕ2Þi con-
verges. This situation defines “frequency localization.”
With disorder, the generalized Floquet states may moreover
be spatially localized [40], implying that particles remain
confined near their initial location at all times. We refer to
the combination of spatial and frequency localization as
“full localization” below.
To infer the conditions for frequency localization,wework

in the Fourier harmonic space corresponding to mode 2,
yielding the Hamiltonian of an effective two-dimensional,
periodically driven system, Ĥ2DðtÞ ¼ Ĥ2Dðtþ T1Þ. To this
end we introduce a new degree of freedom, n̂2, whose

FIG. 2. Simulation of the QFTEP with 200 unit cells and open
boundary conditions, as detailed in the numerics section.
(a) Average energy absorption rate over 10000 periods of mode
1 when the left half of the chain is initially occupied. (b) Estimated
spatial localization length of the generalized Floquet states, ξ.
(c) Effective spectral density of the system, γ. (d) Spectral density
ρN0

ðωÞ resulting from a wave packet initialized on a single site in
the middle of the chain for parameters within the topological
plateau (bottom), and at the transition (top).
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corresponding “Fourier harmonic” Hilbert space is spanned
by the states fjyiF; y ∈ Zg, such that n̂2jyiF ¼ yjyiF.
Heuristically, n̂2 can be seen as counting the number of
photons in mode 2 [41]. We obtain Ĥ2DðtÞ from ĤðtÞ by
adding a term ω2n̂2 and replacing each phase factor eiω2t in
ĤðtÞ by

P∞
y¼−∞ jyiFhy − 1jF (and similar for the corre-

sponding Hermitian conjugate, e−iω2t). See Supplemental
Material (SM) [40] for further details.
The Hamiltonian Ĥ2DðtÞ acts on the Hilbert space

spanned by the states jx; y⟫≡ jxi ⊗ jyiF where y ∈ Z,
x ¼ 1; 2; 3; …; 2L, and jxi denotes the single-particle
state of the original 1D system with the particle located
on site x. Thus, Ĥ2DðtÞ can be seen as the Hamiltonian of a
two-dimensional lattice system whose sites are indexed by
x and y. Each Floquet state of Ĥ2DðtÞ, jΨnðtÞ⟫, corresponds
to a generalized Floquet state of ĤðtÞ, jΦnðϕ1;ϕ2Þi,
via hxjΦnðϕ1;ϕ2Þi¼

P
y e

−iyϕ2⟪x;yjΨnðϕ1=ω1Þ⟫ [32,40].
The y dependence of jΨnðtÞ⟫ thus encodes the Fourier
components of jΦnðϕ1;ϕ2Þi with respect to ϕ2. Hence, full
localization corresponds to localization of the Floquet
states of Ĥ2DðtÞ due to Anderson localization in the spatial
direction and Wannier-Stark localization in the frequency
(Fourier harmonic) direction [40].
The above considerations imply that frequency locali-

zation requires irrational ω2=ω1: when ω2=ω1 is suffi-
ciently close to p=q for some integers p and q, the
oscillating terms of H2DðtÞ resonantly couple sites sepa-
rated by q lattice constants in the y direction, inducing y
delocalization, and hence frequency delocalization after
translation back to the Hilbert space of the physical (1D)
problem at hand [31,35,40]. We thus expect frequency
localization to break down in some ω2 interval around
pω1=q for each choice of integers p and q. However, the
width of this interval may decrease with increasing p and q,
allowing frequency localization to occur for a finite-
measure set of ω2 [40].
Topological invariant.—The topological invariant of the

