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A B S T R A C T   

Problem-solving is the process to achieve a goal when the solution path is uncertain. Recently, technological 
advancements have changed problems’ characteristics and their solutions in engineering fields. Strong problem- 
solving skills are essential to allow engineers to assess new problems and quickly implement solutions. Engi
neering problem-solving skills are first educated in schools and usually evaluated through written exams. 
However, high grades in exams do not represent sufficient problem-solving skills in real-world engineering 
problems. Decision making with insufficient problem-solving skills in real world may result in costly conse
quences. Therefore, it is imperative to evaluate and reinforce problem-solving skills of engineering students in 
real-world problems. With the rapid technological advancements, availability of virtual reality (VR) and eye- 
tracking facilitates the study of engineering problem-solving. The immersive environment created by VR en
ables students to better understand and solve real-world engineering problems. On the other hand, eye-tracking 
allows for studying fundamental cognitive processes during information processing. It is critical to integrate VR 
simulation with data-driven modeling of eye movements to evaluate and enhance engineering problem-solving 
skills. In this paper, we integrate sensing technology (i.e., eye-tracking) and virtual reality (VR) to model 
problem-solving in manufacturing systems. A novel data-driven model that integrates signal detection theory 
(SDT) with Conflict & Error (C&E) is developed to quantify engineering problem-solving skills. First, we simulate 
a manufacturing system in a VR game environment. Students are given an assembly problem to produce a car toy 
that satisfies some particular requirements in the VR manufacturing system while eye-tracking data are collected 
throughout the assembly process. Second, eye-tracking data are analyzed with a SDT model to quantify problem- 
solving skills. Third, a joint SDT-C&E model is developed to analyze eye-tracking data and benchmark with 
results generated from the SDT model. Experimental results show that the joint SDT-C&E model is more effective 
to quantify problem-solving skills of engineering students than the SDT model.   

1. Introduction 

Problems are defined as discrepancies between initial problem states 
and goal states (Ward, 2012). Problem-solving is a cognitive process that 
finds solution paths to achieve the goal state (Wang and Vincent, 2010). 
Recent technological advancements have changed the characteristics of 
problems and their solutions, especially in engineering fields (Autor and 
Price, 2013). Today, engineers need to solve problems that they have 
never experienced before. Strong problem-solving skills are essential to 
allow engineers to assess new problems and quickly implement solu
tions. Engineering problem-solving skills are first educated in schools 

and evaluated through written exams. However, high grades in exams 
do not represent sufficient problem-solving skills in real-world engi
neering problems (Jonassen et al., 2006). Furthermore, decision making 
with insufficient problem-solving skills in real world may result in costly 
consequences. Therefore, it is imperative to evaluate and reinforce 
problem-solving skills of engineering students in real-world problems. 

Universities may not be able to introduce the latest manufacturing 
systems and technologies into the learning factory due to limited re
sources. In addition, manufacturing safety is important to reduce the 
risks of workplace injury. Injuries to students may cause significant 
compensation and medical treatment costs (Wang et al., 2018). 
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Therefore, it is imperative to develop a cost-effective and safe learning 
environment for engineering students to get hands-on training. With the 
rapid technological advancements, availability of virtual reality (VR) 
and eye-tracking facilitates the study of engineering problem-solving. 
VR simulates a real-world experience in an immersive virtual environ
ment, which allows users to interact with virtual objects and immerse in 
the 3D simulation. This enables students to better understand real-world 
engineering problems and solve them. On the other hand, eye-tracking is 
an emerging technology that allows eye movements to be monitored. An 
operational definition of eye-tracking by Poole and Ball (2006) states 
that eye-tracking is a technique whereby an individual’s eye movements 
are measured so that the researcher knows both where a person is 
looking at any given time and the sequence in which their fixations are 
shifting from one location to another. Studies show that increased eye 
movements reveal the increment of cognitive activities. For example, the 
large number of fixations and saccades reveal human subjects’ attention 
on relevant stimuli (Zagermann, Ulrike, & Harald, 2018). Thus, eye- 
tracking allows for revealing cognitive activities and studying the 
fundamental cognitive processes during information processing. 
Problem-solving, as a fundamental cognitive process (Wang and Vin
cent, 2010), which can be understood by utilizing eye-tracking tech
nology and thereby evaluate problem-solving skills. Therefore, it is 
critical to integrate VR simulation with data-driven modeling of eye 
movements to evaluate and enhance engineering problem-solving skills. 

