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Abstract. Insider threat detection techniques typically employ super-
vised learning models for detecting malicious insiders by using insider
activity audit data. In many situations, the number of detected malicious
insiders is extremely limited. To address this issue, we present a con-
trastive learning-based insider threat detection framework, CLDet, and
empirically evaluate its efficacy in detecting malicious sessions that con-
tain malicious activities from insiders. We evaluate our framework along
with state-of-the-art baselines on two unbalanced benchmark datasets.
Our framework exhibits relatively superior performance on these unbal-
anced datasets in effectively detecting malicious sessions.
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1 Introduction

Insider threat refers to the threat arising form the organizational insiders who
can be employees, contractors or business partners etc. These insiders usually
have an authorization to access organizational resources such as systems, data
and network etc. A popular approach to detect malicious insiders is by analyzing
the insider activities recorded in the audit data [14] and applying supervised
learning models. Usually, the insider audit data is unbalanced because only a
few malicious insiders are detected. Hence, applying supervised learning models
on such unbalanced datasets can result in poor detection accuracy. To address
this limitation, we present a framework, CLDet, to detect malicious sessions
(containing malicious activities from insiders) by using contrastive learning.
Our CLDet framework has two components: self-supervised pre-training and
supervised fine tuning. Specifically, the self-supervised pre-training component
generates encodings for user activity sessions by utilizing contrastive learning
whereas the supervised fine tuning component classifies a session as malicious
or normal by using these encodings. Contrastive learning requires data augmen-
tations for generating augmented versions of an original data point and ensures
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that these augmented versions have close proximity with each other when com-
pared to the augmented versions of the other data points. Since each user activity
session can be modelled as a sentence and each activity as a word of this sentence
[14], we adapt sentence based data augmentations from the Natural Language
Processing (NLP) domain [10] in our framework. We conduct an empirical eval-
uation study of our framework and evaluation results demonstrate noticeable
performance improvement over state-of-the-art baselines.

2 Related Work

Insider Threat Detection. Traditional insider threat detection models employ
handcrafted features extracted from user activity log data to detect insider
threats. Yuan et al. [11] argued that utilizing hand crafted features for detect-
ing insider threats can be tedious and time consuming and hence proposed
to utilize deep learning model to automatically learn the features. Specifically
they employed a LSTM model to extract encoded features from user activities
and then detected malicious insiders through a Convolutional Neural Network
(CNN). Similarly, Lin et al. [5] used unsupervised Deep Belief Network to extract
features from user activity data and applied one-class Support Vector Machine
(SVM) to detect the malicious insiders. Lu et al. [6] modeled the user activ-
ity log information as a sequence and extract user specific features through a
trained LSTM model. Yuan et al. [13] combined a RNN with temporal point pro-
cess to utilize both intra- and inter-session time information. The closely related
work is [14] where the authors proposed a few-shot learning based framework to
specifically addresses the data imbalance issue in insider threat detection. The
developed framework applies the word-to-vector model for generating encoded
features from user activity data and then uses a trained BERT language model
to refine the encoded features. We refer readers to a survey [12] for other related
works.

Contrastive Learning. Contrastive learning has been extensively studied in
the literature for image and NLP domains. Jaiswal et al. [3] presented a com-
prehensive survey on contrastive learning techniques for both image and NLP
domains. Marrakchi et al. [7] effectively utilized contrastive learning on unbal-
anced medical image datasets to detect skin diseases and diabetic retinopathy.
The developed algorithm utilizes a supervised pre-training component, which is
designed by employing a Residual Network, and generates image representations.
These generated image representations are further fed as input to a fine tuning
component which is designed by using a single linear layer. In our framework,
we utilize some of data augmentation concepts presented in [10] and [9]. Wu
et al. [10] presented a contrastive learning based framework for analyzing text
similarity. Their framework employs sentence based augmentation techniques
for self-supervised pre-training. Wang et al. [9] presented a new contrastive loss
function for the image domain.
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3 Framework

User activities are modeled through activity sessions. Specifically, each session
consists of multiple user activities. Let Sj, denote the k' activity session of a
user. Here, Sk = {€k,, €ky,- - - » €hy b, Where e, (1 < i < T is the i'" user activity.
Let D = {S;,y;}/", denote the insider threat dataset where m denotes the
number of sessions, y; is the label of S;. Here, y; = 1 and y; = 0 denote that S;
is malicious and normal session respectively. The two main components of our
CLDet framework are self-supervised pre-training and supervised fine tuning.
The pre-training component is responsible for generating session encodings and
the fine tuning component, using these session encodings as input classifies a
given input session as a malicious or normal session.

