Hydrol. Earth Syst. Sci., 26, 1145-1164, 2022
https://doi.org/10.5194/hess-26-1145-2022

© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Hydrology and
Earth System
Sciences

Combined impacts of uncertainty in precipitation and air
temperature on simulated mountain system recharge
from an integrated hydrologic model

Adam P. Schreiner-McGraw and Hoori Ajami

Department of Environmental Sciences, University of California, Riverside, 92521, USA

Correspondence: Adam P. Schreiner-McGraw (adampschreiner @ gmail.com)

Received: 27 October 2020 — Discussion started: 21 January 2021
Revised: 3 January 2022 — Accepted: 14 January 2022 — Published: 28 February 2022

Abstract. Mountainous regions act as the water towers of the
world by producing streamflow and groundwater recharge, a
function that is particularly important in semiarid regions.
Quantifying rates of mountain system recharge is difficult,
and hydrologic models offer a method to estimate recharge
over large scales. These recharge estimates are prone to un-
certainty from various sources including model structure and
parameters. The quality of meteorological forcing datasets,
particularly in mountainous regions, is a large source of un-
certainty that is often neglected in groundwater investiga-
tions. In this contribution, we quantify the impact of un-
certainty in both precipitation and air temperature forcing
datasets on the simulated groundwater recharge in the moun-
tainous watershed of the Kaweah River in California, USA.
We make use of the integrated surface water—groundwater
model, ParFlow.CLM, and several gridded datasets com-
monly used in hydrologic studies, downscaled NLDAS-2,
PRISM, Daymet, Gridmet, and TopoWx. Simulations indi-
cate that, across all forcing datasets, mountain front recharge
is an important component of the water budget in the
mountainous watershed, accounting for 9 %—72 % of the an-
nual precipitation and ~ 90 % of the total mountain system
recharge to the adjacent Central Valley aquifer. The uncer-
tainty in gridded air temperature or precipitation datasets,
when assessed individually, results in similar ranges of un-
certainty in the simulated water budget. Variations in sim-
ulated recharge to changes in precipitation (elasticities) and
air temperature (sensitivities) are larger than 1 % change in
recharge per 1% change in precipitation or 1°C change
in temperature. The total volume of snowmelt is the pri-
mary factor creating the high water budget sensitivity, and
snowmelt volume is influenced by both precipitation and

air temperature forcings. The combined effect of uncertainty
in air temperature and precipitation on recharge is additive
and results in uncertainty levels roughly equal to the sum of
the individual uncertainties depending on the hydroclimatic
condition of the watershed. Mountain system recharge path-
ways including mountain block recharge, mountain aquifer
recharge, and mountain front recharge are less sensitive to
changes in air temperature than changes in precipitation.
Mountain front and mountain block recharge are more sensi-
tive to changes in precipitation than other recharge pathways.
The magnitude of uncertainty in the simulated water budget
reflects the importance of developing high-quality meteoro-
logical forcing datasets in mountainous regions.

1 Introduction

Mountainous catchments are known to be important sources
of water in semiarid and seasonally dry ecosystems (Vivi-
roli et al., 2007). While it is well understood that moun-
tain systems provide the majority of freshwater resources
via streamflow (Viviroli and Weingartner, 2004), the con-
tribution of mountain systems to groundwater resources re-
mains highly uncertain (Ajami et al., 2011). As meteorolog-
ical conditions are the primary drivers of the hydrologic cy-
cle, understanding how groundwater recharge in mountain
systems reacts to different meteorological forcings is impor-
tant. Since mountain recharge processes have been defined
in various ways, we define three distinct recharge pathways
in mountain catchments. Mountain bedrock aquifer recharge
(MAR) consists of snowmelt- or rainfall-derived infiltration
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into the bedrock system of the mountain block, which ei-
ther discharges to streams or may eventually reach an allu-
vial aquifer in an adjacent valley as mountain block recharge
(MBR). MBR consists of lateral subsurface flow from the
mountains to an adjacent valley aquifer. Finally, mountain
front recharge (MFR) consists of direct infiltration of stream-
flow that originated in the mountains along the piedmont
zone. Various efforts have been made to estimate the rel-
ative importance of each recharge pathway (Ajami et al.,
2011; Mailloux et al., 1999; Manning and Solomon, 2003;
Schreiner-McGraw and Vivoni, 2017; Newman et al., 20006),
but an analysis of how they respond to uncertainty in atmo-
spheric drivers, such as precipitation or air temperature, is
lacking.

Hydrologic models are important tools to quantify
recharge rate as a function of precipitation because recharge
rates are difficult to measure, especially over large spatial ex-
tents (Bridget et al., 2002). Physically based, integrated hy-
drologic models that simulate land surface—subsurface hy-
drologic processes have high computational requirements but
are the best modeling tools to study connections between
meteorological variability and hydrologic function. Further-
more, they are not limited by empirical relationships or cal-
ibrated parameters to a set of historical conditions (Fatichi
et al., 2016). Hydrologic models, however, are prone to un-
certainty that can arise from many sources, including the
model structure and the selection of equations to represent
processes, parameterization, and uncertainty in the model
forcing data (Woldemeskel et al., 2012; Beven, 2006). The
impact of the uncertainty in forcing data upon model perfor-
mance is particularly important when models are used to as-
sess the impact of climate change or drought on groundwater
processes.

The hydrologic system response to changes in precipita-
tion and air temperature has been studied in depth. The im-
pact of meteorological changes on groundwater, however,
has received comparably less attention. It has been shown
that the physiographic features of a watershed, particularly
those that control the depth to the water table (DTWT), im-
pact the groundwater system response to climate variabil-
ity, but the depths at which these sensitivities are highest
is highly uncertain. Some authors suggest higher groundwa-
ter sensitivity to meteorological variability at regions with
a high DTWT, while others find higher sensitivity for shal-
low water table regions (Maxwell and Kollet, 2008; Erler et
al., 2019). In a recent review, the direct impacts of climate
on groundwater are explained by describing processes that
control the water surplus (precipitation—evaporation). While
precipitation and air temperature impact the magnitude of
water surplus, subsurface geology controls the translation of
water surplus (potential recharge) to groundwater head vari-
ability (Taylor et al., 2013). The precise impacts of meteo-
rological variability on groundwater recharge, particularly in
mountainous catchments that supply the majority of water
in semiarid regions, remain important unknowns (Meixner
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et al.,, 2016). Several studies have used hydrologic mod-
els to examine how meteorological forcings impact moun-
tain recharge processes, but none has considered the impor-
tance of meteorological forcing uncertainty for recharge es-
timates (Schreiner-Mcgraw et al., 2019; Crosbie et al., 2011;
Hartmann et al., 2017; Ajami et al., 2012). This is particu-
larly important in mountainous regions, where observational
datasets (e.g., forcings, subsurface structure, and parameters)
are scarce.

The water budgets in mountainous watersheds are typi-
cally dominated by snow processes. As a result, the two most
important meteorological variables for controlling the hydro-
logic response are precipitation amount and air temperature.
Datasets of both variables are highly uncertain, particularly
in regions with high relief, and it is difficult to determine
which variable is more uncertain, as they have different units
(Lundquist et al., 2015; Henn et al., 2018; Daly et al., 2008).
From a hydrologic standpoint, the more important question
is whether the level of uncertainty contained in precipitation
or air temperature has larger impacts on the simulated hy-
drologic budget. Recent work in the Colorado River basin
has demonstrated the importance of air temperature for simu-
lated hydrologic processes, particularly in regions with snow
(Udall and Overpeck, 2017). Climate change is expected to
alter both precipitation and air temperature, but their rela-
tive changes are unknown, especially for precipitation. It is
therefore important to understand how air temperature and
precipitation uncertainty might combine, over a range of con-
ditions, to impact simulated subsurface hydrologic response.

