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Fascinating new phases of matter can emerge
from strong electron interactions in solids. In
recent years, a new exotic class of many-body
phases, described by generalized electromag-
netism of symmetric rank-2 electric and magnetic
fields and immobile charge excitations dubbed
fractons, has attracted wide attention. Beside
interesting properties in their own right, they are
also closely related to gapped fracton quantum
orders, new phases of dipole-coversing systems,
quantum information, and quantum gravity.
However, experimental realization of the rank-2
U(1) gauge theory is still absent, and even known
practical experimental routes are scarce. In this
work we propose a scheme of coupled optical
phonons and nematics as well as several of its
concrete experimental constructions. They can
realize the electrostatics sector of the rank-2
U(1) gauge theory. A great advantage of our
scheme is that it requires only basic ingredients
of phonon and nematic physics, hence can be
applied to a wide range of nematic matters from
liquid crystals to electron orbitals. We expect
this work will provide crucial guidance for the
realization of rank-2 U(1) and fracton states of
matter on a variety of platforms.

“Emergence” — laws of nature arising as the effective
theory describing many-body systems — is one of their
most fascinating aspects’, both for intellectual curiosity
and practical utility. In the past few decades, tremendous
progress has been made in understanding phases beyond
the traditional Landau-Ginzburg paradigm of symmetry
breaking. One such example are the spin liquids — exotic
states built on quantum superposition of product states,
characterized not by any order parameter but topological
entanglement and topological order. A subclass of such
spin liquids can be described by local constraints on the
local degrees of freedom (DoF), leading to the emergence
of a local gauge invariance, and thereby to topological
orders, and exhibit fractionalised excitations and long-
range entanglement” . A well-known example is quan-
tum spin ice on the pyrochlore lattice, which realizes U(1)
gauge theory”. It hosts emergent excitations mimick-
ing exactly Maxwell electrodynamics: photons, electric
charges and even magnetic monopoles. As such, it has
been under intense theoretical =~ and experimental
investigation.

Recently, a class of more exotic forms of emergent
electrodynamics proposed as effective theories for spin
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FIG. 1. Realizing rank-2 U(1) electrostatics via op-

tical phonon-nematic coupling. a-c Examples of micro-
scopic objects with nematic degrees of freedom. d Bilayer
nematic as a representative experimental construction that re-
alizes the ideal model [Eq. (1)]. e Nematic layer trapped in an
artificial periodic potential as a representative experimental
construction. f The band structure of [Eq. (1)]. g Zoomed-in
view of the phonon-nematic band structure, in which the flat
band corresponds to the vector-charge-free nematic configu-
rations, and the upward dispersing bands correspond to the
charged nematic configurations.

liquid phases has attracted considerable attention.
As a generalization of Maxwell electrodynamics, it fea-
tures electric and guage fields in the form of rank-2 (R2),
or higher-rank, symmetry tensors. The correspondingly
modified charge conservation laws result in some un-
expected, exciting properties. The electric charge ex-
citations dubbed fractons are intrinsically constrained
from moving in the system, and foreshadow a new class
of gapped fracton quantum liquid order beyond topo-
logical order The rank-2 U(1) (R2-Ul) theories



are also shown to be akin to gravity , and re-
lated to new phases of matter featuring dipole conserving
dynamics

However, these remarkable properties come with
cost: the central ingredient — local constraints ap-
plied to tensors — is in a more complex form than
the traditional Gauss’s law of Maxwell electromag-
netism. To enforce these constraints, complicated in-
teractions are a mnecessity in many prototypical fracton
models” =777 7000 ywhile experimental proposals re-
main scarce” "’ ”“. Therefore, concrete design for exper-
imental realization of R2-Ul phases — a crucial step for
future development of this field — remains to be a signif-
icant challenge.

Results and Discussion
Ingredients for the effective theory. Here we pro-
pose a highly generic and realistic experimental scheme
to achieve nematic liquid states described by R2-U1 the-
ory. States of matter with nematic DoF, such as liquid
crystals, are good potential candidates for this purpose
since they are naturally represented by symmetric tensors
— exactly those needed in the R2-U1 liquid physics. The
challenge is to find a realistic approach toward the spe-
cific low-energy Hamiltonian that gives rise to a nematic
liquid state obeying the R2-U1l Gauss’s law. In this work
we show that this is readily achievable. The ingredients
in our model are quite common: Einstein phonons and
the most general coupling between phonons and nematic
DoFs. We demonstrate that integrating out the phonon
modes leads precisely to the sought Gauss’s law-enforcing
term on the remaining nematic DoF. Beside the idealized
effective theory, we present a few concrete experimental
constructions that can be used to realize such a theory.
Our approach has the advantage of having a wide range
of applicability. The existence of nematics at different
scales — from electron orbitals to organic molecules, to
soft matter — means that our proposed design can be re-
alized in a variety of experimental applications. Different
types of nematic matters available also enable us to con-
struct different versions of R2-Ul. We hope our work
opens a gateway to experimental realizations of R2-U1l
theories for a wide spectrum of the physics community.

