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Abstract. Insider threat detection techniques typically employ super-
vised learning models for detecting malicious insiders by using insider
activity audit data. In many situations, the number of detected malicious
insiders is extremely limited. To address this issue, we present a con-
trastive learning-based insider threat detection framework, CLDet, and
empirically evaluate its efficacy in detecting malicious sessions that con-
tain malicious activities from insiders. We evaluate our framework along
with state-of-the-art baselines on two unbalanced benchmark datasets.
Our framework exhibits relatively superior performance on these unbal-
anced datasets in effectively detecting malicious sessions.

Keywords: Insider threat detection · Contrastive learning ·
Cyber-security

1 Introduction

Insider threat refers to the threat arising form the organizational insiders who
can be employees, contractors or business partners etc. These insiders usually
have an authorization to access organizational resources such as systems, data
and network etc. A popular approach to detect malicious insiders is by analyzing
the insider activities recorded in the audit data [14] and applying supervised
learning models. Usually, the insider audit data is unbalanced because only a
few malicious insiders are detected. Hence, applying supervised learning models
on such unbalanced datasets can result in poor detection accuracy. To address
this limitation, we present a framework, CLDet, to detect malicious sessions
(containing malicious activities from insiders) by using contrastive learning.

Our CLDet framework has two components: self-supervised pre-training and
supervised fine tuning. Specifically, the self-supervised pre-training component
generates encodings for user activity sessions by utilizing contrastive learning
whereas the supervised fine tuning component classifies a session as malicious
or normal by using these encodings. Contrastive learning requires data augmen-
tations for generating augmented versions of an original data point and ensures
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that these augmented versions have close proximity with each other when com-
pared to the augmented versions of the other data points. Since each user activity
session can be modelled as a sentence and each activity as a word of this sentence
[14], we adapt sentence based data augmentations from the Natural Language
Processing (NLP) domain [10] in our framework. We conduct an empirical eval-
uation study of our framework and evaluation results demonstrate noticeable
performance improvement over state-of-the-art baselines.

2 Related Work

Insider Threat Detection. Traditional insider threat detection models employ
handcrafted features extracted from user activity log data to detect insider
threats. Yuan et al. [11] argued that utilizing hand crafted features for detect-
ing insider threats can be tedious and time consuming and hence proposed
to utilize deep learning model to automatically learn the features. Specifically
they employed a LSTM model to extract encoded features from user activities
and then detected malicious insiders through a Convolutional Neural Network
(CNN). Similarly, Lin et al. [5] used unsupervised Deep Belief Network to extract
features from user activity data and applied one-class Support Vector Machine
(SVM) to detect the malicious insiders. Lu et al. [6] modeled the user activ-
ity log information as a sequence and extract user specific features through a
trained LSTM model. Yuan et al. [13] combined a RNN with temporal point pro-
cess to utilize both intra- and inter-session time information. The closely related
work is [14] where the authors proposed a few-shot learning based framework to
specifically addresses the data imbalance issue in insider threat detection. The
developed framework applies the word-to-vector model for generating encoded
features from user activity data and then uses a trained BERT language model
to refine the encoded features. We refer readers to a survey [12] for other related
works.

Contrastive Learning. Contrastive learning has been extensively studied in
the literature for image and NLP domains. Jaiswal et al. [3] presented a com-
prehensive survey on contrastive learning techniques for both image and NLP
domains. Marrakchi et al. [7] effectively utilized contrastive learning on unbal-
anced medical image datasets to detect skin diseases and diabetic retinopathy.
The developed algorithm utilizes a supervised pre-training component, which is
designed by employing a Residual Network, and generates image representations.
These generated image representations are further fed as input to a fine tuning
component which is designed by using a single linear layer. In our framework,
we utilize some of data augmentation concepts presented in [10] and [9]. Wu
et al. [10] presented a contrastive learning based framework for analyzing text
similarity. Their framework employs sentence based augmentation techniques
for self-supervised pre-training. Wang et al. [9] presented a new contrastive loss
function for the image domain.
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3 Framework

User activities are modeled through activity sessions. Specifically, each session
consists of multiple user activities. Let Sk denote the kth activity session of a
user. Here, Sk = {ek1 , ek2 ,. . . , ekT

}, where eki
(1 ≤ i ≤ T ) is the ith user activity.