Gridded precipitation and air temperature datasets are es-
pecially uncertain in mountainous regions due to a lack of
gauges and sharp topographic gradients that alter meteoro-
logical conditions over relatively small scales. Previous ef-
forts to test the accuracy of gridded precipitation datasets
in mountainous regions have found that datasets are partic-
ularly uncertain at the highest elevations (Henn et al., 2018;
Lundquist et al., 2015). These uncertainties have been at-
tributed to poor representation of snow (Rasmussen et al.,
2012) and the lack of gauges due to poor infrastructure
(Lundquist et al., 2003). The lack of gauges requires ex-
trapolation of meteorological values from gauges in different
locations. Gridded datasets vary in their extrapolation tech-
niques of gauge-based observations, their use of different in-
put gauges, and their consideration of snow measurements
(Daly et al., 1994; Thornton et al., 1997). As a result, there
is considerable uncertainty in both precipitation and air tem-
perature gridded datasets that has the potential to alter hydro-
logic simulations.

In this study, we utilize an integrated surface water—
groundwater hydrologic model to study the propagation of
uncertainty in precipitation and air temperature into the
groundwater system of a mountainous watershed. The model
domain encompasses the Kaweah River watershed in Cali-
fornia, USA. This domain covers a wide range of climate
and topographic conditions and is prone to high interan-
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nual variability in climate conditions and strong prevalence
of drought. We focus on understanding the physical proper-
ties that affect the propagation of uncertainty from the atmo-
sphere to the groundwater, and our discussion aims to answer
the three following questions. (1) Which mountain recharge
pathway is most impacted by meteorological uncertainty?
(2) Is uncertainty in precipitation or air temperature forcing
more impactful on the simulated water budget of a mountain
system, especially with regards to groundwater processes?
(3) How does uncertainty in precipitation combine with un-
certainty in air temperature to impact simulated groundwater
recharge?

2 Methods
2.1 Study site

Model simulations are carried out in the Kaweah River wa-
tershed, located in the southern Sierra Nevada in Califor-
nia, USA (Fig. 1). This location was selected for the study
because of the presence of large topographic gradients (el-
evation ranges from 57 to 4354 m), steep slopes, and loca-
tions with both high and low uncertainty in air temperature
and precipitation datasets (Schreiner-McGraw and Ajami,
2020). We identify the Kaweah Terminus sub-watershed,
which encompasses the mountainous portion of the Kaweah
River watershed upstream of the Terminus dam to investigate
the mountain system recharge processes. Furthermore, this
undisturbed portion of the domain makes streamflow valida-
tion possible. In the Kaweah River watershed, the regional to-
pography is dominated by the Sierra Nevada mountain block,
which is largely composed of granitic rocks (Jennings, 1977).
The eastern Sierra Nevada contains the tallest peaks in the
continental United States and is located in the eastern portion
of the study domain. A complex assemblage of landforms
comprises the piedmont slope of sediments eroding off of the
western portion of the mountain range, where our study is fo-
cused (Olmsted and Davis, 1961). The elevation decreases to
the west of the study domain until reaching the flat Central
Valley region. The Central Valley region (Fig. 1) is composed
of interbedded sand and silt layers and is a highly produc-
tive groundwater aquifer (Faunt, 2009). The climate in the
region is a Mediterranean climate with cool, wet winter sea-
sons and hot dry summers. The precipitation in the study do-
main ranges from ~ 140 to 1400 mm yr~!, roughly following
the elevation gradient. As a result, the vegetation also ranges
from desert grasslands (and irrigated agriculture) in the low-
lands to oak savannahs and pine forest in the mountain re-
gions.

2.2 Model description

In this study, we use the ParFlow.CLM integrated hydro-
logic model code (Kollet and Maxwell, 2006; Maxwell and
Miller, 2005; Maxwell, 2013) for hydrologic simulations.
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The ParFlow.CLM model simulates variably saturated sub-
surface flow that is fully integrated with overland flow and
that is coupled to the land surface model CLM 3.0 (Dai et
al., 2003). The ParFlow model solves the Richards’ equation
in three dimensions to simulate variably saturated subsurface
flow and simultaneously solves the kinematic wave approxi-
mation to simulate overland flow. Channel networks are not
predefined in the model; rather, they develop naturally in re-
sponse to the hydrologic conditions and the uniform appli-
cation of the kinematic wave approximation to every cell in
the model domain. ParFlow has been coupled with the Com-
mon Land Model 3.0 (Dai et al., 2003) to simulate the land
surface water and energy budgets. The CLM portion of the
code interacts with ParFlow over the top soil layers, where
ParFlow simulates water movement and feeds the soil water
state into the CLM. We apply the terrain-following grid for-
mulation of ParFlow that is best suited to simulate domains
with high topographic relief (Maxwell, 2013).

Prior efforts parameterized the model using estimates of
topography, land cover type, drill core data, and geologic
maps of the study region (Schreiner-McGraw and Ajami,
2020). A detailed description of the model construction and
validation can be found in Schreiner-McGraw and Ajami
(2020). Here, we present the conceptual framework relevant
to this study. We conceptualize the study domain in two
primary physiographic regions, the Sierra Nevada mountain
block and the Central Valley, which contain a highly produc-
tive aquifer. We apply a 1 km horizontal grid resolution to
the 12276 km? study domain, resulting in a horizontal model
grid of 99 x 124. We focus on the groundwater system that is
likely to interact with the surface water and therefore simu-
late the domain to a depth of 622 m. This depth is consistent
with a conceptual model that includes 2 m-thick surface soils
consisting of six layers (0.05, 0.1, 0.15, 0.3, 0.4, and 1.0m
thick) that overlay a 620 m-thick aquifer system consistent
with observations from drill cores (Faunt, 2009). Surface soil
parameters, including the saturated hydraulic conductivity,
porosity, and van Genuchten parameters, are derived from the
POLARIS dataset (Chaney et al., 2016). The alluvial aquifer
of the Central Valley is conceptualized as nine rock layers
of variable thickness and parameterized following drill core
data compiled by Faunt (2009). The mountain block subsur-
face is conceptualized as a fractured bedrock aquifer system
with three geological layers, saprolite (15 m thick), fractured
bedrock (145 m thick), and less fractured bedrock (460 m
thick). The mountain bedrock is characterized by low poros-
ity and hydraulic conductivity values that are derived from a
geologic map and reference tables (Jennings, 1977; Welch
and Allen, 2014). The land surface requires Manning’s n
values and slope values. Manning’s n parameters are based
on reference table values (Chow, 2009), and slopes are de-
rived from a 30 m digital elevation model obtained from the
National Elevation Dataset (Gesch et al., 2018). Vegetation
types are based on the USDA CropScape data and are aggre-
gated to the IGBP classification system.
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Figure 1. The location of the model domain within the state of California, USA. A 30 m digital elevation model is used to delineate the
Kaweah Terminus watershed and Kaweah River watershed boundaries. The model extent is larger than the watershed boundary to reduce
the impact of boundary conditions on simulated groundwater flow. The dashed line indicates the boundary between the mountain block and
Central Valley aquifer system defined by using a geologic map of the region.

For our primary analysis, the hydrologic model is run at an
hourly time step over the water year (WY) 2016 simulation
period. We chose WY2016 because remote sensing products
were available for model validation, and the meteorological
conditions were approximately representative of the average
conditions in the study watershed. The hourly meteorological
datasets required as model forcing include precipitation, air
temperature, air pressure, specific humidity, downward short-
and long-wave radiation, and wind speed in the x and y di-
rections. We obtain all meteorological forcings, except pre-
cipitation (P) and air temperature (7,i;), from the Princeton
CONUS Forcing dataset, which provides hourly forcings at
3 km spatial resolution based on the NLDAS-2 dataset (Pan
et al., 2016). This dataset downscales the NLDAS-2 precip-
itation dataset using Stage IV and Stage II radar products
(Pan et al., 2016) and has been validated and compared with
several other gridded datasets, showing good performance
(Beck et al., 2019). Additional precipitation and air tempera-
ture forcings are derived from several publicly available grid-
ded datasets, Daymet (Thornton et al., 1997), Gridmet (Abat-
zoglou, 2013), PRISM (Daly et al., 1994), and TopoWx,
which only includes daily minimum and maximum air tem-
perature (Oyler et al., 2015) (Fig. 2). The Daymet, Grid-
met, and PRISM datasets provide daily total precipitation
as well as the daily minimum and maximum temperature.
These daily precipitation datasets are downscaled to hourly
resolution by applying the temporal downscaling method of
NLDAS-2 precipitation.
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Model initialization consists of a two-step spin-up process
to bring the subsurface water storage into dynamic equilib-
rium with the meteorological conditions. In the first step of
the initialization, we start from a initially dry system and run
the ParFlow code without the CLM by applying a constant-
in-time net precipitation flux (P—ET) (Livneh et al., 2013) to
fill up the groundwater storage and create a rough approxi-
mation of the flow network. From this point, each model sce-
nario is run recursively using the ParFlow.CLM code and the
WY2016 forcing data applied in that scenario (see scenario
descriptions in Sect. 2.3). Recursive simulations are contin-
ued until the total subsurface storage reaches dynamic equi-
librium (Ajami et al., 2014). We define dynamic equilibrium
as the point at which the absolute change in total subsur-
face storage becomes less than 0.01 % in recursive simula-
tions (Ajami et al., 2015). In addition to WY2016, we run
simulations for WY2011 and WY2014 representing wet and
dry conditions in the watershed, respectively (see Sect. 2.3).
The model initialization process is repeated for each of these
years using their respective meteorological forcings until the
model reached dynamic equilibrium with respect to these
forcings.

