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Noncollinear antiferromagnetic order and effect of spin-orbit coupling in spin-1 honeycomb lattice
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Motivated by the recently synthesized insulating nickelate Ni2Mo3O8, which has been reported to have an
unusual noncollinear magnetic order of Ni2+ S = 1 moments with a nontrivial angle between adjacent spins, we
construct an effective spin-1 model on the honeycomb lattice, with the exchange parameters determined with the
help of first-principles electronic-structure calculations. The resulting bilinear-biquadratic model, supplemented
with the realistic crystal-field induced anisotropy, favors the collinear Néel state. We find that the crucial key
to explaining the observed noncollinear spin structure is the inclusion of the Dzyaloshinskii–Moriya (DM)
interaction between the neighboring spins. By performing variational mean-field and linear spin-wave theory
(LSWT) calculations, we determine that a realistic value of the DM interaction D ≈ 2.78 meV is sufficient to
quantitatively explain the observed angle between the neighboring spins. We furthermore compute the spectrum
of magnetic excitations within the LSWT and random-phase approximation, which should be compared to future
inelastic neutron measurements.
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I. INTRODUCTION

Recent experimental and theoretical advances in frustrated
magnetism, in particular, the realization of the Kitaev–
Heisenberg model [1,2] in the honeycomb lattice materials
Na2IrO3 [3], Li2IrO3 [4], α-RuCl3 [5], and H3LiIr2O6 [6] have
sparked much interest in the study of quantum magnets with
the honeycomb lattice structure. By comparison, honeycomb
materials with spin-1 moments have received relatively little
attention. Arguably, a larger value of spin makes it more
amenable to a semiclassical description, although quantum
effects are undeniably important to understand, for instance,
the gapped nature of the Haldane ground state in spin-1
chains [7,8]. At the same time, the effect of orbital degrees
of freedom and spin-orbit interactions can lead to complex
phenomena and a lack of long-range magnetic ordering in
spin-1 materials, such as in a recently reported diamond-
lattice system NiRh2O4 [9]. In the case of honeycomb spin-1
materials, the same mechanism that was identified as a source
of compasslike Kitaev interactions [2] can result in potentially
rich physics, including perhaps spin-liquid ground states. In
this paper, we set ourselves a less ambitious task and focus
on elucidating the puzzling nature of the noncollinear ground
state reported recently in a layered honeycomb lattice oxide
Ni2Mo3O8 [10], as shown in Fig. 1. While specific to this
material, the present paper has wider ramifications for the in-
terplay of frustrations and spin-orbit coupling (SOC) in spin-1
systems.

Most of the known spin-1 honeycomb lattice materials are
comprised of Ni2+ ions, with the strong Hund’s coupling
leading to spin S = 1 on each site. Similar to the spin-
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1/2 case, the vast majority of honeycomb lattice materials,
such as A3Ni2SbO6 (A = Li, Na) [11], Na3Ni2BiO6 [12],
and Li3Ni2BiO6 [13] order in the zigzag pattern depicted in
Fig. 2(f). The Néel order shown in Fig. 2(d) is also possible,
as realized, for instance, in BaNi2V2O8 [14], while the stripe
order is very rare, so far only observed in Ba2Ni(PO4)2, where
it is argued to be due to a strong interlayer exchange coupling
[15,16]. In all the aforementioned cases, the reported magnetic
order is collinear, in stark contrast to the material studied here,
Ni2Mo3O8, which was reported [10] to have a noncollinear
magnetic structure depicted schematically in Fig. 1. It is
also qualitatively different from other molybdenum oxides
with the same hexagonal space group such as Fe2Mo3O8 and
Mn2Mo3O8, which realize either a collinear antiferromagnetic
or a ferrimagnetic state [17–19].

In this paper, we show that the key to understanding the
noncollinear nature of the magnetic ordering in Ni2Mo3O8

is the Dzyaloshinskii–Moriya (DM) interaction that arises
due to SOC [20–23]. From the symmetry analysis, the DM
vectors are uniquely determined by the Moriya rules [21].
In combination with the exchange couplings computed from
first-principles density functional theory (DFT), this allows us
to reproduce the experimentally reported magnetic structure.
We further compute the generalized phase diagram, with the
angle between the two neighboring spins being a function
of the DM interaction strength and exchange parameters of
the model. Importantly, inclusion of the biquadratic spin-spin
interactions of the type (�Si · �S j )2 is necessary to both fit the
ab initio results and predict the correct noncollinear magnetic
structure.

The remainder of this paper is organized as follows. We
present an effective spin-1 model in Sec. II, analyzing the
single-ion spin anisotropy term using crystal-field theory in
Sec. III. Various competing spin configurations and their
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FIG. 1. Depiction of the NCAF state in Ni2Mo3O8 [10]. The
Ni2+ ions are represented by grey spheres. The coordinate system
is set up by projecting from the noncentrosymmetric buckled honey-
comb lattice onto a regular hexagon in the ab plane (marked by light
grey color). The two inequivalent Ni sites have either a tetrahedral
(T) or octahedral (O) oxygen coordination. On each of these two
sublattices, the spins form a collinear antiferromagnetic order with
magnetic ordering wave vector �qm = ( 2π3a , 0), where a is the side
length of the projected regular hexagon in xy plane. When moments
lie in the xz plane, as is the case in Ni2Mo3O8 [10], the angle between
the nearby T and O sites is α = θT + θO, as depicted in the lower
panel.

mean-field (MF) energies are introduced in Secs. IV and V,
followed by the details of determination of spin exchange
couplings from ab initio calculations in Sec. VI. In Sec. VII,
we compute the phase diagram of the model with and without
DM interactions, demonstrating that the latter are crucial to
reproduce the experimentally reported noncollinear magnetic
state. Then, in Sec. VIII, we perform linear spin wave theory
(LSWT) calculations in competing phases to capture the quan-
tum fluctuations around MF solutions. Finally, we conclude
with the discussion and outlook in Sec. IX.

II. MODEL

Ni2Mo3O8 crystallizes in the layered structure charac-
terized by the noncentrosymmetric hexagonal space group
P63mc [10], with the Ni2+ magnetic ions forming a buck-
led hexagonal structure in each layer shown schematically
in Fig. 1. There are two inequivalent Ni sites in this bipar-
tite structure, with alternating atoms having either octahedral
or tetrahedral coordination by oxygen ions. The magnetic
moments on these two sublattices form two interpenetrating
triangular lattices, with an angle α with each other, as de-
picted in Fig. 1, resulting in a noncollinear antiferromagnetic
(NCAF) order.

To model the spin-1 moments on Ni2+ (3d8) ions in
this material, we adopt a bilinear-biquadratic spin-1 quantum
Heisenberg model, first without taking spin-orbit coupling

(a) (b)

(c) (d)

(e) (f)Stripe
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FIG. 2. The depiction of the noncollinear antiferromagnet con-
figuration with (a) α = 0, (b) α = 90◦, and (c) α = 180◦, with α

defined as the angle between the nearest-neighbor spins at T site (red)
andO site (green). Also shown are typical collinear configurations on
the honeycomb lattice: (d) Néel state, (e) stripe state, and (f) zigzag
state.

into account:

Heff =
∑
〈i j〉

J1 �Si · �S j + K1(�Si · �S j )
2

+
∑

〈〈i j〉〉,T
J2T �Si · �S j + K2T (�Si · �S j )

2

+
∑

〈〈i j〉〉,O
J2O �Si · �S j + K2O(�Si · �S j )

2 + HA, (1)

where J1,K1 are the nearest-neighbor Heisenberg and bi-
quadratic couplings, while J2T ,K2T (J2O,K2O) describe the
second-neighbor spin-spin interactions between tetrahedral
(octahedral) sites, respectively. As we shall show below in
Sec. VI, the inclusion of biquadratic spin-spin interactions
is crucial to correctly reproduce the magnon excitation spec-
trum and to match the energy differences between the various
magnetically ordered reference states obtained from ab ini-
tio calculations. We also take into account the different
crystal-field effects on the tetrahedrally and octahedrally coor-
dinated Ni ions, which results in the effective single-ion spin
anisotropy Hamiltonian HA. We shall discuss the form of HA

in Sec. III below and in Appendix E.
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As mentioned earlier, the inclusion of the SOC in the
form of the DM interactions among the spins is essential
to reproduce the noncollinear magnetic structure. This will
be discussed in detail in Sec. VII, here we write the DM
Hamiltonian for completeness,

HDM = 1

2

∑
i j

�Di j · (�Si × �S j ), (2)

where �Di j is a vector whose direction can be determined by
Moriya’s rules [21], to be discussed in Sec. VII.

III. SINGLE-ION CRYSTAL FIELD ANALYSIS

Due to the interplay of SOC and crystal-field effects on
Ni ions, there are single-ion spin anisotropy terms in the
Hamiltonian. Because of the threefold rotation symmetry C3

in the P63mc space group, the crystal-field Hamiltonian under
Wybourne normalization is given by (see Appendix F for more
details)

Hcf = L20θ2T̂20 + L40θ4T̂40 + L43θ4T̂43, (3)

where Llm are the crystal-field parameters, θl are the Stevens
factors, and T̂lm are tensorial Stevens–Wybourne operators.
We use the point-charge model as discussed in Appendix E
which yields the following crystal field parameters:

LT
20 = +626meV, LT

40 = +307meV, LT
43 = +764meV,

LO
20 = −166meV, LO

40 = −1392meV, LO
43 = 1623meV.