3.1 Self-supervised Pre-training Component

3.1.1 Encoder and Projection Head

Each activity in the session is represented through trained word-to-vector model.
Let x5, € RY denote the word-to-vector model representation of activity ey,
where d denotes the number of representation dimensions. Each activity of an
input session is converted to its corresponding word-to-vector representation and
it is fed as an input to a specially designed Encoder. We choose Recurrent Neural
Network (RNN) to design our encoder. The encoder is responsible for generating
the session encoding x;, € R¢ of session Sj,. Finally, a projection head will project
X, t0 a new space representation z; € R%. The projection head is only used in
the training of the self-supervised component. After this training, the projection
head will be discarded and only the encoded session representation will be used
as an input to the supervised fine tuning component.

The encoder consists of a RNN and a linear layer. The RNN consists of two
hidden layers denoted as H") and H® respectively. The first hidden layer H)
is represented as h]glt) = tanh(Wixy, +b} —H/V21h,(€1)_1 +bd) where 1 <t < T, W}
and W3 are (d x d) weight matrices, bi € R? and b € R? are the bias vectors,
and h,(clt) denotes the encoded output of H®) for the input X, . The second hidden
layer H?) is similarly represented as h,(ft) = tanh(th,(é) +b? + W22h§j)_1 +b3)
where W2 and W2 are (d x d) weight matrices, b? € R? and b3 € R? are the

bias vectors, and h,(ft) denotes the encoded output of H®? for the input h,(:t).

Finally {hgj)}f:l is flattened to denote the output of RNN as v;, € RT? which

is then fed to the linear layer L(1) to obtain the session encoding xj. This linear
layer is represented as x; = A;vi + by where A; is a (d x T'd) weight matrix
and b; € R? is a bias vector. The projection head is denoted as L(?) and is
represented as z, = Asx}, + bo where As is a (d x d) weight matrix and by € R?
is a bias vector.
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3.1.2 Contrastive Loss

A contrastive learning loss function is used for a contrastive prediction task,
i.e., predicting positive augmentation pairs. We adapt the StimCLR contrastive
loss function [10] in our framework and augment each batch of sessions. Let
Bs = {51,953,...,Sn} denote a batch of sessions. Each S; € B; is subjected
to data augmentation and two augmented sessions denoted as S} and S7 are
generated. Let B = {S,5%,53,53,...,5%,5%} denote a batch of augmented
sessions. The augmented sessions (.S ,1, Si) form a positive sample pair and all
the remaining sessions in B are considered as the negative samples. Let z). and
z; denote the projection head representations of the augmented sessions S} and
S% respectively. The loss function for the positive pair (zj,,z}) is represented as

exp(cos(zi., z3) /) | (1)
exp(cos(z},72) /@) + S0ty Ljivk) 35—y cxp(cos(z}, =) /a)

l<zllc7 Zi) = —ZOg

Here, cos() denotes the cosine similarity function, 1j; denotes an indicator
variable, and a denotes the tunable temperature parameter. This pair loss func-
tion is not symmetric, because [(z},,z;) # l(z3,z;,). For the batch of augmented
sessions BY, we can easily see there are N positive pairs. The contrastive loss

S
function for B¢, which is defined as the sum of all positive pairs’ loss in the
N

S
batch, is represented as CL(B%) = Y_._, l(z},27) + (23, z;).

For session Sy, we adapt three basic NLP based sentence augmentation tech-
niques [10]: 1) Activity Replacement (Rpl), we generate the augmented session
S} (S2) by randomly replacing g; (g2) number of activities with a set of token
activities; 2) Activity Reordering (Rod), we generate the augmented session S}
(S2) by randomly selecting a sub-sequence with length g1 (g2) and shuffling all
activities in the chosen sub-sequence while keeping all other activities unchanged;
3) Activity Deletion (Del), g; and go number of activities in Sy are deleted to
generate the augmented sessions S} and S7 respectively. We will investigate the
effectiveness of other complex data augmentation techniques in our future work.

3.2 Supervised Fine Tuning Component

The supervised fine tuning component has two layers denoted as L(®) and L.
The first layer L(3) is represented as my = Azxy +bs. Here, A3 is a (d x d) weight
matrix, bs € R? is a bias vector, and m;, € R? denotes the output encoding of
L®). The output layer LW ig represented as o = Softmax(Asmy + by). Here,
Ay is (2 x d) weight matrix, by € R? is a bias vector, and o denotes the output
of the supervised fine-tuning component. We use the Softmax activation function
in the output layer. The supervised fine tuning component is trained by using
the cross entropy loss function.
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4 Experiments