In this paper, we develop an analytical model that integrates signal 
detection theory (SDT) with Conflict & Error (C&E) to quantify problem- 
solving skills of engineering students. First, we simulate a 
manufacturing system in a VR game environment. Students are given an 
assembly problem to produce a car toy that satisfies some particular 
requirements in the VR manufacturing system while eye-tracking data 
are collected throughout the assembly process. Second, eye-tracking 
data are analyzed with a SDT model to quantify problem-solving 
skills. Third, we develop a joint SDT-C&E model to analyze eye- 
tracking data and benchmark with results generated from the SDT 
model. Experimental results show that the proposed joint SDT-C&E 
model is more effective to quantify problem-solving skills of engineering 
students than the SDT model. 

2. Relevant literature 

The ongoing globalization and advancements in technology confront 
people with complex environments that demand numerous problems to 
be solved (Fischer et al., 2012). The ability to solve such problems is an 
essential competence and is required for active participation in today’s 
society (Eichmann et al., 2019). Problem-solving is the basis of many 
scholastic learning processes and is therefore regarded as a fundamental 
goal of education (OECD, 2013). A study concludes that problem-solving 
skills are more important than numerical or communication skills for a 
worker to be successful in the workplace (Felstead et al., 2013). Because 
of the changes in the characteristics of engineering problems and solu
tions, most engineering problems are open-ended (Belski, 2011; Mourtos 
et al., 2004). These problems often possess vaguely defined goals, 
multiple solutions, and multiple criteria for evaluating the solutions. 
Due to the complexity of real-world engineering problems, learning 
from schools does not adequately prepare engineering students to solve 
real-world problems. Therefore, it is significant to bridge the gap be
tween textbook theory and real-world application for engineering 
students. 

This research utilizes SDT (Green and Swets, 1966) from the psy
chology literature, where the presence or absence of events are used to 
analyze behaviors. We utilize SDT to represent whether a student’s 
choice matches that of a subject matter expert (SME). While SDT pro
vides us with the analysis of errors, we also integrate the concept of 
conflict from neuropsychology. We use conflict to represent the dis
crepancies between a student’s gaze and the student’s subsequent 
choice. We detail SDT model in section 3.2 and SDT-C&E model in 

section 3.3. 

2.1. VR simulation of problem-solving 

VR simulations provide multi-dimensional human experiences which 
mimic real-world experiences. In the past few years, researchers have 
given more attention to the application of VR simulation in different 
areas including human computer interaction (Arora et al., 2019), sports 
(Macedo et al., 2019), biology (Desmeulles et al., 2006), education 
(Beck, 2019), smart manufacturing (Yang et al., 2019), and problem- 
solving (Hwang and Hu, 2013). VR is a useful tool for teaching 
problem-solving skills, especially when it is difficult to perform the task 
in real-life. For example, simulating a car factory in VR can help students 
learn problem-solving skills for manufacturing processes without the 
need to visit a physical plant (Aqlan et al., 2020). In VR, 3D objects and 
environments can be created which allows learners to interact and ap
peal to their visual or other senses. A study by Hwang and Hu (2013) 
developed a VR learning environment to study the peer learning be
haviors and their impacts on geometry problem-solving. The utilization 
of VR allowed for synchronous manipulation of objects and communi
cation among multiple users. It also improved the problem-solving skills 
for the participants. However, this study only utilized questionnaire and 
interviews to collect data about the student behavior in the VR envi
ronment. One advantage of using VR is the ability to collect data from 
participants via sensing technology, which can provide valuable insights 
about user behavior and problem-solving skills. Another study by Jin 
and Lee (2019) compared problem-solving styles between desktop and 
VR environments based on the influence of design tools in ideation. The 
study found that VR can provide frequent modifications of solutions and 
high manipulability of user interface. However, the study argued that 
higher usability does not always produce desired outcomes. This can be 
addressed by developing effective VR environments that are equivalent 
to the actual environment as well as taking into consideration the sim
ilarity between the tasks performed in both environments. In Tang et al. 
(2011), a VR theme-based game was developed to replace traditional 
laboratory activities in electrical and computer engineering. The game 
was designed with specific considerations of the nature of problem- 
solving in the manufacturing context. Students needed to provide so
lutions with their Hardware Description Language code. They were 
allowed to debug the code until the problems were solved, for example, 
fixing a malfunctioning traffic light. In this way, students were able to 
implement their domain knowledge and improve problem-solving skills. 
The game aimed at providing a fun learning environment to promote 
strategic problem-solving. In Man et al. (2013), VR-based training pro
grams have also been used to strengthen problem-solving skills of people 
with traumatic brain injury, so as to enhance their employment oppor
tunities. The problem-solving skills in their research were measured by 
Wisconsin Card Sorting Test, Tower of London Test, and Vocational 
Cognitive Rating Scale. In manufacturing education and industry, VR 
can be used to provide more efficient ways to solve problems and 
improve design choices. According to Milella (2015), when compared to 
traditional desktop-based modelling and simulation tools, VR offers 
unquestionable advantages in terms of rapid problem-solving. The 
author suggests that further research is required to develop more effi
cient VR simulations for manufacturing, as well as to evaluate time and 
cost saving in comparison with desktop-based modelling and simulation 
tools. Hence, there is an urgent need to leverage large amounts of 
sensing data and analytical models to quantify training outcomes in VR 
simulations. To address these challenges, this research develops a VR 
simulation for manufacturing environments to evaluate and quantify 
problem-solving skills. The research utilizes sensing technology for data 
collection and physiological theories to analyze the collected data. 