(4)

While the Hamiltonian Eq. (3) acts on the components of
the orbital momentum, the spin degrees of freedom feel the
effect of anisotropies because of the SOC λ�S · �L. Estimating
the coupling constant λ ≈ −40 meV [24], as is typical for Ni
ions, we treat it as a perturbation. While the first order of the
perturbation vanishes identically, the correction to the energy
in the second-order perturbation theory is of the form

E2nd = λ2
∑
i, j

�i jS
iS j . (5)

This results in the effective single-ion spin anisotropy Hamil-
tonian

HA =
∑
T

γT
(
Szi

)2 +
∑
O

γO
(
Szi

)2
, (6)

with γT = 30.41 meV, γO = −0.53 meV (see Appendix F for
details of the derivation). The above equation would predict
the lowest energy singlet on the tetrahedral site, with the
higher-lying doublet at energy γT , however further correc-
tions in the 4th and higher orders perturbation theory (see
Appendix F) lower the crystal field energy splitting down to
γT ≈ 17 meV. While the value of the single ion anisotropy γO
we obtained is negative, i.e. favors a doublet on the octahedral
site, it should be noted that a small positive value of γO,
favouring the Sz = 0 singlet, fits the INS data equally well.
These values imply the tetrahedral sites strongly prefer to
lie in the xy plane, while the octahedral sites a have weak
preference to align along z.

IV. SPIN CONFIGURATIONS

In Ni2Mo3O8, the state we are mainly interested in is the
NCAF state shown in Fig. 1. The neutron scattering analysis
[10] shows that the moments form a coplanar structure in the
xz plane, with the x axis pointing along one of the hexagonal
bonds and the z axis being the hexagonal c axis of the crystal,
as indicated in Fig. 1. In the honeycomb lattice, the tetrahedral
(T) and octahedral (O) sites form two interpenetrating triangu-
lar sublattices. To completely characterize various spin states,
we introduce the polar angles θT and θO relative to the z axis
on each sublattice and the azimuthal angles φT and φO with
the x axis, respectively. The angle α between the neighboring
spins on the two sublattices is then given by

cosα = sin θT sin θO cos(φT − φO) + cos θT cos θO. (7)

Since the moments in the experimental NCAF phase lie in the
xz plane, the azimuthal angles are either 0 or π , and moreover
|φT − φO| = π . Furthermore, it is confirmed by the numerical
result from classical energy minimization, which is shown in
Appendix D. We shall therefore take this to be the case in
the following. From Eq. (7), it then follows that the angle α

between the two spins is

α = θT + θO, (8)

as depicted in the bottom of Fig. 1. For convenience, if α >

180◦, it is equivalent to use α′ = 360◦ − α as the angle be-
tween two spin directions. Thus it is sufficient to only consider
0◦ � α � 180◦.

While the experimental ground state of Ni2Mo3O8 is non-
collinear, it is instructive to look at the various collinear
magnetic orders obtained by setting α = 0 or α = 180◦, de-
picted in Figs. 2(a) and 2(c), respectively. In the honeycomb
lattice model, one often considers three important collinear
spin ordered states: Néel, stripe, and zigzag states, depicted in
Figs. 2(d)–2(f). As the figure illustrates, the zigzag and stripe
orders correspond to α = 0 and α = 180◦, respectively, and
one can think of noncollinear NCAF states with generic value
of α as lying in-between these two limiting cases, such as, for
instance, the special case with α = 90◦ depicted in Fig. 2(b).

We note that the experimental study in Ref. [10] reports
two possible magnetic structures, with different sizes and
directions of the magnetic moments; which we summarize in
Table I. Both structures provide an equally good fit to the neu-
tron scattering refinements, however, as we shall show below,
our theoretical analysis suggests that the experimental struc-
ture 1, with α′ = 130◦, is most likely realized in Ni2Mo3O8.

V. MEAN-FIELD ENERGY OF DIFFERENT
MAGNETIC ORDERS

Our goal is to obtain accurate estimates of the ex-
change couplings in the model Hamiltonian Eq. (1) from
first-principles calculations. To do this, we first evaluate an-
alytically the MF energies of several reference ordered states
|ψ〉, namely, the ferromagnetic (FM), Néel, stripe, and zigzag
states, by using spin-1 product states as a MF ansatz,

|ψ〉 =
∏
i

⊗|�Si〉, (9)
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TABLE I. Spin configurations and magnetic moments of the two experimental fits to the neutron scattering data on Ni2Mo3O8, inferred
from Ref. [10]. The angles θ and φ for the two sublattices are defined in the text.

θT φT MT θO φO MO α α′

Fit 1 85◦ 180◦ 1.727μB 145◦ 0◦ 1.431μB 230◦ 130◦

Fit 2 124◦ 180◦ 1.997μB 87◦ 0◦ 0.891μB 211◦ 149◦

where |�Si〉 on a given site is the maximum weight

eigenstate (i.e., spin-up eigenstate) of the operator �̂Si ·
�̂ni, projecting the spin onto the local direction �̂ni =
(sin θi cosφi, sin θi sin φi, cos θi ). Written explicitly, |�Si〉 is
given by a linear superposition

|�Si〉 = e−iφi cos2
θi

2
|1〉 + eiφi sin2

θi

2
| − 1〉

+
√
2 sin

θi

2
cos

θi

2
|0〉. (10)

By choosing different local (θi, φi ) directions, we can capture
different ordered states. For instance, the FM state is given by
[θT = θO, φT = φO], whereas the Néel state is accommodated
by [θT = θO + 180◦, φT = φO]. The resultingMF expressions
for the energies of the various reference states are as follows:

EFM = 3

2
J1 + 3

2
J2T + 3

2
J2O

+ γT

4
(cos2 θT + 1) + γO

4
(cos2 θO + 1),

ENéel = −3

2
J1 + 3

2
K1 + 3

2
J2T + 3

2
J2O

+ γT

4
(cos2 θT + 1) + γO

4
(cos2 θO + 1),

Estripe = −1

2
J1 + K1 − 1

2
J2T + K2T − 1

2
J2T + K2O

+ γT

4
(cos2 θT + 1) + γO

4
(cos2 θO + 1),

Ezigzag = 1

2
J1 + 1

2
K1 − 1

2
J2T + K2T − 1

2
J2T + K2O

+ γT

4
(cos2 θT + 1) + γO

4
(cos2 θO + 1). (11)

Because Eqs. (11) are linearly dependent, we introduce
more reference states to be able to determine the exchange
couplings uniquely (see Appendix A for more details). For
future reference, we provide here the MF expression for the
energy of the NCAF state for an arbitrary angle α between the
spins on T and O sites, as defined in Fig. 1 and in Eq. (7):

ENCAF = 1

2
J1 cosα + K1

(
3

8
cos2 α − 1

4
cosα + 3

8

)

− 1

2
J2T + K2T − 1

2
J2T + K2O

+ γT

4
(cos2 θT + 1) + γO

4
(cos2 θO + 1). (12)

VI. DFT ANALYSIS

We have performed ab initio DFT calculations on
Ni2Mo3O8 (see Appendix B for details) in various spin-

ordered states, both collinear and noncollinear, and computed
the corresponding energies. By fixing a collinear ordered state
and choosing different global rotations, we have found that
DFT captures the single-ion anisotropy (SIA) poorly—the
resulting energy differences are about 0.1 meV per site, much
less than expected from the relatively large value of γT in
Eq. (6). This is a known effect to do with the inaccuracy of
capturing crystal-field splittings and the approximate way in
which the SOC is treated in typical ab initio codes. Similarly,
the Dm interactions are not captured well at the level of DFT.
Thus, we used the DFT reference energies to determine only
six unknown parameters in Eq. (1): J1, J2T , J2O,K1,K2T , and
K2O. Substituting these ab initio energies into the left-hand
side of the MF expressions in Eq. (11) and other reference
states (see Appendix A), we use least-squares fitting to de-
termine the set of the exchange coefficients. In total, 12
reference states, and hence 11 energy differences have been
used, resulting in the excellent quality of the least-squares
fit (R2 = 0.956) shown in Fig. 3. The obtained values of the
fitting parameters are as follows:

J1 = +2.62meV, K1 = −1.13meV,

J2T = +0.35meV, K2T = −0.35meV,

J2O = +0.41meV, K2O = +0.09meV. (13)

The most important conclusion for this paper is that the
value of K1 is negative and non-negligible compared to the
Heisenberg exchange J1. The presence of such biquadratic
terms in the model Eq. (1) is important to correctly capture
the physics of spin-1 interactions, as was proven to be the case
in other 3d metals with spin-1 moments, notably iron pnic-
tides and chalcogenides. There, one also finds negative and

Neel

Zigzag

Stripe

DFT

Fit

Other collinear and noncollinear states

FIG. 3. Least-squares fitting of the mean-field energies for the
model in Eq. (1) to the ab initio DFT energies for 11 reference
magnetically ordered states (relative to the FM state energy). The
red points indicate the ab initio energies, while the blue points are
the MF energy difference with the best fitting parameters quoted in
Eq. (13).
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relatively large values of K1 from first-principles calculations
[25,26], and it turns out to be essential to correctly describe
the magnon dispersion in inelastic neutron scattering [27–30].
In the present case, we shall show that the presence of the K1

term affects the relative stability of the Néel and noncollinear
magnetic states (see Sec. VII B).

The ab initio electronic-structure calculations reveal
additional information about the magnetic properties of
Ni2Mo3O8. The magnitude of the magnetic moment remains
unchanged across the various ordered states and is dominated
by the Hund’s coupled spin contribution of 〈M̂S〉 = 1.45 μB

per Ni for both types (T, O) of Ni atoms. There is also an
orbital moment contribution, which is an order of magni-
tude smaller, 〈M̂ (T )

L 〉 = 0.18μB on the tetrahedral Ni ion and
〈M̂ (O)

L 〉 = 0.12μB on the octahedral ion (the slightly different
values are due to the difference in the crystal-field environ-
ment on the two sites). The total magnetic moment is thus
predicted to be 〈M̂J〉 = 〈M̂S〉 + 〈M̂L〉 = 1.63μB on the tetra-
hedral site and 1.57μB on the octahedral site. These values of
the moments are closer to the first of the two experimental fits
from Ref. [10] shown in Table I.

VII. RESULTS

Having estimated the spin-exchange couplings from the ab
initio calculations and the SIA from a point-charge model (see
Sec. III), we now proceed to compute the theoretical phase di-
agram as a function of these parameters, in two regimes: First
without the DM interaction using the effective spin model in
Eq. (1), and then incorporating it into the model. As we shall
demonstrate, the DM interaction is crucial to correctly capture
the NCAF state observed experimentally [10] in Ni2Mo3O8.