4.1 Experimental Setup

4.1.1 Datasets

The empirical evaluation study of our proposed framework is conducted on two
datasets: CERT Insider Threat [2] and UMD-Wikipedia [4]. In CERT, each user
activities are chronologically recorded over 516 days. To perform our empiri-
cal analysis, we split the dataset into training and test sets using chronological
ordering. Specifically, the user activities recorded until the first 460 days and
between 461 to 516 days are used in the training and test sets respectively.
Additionally, we further split the training set for training the pre-training and
fine tuning components, wherein, the user activities recorded until the first 400
days and between 401 to 460 days are used for training the pre-training and
fine tuning components respectively. For the supervised fine-tuning component,
four scenarios are utilized in the training phase. Each scenario involves different
number of malicious sessions. Specifically, 5,8, 10 and 15 malicious sessions are
utilized in the training phase. The UMD-Wikipedia dataset is relatively more
balanced than CERT dataset. Since our framework is specifically designed to
effectively operate on unbalanced datasets, we only use a limited number of
malicious sessions for training the supervised fine tuning component. The train-
ing set is split between pre-training and fine tuning components, wherein, 4436
and 50 normal sessions are used for training the pre-training and fine tuning
components respectively and similarly, 3577 and 50 malicious sessions are used
for training the pre-training and fine tuning components respectively. Again, we
use four scenarios in the training phase of the supervised fine-tuning component.
Specifically, 5,15, 30 and 50 malicious sessions are utilized in the training phase.
We show the detailed settings in Table 1.

Table 1. Training and test sets

Dataset Partition # of Malicious Sessions | # of Normal Sessions
CERT Training set | Pre-Train | 23 1,217,608
Fine Tune | 15 50
Test set 10 1000
UMD-Wikipedia | Training set | Pre-Train | 3577 4436
Fine Tune | 50 50
Test set 1000 1000
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4.1.2 Training Details

The activity features are extracted through a trained word-to-vector model.
Specifically, the word-to-vector model is trained through the skip-gram approach
with the minimum word frequency parameter as 1. The hyper-parameters ¢,
and go employed in our data augmentation techniques control the amount of
distortion caused by augmenting the original session. For activity replacement
and deletion-based data augmentation techniques we set g3 = 1 and g5 = 1, and
for activity reordering based data augmentation technique we set g3 = 3 and
g2 = 3. We set the number of dimensions of activity and session encodings d as
5 and the temperature parameter « in the contrastive loss function as 1. Four
metrics are utilized to quantify the performance of our framework: Precision,

Recall, F} and FPR.

4.1.3 Baselines

We compare our CLDet framework with three baselines: Few-Shot [14], Deep-
Log [1] and BEM [8]. Few-Shot has a similar design as our framework, wherein,
it has both self-supervised pre-training and supervised fine tuning components.
Specifically, the self-supervised pre-training component is used for generating
session encodings and these encodings are utilized to detect malicious sessions
through the supervised fine tuning component. The session encodings are gener-
ated through the BERT language model. The self-supervised pre-training com-
ponent is trained by using the Mask Language Modeling (MLM) loss function.
We train both self-supervised pre-training and supervised fine tuning compo-
nents by using the same settings shown in Table 1. BEM employs LSTM to
model user activity sessions. Specifically, it considers the past user activities and
predicts the probabilities of future activities through LSTM. If the predicted
probability of an activity in the session is low, then that session is flagged as
a malicious session. The LSTM model employs a single hidden layer and the
model training is performed by using cross entropy loss. We train this baseline
by using the same training set which we have used for training the fine-tuning
component of our framework. Deep-Log differs from BEM in two ways: (1) It
employs two hidden layers in its LSTM model. (2) It predicts the probabilities
of the top-K future activities, if some activity in the session is not in the list
of predicted top-K activities, then that session is flagged as a malicious session.
Deep-Log training is performed by using cross entropy loss. We use the same
training settings which was used for BEM to train this baseline.
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Table 2. Performance of our framework and baselines under different scenarios. The
higher the better for Precision, Recall, and F1. The lower the better for FPR. The cells
with—indicate the extreme scenario where all sessions are predicted as normal. Best
values are bold highlighted. M denotes the number of malicious sessions.

Models Scenario | CERT UMD-Wikipedia
M | Precision |Recall |F1 FPR M | Precision | Recall |F1 FPR

Deep-Log 1 5 | — — — — 5 | — — — —

2 8 | — — — — 15| — — — —

3 10/ 0.7600 0.8125 |0.7294 |0.4500 |30 | — — — —

4 15/1.0000 0.5875 |0.7394 |0.0000 | 50|0.6765 0.9200 |0.7797 |0.4400
BEM 1 — — — — 5 |— — — —

2 0.5000 0.3125 |0.3846 |0.0000 15 |— — — —

3 10 0.6724 0.5165 |0.4971 |0.4500 |30 |0.5000 0.1500 |0.2307 |0.0000

4 150.7500 0.8100 |0.7179 |0.5000 |50/|0.6282 0.9800 | 0.7656 |0.5800
Few-Shot 1 — — — — 5 | — — — —