QFTEP can be defined from the generalized micromotion
operator in Eq. (1). For simplicity, we consider a system
with periodic boundary conditions; the results can be
applied directly to systems with open boundary conditions.
We first define a “phase-twisted” micromotion operator
P̂θðϕ1;ϕ2Þ by adding a factor e−iθ (eiθ) to the matrix
elements of P̂ðϕ1;ϕ2Þ that transfer a particle across an
arbitrary reference bond x0 in the positive (negative) x
direction [40]. When the system is fully localized,
P̂θðϕ1;ϕ2Þ is unitary, as well as continuous and periodic
in θ, ϕ1, and ϕ2 [40]. Under these conditions, P̂θðϕ1;ϕ2Þ is
characterized by an integer valued winding number:

ν ¼
I

dθd2 ϕ
8π2

TrðP̂−1
θ ∂θP̂θ½P̂−1

θ ∂ϕ2
P̂θ; P̂

−1
θ ∂ϕ1

P̂θ�Þ; ð2Þ

where d2ϕ ¼ dϕ1dϕ2, and we suppressed the phase
dependence of P̂θðϕ1;ϕ2Þ for brevity. The index ν cannot

change under smooth deformations of the system param-
eters that preserve full localization, and thus defines the
invariant of the QFTEP. Nonzero values of ν can arise for
weak or moderate disorder, where particles undergo non-
trivial micromotion while their dynamics remain localized
on long length scales.
The invariant ν can be seen as a dimensional reduction of

the winding number of the anomalous Floquet-Anderson
insulator (AFAI) [22,23]. Recall that full localization of
ĤðtÞ occurs when the Floquet eigenstates of Ĥ2DðtÞ are
localized. In this case, Ĥ2DðtÞ is characterized by the
integer-valued winding number of the AFAI [22,23]. A
straightforward derivation shows that this winding number
is identical to ν [40].
Bulk-edge correspondence.—For a system with open

boundary conditions, a nonzero value of ν implies a
quantized transport of energy between modes 1 and 2
when all sites near one edge are occupied. Using the
correspondence between Floquet states of Ĥ2DðtÞ and
generalized Floquet states of ĤðtÞ, in the SM we show
that the time-averaged rate of work done on mode 2,
P̂2ðtÞ≡ −ω2∂ϕ2

H̃ðω1t;ω2tÞ, is quantized when the system
initially has sites 1;…x1 occupied, for some x1 in the bulk
of the chain:

lim
τ→∞

1

τ

Z
τ

0

dthP̂2ðtÞi ¼ νP0: ð3Þ

Conservation of energy dictates that the average rate of
work done on mode 1 is given by −νP0. Since Eq. (3) is
independent of x1, only fermions near the edge contribute
to the quantized energy transfer above. This result estab-
lishes the bulk-edge correspondence of the QFTEP.
To understand Eq. (3), note that for a finite open chain,

Ĥ2DðtÞ describes an AFAI on an infinite strip in the y
direction (corresponding to “photon number” of mode 2).
The bulk-edge correspondence for the AFAI dictates that
Ĥ2DðtÞ supports chiral modes propagating along the edges
of the strip that carry a quantized average current ν=T1 and
−ν=T1 along the y direction at the left and right end of the
strip, respectively [22]. According to the mapping through
which y corresponds to the number of photons absorbed by
mode 2, we expect that particles on the left edge transfer
energy to mode 2 at the quantized average rate νP0.
The quantized energy transfer to mode 2 is supported by

topologically protected edge modes: through the relation-
ship between the QFTEP and AFAI established above, the
existence of chiral edge states in the AFAI implies that each
end of the QFTEP supports a family of generalized Floquet
states which are localized spatially but delocalized in
frequency space. These families of states, or “edge modes,”
are topologically protected features that can only disappear
if full localization is destroyed in the bulk. When all states
in one such topological edge mode are occupied, they
collectively generate a quantized flow of energy to mode 2
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at the rate �νP0. Away from full occupation, we expect
quantization persists if the particle density, pðxÞ, is locally
uniform over the characteristic localization length scale of
generalized Floquet states [42]. In this case, the left and
right topological edge modes are occupied with probability
pð0Þ and pðLÞ, respectively, resulting in the energy transfer
rate νP0½pð0Þ − pðLÞ�.
Numerical simulations.—We demonstrate the quantized