Model performance is extensively validated in Schreiner-
McGraw and Ajami (2020). As we are focused on quantify-
ing the impact of air temperature, we present a limited valida-
tion, using WY2016, primarily related to the energy budget.
An important component of the land surface energy balance
in mountainous terrain is the role of snow. We validate model
performance using a reanalysis gridded product that contains
estimates of snow water equivalent (SWE) and snow-covered
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Figure 2. (a) Mean daily air temperature from five air temperature
datasets used within this study for WY2016. Spatial maps repre-
sent differences in mean annual daily temperature from the mean
dataset (calculated as dataset-mean) in (b) downscaled NLDAS-
2, (¢) PRISM, (d) Gridmet, (e¢) Daymet, and (f) TopoWx forcing
datasets.

area (SCA) for the majority of the Sierra Nevada (Margulis
et al., 2016). This 90 m resolution dataset is generated using
a Bayesian data assimilation technique with remotely sensed
estimates of snow-covered area (Margulis et al., 2016). The
dataset is clipped to 1500 m elevation to remove uncertainty
related to the infrequent snow below this elevation. When
making comparisons between this reanalysis dataset and our
simulated datasets, we also set SWE and SCA below 1500 m
elevation to 0. Additionally, we use remote sensing estimates
of evapotranspiration (MOD16A2 product) at 1 km resolu-
tion from the MODIS Terra satellite to compare with sim-
ulated ET and test the performance of the simulated energy
budget.

2.3 Model experiments

In this study, we are interested in quantifying how the un-
certainty in air temperature and precipitation forcings impact
the simulated water budget. To simplify the system and re-
duce the impact of uncertainty in anthropogenic management
practices, we treat the system as a quasi-pre-development
state that is not impacted by groundwater pumping, irriga-
tion, or stream diversions. As a result, all of our model sce-
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narios use consistent parameterizations for the subsurface
and the land surface, and the only difference is in the air
temperature and precipitation forcings from different gridded
meteorological products. We perform a “base case” simula-
tion where we use the mean precipitation from the four avail-
able datasets (Daymet, Gridmet, downscaled NLDAS-2, and
PRISM) and the mean air temperature from the same four
datasets plus the TopoWx dataset. Prior efforts have demon-
strated that using the mean of the precipitation datasets re-
sults in the best model performance compared with simula-
tions with each product individually (Schreiner-McGraw and
Ajami, 2020). This base case scenario is used for comparison
purposes. In addition to the base case scenario, we run three
different numerical experiments: (1) variable precipitation
and constant air temperature (VarPConstTA), (2) constant
precipitation and variable air temperature (ConstPVarTA),
and (3) variable precipitation and variable air temperature
(VarPVarTA). In experiment 1, VarPConstTA, we run four
scenarios each using the mean air temperature and one of
the four precipitation datasets. Experiment 2 is the oppo-
site with five scenarios, where each scenario is forced with
the mean precipitation and one of the five air temperature
datasets. Finally, experiment 3 consists of four scenarios, and
each scenario is forced with the precipitation and air temper-
ature from one of the four available gridded products. To as-
sess how results are impacted by the choice of a single year
of forcing data, we perform three numerical experiments for
3 different years, WY2011, WY2014, and WY2016, with
above-average, below-average, and average precipitation to-
tals, respectively. We focus our analysis on the year with
near-average meteorological conditions (WY2016) and use
the additional years to examine the variability and propaga-
tion of meteorological uncertainty introduced by unusually
wet or dry conditions.

2.4 Analysis techniques

2.4.1 Relative importance of uncertainty in
precipitation and air temperature for the
simulated water budget

We first assess the uncertainty in the precipitation and air
temperature datasets by calculating the mean absolute dif-
ference (MAD) between each pair of datasets at a daily scale
for each grid cell in the domain (Henn et al., 2018). We cal-
culate the MAD between a pair of datasets at a single grid
cell as

1 d
MAD;j = = > abs (P = Pj). v
k=1

where i, j represents the difference between dataset i and
dataset j, k represents the day, and d is the number of days
in the year. We calculate the MAD for each pair of datasets
and take the mean value of all MADs to represent the mean
uncertainty in total precipitation for each year of forcing
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data. For presentation purposes, we also calculate the overall
mean MAD using the 3 water years used in our simulations
(WY2011, WY2014, and WY2016). The same approach is
applied to air temperature. We acknowledge that this is not
a true measure of uncertainty in precipitation or air tempera-
ture as ground truth data from weather stations are not avail-
able.

Next, we assess the relative importance of uncertainty
in the precipitation and air temperature forcing datasets for
the annual water budget partitioning from each simulation
scenario. We perform this calculation for the Kaweah Ter-
minus watershed, upstream of the Terminus dam (Fig. 1),
to focus on the mountain groundwater system. The Termi-
nus dam is not represented in the model, and streamflow
evaluation downstream of this point is difficult. We calcu-
late the groundwater flux (GW) out of the Kaweah Termi-
nus watershed as a residual of the annual water balance,
GW = P —ET — Q —dS, where P is the precipitation, ET
is the evapotranspiration, Q is the streamflow, and dS is the
change in subsurface storage. This groundwater flux is equiv-
alent to the mountain block recharge (MBR) that is generated
within the Kaweah Terminus watershed. We additionally cal-
culate the precipitation partitioning into rain and snow com-
ponents. The version of the CLM in the model uses a thresh-
old air temperature of 2.5 °C to partition precipitation, so we
apply the same threshold to the precipitation data to deter-
mine snowfall and rainfall.

Given the seasonality of the water balance in the study
watershed, we also calculate the monthly relative range of
hydrologic fluxes from the Kaweah Terminus watershed to
determine months with the highest uncertainty in simulated
fluxes. The relative range (R;) is defined as the range in
monthly simulated hydrologic fluxes for each experiment di-
vided by the monthly value from the base case scenario.

2.4.2 Relative elasticity and sensitivity metrics to
changes in precipitation and air temperature

To determine the relative sensitivity of the simulated an-
nual hydrologic budget to precipitation and air temperature
forcings, we calculate the sensitivity and elasticity of mul-
tiple hydrologic variables relative to the baseline simulation
for the Kaweah River watershed (Fig. 1). We perform these
calculations using the catchment-averaged values from ex-
periment 1 (P elasticity) and experiment 2 (7y; sensitivity)
simulations where P and T,;; are modified individually. The
precipitation elasticity (¢) is the fractional change in a hy-
drologic variable v from dataset i divided by the fractional
change in P from dataset i, both relative to our base case
scenario.
Vi —VUbase
€= Tt @
Pbase

Following the reasoning from Vano et al. (2012), we also cal-
culate the temperature sensitivity (S) in a similar manner. We
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define S as the percent change in a hydrologic variable v,
caused by a change in Ty;;.