2.2. Eye-tracking for problem-solving 

Problem-solving requires many cognitive processes. Eye-tracking has 
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been shown to effectively reveal cognitive activities (Eckstein et al., 
2017) and has been utilized to examine students’ visual attention while 
solving multi-choice science problems (Tsai et al., 2012). It is found that 
students pay more attention to the choice they prefer rather than al
ternatives they reject and spend more time on inspecting relevant factors 
than irrelevant ones in problems. A study utilized eye-tracking to 
examine how the problem-solving performance of learners varies with 
different levels of prior knowledge (Lee et al., 2019). The authors 
derived multiple performance aspects, such as accuracy in visual 
attention and cognitive load, which are possibly affected by prior 
knowledge. The study employed a medical simulation game to empiri
cally examine whether the level of prior knowledge affects those per
formance aspects. Research on eye-tracking is increasing owing to its 
ability to facilitate many different tasks (Klaib, Alsrehin, Melhem, 
Bashtawi, & Magableh, 2020). Availability of eye-tracking data has been 
shown to facilitate the study of problem-solving. However, very little has 
been done to quantify problem-solving skills with eye-tracking data 
analytics. In this paper, data-driven models of eye movements are 
developed to quantify the problem-solving skills in the VR environment. 

3. Research methodology 

The proposed research methodology integrates VR simulation and 
eye-tracking to study manufacturing problem-solving and develop 
analytical models for measuring students’ performance. As shown in 
Fig. 1, the first step is to develop physical simulations about the as
sembly of physical car toys, which are integrated into an undergraduate 
course on “manufacturing systems”. The physical simulations form the 
basis for developing the VR simulation. Eye-tracking is integrated with 
VR simulation to collect data on the problem-solver’s performance, and 
the data is analyzed using SDT and C&E models. Heat maps are then 
developed to visualize the performance of the problem-solvers in terms 
of selection of the car toy components. Other data are collected from the 
VR simulation including weight and price of the product and user 
switches between the assembly stations. The data is visualized on a radar 
chart based on a composite index that represents the overall perfor
mance of the problem-solver. 

3.1. Virtual reality simulation of manufacturing system 

In this paper, we simulate a manufacturing system in VR to evaluate 
and enhance the problem-solving skills of engineering students. The VR 

manufacturing system was developed in the Unity game engine and 
equipped with an HTC Vive VR headset, wireless controllers, and base 
stations for motion tracking (Zhao et al., 2019). Students wore a VR 
headset and saw through the headset a virtual manufacturing system 
composed of a series of workstations. The students were able to interact 
with objects in the virtual environment using the wireless controller. 
The VR headset was integrated with Tobii eye-tracking technology, 
allowing the system to identify coordinates and objects that students 
were looking at, at any given time during the simulation. 

