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Problem-solving is the process to achieve a goal when the solution path is uncertain. Recently, technological
advancements have changed problems’ characteristics and their solutions in engineering fields. Strong problem-
solving skills are essential to allow engineers to assess new problems and quickly implement solutions. Engi-
neering problem-solving skills are first educated in schools and usually evaluated through written exams.
However, high grades in exams do not represent sufficient problem-solving skills in real-world engineering
problems. Decision making with insufficient problem-solving skills in real world may result in costly conse-
quences. Therefore, it is imperative to evaluate and reinforce problem-solving skills of engineering students in
real-world problems. With the rapid technological advancements, availability of virtual reality (VR) and eye-
tracking facilitates the study of engineering problem-solving. The immersive environment created by VR en-
ables students to better understand and solve real-world engineering problems. On the other hand, eye-tracking
allows for studying fundamental cognitive processes during information processing. It is critical to integrate VR
simulation with data-driven modeling of eye movements to evaluate and enhance engineering problem-solving
skills. In this paper, we integrate sensing technology (i.e., eye-tracking) and virtual reality (VR) to model
problem-solving in manufacturing systems. A novel data-driven model that integrates signal detection theory
(SDT) with Conflict & Error (C&E) is developed to quantify engineering problem-solving skills. First, we simulate
a manufacturing system in a VR game environment. Students are given an assembly problem to produce a car toy
that satisfies some particular requirements in the VR manufacturing system while eye-tracking data are collected
throughout the assembly process. Second, eye-tracking data are analyzed with a SDT model to quantify problem-
solving skills. Third, a joint SDT-C&E model is developed to analyze eye-tracking data and benchmark with
results generated from the SDT model. Experimental results show that the joint SDT-C&E model is more effective
to quantify problem-solving skills of engineering students than the SDT model.

1. Introduction

Problems are defined as discrepancies between initial problem states
and goal states (Ward, 2012). Problem-solving is a cognitive process that
finds solution paths to achieve the goal state (Wang and Vincent, 2010).
Recent technological advancements have changed the characteristics of
problems and their solutions, especially in engineering fields (Autor and
Price, 2013). Today, engineers need to solve problems that they have
never experienced before. Strong problem-solving skills are essential to
allow engineers to assess new problems and quickly implement solu-
tions. Engineering problem-solving skills are first educated in schools
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and evaluated through written exams. However, high grades in exams
do not represent sufficient problem-solving skills in real-world engi-
neering problems (Jonassen et al., 2006). Furthermore, decision making
with insufficient problem-solving skills in real world may result in costly
consequences. Therefore, it is imperative to evaluate and reinforce
problem-solving skills of engineering students in real-world problems.
Universities may not be able to introduce the latest manufacturing
systems and technologies into the learning factory due to limited re-
sources. In addition, manufacturing safety is important to reduce the
risks of workplace injury. Injuries to students may cause significant
compensation and medical treatment costs (Wang et al.,, 2018).
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Therefore, it is imperative to develop a cost-effective and safe learning
environment for engineering students to get hands-on training. With the
rapid technological advancements, availability of virtual reality (VR)
and eye-tracking facilitates the study of engineering problem-solving.
VR simulates a real-world experience in an immersive virtual environ-
ment, which allows users to interact with virtual objects and immerse in
the 3D simulation. This enables students to better understand real-world
engineering problems and solve them. On the other hand, eye-tracking is
an emerging technology that allows eye movements to be monitored. An
operational definition of eye-tracking by Poole and Ball (2006) states
that eye-tracking is a technique whereby an individual’s eye movements
are measured so that the researcher knows both where a person is
looking at any given time and the sequence in which their fixations are
shifting from one location to another. Studies show that increased eye
movements reveal the increment of cognitive activities. For example, the
large number of fixations and saccades reveal human subjects’ attention
on relevant stimuli (Zagermann, Ulrike, & Harald, 2018). Thus, eye-
tracking allows for revealing cognitive activities and studying the
fundamental cognitive processes during information processing.
Problem-solving, as a fundamental cognitive process (Wang and Vin-
cent, 2010), which can be understood by utilizing eye-tracking tech-
nology and thereby evaluate problem-solving skills. Therefore, it is
critical to integrate VR simulation with data-driven modeling of eye
movements to evaluate and enhance engineering problem-solving skills.