Vi —VUbase
v
S = base (3)
Tair,- - Tairblee

While we cannot directly compare whether T,;; or P uncer-
tainty adds more variability to hydrologic simulations, by
comparing the ¢ and S, we can determine whether the range
of uncertainty in Ty or P contained in common gridded
datasets adds more uncertainty to the simulated hydrologic
budget. We recognize that the ¢ and S are overestimated in
this analysis because the datasets have different spatial pat-
terns in Ty; and P, and the basin average differences in sim-
ulated hydrology are not solely caused by the basin aver-
age differences in Tj;; and P. We contend, however, that this
is a reliable approach to estimate the relative importance of
model forcing dataset selection. We also assess spatial vari-
ability of precipitation elasticities and temperature sensitives
by applying Egs. (2) and (3) at the pixel scale.

2.4.3 Impact of combined uncertainty in precipitation
and air temperature on the simulated water
budget

As aresult of climate change, both P and Ty;; are expected to
change simultaneously. In the analysis described above, we
only alter P or Ty individually in experiments 1 and 2, re-
spectively. We make use of the scenarios from experiments
1, 2, and 3 to examine the combination effects of uncertainty
in both P and T, on simulated hydrologic response in the
Kaweah River watershed for each simulated water year. We
calculate the relative change in a hydrologic variable, v, rel-
ative to our “base case” scenario forced with the mean of
both the air temperature and precipitation datasets. For each
forcing dataset (Daymet, Gridmet, etc.), we calculate the in-
dividual relative difference in simulated hydrologic fluxes
or states caused by changing the precipitation dataset (vap)
and the temperature dataset (vaT,,) from the base case using
catchment-averaged values. We then estimate the total rela-
tive differences in simulated hydrology caused by the com-
bined changes in P and T,j; by summing the relative differ-
ences of P and T, as if there were no interaction effects
(vapaTy,. ) (Vano et al., 2012):

irest

_ (VAP — Ubase) +

(UATair - vbase)
UAPATairesl = .

“)

Ubase Ubase

The estimated combined impact of P and T,;; changes on
the variable, v, are then compared with the simulated values
of a given variable when both P and T;; are simultaneously
altered in model simulations (vaA paTy;,) to determine the de-
gree of interaction effects for both variables in the Kaweah
River watershed.
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2.4.4 Sensitivity of recharge pathways to
meteorological forcings

We make use of the integrated hydrologic model to exam-
ine the sensitivity of different recharge pathways to changes
in P and T, forcing. We calculate recharge via three pri-
mary pathways, MAR (derived from rain or snow), MBR,
and MFR. We calculate each of these fluxes using the simu-
lated pressure head and saturation values and the Richards
equation (Maxwell and Miller, 2005) for specific regions
of the model domain. MAR is defined as the vertical flux
of water leaving the 2 m-deep soil zone (potential recharge)
within the Kaweah Terminus watershed, located upstream of
the Terminus dam in the Sierra Nevada (Fig. 1). We sepa-
rate MAR derived from snowmelt as MAR that occurs in the
same model time step that snowmelt occurs (i.e., changes in
daily SWE is negative), and otherwise we assume that MAR
is sourced from rainfall. We estimate the MBR sourced from
the mountainous region of the Kaweah Terminus watershed
as a residual of the water balance that is equivalent to the GW
flux out of the watershed. We recognize that this is not explic-
itly MBR because the Kaweah Terminus boundary does not
exactly trace the boundary between the mountain block and
the valley aquifer. However, the regional flow pathways en-
sure that groundwater leaving the Terminus watershed will
reach the Central Valley aquifer. Finally, MFR is calculated
as the volume of streamflow that infiltrates into the channel
bottom as the Kaweah River flows across the piedmont slope,
defined as the area adjacent to the mountain block where to-
pographic slope is greater than 2% (11km of the Kaweah
River reach).

Previous efforts have shown the role of topography in the
propagation of uncertainty in precipitation to groundwater
(Schreiner-McGraw and Ajami, 2020). To examine how this
propagation impacts MAR under the combined P and T,
uncertainty versus individual uncertainty in P or Ty, we
make use of the relationship between the topographic wet-
ness index (TWI) and uncertainty in simulated MAR, where
the TWI is calculated as

Ac
TWI = ln( ) , 5
tana

where Ac is the contributing drainage area and « is the slope
(Beven and Kirkby, 1979). As the TWI is meant to be applied
in climatically similar regions, we apply the analysis only to
the Kaweah Terminus watershed where land cover and sub-
surface geology are constant, and climate is relatively similar
(mean annual precipitation ranges from 435 to 960 mm yr~!
and mean annual Ty; ranges from 0 to 15 °C). We estimate
the uncertainty in the simulated MAR as the standard devia-
tion of MAR values from the multiple scenarios in each TWI
bin.
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Figure 3. (a, c, e) Daily domain-averaged values of air temperature
for five temperature datasets and (b, d, f) the cumulative sum of
domain-averaged precipitation for each of the four gridded datasets
in (a, b) WY2011, (¢, d) WY2014, and (e, f) WY2016.

3 Results and discussion
3.1 Air temperature and precipitation uncertainty

Differences in mean annual daily temperature from the mean
temperature dataset range between —8 and 8 °C (Fig. 2b-
f). Differences in mean daily temperature among different
forcing datasets exist irrespective of the wetness condition
(wet vs. dry or average year), and the ranges are larger for
WY2011 (Fig. 3a, c, e). Considerable uncertainty exists in
the daily and annual totals of precipitation from the differ-
ent gridded datasets as well (Fig. 3b, d, f). The differences
between the gridded products in our study are surprising, es-
pecially considering that Gridmet is based on the NLDAS-2
and PRISM datasets. We believe that the differences among
products are caused by contrasting spatial resolutions. For
example, Abatzoglou (2013) used the 800 m PRISM data to
generate the Gridmet dataset, while we used the freely avail-
able PRISM data at 4 km resolution. Additionally, we used
a downscaled version of the NLDAS-2 dataset called the
Princeton CONUS Forcing dataset at ~ 3 km resolution with
the updated precipitation data using the Stage IV and Stage 11
radar products. We believe that the differences in the resolu-
tion of the datasets and interpolation approaches have caused
the differences in precipitation and air temperature forcing
datasets.
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Figure 4. Uncertainty in the daily air temperature (a) and precipitation (b) datasets represented by the mean absolute difference (MAD) for

the 3 water years (2011, 2014, and 2016) used in this study.

We analyze the uncertainty in the forcing datasets by pre-
senting the average MAD between the datasets available for
T.ir (Fig. 4a) and P (Fig. 4b) for 3 water years. Figure 4a
presents the annual mean daily MAD averaged across the
five temperature datasets and 3 water years. Overall, the un-
certainty in air temperature is high, with large portions of the
model domain expressing an average MAD of greater than
5°d~!. The MAD in the topographically flat portion of the
domain in the Central Valley is relatively consistent, with
values of approximately 4° d~!. The mountainous region of
the study domain has more variability in temperature-based
MAD estimates. Coincidentally, the majority of the moun-
tainous portion of the Kaweah River watershed has a rel-
atively low MAD in Ty, and mountainous regions outside
the watershed boundary have a much higher uncertainty in
Tir that in places exceeds 7° d~!. Uncertainty in P follows
a more consistent pattern than uncertainty in Ty, where the
MAD in P increases consistently with elevation (Fig. 4b).
This pattern is partially attributable to the annual total pre-
cipitation increases in the high-elevation regions, but the lack
of meteorological gauges at high elevations also increases the
uncertainty in these regions. The spatial patterns of the MAD
for both P and T,;; remain relatively constant between years,
suggesting that the differences are related to the interpola-
tion algorithms rather than different observed data. These
findings are consistent with previous efforts to quantify un-
certainty in gridded precipitation datasets that found uncer-
tainty between 150 and 200 mm yr~! in this region (Henn et
al., 2018; Lundquist et al., 2015).