In the VR manufacturing system, students were asked to assemble a 
car toy that satisfied some particular customer requirements. Students 
were first presented with audio instructions on how to interact with the 
virtual manufacturing system. Once students felt comfortable, they 
could press a button to start the manufacturing assembly process. There 
were seven stations in the virtual manufacturing system. Students were 
allowed to switch between stations at any time. The first station was a 
requirement station, where students were given a set of customer re
quirements as shown in Table 1. After students read the requirements, 
they moved to the next station, the component selection station. This 
station includes the selection board, which is the area of interest (AOI) 
for eye-tracking in the VR simulation. The component selection station is 
shown in Fig. 2 (a). Components were selected when a student pointed at 
them and pressed a trigger on the wireless controller. Each component 
came with a selection of 8 colors. After students selected the components 
they desired, they moved over, in order, to the base station, wheel and 

Fig. 1. Example stations in the virtual manufacturing system: (a) component selection station; (b) base station; (c) tire and rim station; (d) roof station.  

Table 1 
Customer requirements for the car toy.  

Vehicle Requirements Functional Requirements  

(a) Vehicle weight is between 20 and 
30 g  

(b) Material cost <= $9  
(c) Vehicle must have four tires (with 

axles), wind shield, driver, steering 
wheel, and roof  

(d) All tires must be small soft  
(e) Vehicle base width and length are 4 

dots and 6 dots, respectively  
(f) Vehicle must fit completely within 

the design footprint “parking space”  
(g) Number of different colors for 

plastic blocks >= 5 (excluding 
driver and wind shield)  

(a) Driver must be able to get in and out 
of the vehicle and see where he is 
going while traveling  

(b) Vehicle must be able to travel over 
ramp conditions, stay on ramp, and 
cross the finish line fully intact  

(c) Vehicle must remain intact 
following a drop test  
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axle station, tire and rim station, sides station, and roof station as shown 
in Fig. 2. Students went through each station to assemble car toys. Un
used components were put into a red trash box. Each component was 
associated with a weight and a cost, which simulated the real-world 
manufacturing process where materials had associated weights and 
costs. Total weight and cost of the car toy were displayed in the VR 
environment. Once students completed the assembly of car toy, they 
pressed a “finish” button and the simulation stopped. 

Eye-tracking and trace data, including students’ choices of compo
nents, switches between stations, durations, frequencies, and co
ordinates of fixations, were collected along the assembly process. Eye- 
tracking and trace data of students were compared with the data of a 
SME, a person whose knowledge was accepted as the gold standard and 
sets the expert criterion for the assembly process of the car toy, to 
quantify the problem-solving skills of students. In our study, SME is the 
project lead who has extensive experience conducting problem-solving 
training for students and professionals. 

3.2. Signal detection theory (SDT) 

SDT has been widely applied in areas where two different stimuli 
must be discriminated. In SDT, every time stimulus S1 or S2 is shown, a 
student generates an internal response x in his/her mind. This internal 
response x is drawn from a normal distribution with mean μ and stan
dard deviation σ. When the stimulus is absent (i.e., stimulus S1), μ = 0 
and σ = 1, that is, S1 internal response follows a standard normal dis
tribution N(0, 1). The cumulative distribution function of S1 internal 
response is denoted as Φ0. When the stimulus is present (i.e., stimulus 
S2), S2 internal response is normally distributed with a mean d’ and a 
standard deviation σ. The cumulative distribution function of S2 internal 
response is denoted as Φd’ ,σ . For the sake of simplicity, S1 and S2 internal 
responses are often assumed to have the same standard deviation σ = 1 
(Barrett et al., 2013). 

The ability of a student to discriminate stimulus S1 from S2 depends 
on the extent that S1 and S2 internal responses in the student’s mind are 
distinguishable. A larger separation between S1 and S2 internal re
sponses represents a better sensitivity for discriminating stimuli S1 and 
S2. Therefore, d’ is also called a sensitivity index. 

Definition 1. Two possible stimuli S1 and S2 are defined as “signal absent” 
and “signal present”, respectively. Four possible outcomes are defined 
depending on the internal responses of students to stimuli (see Table 2). 