The idealized model. = The ideal model Hamiltonian to
realize the R2-U1 physics via nematic-phonon coupling
is composed of three parts,

Hclassical = th + th—nem + Hnem

2
= %u-u—/\szj@ij—kMZ@?j, (1)
i<j

where w(r) is the lattice distortion of the Einstein
phonons (i.e., phonons with a flat energy dispersion Awy).
The second term Hph-nem is the most natural linear cou-

pling between the strain tensor of the lattice distortion
gij(r) = Oiu;(r) + dju;(r), (2)

and the nematic DoF described by the symmetric ten-
sor ®;; The third term Hpem is a simple on-site
potential (mass term) for the nematics. Often the ne-
matics are constrained by a “unit-tensor”-like condition
>i<; 3 = 1 (see section Discussion on their micro-
scopic origins), so the third term can be dropped as long
as the constraint is taken into account properly. Finally,
in this Hamiltonian we have suppressed the dynamical
term

denamics = (6tu)2 + (até)Qa (3)

since we are mostly interested in the classical sector of
the system. Their potential role in a quantum system is
also discussed in the section Discussion.

The spectrum of the diagonized Hamiltonian on a
square lattice is shown on Fig. 1(f,g) (see Fig. 5 for the
square lattice set up). The spectrum intensity distri-
bution on each band is measured by (®;.(—q)®,,(q)),
whose meaning will be clarified in a later part of this
section.

By integrating out the Gaussian phonon modes, we
end up with the effective theory for the nematic DoF
only, described by the Hamiltonian

Hnem—eff - A(ﬁiq)ij)(akq)kj) +M Z (I)?jv (4)

1<j

where A = A\?/(2pw?). In the limit of sufficiently large
A > T relative to the temperature, the first term imposes
high energy cost for ®;; configurations that violate the
constraint

8Z-<I>ij =0. (5)

Upon identifying the nematic DoF with the generalized
rank-2 electric field E;;:

¢ +— F, 3,'(1)1'3' P = aiEijv (6)

Eq. (5) becomes exactly the Gauss’s law for the vector-
charged R2-Ul theory. Hence the classical R2-U1 ne-
matic liquid state is realized in the low energy sector of
the theory.

A more physical interpretation of the model is achieved
by noticing that

— A€ijPi; = 2Mu - p + total derivative. (7)

This means the vector charge excitation p is linearly cou-
pled to the lattice distortion. The energy cost of the lat-
tice distortion induces, upon integrating out the lattice
DoF, the potential energy A\?p?/(2pw3) for the charge
excitations.

To quantitatively show the emergence of R2-U1 elec-
trostatics, we study the model of Eq. (4) on a square lat-
tice under the on-site constraint -, ®;; (r)2 =1 and
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FIG. 2. Nematic correlation functions (®,.(—q)®y,,(q)) for model in Eq. (4).
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functions, using a false-color map, computed via the Self-Consistent Gaussian Approximation (see Methods) on a square lattice
[Fig. 5] at different temperatures relative to the parameter A. The high temperature regime shown in d is a paramagnetic phase
with vanishing correlations. The low temperature regime shown in a is the rank-2 U(1) phase, manifested by the characteristic
4-fold pinch point pattern in the correlation function around g = 0, originating from the functional form (P, (—q)®yy(q)) x
ngz ¢*. b,c The 4-fold pinch points become gradually smeared due to thermal fluctuations at intermediate temperatures.

examine its correlation function (®;;(—q)®ri(q)) at dif-
ferent temperatures using the Self-Consistent Gaussian
Approximation (SCGA, described in Methods).

The equal time correlation function (®;;(—q)®xi(q))
in the R2-U1l phase is constrained by the Gauss’s law
90 (Pij(—q)®Pri(q)) = 0, where « is one of the four in-
dices 1,7, k,l and, the repeated index is summed over.
As a consequence the correlation is restricted to be pro-
portional to a highly anisotropic projector in the form
of

(@ij(—q)Pri(q)) o

1
3 (0ikdj1 + 0i10,k) +

1 2 K3
1 (5 qéqz +5qu a _’_6”(];% +5]quQk)
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In particular, (®,,(—q)®y,(q)) o ¢3q;/q* shows a char-
acteristic pattern dubbed “4-fold pinch point”

In Fig. 2, we present the correlation function
(Pyz(—q)Pyy(q)), computed within the SCGA approach,
at different ratios of T/A. As the result demonstrates,
at high temperature, the system is a paramagnet and
the correlation function is essentially vanishing. At low
temperatures on the other hand, the 4-fold pinch point
emerges as the system enters the R2-U1 phase. The tran-
sition between the two phases is expected to be not a
phase transition but a crossover.