Let D = {Si, yi}m
i=1 denote the insider threat dataset where m denotes the

number of sessions, yi is the label of Si. Here, yi = 1 and yi = 0 denote that Si

is malicious and normal session respectively. The two main components of our
CLDet framework are self-supervised pre-training and supervised fine tuning.
The pre-training component is responsible for generating session encodings and
the fine tuning component, using these session encodings as input classifies a
given input session as a malicious or normal session.

3.1 Self-supervised Pre-training Component

3.1.1 Encoder and Projection Head
Each activity in the session is represented through trained word-to-vector model.
Let xki

∈ R
d denote the word-to-vector model representation of activity eki

,
where d denotes the number of representation dimensions. Each activity of an
input session is converted to its corresponding word-to-vector representation and
it is fed as an input to a specially designed Encoder. We choose Recurrent Neural
Network (RNN) to design our encoder. The encoder is responsible for generating
the session encoding xk ∈ R

d of session Sk. Finally, a projection head will project
xk to a new space representation zk ∈ R

d. The projection head is only used in
the training of the self-supervised component. After this training, the projection
head will be discarded and only the encoded session representation will be used
as an input to the supervised fine tuning component.

The encoder consists of a RNN and a linear layer. The RNN consists of two
hidden layers denoted as H(1) and H(2) respectively. The first hidden layer H(1)

is represented as h(1)
kt

= tanh(W 1
1 xkt

+b1
1 +W 1

2 h(1)
kt−1

+b1
2) where 1 ≤ t ≤ T , W 1

1

and W 1
2 are (d × d) weight matrices, b1

1 ∈ R
d and b1

2 ∈ R
d are the bias vectors,

and h(1)
kt

denotes the encoded output of H(1) for the input xkt
. The second hidden

layer H(2) is similarly represented as h(2)
kt

= tanh(W 2
1 h(1)

kt
+b2

1 +W 2
2 h(2)

kt−1
+b2

2)
where W 2

1 and W 2
2 are (d × d) weight matrices, b2

1 ∈ R
d and b2

2 ∈ R
d are the

bias vectors, and h(2)
kt

denotes the encoded output of H(2) for the input h(1)
kt

.

Finally {h(2)
ki

}T
i=1 is flattened to denote the output of RNN as vk ∈ R

Td, which
is then fed to the linear layer L(1) to obtain the session encoding xk. This linear
layer is represented as xk = A1vk + b1 where A1 is a (d × Td) weight matrix
and b1 ∈ R

d is a bias vector. The projection head is denoted as L(2) and is
represented as zk = A2xk +b2 where A2 is a (d× d) weight matrix and b2 ∈ R

d

is a bias vector.



398 M. S. Vinay et al.

3.1.2 Contrastive Loss
A contrastive learning loss function is used for a contrastive prediction task,
i.e., predicting positive augmentation pairs. We adapt the SimCLR contrastive
loss function [10] in our framework and augment each batch of sessions. Let
Bs = {S1, S2, ..., SN} denote a batch of sessions. Each Sk ∈ Bs is subjected
to data augmentation and two augmented sessions denoted as S1

k and S2
k are

generated. Let Ba
s = {S1

1 , S2
1 , S1

2 , S2
2 , ..., S1

N , S2
N} denote a batch of augmented

sessions. The augmented sessions (S1
k, S2

k) form a positive sample pair and all
the remaining sessions in Ba

s are considered as the negative samples. Let z1
k and

z2
k denote the projection head representations of the augmented sessions S1

k and
S2

k respectively. The loss function for the positive pair (z1
k, z2

k) is represented as

l(z1
k, z2

k) = −log
exp(cos(z1

k, z2
k)/α)

exp(cos(z1
k, z2

k)/α) +
∑N

i=1 1[i�=k]