A. Results without DM interaction

Because γT is positive and large in Eq. (6), the moments on
tetrahedral sites prefer to lie in the xy plane, consistent with
the polar angle θT close to 90◦ in the experimental fit 1 in
Table I. For the model parameters in Eq. (13), the classical
Luttinger-Tisza method and minimization of classical energy
show that the ground state has Néel order (see Appendixes C
and D for more details). This conclusion is corroborated by
the MF calculations—indeed, by comparing the expected en-
ergies of the different magnetic states in Eq. (11) and Eq. (12),
we find that in the absence of the DM interaction, the collinear
Néel phase dominates a large portion of the phase diagram,
with both the T and O moments lying in the xy plane. This is
illustrated in Fig. 4 [the parameters in Eq. (13) are shown with
an asterisk, which lies inside the Néel phase], where we have
fixed the values of J1, J2O, K2T , K2O, γT , and γO, and show the
phase diagram as a function of the relative strength of J2T and
K1. We have set J1 > 0 since both the experiment and our ab
initio calculations indicate that the nearest-neighbor exchange
is antiferromagnetic, see Eq. (13).

Competing with the Néel state is the noncollinear state
parametrized by the relative angle α = θT + θO on the two
sublattices [see Eq. (7) and Fig. 1 for the meaning of α].
Note that the MF energy of such a noncollinear state ENCAF
in Eq. (12) is a function of θT and the relative angle α. We
determine the optimal angles α and θT by minimizing the

StripetripS eStrrippeeStr erippepeeStrripSSSS

FIG. 4. The phase diagram of the model in Eq. (1) in the (J2T −
K1) parameter space. The values J1 = 2.62 meV J2O = 0.41 meV,
K2T = −0.35, and K2O = 0.09 meV are fixed as determined from
ab initio calculations. The red asterisk corresponds to the set of
parameters (J2T = 0.35 meV, K1 = −1.13 meV) determined from ab
initio calculations in Eq. (13).

energy ∂ENCAF
∂α

= 0 and ∂ENCAF
∂θT

= 0, which results in a set of
coupled equations:

γT sin 2θT = (−2J1 − 3K1 cosα + K1) sin α,

γT sin 2θT = γO sin 2(α − θT ). (14)

Note that the stripe phase shown in Fig. 2(e) is a special case
of the NCAF state with α = π , and we find the stripe state to
be stabilized for sufficiently large J2T , provided K1 is below
�0.4J1, as shown in Fig. 4.

Our ab initio calculations indicate that K1 is negative, and
the set of exchange parameters computed from DFT (shown
with an asterisk in Fig. 4) lies very close to the boundary
between the Néel and the stripe phase. It is clear from Fig. 4
that unless the value of K1 is sufficiently large and positive
(namely, K1 > 0.39J1), which is not the case in our ab ini-
tio set of parameters, the noncollinear solution will not be
realized. The inclusion of quantum fluctuations beyond MF
theory does not alter this conclusion, as will be demonstrated
below in Sec. VIII. We therefore turn our attention to the effect
of DM interactions, which as we show below, qualitatively
changes the phase diagram.

B. The effect of DM interaction

As shown above, the Heisenberg model favors collinear
spin ordering. The noncentrosymmetric crystal structure of
Ni2Mo3O8 motivates us to consider DM interactions arising
from SOC.While it will not affect the energies of the collinear
spin configurations such as the Néel, stripe, or zigzag states,
the DM interaction can potentially lower the energy of the
noncollinear states.

Consider first the DM interaction between spins on the
nearest sites O and T . In a noncentrosymmetric honeycomb
lattice, there is only one mirror plane that includes both sites,
which is perpendicular to the ab plane. From Moriya’s rules,
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i

j

FIG. 5. The DM vectors for nearest-neighboring bonds of non-
centrosymmetric honeycomb lattice in xy plane.

the vector �DOT should be perpendicular to this mirror plane,
which means that �DOT lies in the ab plane, and is perpendic-
ular to the bond direction �OT . By the C3 rotational symmetry
of the lattice, we can obtain the vectors �Di j for all nearest-
neighbor sites, as shown in Fig. 5, which should all have the
same magnitude | �Di j | = D.

Before computation of the energy by using spin-1 product
states, we first perform the minimization to the classical en-
ergy under the model parameters in Eq. (13) (see Appendix D
for more details), and it shows that the ground state is in the
Néel phase for a small DM strength D, and it becomes NCAF
state after D being larger than a critical value DC ≈ 1.18J1.
Thus, in the following discussion, we only consider the com-
petition between Néel and NCAF phases, and ignore other
states whose classical energies are higher.

At the expected energy level, the average energy per site of
the variational NCAF state is

E ′
NCAF = 1

2J1 cosα + K1
(
3
8 cos

2 α − 1
4 cosα + 15

8

)
− 1

2J2T + 5
2K2T − 1

2J2O + 5
2K2O

−D(sin θO cosφO cos θT − sin θT cosφT cos θO)

+ 1
4γT (cos

2 θT + 1) + 1
4γO(cos

2 θO + 1), (15)

where, as before, α = θT + θO is the angle between the spins
on the tetrahedral and octahedral sites, as indicated in Fig. 1.
Under the assumption that both spins lie in the plane contain-
ing the O–T bond, as realized in the experiment (|φT − φO| =
π in our notation), the DM term results in the energy contri-
bution:

EDM = D cosφT sin α. (16)

To minimize this energy we choose, without loss of generality,
φT = 180◦, which corresponds to the experimental results in
Table I. The energy of the NCAF ordered state then becomes

E ′
NCAF = 1

2J1 cosα + K1
(
3
8 cos

2 α − 1
4 cosα + 3

8

)
− 1

2J2T + K2T − 1
2J2O + K2O − D sin α

+ 1
4γT (cos

2 θT + 1) + 1
4γO(cos

2(α − θT ) + 1).

(17)

DCDC

Exp.1

FIG. 6. The optimal value of angle α corresponding to the min-
imum NCAF energy as a function of DM strength D, with the
exchange parameters fixed at the ab initio values in Eq. (13). The
dashed lines corresponds to the experimental value of α′ = 130◦,
achieved at D ≈ 2.35 meV.

By minimizing this energy with respect to the variational
parameter α and θT , we thus obtain the optimal value of α for
a given D [it is clear from Eq. (17) that it suffices to consider
D > 0, since 0 � α � π ]. The resulting optimal angle as a
function of the DM interaction strength D is shown in Fig. 6.
It shows that for D less than a critical value of Dc = 1.06J1 ≈
2.78 meV, the Néel state is the ground state, and for larger
values of the DM interaction, a first-order phase transition
into the NCAF state takes place, with angle α jumping to a
value α � 124.7◦. Note that the critical value of Dc results in
the angle close to the experimentally reported α′ = 130◦ in
Table I.

So far, we have fixed the exchange parameters of the
Hamiltonian to be those from the first-principles calculations
in Eq. (13) and only varied the DM interaction strength D.
Now, we relax the exchange parameters and investigate the
phase diagram as a function of J2T /J1 and D in Fig. 7(a). We
see that the NCAF phase wins over the Néel phase provided
J2T is sufficiently large, and the angle α varies continuously
within the NCAF phase, shown as a false color in Fig. 7.
A similar conclusion is reached when we fix J2T to its ab
initio value and study the phase diagram as a function of the

(a) (b)

FIG. 7. (a) The phase diagram as a function of parameters D and
J2 with the remaining exchange couplings fixed at the ab initio val-
ues listed in Eq. (13) and with fixed effective anisotropy parameters
(γT = 30.41, γO = −0.53). The false color denotes the optimized
value of angle α. (b) The phase diagram as a function of parameters
D and K1, with the remaining exchange couplings fixed at the ab
initio values in Eq. (13).

014405-6



NONCOLLINEAR ANTIFERROMAGNETIC ORDER AND … PHYSICAL REVIEW MATERIALS 6, 014405 (2022)

biquadratic interaction K1, plotted in Fig. 7(b). In the latter
case, the NCAF phase can be stabilized at an arbitrary value
of K1 (including K1 = 0), provided D is sufficiently large.
Conversely, a large value of K1 > 0.39J1 favors the NCAF
phase even in the absence of the DM interaction—the same
conclusion reached earlier in Sec. VII A (see Fig. 4).

In Figs. 7(a) and 7(b), the optimized angle αopt, shown as
a false color, corresponds to the minimum NCAF energy un-
der given D. This optimal angle decreases from 180◦ [which
corresponds to the collinear stripe phase, see Figs. 2(c) and
2(e)] down to 90◦ as D increases, as expected since the larger
DM interaction favors the noncollinear ordered state.

VIII. QUANTUM FLUCTUATIONS AROUND MEAN FIELD

In this section, we investigate the effect of quantum fluc-
tuation around the MF solution for the ordered states. We
perform LSWT calculations to compute the contribution of
the magnon zero-point energy to the Néel and NCAF states,
whose competition in Ni2Mo3O8 is the principal goal of this
paper. Because LSWT can only handle the bilinear spin terms,
first we approximate the biquadratic-bilinear model to an ef-
fective Heisenberg model, which we then treat at the level of
LSWT.

A. Effective Heisenberg model

Unless one is interested in quadrupolar spin ordering,
which is not the case in Ni2Mo3O8, it is often sufficient to ap-
proximate the biquadratic terms (�Si · �S j )2 by a MF decoupling

J �Si · �S j + K (�Si · �S j )
2 ≈ Je(�Si · �S j ) − K〈�Si · �S j〉2, (18)

whereby one obtains an effective Heisenberg model with
an effective spin exchange Je = J + 2K〈�Si · �S j〉. However,
this does not work well in the case of noncollinear ordering
because the MF energy of the right-hand side in Eq. (18),

〈Je(�Si · �S j ) − K〈�Si · �S j〉2〉 = J cosαi j + K cos2 αi j, (19)

is far from the expectation value of the energy of the left-hand
side computed quantum-mechanically for spin-1 objects,

〈J �Si · �S j + K (�Si · �S j )
2〉

=
(
J − K

2

)
cosαi j + K

4
cos2 αi j + 5

4
K, (20)

TT

O O

(a) (b)

-T

-O

FIG. 8. The depiction of the effective Heisenberg model for
(a) Néel state and (b) NCAF state. The spins in the sketch of NCAF
state are used for showing the effective model clearly, however, we
should notice that the spins of NCAF state are in xz plane.

except for when the two spins are alligned ferromagnetically
(αi j = 0).