The same 4-fold pinch point is also visible in the
band structure of the diagonlized Hamiltonian shown
in Fig. 1(f,g). There, the flat band corresponds to the
nematic states obeying Gauss’s law. Note that the en-
ergy of this flat band is finite due to the non-zero mass
M in Eq. (4), and the lack of dispersion is due to the
fact that the mass term imposes a local constraint, i.e.
all such states are momentum independent. The 4-fold

pinch point is imprinted on the flat band, which is consis-
tent with the result from the Gaussian-integrated theory

[Eq. (4)].

Advantages and challenges of the idealized model.
Some comments are in order before we go on to dis-
cuss more concrete experimental set-ups to realize the
ideal Hamiltonian. First, this model has the advantage
of being built upon most common elements in phonon
and nematic physics. The Einstein phonon is the zero-
dispersion limit of optical phonon, which is often a good
approximation. More generally, optical phonons with
small dispersions also work, since mild dispersion only
contributes to the higher-order terms. The nematics DoF
are common microscopic objects, ranging in their origin
from molecular anisotropy in classical liquid crystals, to
orbital electron DoF in transition-metal compounds [cf.
Fig. 1(a-c) and Discussion|. The tendency towards the
nematic distortion can also be emergent, for instance due
to the Pomeranchuk instability of a Fermi surface”". The
phonon-nematic coupling in the second term of Eq. (1)
is the lowest order coupling that respects the rotational
symmetry of the system and is also generally expected,
as seen in many other studies . Hence we expect it
to be the dominant term in many experiments.

The remaining challenge of realizing Eq. (1) is that
while all three elements are common in experiments, the
phonon-nematic coupling Hph-nem is usually for acous-
tic phonons, while the ones needed here are optical. The
consequence of acoustic phonons coupled to nematics has
been discussed in detail in Refs. There, although
the coupling also yields a 4-fold-symmetric anisotropy
similar to those shown in Fig. 2, the resulting effective
theory is not of the form of the sought-after rank-2 U(1)
electromagnetism. The reason for demanding a finite (al-
beit possibly small) energy wp of optical phonons is to
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FIG. 3. A bilayer construction of two lattices with
nematic degrees of freedom. The atomic lattices are not
shown for clarity but are essential in hosting intra-layer acous-
tic phonons. The inter-layer coupling results in the phonon
splitting into two sectors: the acoustic in-phase mode (u™)
and the optical out-of-phase mode (uv™) in Eq. (11). These
two phonon modes couple to the corresponding nematic DoFs
(I and ¥™) in the appropriate sectors. It is the coupling in
the out-of-phase optical sector in Eq. (12) that leads to the
rank-2 U(1) theory.

ensure that integrating out these higher-energy DoF is
legitimate, leading to a finite A = A?/(2pw?) in Eq. (4).

In what follows we discuss concrete experimental set-
ups that resolve the main challenge: how to implement
the desired coupling between the nematic and optical-
phonon DoF.

Proposal 1: Bilayer construction. For two-dimensional
systems, one solution we propose is to construct systems
with multiple sublattice sites. Here we consider an exam-
ple of coupling two layers together, with each hosting the
common acoustic phonon-nematic coupling [Fig. 1(d)].

Each single layer, in the most symmetric case, is de-
scribed by the Hamiltonian

Hac-phonem = 200° (051 ) (Dju) ) = AeS OX +M Y (2)%.

ij
9)
Here X = T, B corresponds to the top and bottom layer,
and the acoustic phonon modes have isotropic linear dis-
persion wy. = vq (again here the dynamical terms are
omitted).

We then consider the two layers coupled by the follow-
ing interaction:

1<

Hine = gp(uT — u®)2. (10)

Such interaction appears naturally from an inter-atomic
potential for the lattice sites penalizing their devia-
tion from the equilibrium positions, due to the attrac-
tion/repulsion between the two layers.