∑2
j=1 exp(cos(z1

k, zj
i )/α)

(1)

Here, cos() denotes the cosine similarity function, 1[i�=k] denotes an indicator
variable, and α denotes the tunable temperature parameter. This pair loss func-
tion is not symmetric, because l(z1

k, z2
k) �= l(z2

k, z1
k). For the batch of augmented

sessions Ba
s , we can easily see there are N positive pairs. The contrastive loss

function for Ba
s , which is defined as the sum of all positive pairs’ loss in the

batch, is represented as CL(Ba
s ) =

∑N
i=1 l(z1

i , z
2
i ) + l(z2

i , z
1
i ).

For session Sk, we adapt three basic NLP based sentence augmentation tech-
niques [10]: 1) Activity Replacement (Rpl), we generate the augmented session
S1

k (S2
k) by randomly replacing g1 (g2) number of activities with a set of token

activities; 2) Activity Reordering (Rod), we generate the augmented session S1
k

(S2
k) by randomly selecting a sub-sequence with length g1 (g2) and shuffling all

activities in the chosen sub-sequence while keeping all other activities unchanged;
3) Activity Deletion (Del), g1 and g2 number of activities in Sk are deleted to
generate the augmented sessions S1

k and S2
k respectively. We will investigate the

effectiveness of other complex data augmentation techniques in our future work.

3.2 Supervised Fine Tuning Component

The supervised fine tuning component has two layers denoted as L(3) and L(4).
The first layer L(3) is represented as mk = A3xk+b3. Here, A3 is a (d×d) weight
matrix, b3 ∈ R

d is a bias vector, and mk ∈ R
d denotes the output encoding of

L(3). The output layer L(4) is represented as ok = Softmax(A4mk + b4). Here,
A4 is (2 × d) weight matrix, b4 ∈ R

2 is a bias vector, and ok denotes the output
of the supervised fine-tuning component. We use the Softmax activation function
in the output layer. The supervised fine tuning component is trained by using
the cross entropy loss function.
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4 Experiments

4.1 Experimental Setup

4.1.1 Datasets
The empirical evaluation study of our proposed framework is conducted on two
datasets: CERT Insider Threat [2] and UMD-Wikipedia [4]. In CERT, each user
activities are chronologically recorded over 516 days. To perform our empiri-
cal analysis, we split the dataset into training and test sets using chronological
ordering. Specifically, the user activities recorded until the first 460 days and
between 461 to 516 days are used in the training and test sets respectively.
Additionally, we further split the training set for training the pre-training and
fine tuning components, wherein, the user activities recorded until the first 400
days and between 401 to 460 days are used for training the pre-training and
fine tuning components respectively. For the supervised fine-tuning component,
four scenarios are utilized in the training phase. Each scenario involves different
number of malicious sessions. Specifically, 5, 8, 10 and 15 malicious sessions are
utilized in the training phase. The UMD-Wikipedia dataset is relatively more
balanced than CERT dataset. Since our framework is specifically designed to
effectively operate on unbalanced datasets, we only use a limited number of
malicious sessions for training the supervised fine tuning component. The train-
ing set is split between pre-training and fine tuning components, wherein, 4436
and 50 normal sessions are used for training the pre-training and fine tuning
components respectively and similarly, 3577 and 50 malicious sessions are used
for training the pre-training and fine tuning components respectively. Again, we
use four scenarios in the training phase of the supervised fine-tuning component.
Specifically, 5, 15, 30 and 50 malicious sessions are utilized in the training phase.
We show the detailed settings in Table 1.