Instead, we approximate the spin-spin interaction as

J �Si · �S j + K (�Si · �S j )
2 ≈ Je(�Si · �S j ) − K〈�Si · �S j〉2 + f (K ),

(21)
with a constant f (K ) to be determined by requiring that the
expectation values of the energy on the two sides of the above
equation are equal:

Je〈�Si · �S j〉 − K〈�Si · �S j〉2 + f (K ) = 〈J �Si · �S j + K (�Si · �S j )
2〉.
(22)

This yields an effective Heisenberg exchange coupling

Je(αi j ) = J + (
5
4 cosαi j − 1

2

)
K (23)

and f (K ) = 5/4K . Notice that the parameters of the resulting
model explicitly depend on the angle αi j between the spins
in the ordered state. For example, for the Néel state shown in
Fig. 8(a), the effective model reads

He-int
Néel =

∑
〈i j〉

Je1 �Si · �S j +
∑

〈〈i j〉〉,T
Je2T �Si · �S j +

∑
〈〈i j〉〉,O

Je2O �Si · �S j,

(24)
with the effective coupling constants given by

Je1 = J1 − 7
4K1, Je2T = J2T + 3

4K2T , Je2O = J2O + 3
4K2O.

(25)

Similarly, the effective spin-bilinear Hamiltonian for the
NCAF state shown in Fig. 8(b) takes the form

He-int
NCAF =

∑
〈T,O〉,〈−T,−O〉

J1+ �Si · �S j +
∑

〈T,−O〉,〈O,−T 〉
J1− �Si · �S j +

∑
〈〈T,T 〉〉

JTF �Si · �S j +
∑

〈〈−T,−T 〉〉
JTF �Si · �S j

+
∑

〈〈T,−T 〉〉
JTA �Si · �S j +

∑
〈〈O,O〉〉

JOF �Si · �S j +
∑

〈〈−O,−O〉〉
JOF �Si · �S j +

∑
〈〈O,−O〉〉

JOA �Si · �S j,+
∑
〈i j〉

�Di j · (�Si × �S j ), (26)

where −T corresponds to the tetrahedral sites with the spin
direction (θT + π, φT ) [denoted by blue arrows in Fig. 8(b)]
and −O denotes the octahedral site with the spin pointing
along (θO + π, φO) [denoted by magenta arrows in Fig. 8(b)].
Thus, the price paid for writing the effective Heisenberg
model is that the effective spin exchange couplings become

anisotropic. The total number of effective coupling constants
thus increases from three to six, compared to the Néel state,
with the values given by

J1+(θT , θO) = J1 + K1
(
5
4 cos(θT + θO) − 1

2

)
,

J1−(θT , θO) = J1 + K1
(− 5

4 cos(θT + θO) − 1
2

)
,
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JTF = JT + 3
4KT , JTA = JT − 7

4KT ,

JOF = JO + 3
4KO, JOA = JO − 7

4KO. (27)

B. Linear spin wave theory

Since the LSWT is the large-S expansion around the
ordered state, it is convenient to choose the local spin quanti-
zation axis zi on each site along the direction of the spin in the
given state. In this local frame, the Holstein–Primakoff (HP)
transformation of the spin operators is given by the standard
expressions

s+i =
√
2Sb, s−i =

√
2Sb†, szi = S − b†b. (28)

The original spin operators Si in the laboratory frame are
related to these local spin operators si by a rotation in the xz
plane as follows:

Sxi = cos θi s
x
i − sin θi s

z
i , Syi = syi ,

Szi = sin θi s
x
i0 + cos θi s

z
i . (29)

The Heisenberg interaction, expressed in terms of the HP
bosons, thus becomes

�Si · �S j = S2 cosαi j − S cosαi j (b
†
i bi + b†jb j )

+ S

2
(1 + cosαi j )(b

†
i b j + bib j + H.c.)

+
√
S

2
sin αi j (bi − bj + H.c.), (30)

and similarly for the DM interaction. After HP transformation,
the effective Hamiltonian in momentum space can be written
as

H = E0 + EC + Hlin[b
†, b] +

∑
�k

ψ
†
�k H (�k)ψ�k, (31)

where E0 is the MF energy, EC is the term from commutation
relation when we construct bosonic Nambu representation
written in terms of ψ�k = [bT,�k, bO,�k, b

†
T,−�k, b

†
O,−�k]

ᵀ, where bT
and bO are annihilation operators at T andO sites, respectively.
The explicit form of the matrix H (�k) is shown in Appendix G.
Above, Hlin is the part of the Hamiltonian linear in the boson
creation/annihilation operators, which we ignore as it does
not conserve the number of bosons (magnons). Physically,
this term appears when the reference magnetic state is not
the saddle point of the Hamiltonian, which may happen in the
NCAF state for technical reasons to do with approximating the
biquadratic spin interaction via an effective Heisenberg term.

The last term in Eq. (31), after the Bogoliubov transfor-
mation, becomes diagonal in the Bogoliubov operator basis,
resulting in the zero-point fluctuation contribution to the en-
ergy of an ordered state,

ELSW = E0 + EC + 3
√
3

4(2π )2
∑
i

∑
�k∈BZ

Ei(�k), (32)

where Ei(�k) labels the positive eigenenergies of H (�k) and
the sum is over all the magnon bands. We perform the linear
spin wave calculation for the two competing states: Néel and
NCAF, see Appendix G for details.

(a)

(b)

FIG. 9. (a) Energy of Néel and NCAF state as functions of DM
strength D. Solid red (green) line corresponds to Néel (NCAF) states
from LSWT. Dashed red (green) line corresponds to the MF energy
of Néel (NCAF) states. (b) Angle α between T and O sites at dif-
ferent D. The dotted (dashed) line is from LSWT (MF). The orange
region corresponds to Néel phase, where α = 180◦, whereas α is D
dependent in the blue NCAF phase.

C. LSWT result

Since there is no coupling between the layers in our model
(it is believed to be very small in Ni2Mo3O8 [10]), our LSWT
calculations are effectively two-dimensional. We note that the
energy of the NCAF state depends on both angles α and
θT . Under the fixed anisotropy parameters (see Sec. III) and
exchange couplings determined from ab initio calculations
(Sec. VI), we vary the strength of the DM interaction D and
optimize the angles α and θT to obtain the minimum energy
of the NCAF state.

The resulting phase diagram is shown in Fig. 9(a). The
energy of the Néel (NCAF) state is represented by solid red
(green) line, respectively. For comparison, the MF energies
of these two states are represented by the dashed lines of the
same colors. After we consider the zero-point fluctuation, the
energies of both the Néel and NCAF states decrease compared
with the MF result. The phase boundary between the two
phases DLSW

c ≈ 1.175J1 changes slightly from the MF result
DMF

c ≈ 1.06J1, which does not qualitatively affect any of our
conclusions. In Fig. 9(b), we plot the optimal angle α between
the spins on the T and O sites inside the NCAF phase as a
function of DM interaction D, with the dotted (dashed) line
corresponding to the LSWT (MF) results, respectively. Of
course, the angle α = 180◦ for D < Dc inside the Néel phase,
so the plotted value of α is only meaningful on the right-hand
side of the boundary where the NCAF phase becomes stable.
Right at the phase boundary, the angle α ≈ 115◦, and its value
decreases almost monotonically with increasing D, except for
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FIG. 10. Calculated magnetic excitation spectra using either
(a) linear spin wave theory treating only the spin degree of freedom
or (b) treating the full crystal field effects in a random phase approx-
imation calculation.

an anomaly near D/J1 = 1.7, which is due to the approxima-
tion of the biquadratic term as an anisotropic bilinear term as
explained in the previous section.

In Fig. 10, we present the calculated excitation spectra
using the spin-wave theory outlined above in a full lattice
(with four T and four O sites per unit cell, which contains two
honeycomb layers, which doubles the number of bands in our
LSWT for a single layer). The upper panel (a) shows the cal-
culated magnetic excitation spectrum with a spin-only LSWT
using the SIA parameters γT and γO given in Sec. III and the
DFT-derived exchange couplings from Eq. (13). The lower
panel [Fig. 10(b)] shows the a calculation under the random
phase approximation (RPA), which includes the full crystal
field Hamiltonian. The color represents the neutron scattering
intensities and an instrument resolution broadening of 1 meV
was applied. In both cases, the DM interaction strength was
fixed at D = 3.1 meV (just above Dc = 1.175J1). The SPINW
[31] program was used for the calculations in Fig. 10(a) while
MCPHASE [32] was used for those in Fig. 10(b).

Both calculations give two bands of excitations around 5
and 25 meV. The lower energy band is from the octahedral
sites, while the higher energy excitations is associated with
the tetrahedral sites, which have a larger SIA parameter γT in
Eq. (6). The upper band dispersion is similar in the two calcu-
lations albeit the modes have different relative intensities, but
the lower bands differ qualitatively. The differences arise due

to the way the two calculation methods treat the SIA, with the
RPA theory being more accurate, as described in Appendix H.

IX. DISCUSSION

In this paper, we have proposed an effective spin model
including the nearest-neighbor DM interaction to explain the
noncollinear magnetic ordered state observed in a noncen-
trosymmetric honeycomb lattice material Ni2Mo3O8 [10].
The reason for introducing the DM interaction is that it
favors two neighboring spins to be perpendicular to each
other, and competes with the bilinear �Si · �S j and biquadratic
(�Si · �S j )2 terms, which usually favor two neighboring spins
to be collinear [unless the biquadratic term is positive and
large, see the discussion around Eq. (14), which is however
not realized in Ni2Mo3O8]. We show that without the DM
interaction, the purely bilinear or bilinear-biquadratic model
cannot reproduce the noncollinear magnetic order observed in
Ni2Mo3O8 [10].