Diagonalizing Hac-ph-nem + Hint, we find that the DoF
can be decomposed into the in-phase and out-of-phase

sectors labeled by +, — [cf. Fig. 3],

+ 1 T B
ut=—(u tu’),
V2
Bt = (3T P). "

V2

The two sectors decouple from each other. The “+” sector
is described again by the usual acoustic phonon-nematic
coupling as in Eq. (9), and hence is not of our inter-
est. The out-of-phase “—" sector describes the inter-layer
optical phonon, coupled to the corresponding inter-layer
nematic DoF:

H_ =2pm° Z(Vui_)Q—l—Qgpu_-u_—)\e;j(I)i_j—&-MZ (I)i_jQ.
i i<j

(12)
Here, the phonons associated with u~ becomes gapped
because of the inter-layer coupling [Eq. (10)]. The last
three terms in Eq. (12) are exactly what we are after.
The first term induces the dispersion to the inter-layer
optical phonon. Integrating out the photons, this term
yields an additional, g-depenent contribution of the
order of O (%(@)Q)
the principal term in the Gauss’s law, of the order of

A2 2

O (ﬁ(@)?).
compare to the gap, i.e., vgZ < g (qo ~ 1/a denoting the
edge of the Brillouin zone), then the phonon bands will
be sufficiently flat, and we obtain the idealized model of

Eq. (1) to a good approximation, with A = ;‘—Z.

This is to be compared to

Hence, if the dispersion scale is small

Proposal 2: Mutliple sublattice sites. = The essence of
the proposal in the previous section is that, when there
are multiple sublattice sites in the system, the total num-
ber of phonon branches increases accordingly, yet only
one set of acoustic phonons exists, and the remaining
phonon branches will become gapped, as desired to ob-
tain the idealized model in Eq. (1). Similar approaches
can be designed following this principle. For example, a
single-layer nematic lattice with two sub-lattice sites per
unit cell can also work [Fig. 4(a)].

Proposal 3: Artificial potential well.  Another scheme
we propose is to introduce an artificial potential for the
nematic-site lattice displacements, in order to gap the
phonons directly. That is, we add a potential term

2
Hpot = %u ‘u (13)
to the lattice distortion, thus approximating the idealized
model in Eq. (1) when the phonon dispersion is mild.
The first realization of this idea is schematically illus-
trated in Fig. 1(e), wherein the nematic atoms/molecules
are placed in a periodic optical (laser) potential. Such pe-
riodic potential is a sophisticated experimental technique
in use already
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FIG. 4. Proposed experimental setups to realize the
ideal model of Eq. (1). a The multiple sublattice site con-
struction. Shown as an example is a hexagon lattice of ne-
matic degrees of freedom residing on two sublattice sites (blue
and red rods). b The artificial potential well construction.
The nematic layer (red rods) is sandwiched between two sub-
strates of heavy molecules (grey balls). The substrates serve
as sources of the artificial potential term [Eq. (13)] for the
lattice distortion w in the nematic layer.

Another possible realization is to sandwich the nematic
layer between the substrate layers of heavy molecules.
The latter would then introduce a potential term to the
nematics layer, as illustrated in Fig. 4(b). Discussion:

beyond the classical model. In this work we focused
on how to achieve the electrostatics sector of the rank-2
U(1) theory, which is purely classical. This is one of the
most crucial steps toward the quantum electrodynamics
of R2-Ul, just as how a classical spin ice provides the
underpinnings for the development of a quantum spin
ice.

Nevertheless, let us now discuss how quantum dynam-
ics can arise in our model, which will render it the full-
fledged rank-2 electrodynamics. We start with a concrete
example, and then discuss the general principles applica-
ble to all the implementations proposed above .

For concreteness, let us consider ® living on the square
lattice. For better visualization, we place the ®,,, @y,
components on the vertices, and shift ®,, = ®,, to
the centers of the plaquettes. This is illustrated in
Fig. 5(a,b). The generalized vector charges p'= (pz, py)
are then defined on the links of the lattice. Specifically, p,
is defined on the z-oriented links as p, = Ay ®@upe+Ay Pya,
where A; is the lattice derivative. Similarly p, is defined
on y-links as p, = Ay®yy + Ay Pyy. The classical sector
of the Hamiltonian is

Heqa = Up® + MY B3, (14)

i<j

To introduce quantum dynamics, we assume that each
component of ® corresponds to the S? of a quantum
spin with large spin number, and there is a generalized
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FIG. 5. The square lattice model of the nematic de-
grees of freedom. This model is used for computing the
correlation functions in Eq. (8) and throughout the paper.
a, b Nematic degrees of freedom ®,, and ®,, defined on
the vertices of the lattice, with off-diagonal components @,
situated in the centers of the plaquettes. The lattice repre-
sentation of the vector charge p in Eq. (6) has two compo-
nents p = (pa,py) which live on the z- and y-links of the
lattice, respectively, based on the four ®;; surrounding it. c
A dynamical term that acts as the gauge-invariant magnetic
field in the generalized rank-2 electrodynamics. This term is
a product of twelve qb;‘; operators shown. When acting on
a Gauss’s law-obeying charge-free electric field configuration,
the state is mapped onto another charge-free configuration.