Table 1. Training and test sets

Dataset Partition # of Malicious Sessions # of Normal Sessions

CERT Training set Pre-Train 23 1,217,608

Fine Tune 15 50

Test set 10 1000

UMD-Wikipedia Training set Pre-Train 3577 4436

Fine Tune 50 50

Test set 1000 1000
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4.1.2 Training Details
The activity features are extracted through a trained word-to-vector model.
Specifically, the word-to-vector model is trained through the skip-gram approach
with the minimum word frequency parameter as 1. The hyper-parameters g1

and g2 employed in our data augmentation techniques control the amount of
distortion caused by augmenting the original session. For activity replacement
and deletion-based data augmentation techniques we set g1 = 1 and g2 = 1, and
for activity reordering based data augmentation technique we set g1 = 3 and
g2 = 3. We set the number of dimensions of activity and session encodings d as
5 and the temperature parameter α in the contrastive loss function as 1. Four
metrics are utilized to quantify the performance of our framework: Precision,
Recall, F1 and FPR.

4.1.3 Baselines
We compare our CLDet framework with three baselines: Few-Shot [14], Deep-
Log [1] and BEM [8]. Few-Shot has a similar design as our framework, wherein,
it has both self-supervised pre-training and supervised fine tuning components.
Specifically, the self-supervised pre-training component is used for generating
session encodings and these encodings are utilized to detect malicious sessions
through the supervised fine tuning component. The session encodings are gener-
ated through the BERT language model. The self-supervised pre-training com-
ponent is trained by using the Mask Language Modeling (MLM) loss function.
We train both self-supervised pre-training and supervised fine tuning compo-
nents by using the same settings shown in Table 1. BEM employs LSTM to
model user activity sessions. Specifically, it considers the past user activities and
predicts the probabilities of future activities through LSTM. If the predicted
probability of an activity in the session is low, then that session is flagged as
a malicious session. The LSTM model employs a single hidden layer and the
model training is performed by using cross entropy loss. We train this baseline
by using the same training set which we have used for training the fine-tuning
component of our framework. Deep-Log differs from BEM in two ways: (1) It
employs two hidden layers in its LSTM model. (2) It predicts the probabilities
of the top-K future activities, if some activity in the session is not in the list
of predicted top-K activities, then that session is flagged as a malicious session.
Deep-Log training is performed by using cross entropy loss. We use the same
training settings which was used for BEM to train this baseline.
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Table 2. Performance of our framework and baselines under different scenarios. The
higher the better for Precision, Recall, and F1. The lower the better for FPR. The cells
with—indicate the extreme scenario where all sessions are predicted as normal. Best
values are bold highlighted. M denotes the number of malicious sessions.