We further argue that considering the nearest-neighbor
DM interaction is sufficient. From Moriya’s rules, the second-
neighbor DM vector between two tetrahedral (T) or two
octahedral (O) Ni spins lives in the plane which bisect the
T–T (O–O) bond and is perpendicular to it. However, in both
collinear states and NCAF states, the spins at next-nearest
neighbor are collinear. As a result, the next-nearest-neighbor
DM interaction does not affect their MF energies and gives
only a small correction to the LSWT. It is furthermore difficult
to imagine the spins in the same sublattice (T or O) to be
noncollinear, given that the crystal-field environment and the
magnetic anisotropy are the same on the two sites, corroborat-
ing the above conclusion that the next-nearest-neighbor DM
interaction, even if present, does not contribute to the energies
of the two competing states (Néel and NCAF). As for the
third-neighbor and longer-range DM interactions, those are
expected to be negligible, given the large separation between
the magnetic moments.

In this paper, we also considered the effect of SIA, follow-
ing the detailed crystal field analysis (see Sec. III). Although
the crystal-field environments on T and O sites are different,
it does not lead to noncollinear spin order. Moreover, because
the crystal-field parameter γT � γO, the T spins prefer to lie
close to the xy plane and in the absence of the DM interaction,
remain collinear with the O spins.

In the experimental paper [10], several tentative scenarios
were advanced to explain the noncollinear magnetic ordering
in Ni2Mo3O8. One of them was a bond-dependent Kitaev-like
interaction, however, for it to be realized, the usual pathway is
in systems with an edge-shared octahedral environment [33],
which is not the case in Ni2Mo3O8. Another possibility is
that of a spiral state, which typically requires the exchange
couplings J1, J2, J3 up to third-nearest neighbors to all have
similar magnitudes. This is, however, not the conclusion we
have reached from our ab initio calculations, where we find J3
(∼10−2 meV) to be negligible. Finally, it was proposed [10]
that bond-dependent anisotropic interactions, through ligand
distortion, may be the cause of the noncollinear magnetic
order to appear in Ni2Mo3O8. While we cannot exclude this
latter mechanism, we would argue that the DM interaction
provides a more natural explanation and, as our results demon-
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strate (see Figs. 4 and 7), the optimal value of angle α between
neighboring spins is predicted to be close to the experimental
value α′ = 130◦ [10].

In summary, we have demonstrated that the NCAF or-
dered states in Ni2Mo3O8 can be successfully understood as
stemming from the first-neighbor DM interaction. Using a
combination of first-principles electronic structure and prod-
uct states’ expected energy calculations, we have estimated
the values of the exchange couplings, established the expected
energy phase diagram, and found that a realistic value of DM
interaction D > Dc ≈ 2.78 meV is sufficient to stabilize the
noncollinear magnetic order with the angle αopt between the
neighboring spins within a few degrees of the experimental
value α′ = 130◦.

We have performed the linear spin-wave calculations to
include the fluctuations around the saddle-point solutions,
and found that the inclusion of zero-point energies does not
qualitatively affect the main conclusion, only shifting the crit-
ical value of DM interaction imperceptibly. We further make
predictions for the magnon spectra inside the noncollinear
magnetic phase, which should be compared to future inelastic
neutron scattering data on Ni2Mo3O8. Our calculations also
indicate that when choosing between the two neutron scatter-
ing refinement fits reported in Ref. [10] and summarized in
Table I, the first fit with the angle α′ = 130◦ receives support
from both the ab initio DFT results and our theoretical calcu-
lations.

The present paper opens an exciting avenue for investi-
gating frustrated spin-1 systems with spin-orbit induced DM
interactions. Application of the present ideas to different ma-
terials and lattices other than the honeycomb certainly deserve
further attention.
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APPENDIX A: MEAN FIELD ENERGY
OF VARIOUS STATES

The total Hamiltonian for spin S = 1 is

Heff =
∑
〈i j〉

J1 �Si · �S j + K1(�Si · �S j )
2

+
∑

〈〈i j〉〉,T
J2T �Si · �S j + K2T (�Si · �S j )

2

+
∑

〈〈i j〉〉,O
J2O �Si · �S j + K2O(�Si · �S j )

2

+
∑
〈i j〉

�Di j · (�Si × �S j )

+
∑
i,T

γT
(�Szi )2 +

∑
i,O

γO
(�Szi )2, (A1)

where the indices T and O denote the tetrahedral and octahe-
dral Ni sites, respectively.

Based on the MF ansatz in Eqs. (9) and (10), we consider
the interactions between two spins �Si and �S j parametrized by
polar and azimuthal angles θi, φi, and θ j , φ j , respectively.
The MF expressions of the terms in the Hamiltonian take the
following form:

〈�Si · �S j〉 = cosαi j,

〈(�Si · �S j )
2〉 = 1

4 cos
2 αi j − 1

2 cosαi j + 1
4 + 1,

〈�Si × �S j〉 = sin θi sin φi cos θ j − sin θ j sin φ j cos θi

+ sin θ j cosφ j cos θi − sin θi cosφi cos θ j

+ sin θi cosφi sin θ j sin φ j

− sin θi sin φi sin θ j cosφ j,〈(�Szi )2〉 = 1
2 cos

2 θi + 1
2 , (A2)

where αi j is the angle between two spin directions, cosαi j =
sin θi sin θ j cos(φi − φ j ) + cos θi cos θ j . For simplicity, we get
rid of a constant 1 in 〈(�Si · �S j )2〉 term. With these MF results,
we can obtain the average energy per site of the FM, Néel,
stripe, zigzag, and NCAF state quoted in Eqs. (11) and (15):

E∗
FM = 3

2J1 + 3
2J2T + 3

2J2O,

E∗
Néel = − 3

2J1 + 3
2K1 + 3

2J2T + 3
2J2O,

E∗
stripe = − 1

2J1 + K1 − 1
2J2T + K2T − 1

2J2T + K2O,

E∗
zigzag = 1

2J1 + 1
2K1 − 1

2J2T + K2T − 1
2J2T + K2O,

E∗
NCAF = 1

2J1 cosα + K1
(
3
8 cos

2 α − 1
4 cosα + 3

8

)
− 1

2J2T + K2T − 1
2J2O + K2O

−D(sin θO cosφO cos θT − sin θT cosφT cos θO),

(A3)

where we use the asterisk (*) to label the energy without SIA.
The contribution to the energy from the anisotropy term is

EA(θT , θO) = 1
4γT (cos

2 θT + 1) + 1
4γO(cos

2 θO + 1). (A4)

We notice that the SIA is poorly captured by our ab initio
DFT calculation, thus we can only solve six exchange param-
eters J1, J2T , J2O, K1, K2T , and K2O. The first four of the above
equations are linearly dependent, and we therefore need at
least three other noncollinear states to be able to solve for
these six parameters. To make the result more accurate, we
have increased the number of the reference states to 12 and
perform least-squares fitting to obtain the exchange parame-
ters. The other eight states are as follows.

First, we consider two collinear states which have FM
order in T (O) sites and antiferromagnetic order in O (T) sites,
as shown in Fig. 11(a). The energy expressions are

E∗
1 = 3

4K1 + 3
2J2T − 1

2J2O + K2O,

E∗
2 = 3

4K1 + 3
2J2O − 1

2J2T + K2T . (A5)

Then we rotate the spins at sublattice with FM order by 90◦;
there are two new collinear states:

E∗
3 = 3

8K1 + 3
2J2T − 1

2J2O + K2O,

E∗
4 = 3

8K1 + 3
2J2O − 1

2J2T + K2T . (A6)
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(a) (b)

T T

OO

FIG. 11. The depiction of (a) a collinear state with ferromagnetic
order in T sites and antiferromagnetic order in O sites and (b) a
noncollinear state with ferromagnetic order in T sites and 120◦ an-
tiferromagnetic order in O sites

Besides that, we introduce two noncollinear analogues of the
Néel and zigzag states, obtained by rotating the spins on one
of the sublattices (say, blue) in Figs. 2(d) and 2(f) respectively,
such that the spins on the red and blue sublattices are perpen-
dicular to each other. The MF energies of these two states are

E∗
5 = 3

8K1 + 3
2J2T + 3

2J2O,

E∗
6 = J1 + 1

8K1 + 1
2J2T + 1

4K2T + 1
2J2O + 1

4K2O. (A7)

Finally, we consider two noncollinear states with FM order in
T (O) sites and 120◦ antiferromagnetic order in O (T) sites, as
shown in Fig. 11(b). The MF energies of these two states are

E∗
7 = 3

8K1 + 3
2J2T − 3

4J2O + 27
32K2O,

E∗
8 = 3

8K1 + 3
2J2O − 3

4J2T + 27
32K2T . (A8)

For all 12 states, we avoid the DM interaction, since DFT
has difficulty accurately capturing those. With MF and DFT
results of these reference states, we perform least-squares
fitting to minimize the discrepancies between the analytical
and ab initio energy differences of the references states:∑

i

(
(E∗

i (J,K ) − E∗
FM(J,K )) − (

EDFT
i − EDFT

FM

))2
(A9)

under |Ji| > |Ki|, JTF − 2JTA < 0 and JOF − 2JOA < 0;
the last two are weak constrains that stabilize the
collinear antiferromagnetic ordered spins in two sublattices,
JTF , JTA, JOF , JOA are effective Heisenberg exchange cou-
plings introduced in Sec. VIII. This yields the values of the
exchange parameters J1,K1, J2T ,K2T , J2O, and K2O listed in
Eq. (13) in the main text with a very good fit-quality factor
R2 = 0.956. The comparison between the ab initio and the
resulting model energies is shown in Fig. 3 in the main text.