3.2 Model validation

A comprehensive validation of model performance is pre-
sented in Schreiner-McGraw and Ajami (2020). In this study
we present a validation of model performance in simulating
two components of the energy balance, ET and SWE, us-
ing WY2016 simulations. Figure 5 presents a comparison
between the simulated ET from each of the experiments 1,
2, and 3 and remote sensing values from the 8d MODIS
product. The values presented are watershed average val-
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Figure 5. Monthly ET in WY2016 from the MODIS remote sens-
ing product (solid lines) as well as the range of simulated ET from
each of the three experiments (a) VarPConstTA, (b) ConstPVarTA,
and (c¢) VarPVarTA (dashed lines) in the Kaweah River watershed.
Croplands are removed from this comparison as irrigation is not in-
cluded in simulations.

ues for the Kaweah River watershed with irrigated crop-
lands removed due to the lack of irrigation in the simulations.
Generally, the range of simulated monthly ET encompasses
the remote sensing values. The peak value of monthly ET
of 40 mmmonth™! is replicated by the model simulations.
The timing of the peak value, however, is inconsistent be-
tween the simulations and the remote sensing product. At
the monthly scale, both the peak ET and the minimum ET
throughout the year are delayed by 1 month. This result is
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Figure 6. Daily SWE from the reanalysis product (black lines) as
well as the range of simulated SWE from each of the three ex-
periments (a) VarPConstTA, (b) ConstPVarTA, and (c¢) VarPVarTA
(color lines) in WY2016.

partially attributable to the coarse temporal resolution of the
remote sensing data composited at 8d intervals as well as
the monthly aggregation of these data. In addition, we be-
lieve that some of the discrepancy arises from restricting the
plant rooting depth in the simulations to the top 2 m of soil
in ParFlow.CLM simulations, limiting their ability to draw
on water stored in the saprolite layer. As saprolite storage
is recharged by spring snowmelt (Thayer et al., 2018), this
model specification creates temporal discrepancy in ET. Be-
cause the simulated energy budget captures ET quantities,
however, we are satisfied with the model performance con-
sidering the study objectives. The patterns observed during
WY2016 are replicated in WY2011 and WY2014, but the
peak simulated ET is delayed relative to the remote sensing
product. For the rest of the year, the remotely sensed values
are generally bracketed by the range of simulated ET values.

We also assess the performance of the energy budget sim-
ulations by comparing the simulated SWE with a reanaly-
sis product developed for the Sierra Nevada region (Mar-
gulis et al., 2016) using the WY2016 simulations. Figure 6
presents the annual cycle of snowpack accumulation and
melting as simulated SWE from each of the three experi-
ments. We present the total volume of SWE for each day
in the Kaweah River watershed. For all the experiments, the
simulated annual pattern of daily SWE encompasses the ob-
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served values. The only exception is the period from DOY 65
to 150 from the ConstPVarTA scenarios, where the simulated
SWE is larger than the reanalysis product values (Fig. 6b). In
the ConstPVarTA scenarios, significant variability within the
simulated SWE exists, especially for the peak SWE values.
The peak SWE of the Daymet scenario is 27 % higher than
that observed, and SWE from the Gridmet scenario is 42 %
higher than that observed. The Daymet and Gridmet datasets
have lower air temperatures in the mid-elevation zone, where
temperatures fluctuate between below and above freezing
(Fig. 2). In terms of timing, the peak SWE occurs on DOY
74 for all ConstPVarTA scenarios, except in the Daymet
forcing scenario, where the peak SWE occurs on DOY 34.
The timing of full snowmelt is more variable and is de-
layed for the scenarios with higher peak SWE. Full snowmelt
occurs on DOY 216 for Daymet, DOY 221 for Gridmet,
DOY 211 for downscaled NLDAS-2, and DOY 194 for the
PRISM scenario. The simulated SWE from each of the VarP-
ConstTA scenarios (Fig. 5a) has similar temporal patterns,
but there is considerable spread in the SWE values that re-
flects the spread in precipitation volumes from the different
forcing datasets. The VarPVarTA scenarios have the largest
variability in SWE across the forcing datasets, with down-
scaled NLDAS-2 forcing underestimating the peak SWE and
other forcings overestimating it relative to the observations
(Fig. 6¢). In WY2011 and WY2014, as in WY2016, the ob-
served SWE is bracketed by the range of simulated values.

3.3 Recharge pathway sensitivity to meteorological
variability

Mountain system recharge to the Central Valley is a key un-
known for water management in this highly productive agri-
cultural system. During WY2016, with roughly average me-
teorological conditions, the total mountain system recharge
from the mountainous portion of the Kaweah River water-
shed, the Kaweah Terminus sub-watershed, to the valley
aquifer (MBR + MFR) ranges from 186 to 504 mm yr—!, de-
pending on which meteorological forcing scenario is used. In
our simulations, the majority of this recharge comes from the
MER pathway, and the ratio of MFR / (MBR + MFR) ranges
from 0.85 to 0.99 across all simulations performed. Our re-
sults are consistent with observational studies (Visser et al.,
2018), but there is considerable uncertainty related to char-
acterizing the source of mountain system recharge.

Across all simulations, the total MAR (MAR from
rain+ MAR from snow) is dramatically larger than the
MBR. This is expected as the MAR is calculated as the po-
tential recharge, and most of it may flow via local flow paths
to topographically convergent zones, where it could be sub-
sequently transpired or discharged as baseflow, while the re-
mainder becomes MBR. Figure 7 presents the range of sim-
ulated annual recharge from each of the mountain system
recharge pathways for each year of equilibrium simulations.
For all recharge pathways, the simulated value is impacted
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Figure 7. Mean and standard deviation of simulated mean MAR from rain and snow, mountain block recharge (MBR), and mountain front
recharge (MFR) from scenarios in three simulation experiments: ConstPVarTA, VarPConstTA, and VarPVarTA in the Kaweah Terminus
watershed. Results are presented for WY2011 (a), WY2014 (b), and WY2016 (c).

by the choice of temperature and precipitation datasets. Us-
ing the average conditions in WY2016 as an example, the
temperature datasets used in the ConstPVarTA scenarios re-
sult in a range of simulated recharge that is 16 %, 24 %, 3 %,
and 24 % of the mean value from the five scenarios for the
MAR from rain, MAR from snow, MBR, and MFR path-
ways, respectively. The corresponding precipitation datasets
included in the VarPConstTA scenarios result in a larger
range in simulated recharge for all recharge pathways. The
range of simulated recharge for the VarPConstTA scenarios
18 26 %, 52 %, 240 %, and 76 % of the mean of the four sce-
narios for the MAR from the rain, MAR from snow, MBR,
and MFR pathways, respectively. When variability in Ty,
is added to P variability in the VarPVarTA scenarios, the
range of simulated recharge for each pathway increases to
33 %, 70 %, 238 %, and 91 % of the mean of the four VarP-
VarTA scenarios, for the MAR from rain, MAR from snow,
MBR, and MFR pathways, respectively. While the magni-
tudes of various recharge pathways are different during the
wet (WY2011) and dry (WY2014) years compared with
WY2016 simulations, the WY2016 patterns are replicated in
all 3 simulation years (Fig. 7).

To compare the sensitivity of each mountain recharge
pathway with changes in meteorological forcings, we cal-
culate the ¢ and S for different recharge pathways in the
Kaweah Terminus watershed. Figure 8 displays the aver-
age ¢ and § across the four forcing datasets for each of the
four mountain recharge pathways in each year of equilibrium
simulation. During the average conditions in WY2016 and
the wet year of WY2011, MBR and MFR are more sensi-
tive to the precipitation datasets than the MAR components.
While the rain MAR is the most sensitive pathway to changes
in T, datasets under average conditions, the sensitivity of
snow MAR is highest under wet conditions. During low-
precipitation conditions (WY2014), the rain MAR is highly
sensitive to changes in both Ty;; and P compared with other
recharge pathways due to extreme water limitation and the
small magnitude of recharge from soils. For all 3 simulated
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years, the snow MAR expresses low sensitivity to the Ty
datasets (|.S| < 0.2). This result in part is a reflection of the
higher mean snow MAR values that make changes relative to
the mean value smaller. Additionally, most of the precipita-
tion uncertainty is in the high-elevation zone where temper-
atures are low across all forcing datasets and snow is dom-
inant. As a result, although we might expect snow MAR to
be highly sensitive to changes in Ty;;, it is more sensitive to
changes in P. Following the same logic, each of the three
recharge pathways that is controlled by SWE (snow-derived
MAR, MBR, and MFR) is more sensitive to changes in P
than changes in Ty;; (Fig. 8). Much higher ¢ values than the S
values during the dry and wet years indicate that the recharge
pathways are more sensitive to changes in the P dataset
than the T, dataset even during the high-precipitation year
(WY2011), which is a result of the water-limited conditions
in California.