In this paper, we develop an analytical model that integrates signal
detection theory (SDT) with Conflict & Error (C&E) to quantify problem-
solving skills of engineering students. First, we simulate a
manufacturing system in a VR game environment. Students are given an
assembly problem to produce a car toy that satisfies some particular
requirements in the VR manufacturing system while eye-tracking data
are collected throughout the assembly process. Second, eye-tracking
data are analyzed with a SDT model to quantify problem-solving
skills. Third, we develop a joint SDT-C&E model to analyze eye-
tracking data and benchmark with results generated from the SDT
model. Experimental results show that the proposed joint SDT-C&E
model is more effective to quantify problem-solving skills of engineering
students than the SDT model.

2. Relevant literature

The ongoing globalization and advancements in technology confront
people with complex environments that demand numerous problems to
be solved (Fischer et al., 2012). The ability to solve such problems is an
essential competence and is required for active participation in today’s
society (Eichmann et al., 2019). Problem-solving is the basis of many
scholastic learning processes and is therefore regarded as a fundamental
goal of education (OECD, 2013). A study concludes that problem-solving
skills are more important than numerical or communication skills for a
worker to be successful in the workplace (Felstead et al., 2013). Because
of the changes in the characteristics of engineering problems and solu-
tions, most engineering problems are open-ended (Belski, 2011; Mourtos
et al.,, 2004). These problems often possess vaguely defined goals,
multiple solutions, and multiple criteria for evaluating the solutions.
Due to the complexity of real-world engineering problems, learning
from schools does not adequately prepare engineering students to solve
real-world problems. Therefore, it is significant to bridge the gap be-
tween textbook theory and real-world application for engineering
students.

This research utilizes SDT (Green and Swets, 1966) from the psy-
chology literature, where the presence or absence of events are used to
analyze behaviors. We utilize SDT to represent whether a student’s
choice matches that of a subject matter expert (SME). While SDT pro-
vides us with the analysis of errors, we also integrate the concept of
conflict from neuropsychology. We use conflict to represent the dis-
crepancies between a student’s gaze and the student’s subsequent
choice. We detail SDT model in section 3.2 and SDT-C&E model in
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section 3.3.
2.1. VR simulation of problem-solving