Hit rate (HR) is the probability of responding S2 internally in stu
dent’s mind when the signal is present. As shown in Fig. 3, HR is 
calculated as the area under probability density function of S2 internal 
response that exceeds a decision criterion c. Students respond S1 if in
ternal response x ≤ c and respond S2 if x > c. Cumulative distribution 
function of a normal distribution with mean μ and standard deviation σ 
evaluated at x is: 

Φ(x, μ, σ) =
∫ x

−∞

1
σ

̅̅̅̅̅
2π

√ e
−(x−μ)2

2σ2 (1) 

HR is derived from equation (1) as: 

HR = 1−Φ(c, d’, σ = 1) (2) 

Similarly, false alarm rate (FAR) is formulated as: 

FAR = 1−Φ(c, 0, σ = 1) (3) 

Fig. 2. Proposed Research Framework Research methodology.  

Table 2 
SDT possible outcomes.   

Response 

Stimulus S1 internal response S2 internal response 

S1 Correct rejection False alarm 
S2 Miss Hit  
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According to Fig. 2, 

x1 = Φ−1
0 (HR) (4)  

x2 = Φ−1
0 (FAR) (5)  

x1 = d’ − c (6)  

x2 = − c (7)  

d’ = x1 − x2 = Φ−1
0 (HR)−Φ−1

0 (FAR) (8)  

c = − x2 = −Φ−1
0 (FAR) (9) 

In this paper, SME’s choices of components to assemble the car toy 
are taken as stimulus S2. Choices of each student are internal responses. 
As shown in Table 3, if a component is chosen, then a “Yes” is given to its 
corresponding “Choice” column, otherwise, a “No” is given. Hits and 
false alarms are defined based on students’ internal responses to S2 

stimulus, i.e., SME’s choices. 

Definition 2. Hit is defined as each time student matches the choice of 
SME, i.e., student chooses a component that SME also chooses. False alarm is 
defined as each time that a student chooses a component that SME does not 
choose. HR and FAR are formulated as: 

HR =
No. of hits

No. of ˝Yes˝ in SME′s choices
(10)  

FAR =
No. of False alarms

No. of ˝No˝ in SME′s choices
(11)  

Definition 3. A process, Pi, consists of a set of tasks, Tij, which are per
formed by students. In this paper, P1 = design, P2 = sourcing, P3 = as
sembly, and P4 = inspection. 

Therefore, measure of problem-solving skills d’ is formulated as: 

d’ =
∑P

i=1

∑T

j=1

[
Φ−1

0

(
HRij

)
−Φ−1

0 (FARij)
]

(12) 

Perfect rates which result in infinite Φ−1
0
(
HRij

)
and Φ−1

0 (FARij) are 
remedied with 1/2N rules, specifically, rates of 0 are replaced with 
0.5/N, and rates of 1 are replaced with (N−0.5)/N, where N is the 
number of “Yes” or “No” in SME’s choices (Stanislaw and Todorov, 
1999). 

3.3. Joint SDT-C&E model 

In neuropsychology, conflict and error are two important concepts 
that should be considered in complex problem-solving. Error detects 
deviation between intentions and actions. Conflict is defined as 
competition between two or more simultaneously activated response 
tendencies. However, SDT focuses on measuring error because it ana
lyzes the actions taken by students and fails to measure the conflict of 
response tendencies in problem-solving. In this paper, we propose to 
quantify the problem-solving skills of engineering students with a joint 
SDT-C&E model. 

Assumption Choices and decisions of SME are used as the benchmark 
of student’s problem-solving performance. 

Definition 4. Four possible outcomes are defined based on students’ fix
ations and choices of car toy components. Correct Choice is defined as cases 
when student matches the choice of SME and looks at a component if the 
choice is “Yes” and does not look at a component if the choice is “No”. 
Conflict is defined as cases when student matches the choice of SME, but does 
not look at a component if the choice is “Yes” and looks at a component if the 
choice is “No”. Error is defined as cases when student does not match the 
choice of SME and looks at a component if the choice is “Yes” and does not 
look at a component if the choice is “No”. C&E is defined as cases when 
student does not match the choice of SME and does not look at a component if 
the choice is “Yes” and looks at a component if the choice is “No”. Rates of 
four outcomes are formulated as: 

Correct Choice Rate(YR) =
No. of correct choices
No. of SME′ s choices

(13)  

Conflict Rate(CR) =
No. of conflicts

No. of SME′s choices
(14) 

Fig. 3. Derivation of sensitivity index d’. HR and HR’ are symmetric with respect to x = d’

2 ; FAR and FAR’ are symmetric with respect to x = 0.  