Prior efforts have demonstrated that topography-driven
subsurface flow is an important process that redistributes un-
certainty in P forcing throughout the watershed (Schreiner-
McGraw and Ajami, 2020). Figure 9 presents the relations
between TWI and the uncertainty in simulated MAR (¢ MAR
—defined as the standard deviation of recharge across the sce-
narios in each experiment) for the Kaweah Terminus water-
shed in WY2016. We limit this analysis to the Kaweah Ter-
minus watershed because it has the same vegetation type (ev-
ergreen forest) and relatively consistent climate conditions
to make the TWI a valid expression of the topographic ef-
fect on soil water movement. By limiting the analysis to the
mountainous region, the potential recharge is equivalent to
our definition of MAR. Across all the experiments, the un-
certainty in MAR increases with TWI because topography-
driven flow moves water into convergent zones via lateral
soil and shallow groundwater fluxes. An ANCOVA test re-
veals that the strength of the topographic control in MAR
uncertainty is higher for the ConstPVarTA scenarios than the
VarPConstTA scenarios, as represented by the statistically
significant higher slope (Fig. 9a and b). This result, along
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the Kaweah Terminus watershed.

with higher soil moisture values (data not shown), suggests
that the ET in convergent zones is more energy limited than
water limited throughout the year, so Ty;; uncertainty creates
larger variability in ET than P uncertainty. Supporting this
idea, the patterns are replicated in the WY2011 and WY2014
datasets as well. Due to the link between ET and potential
recharge via soil wetness, the variability in ET is reflected in
increases in MAR variability. When uncertainty in both Ty,
and P is considered, the slope of the TWI and c MAR rela-
tion increases, but according to an ANCOVA test, the slope is
not significantly different (p < 0.05) than the ConstPVarTA
scenarios. The relations between TWI and 0 MAR are consis-
tent in WY2011 and WY2014 with WY2016, and the VarP-
VarTA scenarios have a higher slope, but it is not signifi-
cantly different (p < 0.05). Because topography-driven sub-
surface flow concentrates soil water in convergent zones, the
individual spatial patterns of P and T, uncertainty become
less important, and their uncertainties cancel each other out,
creating consistently negative interaction effects in the VarP-
VarTA scenarios. This impact is more pronounced with MAR
compared with other variables because MAR is the most de-
pendent variable on topography-driven flow.

3.4 Relative importance of precipitation and air
temperature uncertainty for the simulated water
budget

To address research question 2, whether uncertainty in P
or T, data impacts the simulated hydrology of a moun-
tain watershed, we plot the annual water budget partitioning
for WY2016 with average meteorological conditions. Fig-
ure 10a presents the simulated annual water budget parti-
tioning for the mountainous Kaweah Terminus watershed for
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all of the scenarios in experiments 1, 2, and 3 for WY2016.
The Kaweah Terminus watershed is used because it is the
largest sub-watershed in the domain where accurate stream-
flow simulations can be ensured through model validation.
Variable precipitation forcing applied in experiment 1 (VarP-
ConstTA) results in significant changes to the water budget
partitioning. For all P forcing datasets (ConstTAVarP scenar-
ios), MBR remains the smallest portion of the water budget,
while ET comprises the largest portion of the water budget.
The largest changes in the water budget partitioning occur in
the simulated Q that ranges from 28 % to 46 % of the precip-
itation. Changes to the T,; forcing dataset when the precip-
itation is constant (ConstPVarTA scenarios) result in similar
patterns to changes to the P forcing when the temperature
is constant. For all T,; datasets, ET is the largest compo-
nent of the water budget and MBR is the smallest. The vari-
able T,;; scenarios result in a smaller range of simulated Q
(36 %—45 %) than the variable P datasets (28 %—46 %) but a
larger range in simulated ET (46 %—54 % for VarPConstTA
and 44 %-53 % for ConstPVarTA). The right-most column
in Fig. 10a presents the water budget partitioning when both
T,ir and P forcing datasets are varied. There is considerable
uncertainty in the major water budget components, and when
both Daymet P and T, are used, the water budget shifts so
that ET is no longer the largest component. The ET ranges
from 39 % (Daymet) to 56 % (downscaled NLDAS-2), while
Q ranges from 25 % (Gridmet) to 44 % (Daymet) of the total
water budget. These ranges are much larger than the range in
water budget partitioning caused by modifying P or Ty;; indi-
vidually and suggest that the uncertainty from the individual
forcing variables is additive rather than cancelling each other
out. Besides P and T uncertainties, differences in the water
budget partitioning of VarPVarTA scenarios are due to non-
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Figure 9. Scatterplots between the binned values of TWI and the
standard deviation of MAR from each of the scenarios included in
the WY2016 VarPConstTA experiment (a), the ConstPVarTA ex-
periment (b), and the VarPVarTA experiment (c) in the Kaweah
Terminus watershed. Circles represent the bin average, and the bars
represent the bin’s standard deviation. Solid lines present statisti-
cally significant (p < 0.05) linear regressions.

linear feedbacks between the spatial patterns of P and Ty,
and subsurface properties, vegetation type, and topography.
Although the proportion of P that becomes ET and Q varies
depending on the annual precipitation amount, this pattern in
water budget partitioning remains consistent with WY2011
and WY2014 as well.

To explain the simulated water budget partitioning during
WY2016, Fig. 10b presents the proportion of the total pre-
cipitation that falls as snow or rain for each scenario from
experiments 1, 2, and 3. Changes to the T, forcing dataset
create a larger range in the snowfall / P ratio than changes
to the P forcing dataset (snowfall / P ratios of 38 %—43 %
in VarPConstTA and 38 %—50 % in VarTAConstP). A close
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inspection of the charts presented in Fig. 10 suggests that
the snow /rain ratio impacts the annual water budget parti-
tioning, and Fig. 10a—c demonstrate this conclusion by pre-
senting relations between the ratio of snowfall / P and the
ET/ P, MBR/ P, and Q/P ratios. Each point in Fig. 11
represents the mean value for each scenario in experiments
1, 2, and 3 for WY2016. Statistically significant linear rela-
tions (p < 0.05) demonstrate that an increase in the propor-
tion of P that falls as snow decreases the ET / P ratio and
increases the Q/ P ratio. As the ConstPVarTA scenarios cre-
ate a larger range in the snowfall / P ratio than the VarPCon-
stTA scenarios (Fig. 10b), this raises the question of why the
ConstPVarTA scenarios do not create a larger range in sim-
ulated MBR or Q. Although there are significant relations
(p < 0.05) between the snowfall / P ratio and water budget
partitioning, the relations are weak, with r2 values between
0.17 and 0.35. Figure 11d—f present the relations between
the total annual snowmelt (Sy,) and the ET / P, MBR / P,
and Q/ P ratios. The Sy, has stronger relations to the water
budget partitioning than the snowfall / P ratio, with r> val-
ues of 0.68-0.79. In the mountainous study watershed, the
total volume of snowmelt is more dependent on P than Ty,
because the high-elevation regions where the majority of the
precipitation falls remain below freezing for most of the wet
season across all the air temperature datasets. The increased
variability in total snowmelt results in the larger changes to
QO and MBR caused by the VarPConstTA scenarios.