VR simulations provide multi-dimensional human experiences which
mimic real-world experiences. In the past few years, researchers have
given more attention to the application of VR simulation in different
areas including human computer interaction (Arora et al., 2019), sports
(Macedo et al., 2019), biology (Desmeulles et al., 2006), education
(Beck, 2019), smart manufacturing (Yang et al., 2019), and problem-
solving (Hwang and Hu, 2013). VR is a useful tool for teaching
problem-solving skills, especially when it is difficult to perform the task
in real-life. For example, simulating a car factory in VR can help students
learn problem-solving skills for manufacturing processes without the
need to visit a physical plant (Aglan et al., 2020). In VR, 3D objects and
environments can be created which allows learners to interact and ap-
peal to their visual or other senses. A study by Hwang and Hu (2013)
developed a VR learning environment to study the peer learning be-
haviors and their impacts on geometry problem-solving. The utilization
of VR allowed for synchronous manipulation of objects and communi-
cation among multiple users. It also improved the problem-solving skills
for the participants. However, this study only utilized questionnaire and
interviews to collect data about the student behavior in the VR envi-
ronment. One advantage of using VR is the ability to collect data from
participants via sensing technology, which can provide valuable insights
about user behavior and problem-solving skills. Another study by Jin
and Lee (2019) compared problem-solving styles between desktop and
VR environments based on the influence of design tools in ideation. The
study found that VR can provide frequent modifications of solutions and
high manipulability of user interface. However, the study argued that
higher usability does not always produce desired outcomes. This can be
addressed by developing effective VR environments that are equivalent
to the actual environment as well as taking into consideration the sim-
ilarity between the tasks performed in both environments. In Tang et al.
(2011), a VR theme-based game was developed to replace traditional
laboratory activities in electrical and computer engineering. The game
was designed with specific considerations of the nature of problem-
solving in the manufacturing context. Students needed to provide so-
lutions with their Hardware Description Language code. They were
allowed to debug the code until the problems were solved, for example,
fixing a malfunctioning traffic light. In this way, students were able to
implement their domain knowledge and improve problem-solving skills.
The game aimed at providing a fun learning environment to promote
strategic problem-solving. In Man et al. (2013), VR-based training pro-
grams have also been used to strengthen problem-solving skills of people
with traumatic brain injury, so as to enhance their employment oppor-
tunities. The problem-solving skills in their research were measured by
Wisconsin Card Sorting Test, Tower of London Test, and Vocational
Cognitive Rating Scale. In manufacturing education and industry, VR
can be used to provide more efficient ways to solve problems and
improve design choices. According to Milella (2015), when compared to
traditional desktop-based modelling and simulation tools, VR offers
unquestionable advantages in terms of rapid problem-solving. The
author suggests that further research is required to develop more effi-
cient VR simulations for manufacturing, as well as to evaluate time and
cost saving in comparison with desktop-based modelling and simulation
tools. Hence, there is an urgent need to leverage large amounts of
sensing data and analytical models to quantify training outcomes in VR
simulations. To address these challenges, this research develops a VR
simulation for manufacturing environments to evaluate and quantify
problem-solving skills. The research utilizes sensing technology for data
collection and physiological theories to analyze the collected data.

2.2. Eye-tracking for problem-solving

Problem-solving requires many cognitive processes. Eye-tracking has
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been shown to effectively reveal cognitive activities (Eckstein et al.,
2017) and has been utilized to examine students’ visual attention while
solving multi-choice science problems (Tsai et al., 2012). It is found that
students pay more attention to the choice they prefer rather than al-
ternatives they reject and spend more time on inspecting relevant factors
than irrelevant ones in problems. A study utilized eye-tracking to
examine how the problem-solving performance of learners varies with
different levels of prior knowledge (Lee et al., 2019). The authors
derived multiple performance aspects, such as accuracy in visual
attention and cognitive load, which are possibly affected by prior
knowledge. The study employed a medical simulation game to empiri-
cally examine whether the level of prior knowledge affects those per-
formance aspects. Research on eye-tracking is increasing owing to its
ability to facilitate many different tasks (Klaib, Alsrehin, Melhem,
Bashtawi, & Magableh, 2020). Availability of eye-tracking data has been
shown to facilitate the study of problem-solving. However, very little has
been done to quantify problem-solving skills with eye-tracking data
analytics. In this paper, data-driven models of eye movements are
developed to quantify the problem-solving skills in the VR environment.

3. Research methodology

The proposed research methodology integrates VR simulation and
eye-tracking to study manufacturing problem-solving and develop
analytical models for measuring students’ performance. As shown in
Fig. 1, the first step is to develop physical simulations about the as-
sembly of physical car toys, which are integrated into an undergraduate
course on “manufacturing systems”. The physical simulations form the
basis for developing the VR simulation. Eye-tracking is integrated with
VR simulation to collect data on the problem-solver’s performance, and
the data is analyzed using SDT and C&E models. Heat maps are then
developed to visualize the performance of the problem-solvers in terms
of selection of the car toy components. Other data are collected from the
VR simulation including weight and price of the product and user
switches between the assembly stations. The data is visualized on a radar
chart based on a composite index that represents the overall perfor-
mance of the problem-solver.