Table 3 
Examples of a hit and a false alarm.  

Component Duration (hh: 
mm:ss) 

Frequency Student 
Choice 

SME 
Choice 

Outcome 

1x2Brick 00:00:39 67 Yes Yes Hit 
2x2Brick 00:00:05 24 Yes No False 

alarm  
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Error Rate(ER) =
No. of errors

No. of SME′s choices
(15)  

Conflict&Error Rate(C&ER) =
No. of C&Es

No. of SME′s choices
(16) 

The proposed SDT-C&E model is formulated as: 

ρ’ =
∑P

i=1

∑T

j=1

[
Φ−1

0

(
YRij

)
−
(
Φ−1

0

(
CRij

)
+ Φ−1

0

(
ERij

)
+ Φ−1

0

(
C&ERij

) ) ]

(17) 

ρ’ is a measure of problem-solving skills. In order to maximize ρ’, 
students need to maximize YR and minimize other rates. Perfect rates 
are also remedied with 1/2N rules. 

An Illustrative Example: In order to develop the C&E model, we 
will first compare student responses to that of SME. This person has an 
expert level of understanding of the process and knows the best way to 
solve the problem. His eye tracking fixations and durations will deter
mine the areas of interest to which the students’ performance can be 
compared. Suppose the student needs to select one of two components, 
Option A or Option B, for the car toy (see Fig. 4). Assuming the correct 
option is A, the number of times a student matches SME performance, in 
terms of eye tracking and final selection will comprise a correct choice 
(Y). In Table 4, the SME looked at option A for 30 s with two fixations 
and then selected option A. This is defined as Y. Student 1 looked at 
option A for 16 s then option B for 10 s then option A again for 15 s. 
Hence, the student looked at option A for 31 s with two fixations and 
then selected option A. This is also defined as Y. Student 2, however, 
looked at option B for 29 s and with two fixations and then selected 
option B. This is defined as an error (E). Student 3 looked at option B but 
selected option A. This is defined as a conflict (C). Finally, student 4 
looked at option A but selected option B. This is both a conflict and an 
error (C&E). 

4. Experimental results 

In the experiment, we collected the data of 24 undergraduate engi
neering students and 1 SME in the United States through a user study. All 
24 students were undergraduate engineering students from a public 
university in the United States. The average age was 18 years. The stu
dents were recruited from several introductory undergraduate engi
neering classes. Participation in the experiment was completely 
voluntary, and students could withdraw from the experiment at any 
time. Participants were provided $50 gift cards for their involvement in 
the study. The study was approved by the Institutional Review Board 
(IRB) of the university. Fig. 5 shows the experimental setup. 

Students and SME completed the VR simulation as described in 
Section 3.1. The average weight of car toys is 29.36 g with a standard 
deviation of 13.37 g. The average time the participants spent on the 
assembly process is 16.08 min with a standard deviation of 4.94 min. 
Students’ eye-tracking and trace data were collected as they went 
through the simulation. In order to measure the performance of as
sembly tasks in virtual manufacturing systems, we design a VR-based 

composite index which involves consideration of cycle time, number 
of station switches, weight, price, and quality of car toys. The following 
sections describe the VR-based composite index in detail. The proposed 
SDT-C&E model is evaluated and validated by comparing correlations 
between VR-based composite index and measures of engineering 
problem-solving skills. 