In the Mediterranean climate of California, the distinct
dry season creates challenges for water management, mak-
ing the temporal patterns in simulated water budget variabil-
ity of interest. Figure 12 presents the monthly time series
of ET, MAR, and Q from the Terminus watershed for the
base case scenario (solid lines) with the range of simulated
values (dashed lines) as well as the relative range for each
(black bars) during WY2016. The variable P forcings, from
the VarPConstTA scenarios, result in a relatively consistent
monthly ET-based R; throughout the year. On average, the
ET-based R; is 0.2 throughout the year, and January (0.3) and
February (0.1) are the months with the largest discrepancies.
Changes in the P forcing dataset cause larger variability in
the R; for the Q and MAR, but a seasonal pattern does not
emerge. Scenarios with altered Ty;r, however, display a more
prominent annual trend in the R, of simulated ET and Q.
The ET-based R; is considerably higher in November, De-
cember, and January for the ConstPVarTA scenarios (aver-
age R; is 0.5) compared with 0.07 for the rest of the year.
This increase in ET-based R; during the winter months of the
ConstPVarTA scenarios is consistent across all 3 simulation
years. This finding is striking because the divergence in the
T,ir forcing datasets is primarily found during the summer
months (DOY ~ 150-230) (Fig. 3). We attribute this result to
the fact that ET does not occur if the temperatures are below
freezing, and T variability at a given location may result in
below-freezing temperature for one 7Ty;; dataset but not an-
other. The Q-based R; increases during March through July
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WY2016 and (b) rain—snow partitioning in the Kaweah Terminus watershed for each of the scenarios in the three simulation experiments

during WY2016. Fractions are rounded to the nearest 1 %.

are consistent with the snowmelt period and increases in Tyir
variability (Fig. 3). During the dry WY2014, the Q-based
R; increases between March and May as the lower snow-
pack shortens the snowmelt period when streamflow is high.
For the wet WY2011, the Q-based R; remains high through
August as the wetter conditions result in more streamflow
throughout the summer period. For VarPVarTA experiments,
in all 3 years, the MAR-based R varies throughout the year
without consistent patterns emerging.

3.5 Sensitivity and elasticity of the simulated water
budget to precipitation or air temperature

To determine the relative sensitivity of the simulated annual
hydrologic budget to precipitation and air temperature forc-
ings, we present the elasticity (&) and sensitivity (S) of water
budget components to changes in P or Ty, respectively. Fig-
ure 13 presents the ¢ and S calculated for each meteorolog-
ical forcing scenario in experiments 1 and 2, relative to the
base case, for the water budget components simulated using
the average WY2016 conditions. In general, results suggest
that the water budget is very sensitive to changes in forc-
ing. Elasticities are larger than 1 for most datasets, and vari-
ables such as SWE, dS, potential recharge (R), and Q at the
Terminus dam indicate that the simulated variables exhibit
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a larger percent change than the percent change in precipita-
tion. The sensitivity of the simulated water budget to changes
in temperature is also quite high, especially when the Grid-
met and downscaled NLDAS-2 datasets are used (Fig. 13b).
The only hydrologic variables that are not heavily impacted
by changes in P or Ty, are the land surface temperature (1)
and root zone volumetric water content (6). At the annual
scale, the result of 6 is not surprising because the soil mois-
ture is controlled by both ET and R, where an increase in
one can be compensated for by a decrease in the other flux.
Additionally, variability of these fluxes is highest at a daily
compared with annual scale. We believe that lower sensitiv-
ity of Ty is related to the simplification made to represent the
ground heat flux calculation in the CLM. To reduce compu-
tational time, many land surface models, including the CLM,
only incorporate heat transport via conduction, and this sim-
plification decouples heat transport from soil moisture trans-
port (Kollet et al., 2009). Overall, the water budget exhibits
high ¢ and S to both changes in P and T,j. This behav-
ior does not necessarily mean that the magnitudes of P and
T,ir effects on the water budget are equal. It means that the
range of uncertainty contained in the meteorological forcing
datasets for both P and T,;; results in similar amounts of un-
certainty in the simulated water budget.
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Figure 12. Monthly values of ET, Q, and MAR from the Kaweah Terminus watershed are presented for each of the three experiments
(a) VarPConstTA, (b) ConstPVarTA, and (c¢) VarPVarTA for WY2016. The solid lines represent the values from the base case scenario, while
the dashed lines present the range of values from the scenarios included in each experiment. Bars represent the relative range (Ry), defined
as the range of simulated values for each experiment divided by the monthly value from the base case.

3.6 Interaction effects of combined changes to
precipitation and air temperature on the water
budget

Understanding the individual impacts of uncertainty in Ty
and P forcings provides a foundation for how to manage
uncertainty in meteorological forcings. However, as climate
change is expected to alter both air temperature and precipi-
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tation, it is important to understand how uncertainty in both
datasets combines to alter the simulated water budget. To test
the extent to which the two sources of uncertainty superim-
pose, we compare the differences between hydrologic vari-
ables simulated with the base case scenario with simulations
that alter both T, and P (VarPVarTA, experiment 3). Ini-
tially, we use WY2016 simulations to calculate these sensi-
tivities for the average value of each hydrologic variable over
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the Kaweah River watershed, while Q is represented at the
Kaweah Terminus dam. Figure 14 presents the difference be-
tween the estimated and actual changes caused by the VarP-
VarTA simulations for each of the 3 simulation years. The
difference can be interpreted as the strength of the interaction
effects; i.e., a difference of 0.05 indicates that the interaction
effects between T,;; and P increased the value of the variable,
v, by 5 %. Generally, the differences between estimated and
simulated values are quite small, suggesting that the interac-
tion effects between Ty;; and P uncertainty are small. Indeed,
the majority of interaction effects are between —5 % and 5 %.
The primary exception to this pattern is found in the variables
related to groundwater, dS and R. The dS is the simulated
variable with the largest variability in the interaction effects.
For example, in WY2016 the Gridmet dataset results in in-
teraction effects of —40 %, while the PRISM dataset results
in interaction effects of 3 % in changes in subsurface storage.
With the exception of the PRISM dataset, the interaction ef-
fects for dS are all negative (Fig. 14c). Additionally, across
all four datasets the interaction effects decrease R, with an
average value of —5.1 %. In both WY2011 and WY2014, the
combination effects of precipitation and air temperature are
largest for dS and R. This response in R, and subsequently
dsS, is expected as groundwater recharge is controlled by in-
filtration, ET, and soil moisture redistribution, and all of these
processes are impacted by both P and Ty;;, creating a highly
nonlinear response. This nonlinearity can be exacerbated by
topography-driven flow that concentrates soil moisture and
groundwater in convergent zones.

3.7 Dependency of results on other uncertainty sources

In this study, we use a physically based, integrated hydro-
logic model, ParFlow.CLM, to quantify the impact of uncer-
tainty in meteorological forcings on the simulated groundwa-
ter. However, the generality of results is influenced by multi-
ple factors as described below. The results from this study are
applicable to integrated surface water—groundwater models
that implement the 3D Richards equation to simulate variably
saturated subsurface flow across the entire subsurface and
that have a fully integrated overland flow simulator. Previous
studies have found that hydrologic sensitivities of land sur-
face models can vary widely based on the model used (Vano
et al., 2012). The land surface model we employ, the CLM,
applies a threshold temperature of 2.5 °C, below which pre-
cipitation falls as snow, which could have implications for
our results. However, we expect its impact to be minimal,
as most of the snow falls when the air temperature is much
less than 2.5 °C. Models with different rain—snow partition-
ing schemes, however, might find different sensitivities than
what we describe here.

Additionally, model parameterization is expected to af-
fect the uncertainty in meteorological forcings. Previous re-
sults showed that three different conceptual models of the
saprolite layer did not systematically impact the simulated
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Figure 13. Elasticity (a) and sensitivity (a) of simulated hydro-
logic variables evapotranspiration (ET), change in subsurface stor-
age (dS), potential recharge (R), land surface temperature (Tg),
root zone soil moisture (6), snow water equivalent (SWE), and
streamflow ( Q) to variability in precipitation and air temperature for
WY2016. Each bar represents the average value from the Kaweah
River watershed, except streamflow measured at the Kaweah Termi-
nus dam. Elasticities were calculated using the scenarios from the
VarPConstTA experiment, and sensitivities were calculated using
the scenarios from the ConstPVarTA experiment.

groundwater response to precipitation variability (Schreiner-
McGraw and Ajami, 2020). However, the simulated MFR
depends on the subsurface permeability values assigned to
the Central Valley aquifer in the piedmont slope region. Our
hydraulic parameter values are based on drill core data and
a previously calibrated hydrologic model (Faunt, 2009), but
hydraulic conductivity values may be too high, causing over-
estimation of simulated MFR (Brush et al., 2013). Histor-
ical observations under pre-development conditions suggest
that the Kaweah River branched into several smaller distribu-
taries, some of which did not flow all the way to the his-
toric Tulare Lake (Anon, 2007; Hall, 1886). These observa-
tions suggest that our MFR estimates from the Kaweah River
are reasonable but are likely overestimated due to coarse
horizontal model resolution resulting in streambeds that are
unreasonably wide and potentially overestimated hydraulic
conductivity of the Central Valley sediments. Conversely, the
coarse resolution of the model may result in an underestima-
tion of MFR via small channels and first-order watersheds lo-
cated on the piedmont slope (Schreiner-McGraw and Vivoni,
2018).
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Figure 14. The difference between the predicted and actual
changes from combined variability in P and Ty;; for WY2011 (a),
WY2014 (b), and WY2016 (c).