Models Scenario CERT UMD-Wikipedia

M Precision Recall F1 FPR M Precision Recall F1 FPR

Deep-Log 1 5 — — — — 5 — — — —

2 8 — — — — 15 — — — —

3 10 0.7600 0.8125 0.7294 0.4500 30 — — — —

4 15 1.0000 0.5875 0.7394 0.0000 50 0.6765 0.9200 0.7797 0.4400

BEM 1 5 — — — — 5 — — — —

2 8 0.5000 0.3125 0.3846 0.0000 15 — — — —

3 10 0.6724 0.5165 0.4971 0.4500 30 0.5000 0.1500 0.2307 0.0000

4 15 0.7500 0.8100 0.7179 0.5000 50 0.6282 0.9800 0.7656 0.5800

Few-Shot 1 5 — — — — 5 — — — —

2 8 0.3666 0.1125 0.1709 0.1861 15 — — — —

3 10 0.5833 0.1875 0.2832 0.1361 30 0.4286 0.1200 0.1875 0.1600

4 15 0.4000 0.4125 0.3709 0.5111 50 0.4894 0.9200 0.6389 0.9600

CLDet(Rpl) 1 5 0.9444 0.5875 0.6195 0.0000 5 0.6234 0.9600 0.7559 0.5800

2 8 0.9158 0.9026 0.9070 0.0812 15 0.8718 0.6800 0.7640 0.1000

3 10 0.9111 0.9210 0.9117 0.0812 30 0.8750 0.7000 0.7778 0.1000

4 15 0.9236 0.9333 0.9243 0.0715 50 0.8039 0.8200 0.8119 0.2000

CLDet(Del) 1 5 — — — — 5 0.6935 0.8600 0.7679 0.3800

2 8 0.9444 0.6500 0.7013 0.0000 15 0.7551 0.7400 0.7475 0.2400

3 10 1.0000 0.7250 0.7806 0.0000 30 0.7636 0.8400 0.8000 0.2600

4 15 1.0000 0.9000 0.9150 0.0000 50 0.8222 0.7400 0.7789 0.1600

CLDet(Rod) 1 5 0.9206 1.0000 0.9584 0.0800 5 0.6667 0.9600 0.7860 0.4800

2 8 0.9444 1.0000 0.9706 0.0000 15 0.7826 0.7200 0.7500 0.2000

3 10 1.0000 1.0000 1.0000 0.0000 30 0.7778 0.8400 0.8077 0.2400

4 15 1.0000 1.0000 1.0000 0.0000 50 0.8039 0.8200 0.8119 0.2000

4.2 Experimental Results

We consider the three versions of our CLDet framework based on the specific
data augmentation technique employed for pre-training. The performance of the
three versions of our framework and the baselines w.r.t four different scenarios
is shown in Table 2. Our CLDet framework consistently shows better overall
performance than the baselines in all the considered scenarios and datasets.
The main reason for this performance is that the self-supervised pre-training
component by utilizing contrastive learning generates favorable encoding for each
session and by using these favorable encodings as inputs, the supervised fine-
tuning component can effectively separate the malicious and normal sessions.
We would point out that we purposely introduce the first scenario where the
number of malicious sessions used in the training is only 5 for both CERT and
UMD-Wikipedia datasets. Under this extreme setting, all baselines completely
fail (all sessions in the test data are predicted as normal). On the contrary, our
framework can still achieve reasonable performance except the version of using
the activity deletion on CERT. There is a no clear winner among the three
data augmentation techniques used in our framework when all the scenarios and
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datasets are considered. However, all the three data augmentation techniques
can be considered as quite effective in achieving the main goal of our framework.

Table 3. Ablation analysis results. M denotes the number of malicious sessions.

Dataset Scenario M Precision Recall F1 FPR

CERT 1 5 — — — —

2 8 0.2531 0.5000 0.3361 0.5000

3 10 0.4423 0.3026 0.3594 0.0384

4 15 0.4706 1.0000 0.6400 1.0000

UMD-Wikipedia 1 5 — — — —

2 15 — — — —

3 30 0.9294 0.4210 0.5795 0.0320

4 50 0.6487 0.9750 0.7791 0.5280

Ablation Analysis. We conduct one ablation study by removing the self super-
vised pre-training component from our framework and only utilizing the super-
vised fine-tuning component. The supervised fine-tuning component consists of
only linear layers and cannot model sequence data. To resolve this limitation
for our ablation study, we suitably format the input data and layer L(3) of
the fine tuning component. Consider the word-to-vector representations of the
activities belonging to the session Sk = {ek1 , ek2 , ..., ekT

} which are denoted as
{xk1 ,xk2 , ...,xkT

}. We flatten this sequence {xkt
}T

t=1 into a vector and feed this
flattened vector as an input to layer L(3) of the fine-tuning component. Table 3
shows the results of this ablation study. For both datasets, the supervised fine
tuning component when used in isolation for detecting malicious sessions, under-
performs against our framework in all the four scenarios. Clearly, this ablation
study demonstrates that self-supervised pre-training component is crucial for
our framework to achieve good performance.

5 Conclusion

We presented a contrastive learning-based framework to detect malicious insid-
ers. Our framework is specifically designed to operate on unbalanced datasets.
Our framework has self-supervised pre-training and supervised fine tuning com-
ponents. The former is responsible for generating user session encodings. These
session encodings are generated through the aid of contrastive learning and are
then used by the supervised fine tuning component to detect malicious sessions.
We presented an empirical study and results demonstrated our framework’s bet-
ter effectiveness than the baselines.
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