APPENDIX B: DETAILS OF AB INITIO ANALYSIS

We performed the first-principles DFT+U [34] calcula-
tions as implemented in the VASP package [35] using the
projector augmented wave method [36], making use of gen-
eralized gradient approximations of Perdew-Burke-Ernzerhof
(GGA-PBE) for exchange-correlation potential [37]. To ex-
tract the parameters of the effective spin model, we considered
various possible magnetically ordered states, including FM,
Néel, stripe, and zigzag, as well as the noncollinear NCAF
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FIG. 12. The total electronic density of state (black line) in the
Néel state of Ni2Mo3O8. The partial contributions from NiT (green)
and NiO (blue) electrons are also shown. The calculation was per-
formed within DFT, with the Hubbard parameter U = 0. A clear
band gap appears at the chemical potential, indicating that the mag-
netically ordered compound is a band insulator.

state. The base unit cell consisting of two stacked layers, with
two Ni atoms per layer is sufficient to describe the the FM
and Néel states. A 2 × 1 × 1 supercell is used to describe the
stripe and zigzag states, while a 2 × 2 × 1 supercell is used to
describe the NCAF state. We have performed the calculations
without and with the Hubbard interaction U = 3 eV. The
moments reported in Sec. VI in the main text were calculated
for U = 0. On increasing the value of the Hubbard U to
U = 3 eV, the total moments increased by about 0.2μB. The
rest of our conclusions remain unchanged.

The density of states plots reveal the insulating nature of
the compound, as shown in Fig. 12. There is an insulating gap
even at HubbardU = 0, which widens further withU = 3 eV.
This suggests that Ni2Mo3O8 is a Slater insulator, with the gap
opening due to magnetism, rather than due to the Hubbard
on-site repulsion.

APPENDIX C: CLASSICAL GROUND STATE
WITHOUT SPIN-ORBIT COUPLING

In the main text, we consider the competition between two
states—the Néel phase and the NCAF, see Fig. 4. This is
justified a posteriori by comparing the energies of the two
phases both at the MF level (Sec. V) and with zero-point
fluctuations taken into account (Sec. VIII). Here, we provide
an alternative, unbiased proof that the Néel antiferromagnet
is indeed the classical ground state of the model in Eq. (1),
before the DM interactions are taken into account.

We apply the classical Luttinger–Tisza method [38,39] to
find the ground state of our model under the fitting parameters
in Eq. (13), without DM interaction. We also ignore the SIA,
since it lies beyond the classical approach described below.

First, we notice that the biquadratic spin interaction can be
transformed into a quadrupolar interaction

(�Si · �S j )
2 = 1

2
�Qi · �Qj − 1

2
�Si · �S j + 1

3S
2(S + 1)2, (C1)

where the five linearly independent quadrupolar components
are ⎛

⎜⎜⎜⎜⎝
Qx2−y2

Q3z2−r2

Qxy

Qyz

Qzx

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

(Sx )2 − (Sy)2
1√
3
[3(Sz )2 − S(S + 1)]
SxSy − SySx

SySz − SzSy

SzSx − SxSz

⎞
⎟⎟⎟⎟⎠. (C2)
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The quadrupolar and dipolar components are not indepen-
dent and satisfy a strong constraint (�Si )2 + ( �Qi )2 = 4

3 on each
site. In order to account for the possibility both dipolar and
quadrupolar order, we introduce a constant 0 � η � 1 (where
η = 1 corresponds to a purely dipolar state), in terms of which
we have two constraints:

1

β2
1

∑
i,T

(�Si )2 + 1

β2
2

∑
i,O

(�Si )2 = η
N

2

(
1

β2
1

+ 1

β2
2

)
,

1

β2
3

∑
i,T

( �Qi )
2 + 1

β2
4

∑
i,O

( �Qi )
2 =

(
4

3
− η

)
N

2

(
1

β2
3

+ 1

β2
4

)

(C3)

where β1, β3 (and β2, β4) are any real, nonzero numbers that
capture the relative contribution of dipolar and quadrupolar
moments on the T site (O site), respectively. Here N is the
total number of sites. Introducing the Lagrange multipliers
to enforce the above constraints on average, we obtain the
following Lagrangian function, to be minimized:

L =
∑
〈i j〉

(
J1 − K1

2

)
�Si · �S j + K1

2
( �Qi · �Qj )

2 + 4

3
K1

+
∑

〈〈i j〉〉,T

(
J2T − K2T

2

)
�Si · �S j + K2T

2
( �Qi · �Qj )

2 + 4

3
K2T

+
∑

〈〈i j〉〉,O

(
J2O − K2O

2

)
�Si · �S j + K2O

2
( �Qi · �Qj )

2 + 4

3
K2O

− λS

(
1

β2
1

∑
i,T

(�Si )2 + 1

β2
2

∑
i,O

(�Si )2 − η
N

2

(
1

β2
1

+ 1

β2
2

))

− λQ

(
1

β2
3

∑
i,T

( �Qi )
2 + 1

β2
4

∑
i,O

( �Qi )
2

−
(
4

3
− η

)
N

2

(
1

β2
3

+ 1

β2
4

))
. (C4)

The minimum (more generally, saddle point) of this function
satisfies the equations

∂L
∂λS

= 0,
∂L
∂λQ

= 0,
∂L
∂Sα

i

= 0,
∂L
∂Qγ

i

= 0, (C5)

where the index α = x, y, z labels the spin components on a
given site and γ = x2 − y2, 3z2 − r2, xy, yz, zx labels the cor-
responding quadrupolar components. The first two equations
enforce the two constraints in Eq. (C3). The other equations
have the form of eigenvalue equations

M̂1(�k)
(
ST,�k/β1

SO,�k/β2

)
= 2λS

�k

(
ST,�k/β1

SO,�k/β2

)
,

M̂2(�k)
(
QT,�k/β1

QO,�k/β2

)
= 2λQ

�k

(
QT,�k/β1

QO,�k/β2

)
, (C6)

with matrices M̂1 and M̂2 defined as follows:

M̂1(�k) =
(

β2
1

(
J2T − K2T

2

)
g�k β1β2

(
J1 − K1

2

)
f�k

β1β2
(
J1 − K1

2

)
f−�k β2

2

(
J2O − K2O

2

)
g�k

)
,

M̂2(�k) =
(

β2
3
K2T
2 g�k β3β4

K1
2 f�k

β3β4
K1
2 f−�k β2

4
K2O
2 g�k

)
, (C7)

where

f�k = e−i( 12 kx+
√
3
2 ky ) + eikx + e−i( 12 kx−

√
3
2 ky ),

g�k = 2 cos

(
3

2
kx −

√
3

2
ky

)
+ 2 cos

√
3ky

+ 2 cos

(
−3

2
kx −

√
3

2
ky

)
.

In terms of the eigenvalues in Eq. (C6), the classical energy
becomes

ε(�k, �k′) = λS
�kη

N

2

(
1

β2
1

+ 1

β2
2

)
+ λ

Q
�k′

(
4

3
− η

)
N

2

(
1

β2
3

+ 1

β2
4

)
+ ε0, (C8)

where λS
�k , λ

Q
�k′ are the lowest eigenvalues of M̂1(�k), M̂2(�k) and

ε0 is a constant that only depends on the coupling constants.
The classical energy Eclass = mink,k′ (ε) is thus determined

by minimizing λS
�k (

1
β2
1

+ 1
β2
2
), λ

Q
�k′ (

1
β2
3

+ 1
β2
4
) with respect to the

ordering wave vectors �k and �k′ that parametrize the dipolar
and quadrupolar spiral order, respectively. The next step is
finding these wave vectors and the constants βi that enter
the constraints Eq. (C3). Without loss of generality, we can
set β1 = β3 = 1, then β2 and β4 satisfy the relations β2 =
|ψS1|/|ψS2| and β4 = |ψQ1|/|ψQ2|, expressed in terms of the
eigenvectors (ψS1, ψS2), (ψQ1, ψQ2) of Eq. (C6). After con-
sidering these two constrains, we finally obtain

�k = (0, 0), �k′ = (0, 0), β2 = 0.93, β4 = 1.39, (C9)

signalling an intraunit cell order. Moreover, we find η = 1,
which corresponds to a pure magnetic (dipolar) state. The two
components of the eigenvector (ψS1, ψS2) have opposite sign
on sites T and O, respectively, which means that the ground
state has Néel order with the angle α = 180◦ between the two
spins.

We note that while the Luttinger-Tisza method does not
allow us to tackle the SIA explicitly, the effect of crystal fields
in Eq. (6) with a large positive γT � J1 � |γO| is only to keep
the Néel staggered moment in the xy plane. It is only once
the effect of DM interactions is considered (Sec. V B) that a
noncollinear order with the angle α �= 180◦ between the T and
O sites develops, as observed experimentally in Ni2Mo3O8.

APPENDIX D: CLASSICAL GROUND STATE
WITH SPIN-ORBIT COUPLING

In this Appendix, we find the ground state after including
SOC—both the DM interaction and the SIA terms. Instead
of the Luttinger–Tisza method, here we use classical spin
configurations and minimize the classical energy, because the
constraint of βi in Appendix C becomes too complicated when
spins on different sublattices and their components become
nonequivalent.

We set the spins in each sublattice, forming a general
coplanar spiral state, which is given by

�ST,i = R(θT , φT )�S′
T,i, �SO,i = R(θO, φO)�S′

O,i, (D1)

R(θ, φ) =
⎛
⎝cos θ cosφ − sin φ sin θ cosφ

cos θ sin φ cosφ sin θ sin φ

− sin θ 0 cos θ

⎞
⎠, (D2)
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FIG. 13. The classical phase diagram as a function of the DM
interaction strength D. The classical ground state is the Néel phase
for small D. For larger D > DC = 1.18J1, the ground state turns into
the NCAF state.

where (θT , φT ) and (θO, φO) determine the normal vectors of
two planes spanned by spins on each sublattice, and the spin
direction in local coordinates is written as �S′

i = (cos(φ′ + �k ·
�ri ), sin(φ′ + �k · �ri ), 0)T , with i labeling the unit cell and �k the
magnetic wave vector. Explicitly, the spin configurations are

SxT,i = cos θT cosφT cos(φ′
T + �k · �ri ) − sin φT sin(φ′

T+�k · �ri ),
SyT,i = cos θT sin φT cos(φ′

T + �k · �ri ) + cosφT sin(φ′
T+�k · �ri ),

SzT,i = − sin θT cos(φ′
T + �k · �ri )

SxO,i = cos θO cosφO cos(φ′
O + �k · �ri ) − sin φO sin(φ′

O+�k · �ri ),
SyO,i = cos θO sin φO cos(φ′

O + �k · �ri ) + cosφT sin(φ′
O+�k · �ri ),

SzO,i = − sin θO cos(φ′
O + �k · �ri ). (D3)

We bring Eq. (D3) into Eq. (A1) to obtain the classical energy,
then minimize it to find the magnetic wave vector of the
ground state.