3.1. Virtual reality simulation of manufacturing system

In this paper, we simulate a manufacturing system in VR to evaluate
and enhance the problem-solving skills of engineering students. The VR
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manufacturing system was developed in the Unity game engine and
equipped with an HTC Vive VR headset, wireless controllers, and base
stations for motion tracking (Zhao et al., 2019). Students wore a VR
headset and saw through the headset a virtual manufacturing system
composed of a series of workstations. The students were able to interact
with objects in the virtual environment using the wireless controller.
The VR headset was integrated with Tobii eye-tracking technology,
allowing the system to identify coordinates and objects that students
were looking at, at any given time during the simulation.

In the VR manufacturing system, students were asked to assemble a
car toy that satisfied some particular customer requirements. Students
were first presented with audio instructions on how to interact with the
virtual manufacturing system. Once students felt comfortable, they
could press a button to start the manufacturing assembly process. There
were seven stations in the virtual manufacturing system. Students were
allowed to switch between stations at any time. The first station was a
requirement station, where students were given a set of customer re-
quirements as shown in Table 1. After students read the requirements,
they moved to the next station, the component selection station. This
station includes the selection board, which is the area of interest (AOI)
for eye-tracking in the VR simulation. The component selection station is
shown in Fig. 2 (a). Components were selected when a student pointed at
them and pressed a trigger on the wireless controller. Each component
came with a selection of 8 colors. After students selected the components
they desired, they moved over, in order, to the base station, wheel and

Table 1
Customer requirements for the car toy.

Vehicle Requirements Functional Requirements

N ==
. i>

VR Simulation

(a) Vehicle weight is between 20 and (a) Driver must be able to get in and out
30¢g of the vehicle and see where he is

(b) Material cost <= $9 going while traveling

(c) Vehicle must have four tires (with (b) Vehicle must be able to travel over

axles), wind shield, driver, steering
wheel, and roof
(d) All tires must be small soft (c
(e) Vehicle base width and length are 4
dots and 6 dots, respectively
() Vehicle must fit completely within
the design footprint “parking space”
(g) Number of different colors for
plastic blocks >= 5 (excluding
driver and wind shield)

<

ramp conditions, stay on ramp, and
cross the finish line fully intact
Vehicle must remain intact
following a drop test

101 o
O b IR

IQQ

“
2

\\ % @ oy t» & se u: VI =
Composite Index Heat Maps Analytical Modeling

Fig. 1. Example stations in the virtual manufacturing system: (a) component selection station; (b) base station; (c) tire and rim station; (d) roof station.
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axle station, tire and rim station, sides station, and roof station as shown
in Fig. 2. Students went through each station to assemble car toys. Un-
used components were put into a red trash box. Each component was
associated with a weight and a cost, which simulated the real-world
manufacturing process where materials had associated weights and
costs. Total weight and cost of the car toy were displayed in the VR
environment. Once students completed the assembly of car toy, they
pressed a “finish” button and the simulation stopped.

Eye-tracking and trace data, including students’ choices of compo-
nents, switches between stations, durations, frequencies, and co-
ordinates of fixations, were collected along the assembly process. Eye-
tracking and trace data of students were compared with the data of a
SME, a person whose knowledge was accepted as the gold standard and
sets the expert criterion for the assembly process of the car toy, to
quantify the problem-solving skills of students. In our study, SME is the
project lead who has extensive experience conducting problem-solving
training for students and professionals.

3.2. Signal detection theory (SDT)

SDT has been widely applied in areas where two different stimuli
must be discriminated. In SDT, every time stimulus S; or S is shown, a
student generates an internal response x in his/her mind. This internal
response x is drawn from a normal distribution with mean y and stan-
dard deviation 6. When the stimulus is absent (i.e., stimulus S;), u = 0
and ¢ = 1, that is, $; internal response follows a standard normal dis-
tribution N(0,1). The cumulative distribution function of S; internal
response is denoted as ®y. When the stimulus is present (i.e., stimulus
S,), S, internal response is normally distributed with a mean d and a
standard deviation 6. The cumulative distribution function of S, internal
response is denoted as @y . For the sake of simplicity, S; and S, internal
responses are often assumed to have the same standard deviation o = 1
(Barrett et al., 2013).
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(b)

Car Price: $ 5.81

(d)

Fig. 2. Proposed Research Framework Research methodology.