4.1. Sensitivity index d’ in SDT model 

Eye-tracking data are analyzed with the SDT model to quantify en
gineering problem-solving skills. Fig. 6 shows the sensitivity index d’ of 
engineering students. Sensitivity index d’ increases as HR increases. HR 
of engineering students ranges from 0.5 to 1. Sensitivity index d’ de
creases as FAR increases. FAR of engineering students has a range of 0 to 
0.72. The zoomed-in figure is equally divided into four areas. Note that 
engineering students in Area 1 have the highest d’ values compared with 
Areas 2, 3, and 4, because they have high HR and low FAR. Engineering 
students in Area 4 have the lowest d’ values compared with other 3 
areas, because they have low HR and high FAR. d’ ranges from 0 to 3.83 
where SME has the highest d’ value of 3.83 with HR of 1 and FAR of 0, 
which suggests that SME has better problem-solving skills than engi
neering students. Conflict and error are two important concepts in 
complex problem-solving. SDT model is effective to quantify the 
problem-solving skills in terms of the error of responses. However, it 
fails to account for conflict of response tendencies. 

4.2. Measure of problem-solving skill ρ’ in joint SDT-C&E model 

We use the proposed SDT-C&E model to quantify the problem- 
solving skills of engineering students. Measure ρ’ of engineering stu
dents is shown in Fig. 7. ρ’ increases with the increment of YR. YR ranges 
from 0.18 to 1. ρ’ decreases as CR, ER, or C&ER increases. The sum of 
CR, ER, and C&ER have a range of 0 to 0.82. Notably, Area 1 has higher 
ρ’ values than Area 2 due to high YR and low sum of other rates. On the 
other hand, Area 2 has low ρ’ values due to low YR and high sum of CR, 
ER, and C&ER. SME has the highest ρ’ value of 8.40, suggesting that SME 
has the highest level of problem-solving skills. Compared to SDT model, 
joint SDT-C&E model considers both error of responses and conflict of 
response tendencies. 

4.3. Correlations between VR-based composite index and measures of 
problem-solving skills 

Five performance metrics involving cycle time, number of station 
switches, quality, weight, and price of car toy, are considered in VR- 
based composite index to measure the task performance of each engi
neering student. A score is given to each performance metric. Scores of 
cycle time, number of station switches, and quality of car toy have a 
range of 0 to 10. 

Scores of cycle time and number of station switches are formulated 
based on the reverse scaling, so that students get low scores if they have 
long cycle times or large numbers of station switches. Score of cycle time 
is formulated as: Fig. 4. A simple selection problem.  

Table 4 
Comparing students’ responses to SME’s response.  

Team Member Duration (sec.) No. of Fixations Final Choice C&E 

SME 30 → A 2 A Y 
Student 1 16 → A 

10 → B 
15 → A 

1 
1 
1 

A Y 

Student 2 29 → B 2 B E 
Student 3 20 → B 

10 → B 
1 
1 

A C 

Student 4 30 → A 2 B C&E  
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Time Scorek =
max(CT) − CTk

max(CT) − min(CT)
× 10 (18)  

where k denotes the index of participants, k = 1, 2, ⋯, K. The total 
number of participants K is 25 which involves 24 students and 1 SME. 
TimeScorek denotes kth participant’s score of cycle time. CT is the set of 
cycle times (CT1,CT2,⋯,CTK). Score of number of stations switches is 
formulated as: 

Switch Scorek =
max(nSwitch) − nSwitchk

max(nSwitch) − min(nSwitch)
× 10 (19)  

where Switch Scorek denotes kth participant’s score of number of station 
switches, nSwitch is the set of numbers of station switches (nSwitch1,

nSwitch2,⋯,nSwitchK). 
The total score of car toy quality is 10 points. Each violation of 

customer requirements (e.g., installation of small soft tires, axles, wind 
shield, steering wheel, roof, base with size of 4 × 6, driver) deducts 1 

point from the starting state. Incompleteness of car toy results in 
deduction of 0 to 3 points from the starting state. If a car toy meets 
weight (i.e., between 20 and 30 g) or price (≤ $9) requirements, it ob
tains a score of 2 for weight or price of the car toy. Otherwise, it obtains a 
score of 1. 

Fig. 8 demonstrates spider charts of the five performance metrics. 
Red area in the spider chart represents VR-based composite index of 
each participant. SME has the highest index among all the participants, 
which is 85.5951, because SME has full scores on all performance 
metrics as shown in Fig. 8 (a). Fig. 8 (b) and (c) give examples of high 
and low VR-based composite indices, respectively. 

We further analyze the correlations between the VR-based composite 
index and measures of problem-solving skills according to the Pearson’s 
correlation coefficient, which is formulated as: 

Fig. 5. Experimental setup (left) and a student running the VR simulation (right).  