The classical phase diagram is shown in Fig. 13. We find
that the ground state is a coplanar spin state with spins staying
in xz plane. If the DM strength is sufficiently weak D < DC ≈
1.18J1, we find the magnetic wave vector �k = (0, 0), i.e., the
intra-unit-cell order with antialigned spins, which means that
the ground state is Néel ordered. For larger DM interaction
strength D > DC , the ground state becomes the NCAF state
with �k = (2π/3, 0).

APPENDIX E: CRYSTAL FIELD ANALYSIS:
POINT-CHARGE MODEL

As discussed by Morey et al. [10], the crystal field plays
an important role in Ni2Mo3O8. The previous work used a
simple point-charge model to determine the crystal field split-
ting. This model included only the coordinating oxygen ions
around each Ni2+ ion and used the nominal charge for the
neighbor ligands (i.e., −2|e| for O2−). The work also showed
that without SOC, the two lowest-lying crystal-field levels are
an orbital singlet 3A ground state and an orbital doublet 3E
excited state. Repeating the calculation, we found that the 3E
level for the octahedral site is at around 330 meV and does not
affect the ground state. The tetrahedral site, however, has its
3E level at a much lower energy, around 48 meV, which is of
the same order of magnitude as the SOC (λ ≈ 40 meV). Thus,
one should expect the SOC to mix these two orbital levels,
leading to a large splitting of the orbital singlet (but spin
triplet) 3A, which is indeed what Morey et al. [10] found, with
a splitting of ≈23 meV between the �1 spin-singlet ground
state and �3 spin-doublet excited state.

The small splitting of the 3E level also implies that there
should be crystal field excitations above this 23 meV level
but below 100 meV visible in the neutron spectra (the full

calculation implies excitations around 80 meV). However,
recent extensive inelastic neutron scattering experiments [40]
showed no evidence of this.

Furthermore, the spin-singlet �1 ground state implies an ef-
fective planar SIA with it being highly favorable energetically
for the spins to lie in the ab plane. The experimentally deter-
mined magnetic structures, however, suggest that the spin on
one site is canted by a relatively large angle away from the ab
plane. In the case of model 1 (2), this is the octahedral (tetra-
hedral) site at an angle of θO − π

2 = 55◦ (θT − π
2 = 34◦).

Note that the polar angles θT and θO in Table I are relative
to the c axis.

These experimental findings suggests that the point-charge
model of Morey et al. [10] needs some adjustments. In par-
ticular, we believe that (1) the splitting between the 3E and
3A orbital levels on the tetrahedral site should be much larger
and that (2) the ground state on one of the sites should be
the doublet �3 or a quasitriplet rather than the spin-singlet �1.
We can modify the point-charge model to satisfy condition
1 by increasing the effective magnitude of the point charges
(which increases the magnitude of the crystal field parameters
and thus increases the splitting). Condition 2 can be satisfied
by including the effects of the Mo4+ and Ni2+ ions in addi-
tion to the O2− in the model, and then either increasing the
relative magnitude of the effective charge of the Mo4+ ions or
decreasing that of the Ni2+ ions (even to making it negative)
with respect to that of the O2− ions.

We opted to do both, and posit a point-charge model with
effective charges which are approximately twice the nominal
charges: an effective charge of −4|e| on the oxygen ligands,
+9|e| on the molybdenum ligands, and +1|e| on the nickel
ligands. The model includes ligands up to 3.5Å away from
the magnetic nickel ions, which covers to the nearest molyb-
denum ligands for each site. This model yields the crystal field
parameters shown in Eq. (4) in the main text.

This model yields the 3A–3E splitting of 95 meV on the
tetrahedral sites and much larger, 950 meV on octahedral
sites. The tetrahedral sites still have a �1 spin-singlet ground
state, with the �3 excited state at ≈24 meV and a further
excitation at ≈125 meV, which may be visible in inelastic
neutron scattering data. This structure of the �1 − �3 splitting
is captured by the relatively large positive value γT ≈ 30 meV
in the effective spin anisotropy model Eq. (6). The octahedral
site, on the other hand, has a �3 spin-doublet ground state
with a very low-lying �1 excited state at ≈0.5 meV. In the
effective spin anisotropy model Eq. (6), this is reflected in the
very small (negative) value of γO ≈ −0.5 meV.

Physically, larger magnitudes of the effective charges
imply that Ni2Mo3O8 has strong covalent bonds or large
charge-transfer energies. The larger relative effective charge
on the Mo4+ ions compared to that on the O2− perhaps reflects
the larger extent of the 4d orbitals which thus effectively
reduces the distance between the magnetic nickel ions and
the molybdenum ligand, while the smaller relative effective
charge on neighboring Ni2+ ions reflects a more itinerant
character of the nickel conduction electrons.

Finally, the large difference in the �1-�3 splittings for the
different sites (octahedral and tetrahedral) in both the original
[10] and our point-charge models means that the magnetic
excitation spectrum comprises separate bands for the different
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sites: a low energy magnonlike set of excitations from the oc-
tahedral sites and a higher energy excitonlike set of excitations
from the tetrahedral sites. This is indeed seen in the computed
magnetic excitation spectra in Fig. 10.

APPENDIX F: CRYSTAL FIELD ANALYSIS: SINGLE ION
ANISOTROPY PARAMETERS

Due to the threefold rotation symmetry C3 in the P63mc
space group, the crystal-field Hamiltonian is given by Eq. (3)
in the main text:

Hcf = L20θ2T̂20 + L40θ4T̂40 + L43θ4T̂43. (F1)

Here Llm are the crystal-field parameters whose values in
Eq. (4) were derived from the point-charge model, the co-
efficients θl are the Stevens factors from MCPHASE [32]
calculation,

θ2 = 0.0190, θ4 = 0.0063, (F2)

and T̂lm are tensorial Stevens–Wybourne operators,

T̂20 = 1

2

(
3L̂2

z − X
)
,

T̂40 = 1

8

(
35L̂4

z − (30X − 25)L̂2
z + 3X 2 − 6X

)
,

T̂43 =
√
35

8
((L̂3

+ + L̂3
−)L̂z + L̂z(L̂

3
+ + L̂3

−)), (F3)

where L̂+, L̂− are the ladder operators of the orbital angular
momentum and L̂z is its z component. Here X = l (l + 1),
which in the present case of Ni2+ (3d8) ion with l = 3 gives
X = 12.

Substituting one set of crystal-field parameters and the
matrix form of operators L̂+, L̂−, and L̂z, the crystal-field
Hamiltonian becomes a 7 × 7 matrix, and we denote its eigen-
states and corresponding eigenvalues |n〉 and En, respectively,
with the ground state labeled by n = 0. Because the value of
the coupling constant λ ≈ −40 meV (see Ref. [24]) is much
smaller than the difference of crystal field energy eigenvalues,
the SOC V = λ�S · �L can be treated as a perturbation. The
first order of the perturbation is proportional to 〈0|�S · �L|0〉,
which vanishes identically. The correction to the energy in the
second-order perturbation theory is of the form

E2nd
0 =

∑
m>0

|〈0|V |m〉|2
E0 − Em

= λ2
∑
i j

�i jS
iS j, (F4)

where

�i j =
∑
m>0

〈0|Li|m〉〈m|Lj |0〉
E0 − Em

(F5)

is the SIA parameter. Finally, we obtain the effective single-
ion spin anisotropy Hamiltonian in Eq. (6) of the main text,

HA =
∑
T

γT
(
Szi

)2 +
∑
O

γO
(
Szi

)2
, (F6)

with numerical values of the coefficients γT = 30.41 meV,
γO = −0.53 meV.

We also investigate the contribution of higher-order pertur-
bation theory to the values of single-ion anisotropy parameters

in Eq. (F6). The third order of the perturbation theory
vanishes. The correction to the energy in the fourth order
perturbation theory is of the form:

E4th
0 =

∑
m>0

∑
n>0

∑
p>0

〈0|V |m〉〈m|V |n〉〈n|V |p〉〈p|V |0〉
(E0 − Em)(E0 − En)(E0 − Ep)

− E2nd
0

∑
m>0

|〈0|V |m〉|2
(E0 − Em)2

= λ4
∑
i jkl

�i jklS
iS jSkSl . (F7)

As an estimate of the effect that this fourth order term
has onto the single-ion anisotropy, we calculate the diagonal
terms. On tetrahedral site it gives

�H (4)
T = 10.64

(
SxT

)4 + 10.64
(
SyT

)4 + 0.09
(
SzT

)4
, (F8)

which lowers the crystal field energy splitting (our estimate
is the effective renormalization of γT down to ≈ 17 meV
in Eq. (F6)). On the octahedral site, we similarly find the
additional contribution

�H (4)
O = 0.019

(
SxO

)4 + 0.019
(
SyO

)4 + 0.018
(
SzO

)4
, (F9)

which only provides a small correction (of the order of
0.002 meV) to γO = −0.53 meV. We note that while this
value is negative, i.e. favors a doublet on the octahedral site,
it should be noted that a small positive value of γO, favouring
the Sz = 0 singlet, fits the inelastic neutron scattering (INS)
data equally well.