The ability of a student to discriminate stimulus S; from Sy depends
on the extent that S; and S, internal responses in the student’s mind are
distinguishable. A larger separation between S; and S internal re-
sponses represents a better sensitivity for discriminating stimuli S; and
S,. Therefore, d is also called a sensitivity index.

Definition 1. Two possible stimuli S, and S, are defined as “signal absent”
and “signal present”, respectively. Four possible outcomes are defined
depending on the internal responses of students to stimuli (see Table 2).

Hit rate (HR) is the probability of responding S, internally in stu-
dent’s mind when the signal is present. As shown in Fig. 3, HR is
calculated as the area under probability density function of S, internal
response that exceeds a decision criterion c. Students respond S; if in-
ternal response x < ¢ and respond S, if x > c¢. Cumulative distribution
function of a normal distribution with mean y and standard deviation ¢
evaluated at x is:

X )2
O (x4, 0) = / L o)

w OV 21

HR is derived from equation (1) as:
HR =1 -®(c,d ,0 = 1) (2

Similarly, false alarm rate (FAR) is formulated as:

FAR =1-®(c,0,6=1) 3
Table 2
SDT possible outcomes.
Response
Stimulus S internal response S, internal response
S1 Correct rejection False alarm
S Miss Hit
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Fig. 3. Derivation of sensitivity index d'. HR and HR' are symmetric with respect to x = %; FAR and FAR’ are symmetric with respect to x = 0.

According to Fig. 2,

x; = @, (HR) 4
x, = @' (FAR) (5)
xy=d —c (6)
Xn=—c )
d =x —x, = ®,'(HR) — ®," (FAR) (8
c= —x, = —®,'(FAR) (©)]

In this paper, SME’s choices of components to assemble the car toy
are taken as stimulus S,. Choices of each student are internal responses.
As shown in Table 3, if a component is chosen, then a “Yes” is given to its
corresponding “Choice” column, otherwise, a “No” is given. Hits and
false alarms are defined based on students’ internal responses to S,
stimulus, i.e., SME’s choices.

Definition 2. Hit is defined as each time student matches the choice of
SME, i.e., student chooses a component that SME also chooses. False alarm is
defined as each time that a student chooses a component that SME does not
choose. HR and FAR are formulated as:

No. of hits

HR =
No. of “Yes” in SME's choices

(10)

No. of False alarms
No. of "No” in SME's choices

FAR = (€8]

Definition 3. A process, P;, consists of a set of tasks, T, which are per-
formed by students. In this paper, P1 = design, P, = sourcing, P3 = as-
sembly, and P4 = inspection.

Table 3
Examples of a hit and a false alarm.
Component  Duration (hh: ~ Frequency  Student SME Outcome
mm:ss) Choice Choice
1x2Brick 00:00:39 67 Yes Yes Hit
2x2Brick 00:00:05 24 Yes No False

alarm

Therefore, measure of problem-solving skills d' is formulated as:

i-3

[@,' (HR;) — @, (FARy) ]

1

12)

T

=1

Perfect rates which result in infinite ®;' (HR;) and @, (FAR;) are
remedied with 1/2N rules, specifically, rates of 0 are replaced with
0.5/N, and rates of 1 are replaced with (N—0.5)/N, where N is the
number of “Yes” or “No” in SME’s choices (Stanislaw and Todorov,
1999).

3.3. Joint SDT-C&E model

In neuropsychology, conflict and error are two important concepts
that should be considered in complex problem-solving. Error detects
deviation between intentions and actions. Conflict is defined as
competition between two or more simultaneously activated response
tendencies. However, SDT focuses on measuring error because it ana-
lyzes the actions taken by students and fails to measure the conflict of
response tendencies in problem-solving. In this paper, we propose to
quantify the problem-solving skills of engineering students with a joint
SDT-C&E model.

Assumption Choices and decisions of SME are used as the benchmark
of student’s problem-solving performance.