energy pumping of the QFTEP through numerical simu-
lations of the model presented in the introduction. We
simulated a system of L ¼ 200 unit cells (400 sites) with
open boundary conditions, initialized by only filling the
leftmost 200 sites with fermions. Using direct time evolu-
tion, we computed the time-averaged rate of energy transfer
to mode 2, P̄2, by averaging hP̂2ðtÞi over the time interval
from 0 to tf ¼ 10000T1. Figure 2(a) shows P̄2=P0, as a
function of ω2 andW [43]. The data indicate a large plateau
of quantized energy pumping (P̄2 ¼ P0) at finite values of
ω2 and W, supporting our conclusions above.
The data in Fig. 2(a) exhibit several features that are

consistent with our discussion above. The plateau with
P̄2 ¼ P0 has maximal extent along the ω2 direction when
W ≈ ω1, indicating that weak to moderate disorder stabil-
izes the QFTEP (interestingly, for ω2 ≪ ω1, stabilization
occurs for very weak disorder). The quantized plateau
diminishes when ω2=ω1 approaches values p=q for inte-
gers p and q, as is particularly clear for q ¼ 1, where the
yellow plateau region is sharply “pinched in.” In the SM we
provide high-resolution data confirming that quantization
of P̄2 breaks down for other values of p and q, with the
breakdown most pronounced for smaller p and q.
These data thus support our prediction that the QFTEP
is protected by the irrationality of ω2=ω1.
To characterize the phase transitions of the QFTEP,

we estimate the spatial localization length of the
generalized Floquet states in the system via ξ≡
supx1ð

P
x2 jhx1jÛðtfÞjx2ij2ðx1 − x2Þ2Þ1=2. Figure 2(b)

shows ξ for the same parameters as taken in Fig. 2(a).
For W ≲ 4ω1, the boundary of the topological plateau in
Fig. 2(a) clearly coincides with the region in Fig. 2(b)
where ξ ∼OðLÞ (indicating delocalization). For ω2;W ≳
3ω1 we observe a localized, topologically trivial phase with
ξ ∼Oð1Þ and P̄2 ¼ 0 [Figs. 2(a) and 2(b)]. Rather than a
direct transition to this topologically trivial phase, Fig. 2(b)
indicates the existence of an intermediate delocalized
region for W ≲ 3ω1, ω2 ≳ 3ω1.
When W exceeds 3ω1, the topological phase transition

changes its qualitative behavior: ξ decreases and P̄2 displays
irregular fluctuations for a finite ω2 interval. To investigate
the transition here, we computed a measure of the frequency-
space localization length, using the time evolution of a
single-particle state initialized on a particular site xi in the
chain, jψðtÞi≡ ÛðtÞjxii. For a given (large) integer N, we
let jψNðωÞi≡ ð1= ffiffiffiffiffiffiffiffiffi

ω1N
p ÞPN

n¼1 e
inωT1 jψðnT1Þi denote

the finite-time discrete Fourier transform of jψðtÞi
when sampled stroboscopically with the period of mode
1. We then define an effective spectral density γ character-
izing jψðtÞi via the inverse participation ratio of the nor-
malized spectral distribution ρNðωÞ≡ jhψNðωÞjψNðωÞij:
γ ≡ ð1=ω1ÞlimN→∞N=½Rω1

0 dωρNðωÞ2�. When jψðtÞi has a
dense Fourier spectrum,

R ω1

0 dωρNðωÞ2 remains finite in the
limit N → ∞, and thus γ diverges. However, for a discrete
spectrum, where ρ∞ðωÞ≡ limN→∞ρNðωÞ is given by a
discrete sum of delta functions, the integral diverges linearly
with N, such that γ remains finite. In this case, γ gives the
inverse sum of the squared peak weights in ρ∞ðωÞ; i.e., it
measures the effective number of peaks in the frequency
spectrum of jψðtÞi (modulo ω1), ρ∞ðωÞ. We hence expect
that γ is a good proxy for the localization length in the
frequency space of mode 2.
Figure 2(c) shows the maximal value of γ obtained from