Fig. 6. Heatmap of sensitivity index d’.  
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rω,τ =

∑K
k=1(ωk − ω)(τk − τ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑K

k=1
(ωk − ω)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑K

k=1
(τk − τ)2

√ (20)  

where ωk is the measure of problem-solving skill d’ or ρ’ of kth partici
pant, ω = 1

K
∑K

k=1ωk is the mean of d’ or ρ’, τk is VR-based composite 
index of kth participant, τ = 1

K
∑K

k=1τk is the mean of VR-based composite 
indices. 

Correlation coefficients are summarized in Table 5. ρ’ shows higher 
correlations with both τ and τ2 than d’, which indicates that ρ’ is 
effective in quantifying the problem-solving skills of engineering stu
dents by taking conflict and error into consideration. Especially, 

Fig. 7. Heatmap of problem-solving skills measure ρ’.  

Fig. 8. The red spider charts of VR-based composite indices computed from 5 scores, including car quality score, station switch score, scores of car weight, price, and 
cycle time: (a) Index of SME is 85.5951; (b) An example of high index which is 59.7093; (c) An example of low index which is 11.9053. 

Table 5 
Correlation coefficients between VR-based composite index and measures of 
problem-solving skills.  

Correlation Coefficient τ τ2 

ρ’  0.6792  0.8219 
d’  0.6238  0.6577  

R. Zhu et al.                                                                                                                                                                                                                                     



Expert Systems With Applications 201 (2022) 117220

9

correlation between τ2 and ρ’ is a lot higher than d’, suggesting potential 
nonlinear correlation between τ and ρ’. 

5. Conclusions 

In this paper, we developed an analytical model that integrates SDT 
with C&E to quantify problem-solving skills of engineering students. 
First, we simulated a manufacturing system in a VR game environment. 
Students were given an assembly problem to produce a car toy that 
satisfied some particular requirements in the VR manufacturing system. 
Eye-tracking and trace data were collected throughout the assembly 
process. Second, eye-tracking data were analyzed with a SDT model to 
quantify problem-solving skills. Third, we developed a joint SDT-C&E 
model to analyze eye-tracking data and benchmark with results gener
ated from the SDT model. 

Experimental results showed that measure of problem-solving skill ρ’ 

generated by the proposed SDT-C&E model had higher correlation with 
VR-based composite index τ (0.6792 vs 0.6238) and τ2 (0.8219 vs 
0.6577) than sensitivity index d’ of SDT model, which suggested that ρ’ 

is effective to quantify engineering problem-solving skills by taking 
conflicts and errors into account. The higher correlation between ρ’ and 
τ2 than τ is worth noting because it implies potential nonlinear corre
lation between measure of problem-solving skills and VR-based com
posite index. However, a limitation of this work is that the number of 
participants is small because setting up the equipment and completing 
the assembly task are time-consuming. In future work, we will recruit 
more participants in the experiment and collect more data to further 
validate the model with the iterative design approach and investigate 
the nonlinear correlation between the measures of problem-solving 
skills and VR-based composite index. 

The VR manufacturing system developed in this paper can serve as a 
training tool for engineering students to reinforce their problem-solving 
skills. Additionally, the proposed SDT-C&E model provides a powerful 
tool to quantify problem-solving skills of engineering students. In this 
paper, we only compared students’ solutions against that of SME. 
However, given that a problem can have more than one valid solution, 
this study can be extended by comparing against multiple correct solu
tions. The SDT-C&E model can be generalized to quantify problem- 
solving skills in many other disciplines such as healthcare, psychology 
and cognitive sciences, by comparing one’s problem-solving actions 
with actions of a SME. For example, cardiac surgery requires multiple 
skills. Novice surgeons can benefit from training on surgical skills uti
lizing simulation models. However, studies on assessments of training 
outcome remain sketchy. Current assessments usually rely on subjective 
observations and logbooks (Lodge and Teodor, 2011). If an expert sur
geon sets a golden standard with their actions in technical procedures, 
the proposed model can generate rates of correct choice, conflict, and 
error for novice surgeons by comparing their actions to the golden 
standard and then provide assessments of the surgical training out
comes. Further, the rates can help novice surgeons gain insights on how 
to improve their skills. 
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