Definition 4. Four possible outcomes are defined based on students’ fix-
ations and choices of car toy components. Correct Choice is defined as cases
when student matches the choice of SME and looks at a component if the
choice is “Yes” and does not look at a component if the choice is “No”.
Conflict is defined as cases when student matches the choice of SME, but does
not look at a component if the choice is “Yes” and looks at a component if the
choice is “No”. Error is defined as cases when student does not match the
choice of SME and looks at a component if the choice is “Yes” and does not
look at a component if the choice is “No”. C&E is defined as cases when
student does not match the choice of SME and does not look at a component if
the choice is “Yes” and looks at a component if the choice is “No”. Rates of
four outcomes are formulated as:

No. of correct choices

Correct Choice Rate(YR) = ; -
No. of SME's choices

13)

No. of conflicts
No. of SME's choices

Conflict Rate(CR) = a4
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No. of errors

E Rate(ER) = 15
rror Rate(ER) No. of SME's choices (15)
No. of C&Es

ict&E R ER) = 1

Conflict&Error Rate(C&ER) No of SME's choices (16)
The proposed SDT-C&E model is formulated as:

P T
p=> > @ (YR;) — (@ (CRy) + @, (ER;) + ;' (C&ER;)) |

=1 j=1

a7n

p is a measure of problem-solving skills. In order to maximize p,
students need to maximize YR and minimize other rates. Perfect rates
are also remedied with 1/2N rules.

An Illustrative Example: In order to develop the C&E model, we
will first compare student responses to that of SME. This person has an
expert level of understanding of the process and knows the best way to
solve the problem. His eye tracking fixations and durations will deter-
mine the areas of interest to which the students’ performance can be
compared. Suppose the student needs to select one of two components,
Option A or Option B, for the car toy (see Fig. 4). Assuming the correct
option is A, the number of times a student matches SME performance, in
terms of eye tracking and final selection will comprise a correct choice
(Y). In Table 4, the SME looked at option A for 30 s with two fixations
and then selected option A. This is defined as Y. Student 1 looked at
option A for 16 s then option B for 10 s then option A again for 15 s.
Hence, the student looked at option A for 31 s with two fixations and
then selected option A. This is also defined as Y. Student 2, however,
looked at option B for 29 s and with two fixations and then selected
option B. This is defined as an error (E). Student 3 looked at option B but
selected option A. This is defined as a conflict (C). Finally, student 4
looked at option A but selected option B. This is both a conflict and an
error (C&E).

4. Experimental results

In the experiment, we collected the data of 24 undergraduate engi-
neering students and 1 SME in the United States through a user study. All
24 students were undergraduate engineering students from a public
university in the United States. The average age was 18 years. The stu-
dents were recruited from several introductory undergraduate engi-
neering classes. Participation in the experiment was completely
voluntary, and students could withdraw from the experiment at any
time. Participants were provided $50 gift cards for their involvement in
the study. The study was approved by the Institutional Review Board
(IRB) of the university. Fig. 5 shows the experimental setup.

Students and SME completed the VR simulation as described in
Section 3.1. The average weight of car toys is 29.36 g with a standard
deviation of 13.37 g. The average time the participants spent on the
assembly process is 16.08 min with a standard deviation of 4.94 min.
Students’ eye-tracking and trace data were collected as they went
through the simulation. In order to measure the performance of as-
sembly tasks in virtual manufacturing systems, we design a VR-based

-
~

)
Option A Option B

Fig. 4. A simple selection problem.
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Table 4
Comparing students’ responses to SME’s response.

Team Member Duration (sec.) No. of Fixations Final Choice C&E

SME 30 - A 2 A Y
Student 1 16 - A 1 A Y
10> B 1
15> A 1
Student 2 29> B 2 B E
Student 3 20 - B 1 A C
10> B 1
Student 4 30> A 2 B C&E

composite index which involves consideration of cycle time, number
of station switches, weight, price, and quality of car toys. The following
sections describe the VR-based composite index in detail. The proposed
SDT-C&E model is evaluated and validated by comparing correlations
between VR-based composite index and measures of engineering
problem-solving skills.