15 time-evolved single-particle states with initial positions
xi randomly chosen within the middle third of the system.
We used the same parameters as considered in panels (a)
and (b), and set N to N0 ¼ 10000. As an illustration, in
Fig. 2(d), we plot ρN0

ðωÞ for two parameter sets [indicated
with arrows in Fig. 2(c)] where γ is large (upper) and small
(lower), respectively. Although Fig. 2(b) does not con-
clusively indicate whether spatial delocalization is present
for W ≳ 3ω1, Fig. 2(c) shows that the system undergoes
frequency delocalization throughout the entire topological
phase boundary.
Realization in a driven two-level system.—Here we

propose a dimensionally reduced experimental realization
of the QFTEP in a two-level system (qubit) driven by three
incommensurate modes. The model presented in the
introduction is mapped to this platform by taking the limit
of zero disorder, and replacing spatial crystal momentum
with the phase of a third driving mode: eik → eiω3t [44].
When the frequencies ω1, ω2, and ω3 are sufficiently
incommensurate, the generalized Floquet eigenstates of
the system remain localized due to the quasidisorder of the
lattice in the three-dimensional frequency space [31–
36,40]. The analysis below Eq. (1) thereby also yields
the topological index ν for this model, defined by Eq. (2)
with θ replaced by the phase ϕ3 ¼ ω3t of the third driving
field. In the SM we provide data from numerical simu-
lations that confirm the three-mode driven qubit model
described above supports a topologically nontrivial regime
characterized by ν ¼ 1. Edges can naturally be incorpo-
rated into the qubit realization by replacing one or more of
the driving modes by quantized cavity modes, whose
vacuum states define a natural edge.
Summary and outlook.—This work establishes the

QFTEP as a new nonequilibrium topological phase. The
QFTEP elevates the Floquet-Thouless energy pump
(FTEP) in Ref. [37] from a fine-tuned (but nonetheless
interesting) phenomenon to a genuine stable phase of
matter. Whereas the FTEP requires adiabatic driving,
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fine-tuning, and is formally destroyed by disorder [37], the
QFTEP arises for finite ω1 and ω2, and is stabilized by
disorder. In a setting with open boundary conditions, the
QFTEP is characterized by robust, quantized energy
pumping between the two driving modes, supported by
topological edge states.
We showed that a qubit driven by three incommensurate

modes can realize a dimensionally reduced version of
the QFTEP. Such a system is a promising platform for
experimental realization of this phenomenon due to well-
developed techniques for controlling and driving qubits
[45]. The QFTEP may also be directly realized in one-
dimensional quantum chains, such as systems of ultracold
atoms in optical lattices, or trapped-ion systems. The
robustness to disorder and finite modulation frequency
makes such realizations of the QFTEP more feasible than
for the adiabatic FTEP.
Quantization of energy pumping breaks down for

rational values of ω1=ω2, implying that the phase diagram
of the QFTEP has a fractal structure. Understanding this
fractal structure and its role for the phase transitions of the
QFTEP will be an interesting direction for future studies.
Another prospect for investigations is to apply our

dimensional reduction scheme to other equilibrium or
Floquet topological phases of matter. A more complete
investigation of the physical signatures of the QFTEP, its
stability to interactions, and its place in the expanding
classification of non-equilibrium topological phases of
matter will also be important future directions.
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Note added.—Recently, a preprint appeared which
describes an energy pumping phenomenon related to the
one we consider here [46], in the context of a general
classification. Our work is fully consistent with Ref. [46],
and provides a complementary perspective on the phe-
nomenon, including a study of the role of spatial disorder,
along with additional experimental proposals for realizing
the phase.
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