2 0.3666 0.1125 |0.1709 |0.1861 |15 | — — — —

3 10/ 0.5833 0.1875 |0.2832 |0.1361 |30|0.4286 0.1200 |0.1875 |0.1600

4 150.4000 0.4125 |0.3709 |0.5111 |50|0.4894 0.9200 |0.6389 |0.9600
CLDet(Rpl) |1 5 /0.9444 0.5875 |0.6195 |0.0000 |5 |0.6234 0.9600 | 0.7559 |0.5800

2 0.9158 0.9026 |0.9070 |0.0812 |15 0.8718 0.6800 |0.7640|0.1000

3 10/0.9111 0.9210 |0.9117 |0.0812 |30 0.8750 0.7000 |0.7778 |0.1000

4 15/0.9236 0.9333 |0.9243 |0.0715 |50|0.8039 0.8200 |0.8119|0.2000
CLDet(Del) |1 — — — — 5 /0.6935 0.8600 |0.7679 |0.3800

2 0.9444 0.6500 |0.7013 |0.0000 15|0.7551 0.7400|0.7475 |0.2400

3 10 | 1.0000 0.7250 |0.7806 |0.0000 30 |0.7636 0.8400 | 0.8000 |0.2600

4 15/1.0000 0.9000 |0.9150 |0.0000 |50 0.8222 0.7400 |0.7789 |0.1600
CLDet(Rod) |1 0.9206 1.0000  0.9584 | 0.0800 |5 |0.6667 0.9600 | 0.7860 | 0.4800

2 0.9444 1.0000  0.9706 | 0.0000 |15 | 0.7826 0.7200 |0.7500 |0.2000

3 10/ 1.0000 1.0000  1.0000 | 0.0000 |30 |0.7778 0.8400 | 0.8077 |0.2400

4 15/1.0000 1.0000 1.0000 | 0.0000 |50 | 0.8039 0.8200 |0.8119|0.2000

4.2 Experimental Results

We consider the three versions of our CLDet framework based on the specific
data augmentation technique employed for pre-training. The performance of the
three versions of our framework and the baselines w.r.t four different scenarios
is shown in Table 2. Our CLDet framework consistently shows better overall
performance than the baselines in all the considered scenarios and datasets.
The main reason for this performance is that the self-supervised pre-training
component by utilizing contrastive learning generates favorable encoding for each
session and by using these favorable encodings as inputs, the supervised fine-
tuning component can effectively separate the malicious and normal sessions.
We would point out that we purposely introduce the first scenario where the
number of malicious sessions used in the training is only 5 for both CERT and
UMD-Wikipedia datasets. Under this extreme setting, all baselines completely
fail (all sessions in the test data are predicted as normal). On the contrary, our
framework can still achieve reasonable performance except the version of using
the activity deletion on CERT. There is a no clear winner among the three
data augmentation techniques used in our framework when all the scenarios and
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datasets are considered. However, all the three data augmentation techniques
can be considered as quite effective in achieving the main goal of our framework.

Table 3. Ablation analysis results. M denotes the number of malicious sessions.

Dataset Scenario | M | Precision | Recall | F1 FPR
CERT 1 5 | — — — —
2 8 10.2531 0.5000 | 0.3361 | 0.5000
3 10 | 0.4423 0.3026 | 0.3594 | 0.0384
4 1510.4706 1.0000 | 0.6400 | 1.0000
UMD-Wikipedia | 1 5 | — — — —
2 15 | — — — —
3 30 10.9294 0.4210 | 0.5795 | 0.0320
4 50 | 0.6487 0.9750 | 0.7791 | 0.5280

Ablation Analysis. We conduct one ablation study by removing the self super-
vised pre-training component from our framework and only utilizing the super-
vised fine-tuning component. The supervised fine-tuning component consists of
only linear layers and cannot model sequence data. To resolve this limitation
for our ablation study, we suitably format the input data and layer L) of
the fine tuning component. Consider the word-to-vector representations of the
activities belonging to the session Sy = {ex,, €k,, ..., €k, } Which are denoted as
{Xk, s Xkys -y Xy }- We flatten this sequence {xy, }Z_; into a vector and feed this
flattened vector as an input to layer L(3) of the fine-tuning component. Table 3
shows the results of this ablation study. For both datasets, the supervised fine
tuning component when used in isolation for detecting malicious sessions, under-
performs against our framework in all the four scenarios. Clearly, this ablation
study demonstrates that self-supervised pre-training component is crucial for
our framework to achieve good performance.

5 Conclusion

We presented a contrastive learning-based framework to detect malicious insid-
ers. Our framework is specifically designed to operate on unbalanced datasets.
Our framework has self-supervised pre-training and supervised fine tuning com-
ponents. The former is responsible for generating user session encodings. These
session encodings are generated through the aid of contrastive learning and are
then used by the supervised fine tuning component to detect malicious sessions.
We presented an empirical study and results demonstrated our framework’s bet-
ter effectiveness than the baselines.
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