4.1. Sensitivity index d in SDT model

Eye-tracking data are analyzed with the SDT model to quantify en-
gineering problem-solving skills. Fig. 6 shows the sensitivity index d’ of
engineering students. Sensitivity index d” increases as HR increases. HR
of engineering students ranges from 0.5 to 1. Sensitivity index d’ de-
creases as FAR increases. FAR of engineering students has a range of 0 to
0.72. The zoomed-in figure is equally divided into four areas. Note that
engineering students in Area 1 have the highest d’ values compared with
Areas 2, 3, and 4, because they have high HR and low FAR. Engineering
students in Area 4 have the lowest d’ values compared with other 3
areas, because they have low HR and high FAR. d’ ranges from O to 3.83
where SME has the highest d’ value of 3.83 with HR of 1 and FAR of 0,
which suggests that SME has better problem-solving skills than engi-
neering students. Conflict and error are two important concepts in
complex problem-solving. SDT model is effective to quantify the
problem-solving skills in terms of the error of responses. However, it
fails to account for conflict of response tendencies.

4.2. Measure of problem-solving skill p in joint SDT-C&E model

We use the proposed SDT-C&E model to quantify the problem-
solving skills of engineering students. Measure p’ of engineering stu-
dents is shown in Fig. 7. p’ increases with the increment of YR. YR ranges
from 0.18 to 1. p’ decreases as CR, ER, or C&ER increases. The sum of
CR, ER, and C&ER have a range of 0 to 0.82. Notably, Area 1 has higher
p’ values than Area 2 due to high YR and low sum of other rates. On the
other hand, Area 2 has low p’ values due to low YR and high sum of CR,
ER, and C&ER. SME has the highest p’ value of 8.40, suggesting that SME
has the highest level of problem-solving skills. Compared to SDT model,
joint SDT-C&E model considers both error of responses and conflict of
response tendencies.

4.3. Correlations between VR-based composite index and measures of
problem-solving skills

Five performance metrics involving cycle time, number of station
switches, quality, weight, and price of car toy, are considered in VR-
based composite index to measure the task performance of each engi-
neering student. A score is given to each performance metric. Scores of
cycle time, number of station switches, and quality of car toy have a
range of 0 to 10.

Scores of cycle time and number of station switches are formulated
based on the reverse scaling, so that students get low scores if they have
long cycle times or large numbers of station switches. Score of cycle time
is formulated as:



R. Zhu et al.

Student 1

Student 2

P

~—

Eye Tracker
Virtual Reality

¥

Eye Tracker

i

I

Student n

—

"

Eye Tracker

¥

Expert Systems With Applications 201 (2022) 117220

ﬂhea et v;ith T obii eye-tracking
~ VR base station

Fig. 5. Experimental setup (left) and a student running the VR simulation (right).
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max(CT) — CT;

max(CT) — min(CT) 10 18

Time Score;, =

where k denotes the index of participants, k = 1,2, ---, K. The total
number of participants K is 25 which involves 24 students and 1 SME.
TimeScore;. denotes k™ participant’s score of cycle time. CT is the set of
cycle times (CT;, CTz, ---, CTx). Score of number of stations switches is
formulated as:

max(nSwitch) — nSwitchy,

itch =
Switch Score max(nSwitch) — min(nSwitch)

19)

where Switch Score; denotes k™ participant’s score of number of station
switches, nSwitch is the set of numbers of station switches (nSwitch,
nSwitchy, ---,nSwitchy).

The total score of car toy quality is 10 points. Each violation of
customer requirements (e.g., installation of small soft tires, axles, wind
shield, steering wheel, roof, base with size of 4 x 6, driver) deducts 1

point from the starting state. Incompleteness of car toy results in
deduction of 0 to 3 points from the starting state. If a car toy meets
weight (i.e., between 20 and 30 g) or price (< $9) requirements, it ob-
tains a score of 2 for weight or price of the car toy. Otherwise, it obtains a
score of 1.