APPENDIX G: LSWT CALCULATION

The full Hamiltonian of the effective Heisenberg model for
the Néel state consists of the exchange interactions in Eq. (24),
with the addition of the DM interaction and the SIA:

He
Néel =

∑
〈i j〉

Je1 �Si · �S j +
∑
〈i j〉

�Di j · (�Si × �S j )

+
∑

〈〈i j〉〉,T
Je2T �Si · �S j +

∑
〈〈i j〉〉,O

Je2O �Si · �S j

+
∑
i,T

γT
(
Szi

)2 +
∑
i,O

γO
(
Szi

)2
. (G1)

The effective coupling constants Je1 , J
e
2T , and Je2O are quoted

in Eq. (25) in the main text. After the HP transformation in
Eq. (28), the Hamiltonian becomes

He
Néel = ENéel + EC +

∑
�k

ψ
†
�k H (�k)ψ�k, (G2)

where ENéel is the MF energy expression, EC is a constant term
originating from the commutation relation when we construct
the bosonic Nambu representation. Here the composite vector
ψ�k = [a(�k), b(�k), a†(−�k), b†(−�k)]ᵀ consists of the bosonic
operators a on the T site and operators b onO sites. The matrix
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H (�k) is

H (�k) =

⎛
⎜⎜⎜⎜⎝
fT (�k) 0 γT

2 g(�k)
0 fO(�k) g(−�k) γO

2
γT
2 g(−�k)∗ fT (�k) 0

g(�k)∗ γO
2 0 fO(−�k)

⎞
⎟⎟⎟⎟⎠, (G3)

where

fT (�k) = 3

2
Je1 − 3Je2T + 1

2
γT + Je2T

(
cos

(
3

2
kx −

√
3

2
ky

)

+ cos
√
3ky + cos

(
− 3

2
kx −

√
3

2
ky

))
,

fO(�k) = 3

2
Je1 − 3Je2O + 1

2
γO + Je2O

(
cos

(
3

2
kx −

√
3

2
ky

)

+ cos
√
3ky + cos

(
− 3

2
kx −

√
3

2
ky

))
,

g(�k) = −1

2
Je1 (e

−i( 12 kx+
√
3
2 ky ) + eikx + e−i( 12 kx−

√
3
2 ky ) )

− iD

(
e−i( 12 kx+

√
3
2 ky ) sin

(
φ + 2π

3

)
+ eikx sin φ

+ e−i( 12 kx−
√
3
2 ky ) sin

(
φ + 4π

3

))
. (G4)

Above, φ is the azimuthal angle of the spin direction in xy
plane. The constant EC in Eq. (G3) is given by

EC = − 3
√
3

4(2π )2

∫
BZ

d2k( fT (�k) + fO(�k)). (G5)

After the Bogoliubov transformation, the LSWT energy of
Néel state becomes

ELSWT
Néel = ENéel + EC + 3

√
3

4(2π )2

∫
1BZ

(Ea(�k) + Eb(�k)), (G6)

where Ea(�k) and Eb(�k) are the two positive eigenvalues of the
matrix Eq. (G3), corresponding physically to the two bands in
the magnetic spectrum. Having fixed the exchange couplings
to their ab initio values in Eq. (13) and the SIA parameters as
quoted below Eq. (6), our calculations show that the Néel state
has the minimum energy for the azimuthal angle φ = 30◦.

The full Hamiltonian of the effective Heisenberg model for
the NCAF state is given by the spin bilinear in Eqs. (26) and
(27) in the main text, with the addition of the DM interaction
and single-ion spin anisotropy terms, analogous to Eq. (G1)
above.

After the HP transformation in Eq. (28), the Hamiltonian
becomes

H = ENCAF + EC + Hlin[b
†, b] + ψ

†
�k H (�k)ψ�k, (G7)

where ENCAF is the MF energy and Hlin[b†, b] collects the
terms linear in the boson creation and annihilation operators
(these terms are ignored in what follows as they do not con-
serve the magnon number).

The composite vector ψ�k of creation-annihilation operators
is given by

ψ = [a(�k), a†(−�k), b(�k), b†(−�k), c(�k),
c†(−�k), d (�k), d†(−�k)]ᵀ, (G8)

where a and c are annihilation operators at aT and −T sites,
whereas b and d annihilate bosons on the O and −O sites [see
Fig. 8(b) for the notation of the sites]. The matrix H (�k) in
Eq. (G7) is given by

H (�k, �θ ) = 1

2

(
H11(�k, �θ ) H12(�k, �θ )
H†
12(�k, �θ ) Hᵀ

11(−�k, �θ )
)

, (G9)

with the entries

H11(�k) =

⎛
⎜⎜⎝

fa(�k, �θ ) 0 fab(�k, �θ ) fad (�k, �θ )
0 fc(�k, �θ ) fcb(�k, �θ ) fcd (�k, �θ )

f ∗
ab(�k, �θ ) f ∗

cb(�k, �θ ) fb(�k, �θ ) 0
f ∗
ad (�k, �θ ) f ∗

cd (�k, �θ ) 0 fd (�k, �θ )

⎞
⎟⎟⎠,

H12(�k) =

⎛
⎜⎜⎝

ga(�k, �θ ) gac(�k, �θ ) gab(�k, �θ ) gad (�k, �θ )
gac(−�k, �θ ) gc(�k, �θ ) gcb(�k, �θ ) gcd (�k, �θ )
gab(−�k, �θ ) gcb(−�k, �θ ) gb(−�k, �θ ) gbd (�k, �θ )
gad (−�k, �θ ) gcd (−�k, �θ ) gbd (−�k, �θ ) gd (�k, �θ )

⎞
⎟⎟⎠,

where �θ = (θO, θT ), and the matrix elements are given by a
lengthy set of expressions shown here for completeness:

fa(�k, θT , θO) = −2J1+ cos(θT + θO) + J1− cos(θT + θO)

− 2JTF + 4JTA

+ 2JTF cos
√
3ky + 2D sin(θT + θO)

+ γT (sin
2 θT − 2 cos2 θT ),

fb(�k, θT , θO) = −2J1+ cos(θT + θO) + J1− cos(θT + θO)

− 2JOF + 4JOA

+ 2JOF cos
√
3ky + 2D sin(θT + θO)

+ γO(sin
2 θT − 2 cos2 θT ),

fc(�k, θT , θO) = fa(�k, θT , θO),

fd (�k, θT , θO) = fb(�k, θT , θO), (G10)

fab(�k, θT , θO) =
(
J1+(�θ )

2
(cos(θT + θO) + 1)

− D

4
sin(θT + θO)

+
√
3

4i
D(sin θO − sin θT )

)
e−i( 12 kx+

√
3
2 ky )

+
(
J1+(�θ )

2
(cos(θT + θO) + 1)

− D

4
sin(θT + θO)

−
√
3

4i
D(sin θO − sin θT )

)
e−i( 12 kx−

√
3
2 ky ),
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fad (�k, θT , θO) =
(
J1−(�θ )

2
(1 − cos(θT + θO))

− D

2
sin(θT + θO)

)
eikx ,

fcb(�k, θT , θO) = fad (�k, θT + π, θO + π ),

fcd (�k, θT , θO) = fab(�k, θT + π, θO + π ), (G11)

ga(�k, θT , θO) = gc(�k, θT , θO) = γT sin2 θT ,

gb(�k, θT , θO) = gd (�k, θT , θO) = γO sin2 θO,

gac(�k, θT , θO) = −4JTA cos
3kx
2

cos

√
3ky
2

gbd (�k, θT , θO) = −4JOA cos
3kx
2

cos

√
3ky
2

gab(�k, θT , θO) =
(
J1+(�θ )

2
(cos(θT + θO) − 1)

− D

4
sin(θT + θO)

+
√
3

4i
D(sin θO + sin θT )

)
e−i( 12 kx+

√
3
2 ky )

+
(
J1+(�θ )

2
(cos(θT + θO) − 1)

− D

4
sin(θT + θO)

−
√
3

4i
D(sin θO + sin θT )

)
e−i( 12 kx−

√
3
2 ky ),

gad (�k, θT , θO) =
(

− J1−(�θ )
2

(1 + cos(θT + θO))

− D

2
sin(θT + θO)

)
eikx ,

gcb(�k, θT , θO) = gad (�k, θT + π, θO + π ),

gcd (�k, θT , θO) = gab(�k, θT + π, θO + π ). (G12)

This results in the constant contribution to the energy EC :

EC = − 3
√
3

4(2π )2

∫
BZ

d2k( fa(�k) + fb(�k) + fc(�k) + fd (�k)).
(G13)

After the Bogoliubov transformation, the energy of the NCAF
state within LSWT is finally given by

ELSWT
NCAF = ENCAF + EC + 3

√
3

4(2π )2

∫
1BZ

(Ea(�k)

+Eb(�k) + Ec(�k) + Ed (�k)). (G14)

The resulting energy of the NCAF state is computed by
summing over the real, positive eigenvalues of the matrix

H (�k, θT , α) in Eq. (G9) and optimizing the angles α and θT
such as to minimize this energy. The resulting optimal values
of α are shown in Fig. 9 in the main text as a function of the
varying DM interaction strength.

APPENDIX H: MAGNETIC EXCITATION SPECTRUM

In LSWT, the SIA is a constant term added to the diagonal
of the Hamiltonian matrix. The resulting magnetic spectrum
is shown in Fig. 10(a) in the main text. On the other hand, in
the RPA calculations the full single-ion Hamiltonian matrix
is calculated first and diagonalized, then an RPA coupling is
made for each dipolar transition between the single-ion states.
Given the large difference in the SIA between the tetrahedral
(large gap) and octahedral (small gap) sites, the result is that
in the RPA calculation, despite the large nearest-neighbor
J1 and K1 interactions there is little coupling between the
modes associated with the tetrahedral and octahedral sites.
In contrast, in LSWT the additional diagonal constants in
the Hamiltonian serve to separate out the tetrahedral and oc-
tahedral modes in energy but the off-diagonal terms in the
Hamiltonian still results in significant coupling between the
sites, which thus modifies the dispersion. One can see the
resulting differences by comparing the magnetic spectra in
the two panels in Fig. 10. Given the relatively large SIA,
we believe that its treatment in LSWT is less accurate than
with the RPA, but this should be confirmed by experimental
measurements of the magnetic excitation spectrum.
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