In addition to the hydrologic model structure, the selection
of the study domain will affect our results, and we would
expect different sensitivities depending on the topography
and vegetation type in other regions. Despite the site-specific
nature of our study, the evergreen forest in our study wa-
tershed is broadly representative of evergreen forests in the
mountainous, western United States. In our simulations, the
weathered bedrock zone is the most hydrologically active re-
gion of the subsurface, which has been observed as a fea-
ture of the Sierra Nevada (Holbrook et al., 2014). This is
a common pattern in other mountainous regions with low-
permeability bedrock (Pfister et al., 2017; Jencso et al., 2009;
Spencer et al., 2019). Previous work in mountainous regions
with low-permeability bedrock has found that storage can
respond quickly to meteorological conditions as a result of
the low permeability and low storage capacity (Pfister et al.,
2017) and would impact the overall hydrologic response.
Further research to examine how meteorological forcing un-
certainty propagates into groundwater systems across a range
of bedrock conditions is warranted.

4 Summary

In this paper, we examine the propagation of uncertainty
in the meteorological forcings, precipitation, and air tem-
perature into groundwater recharge simulated with the inte-
grated hydrologic model, ParFlow.CLM. We use the Kaweah
River watershed as a study domain to (1) quantify ground-
water recharge from the mountain system and assess which
recharge pathway is most sensitive to meteorological vari-
ability under a range of hydroclimatic conditions (wet, dry,
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and average), (2) determine whether uncertainty contained in
common P or Ty, gridded datasets has a larger impact on the
simulated water budget, and (3) evaluate the strength of in-
teraction effects when both P and T, are uncertain. In the
course of this analysis, we perform three sets of model ex-
periments by altering forcing datasets to compare them with
our base case scenario forced with the mean P and mean
Tir for three distinct hydroclimatic conditions. These exper-
iments include variable P constant Ty;, (VarPConstTA), con-
stant P variable T (ConstPVarTA), and variable P variable
Toir (VarPVarTA).

Given that the P datasets differ in their total annual pre-
cipitation by up to 30 % and that variability in the spatial dis-
tribution of precipitation is large, one might expect that the
choice of P dataset would be more important than the choice
of T, dataset. Our analysis revealed that in a mountainous
system, the impact of uncertainty in gridded P datasets is
similar to the impact of uncertainty in available T,;, datasets.
The range of values in the simulated water budget partition-
ing for the VarPConstTA scenarios and the ConstPVarTA
scenarios is comparable. This result is attributed to the im-
pact of air temperature on snow processes. Variability in Ty
creates variability in the partitioning of precipitation into rain
and snow. This partitioning alone impacts the water budget,
where higher ratios of snow /rain result in more potential
recharge. Additionally, air temperature impacts the snowmelt
rate, and the total amount of snowmelt is a strong control of
the water budget partitioning, with higher snowmelt leading
to less ET and more potential recharge, which is discharged
from the mountain system into streamflow. We calculate the
sensitivity and elasticity of changes in the water budget to
changes in Ty and P, respectively. We find that groundwa-
ter recharge and storage changes are highly sensitive to both
changes in T,ir and P. Our results demonstrate that the high
levels of uncertainty in both Ty and P gridded datasets have
profound impacts on the water budget simulated by an inte-
grated hydrologic model where surface and subsurface pro-
cesses are coupled.

The uncertainty in the simulated water budget caused by
the separate uncertainty in the Tyi; and P forcing datasets is
largely superimposed when the model is forced with variable
T,ir and variable P. For most water budget components, the
interaction effects of T,i and P uncertainty reduce the com-
bined impact of uncertainty by less than 5 %; i.e., the vari-
ability in the simulated water budget caused by combined
changes to Tyir and P forcing is within 5 % of the sum of the
variability from individual changes. The exception to this re-
sult is found in the groundwater system. Potential groundwa-
ter recharge and changes in subsurface storage exhibit larger
interaction effects than the surface water budget. This is at-
tributed to the role of topography in controlling lateral sub-
surface flow in the shallow groundwater system. The uncer-
tainty in groundwater recharge rates is highest in regions of
convergent topography for all three experiments. However,
the uncertainty in these regions is much higher when vari-
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able T, forcings are used. This is because the topography
concentrates water in these locations, so that ET becomes
energy limited. As a result, variability in Ty, creates more
variable ET and recharge.

Finally, all of the recharge pathways present in the moun-
tainous Kaweah watershed, MAR, MBR, and MFR, are more
sensitive to changes in P than changes in T, and these
results are consistent across the three meteorological con-
ditions. It should be noted, however, that comparisons are
difficult due to different units for P and T, sensitivities.
The higher sensitivity to the P dataset is because these path-
ways largely depend on snowmelt, and precipitation is con-
centrated in the winter in high-elevation regions where the
air temperature remains well below freezing during this time
period. The MAR pathway is less sensitive to changes in
P than the other pathways, particularly when MAR is de-
rived from rainfall. Our simulations suggest that mountain
system recharge to the Central Valley aquifer is a significant
portion of the water budget regardless of the meteorologi-
cal forcing dataset used. Indeed, during an approximately av-
erage precipitation year, MFR contributes between 186 and
504 mm yr~! of recharge from the Kaweah Terminus water-
shed to the Central Valley aquifer, and a large fraction of
the Kaweah Terminus watershed water budget (9 %—72 %,
depending on the year and forcing datasets used) becomes
MFR. In our simulations, MFR is the primary pathway via
which the mountain system recharges the Central Valley
aquifer, accounting for 85 %—99 % of the total recharge. The
high uncertainty in subsurface geologic structure and param-
eters, however, creates large uncertainties in the quantities of
MBR. Overall, the results from this study highlight the im-
portance of uncertainty in forcing datasets when simulating
the groundwater response to climate change. The magnitude
of simulated changes in the groundwater recharge due to me-
teorological forcing uncertainty highlights the need for hy-
drologists to improve gridded datasets to improve our under-
standing of how meteorological variability propagates into
groundwater in topographically complex mountain systems.

Appendix A

Figure A1 displays the estimated changes to the simulated
hydrologic variables (vap ATairest)’ relative to the base case
scenario, if the impact of uncertainty from the ConstPVarTA
and VarPConstTA scenarios were additive. Figure Al dis-
plays the estimated (a) and actual (b) changes caused by the
VarPVarTA simulations, and Fig. Alc presents the difference
between the estimated and actual changes. The difference can
be interpreted as the strength of the interaction effects; i.e.,
a difference of 0.05 indicates that the interaction effects be-
tween T,ir and P increased the value of the variable, v, by
5%.
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Figure A1l. Demonstration of the method to calculate the interaction
effects between P and T,j; uncertainty using WY2016. (a) The es-
timated relative difference in the hydrologic variables evapotranspi-
ration (ET), change in subsurface storage (dS), potential recharge
(R), land surface temperature (7g), root zone soil moisture (6),
snow water equivalent (SWE), and streamflow (Q) if the effects
of air temperature and precipitation changes are linearly additive.
(b) The relative difference between the base case and each of the
VarPVarTA scenarios. (¢) The difference between the predicted and
actual changes from combined variability in P and Tyj;.
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