Fig. 8 demonstrates spider charts of the five performance metrics.
Red area in the spider chart represents VR-based composite index of
each participant. SME has the highest index among all the participants,
which is 85.5951, because SME has full scores on all performance
metrics as shown in Fig. 8 (a). Fig. 8 (b) and (c) give examples of high
and low VR-based composite indices, respectively.

We further analyze the correlations between the VR-based composite
index and measures of problem-solving skills according to the Pearson’s
correlation coefficient, which is formulated as:
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2 _\2 Correlation coefficients between VR-based composite index and measures of
1; (@ -®) \/,; (7 —7) problem-solving skills.

Tor =

Correlation Coefficient T 72
. _ . . i \ th . .—
where wy is th; measure of problem ?olv1n$ skill d or p of k™ partici ) 0.6792 0.8219
pant, @ = %Zk:ﬂ‘)k is the mean of d or p, 7, is VR-based composite d 0.6238 0.6577

index of k™ participant, 7 = %Z’,lefk is the mean of VR-based composite
indices.

Correlation coefficients are summarized in Table 5. p' shows higher
correlations with both 7 and 7> than d', which indicates that p’ is
effective in quantifying the problem-solving skills of engineering stu-
dents by taking conflict and error into consideration. Especially,
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correlation between 72 and p’ is a lot higher than d, suggesting potential
nonlinear correlation between 7 and p'.

5. Conclusions

In this paper, we developed an analytical model that integrates SDT
with C&E to quantify problem-solving skills of engineering students.
First, we simulated a manufacturing system in a VR game environment.
Students were given an assembly problem to produce a car toy that
satisfied some particular requirements in the VR manufacturing system.
Eye-tracking and trace data were collected throughout the assembly
process. Second, eye-tracking data were analyzed with a SDT model to
quantify problem-solving skills. Third, we developed a joint SDT-C&E
model to analyze eye-tracking data and benchmark with results gener-
ated from the SDT model.

Experimental results showed that measure of problem-solving skill p’
generated by the proposed SDT-C&E model had higher correlation with
VR-based composite index 7 (0.6792 vs 0.6238) and 7> (0.8219 vs
0.6577) than sensitivity index d of SDT model, which suggested that p’
is effective to quantify engineering problem-solving skills by taking
conflicts and errors into account. The higher correlation between p and
72 than 7 is worth noting because it implies potential nonlinear corre-
lation between measure of problem-solving skills and VR-based com-
posite index. However, a limitation of this work is that the number of
participants is small because setting up the equipment and completing
the assembly task are time-consuming. In future work, we will recruit
more participants in the experiment and collect more data to further
validate the model with the iterative design approach and investigate
the nonlinear correlation between the measures of problem-solving
skills and VR-based composite index.

The VR manufacturing system developed in this paper can serve as a
training tool for engineering students to reinforce their problem-solving
skills. Additionally, the proposed SDT-C&E model provides a powerful
tool to quantify problem-solving skills of engineering students. In this
paper, we only compared students’ solutions against that of SME.
However, given that a problem can have more than one valid solution,
this study can be extended by comparing against multiple correct solu-
tions. The SDT-C&E model can be generalized to quantify problem-
solving skills in many other disciplines such as healthcare, psychology
and cognitive sciences, by comparing one’s problem-solving actions
with actions of a SME. For example, cardiac surgery requires multiple
skills. Novice surgeons can benefit from training on surgical skills uti-
lizing simulation models. However, studies on assessments of training
outcome remain sketchy. Current assessments usually rely on subjective
observations and logbooks (Lodge and Teodor, 2011). If an expert sur-
geon sets a golden standard with their actions in technical procedures,
the proposed model can generate rates of correct choice, conflict, and
error for novice surgeons by comparing their actions to the golden
standard and then provide assessments of the surgical training out-
comes. Further, the rates can help novice surgeons gain insights on how
to improve their skills.
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