“transverse field” applied to the nematic DoFs,

Heqay = h > _(®F + & (15)

1<j

where <I>iij are the raising and lowering operators of ®;;.

Crudely speaking, <I>?; plays the role of the gauge field
operator A associated with the charge creation terms,
since they are canonically conjugate to the electric field
components E, and creates charges when applied to a
Dy

A single operation of ®* or ®F will create charges in
the system. Within the sub Hilbert space of the Gauss’s
law obeying states, operators <I>?Ej can only act on the
Hilbert space at a higher perturbative order, such as to
cancel all the charges created. An example we denote

as ®f . is shown in Fig. 5(c). There, a specific prod-

uct of twelve d)fj operators maps one charge-free electric
field configuration to another. The fact that no charge is
created anywhere in the system is equivalent to that this
composite product of these 12 operators is gauge invari-
ant — that is, ®f,,,, (and also @, = (@;gmp)f) plays

the role of the generalized magnetic field of R2-U1 theory.



The electrodynamics is realized by the Hamiltonian

qu—full = Up2 + MZ (1)123 + u(q);)nlp + (bvjomp)' (16)
1<j

Now let us comment on the general properties of the
quantum dynamics of the nematic R2-U1 theory. Like
in a quantum spin ice, the emergent magnetic field usu-
ally involves multiple operators, and is generated per-
turbatively via the product of transverse field operators
which preserve the Gauss’s law. In a quantum spin ice,
or lattice scalar-U(1) theory in general, these compos-
ite operators are simply loops of the dynamical opera-
tors, forming a lattice realization of the magnetic flux
§V x Adl = [[ Bdo. In R2-Ul theory, the compos-
ite operators become more complicated as shown in the
square lattice example above.

Although the long-wave length theory will remain the
same, on different lattice models the available quantum
dynamical terms will depend on the details of the lattice
and the microscopic implementation of the nematic DoF.
It is also possible that the quantum dynamics leads the
system into other phases instead of R2-U1 electrodynam-
ics. How the generalized magnetic field arises, if it can
be realized in the first place, will have to be discussed on
a case-by-case basis.

Discussion: Microscopic origin of the nematics. In our
construction, we tacitly assumed that the nematic DoF
are described by a symmetric tensor with all its indepen-
dent components, of which there are 3 in two-dimensional
systems and 5 in three-dimensional. Depending on the
microscopic origin of the nematics, the number of DoF in
the symmetric tensor representation may be fewer than
those numbers. Below, we provide several concrete exam-
ples of the various microscopic realizations of the nematic
DoFs.

The first example is that of d-electrons in transition
metals (Fig. 1(a)). There are in total five such orbitals
corresponding to the |l = 2;m = —2,—1,...,2) states in
the spherical harmonic expansion. They form a symmet-
ric, traceless tensor representation of the group SU(2) de-
scribing rotations in the orbital Hilbert space (the [ = 0,1
representations are the trace and anti-symmetric compo-
nents of this matrix). Ignoring the crystal field effects,
which generically lift the orbital SU(2) symmetry, these
five orbitals form a degenerate manifold, out of which
an orbital-nematic order can appear if the symmetry
is spontaneously broken. In the disordered, symmetry-
preserving phase, these orbital degrees of freedom can be
used to construct classical rank-2 electrostatics as out-
lined in this work. Moreover, by virtue of being intrinsi-
cally quantum objects, such models are also good candi-
dates for constructing quantum electrodynamics of R2-
Ul theory.

The second example of the nematics is a classical liquid
crystal. In 2D, such as shown schematically in Fig. 1(b),
the nematicity is described by a director of a fixed length,

encoded in a 2 X 2 symmetric matrix
cos260 sin20
® = (sin 20 —cos 20> ’ (17

Note that the matrix is traceless and unimodular (reflect-
ing the fact that director is of unit length), and as a re-
sult, nematic DoF are described by a single independent
parameter, the azimuthal angle . The idealized theory
presented in the beginning still holds, however the con-
straints on the nematic matrix mean that the resulting
phase may be modified.

Another example of the nematicity is the spontaneous
distortion of the Fermi surface (see e.g. Fig. 1(c)), known
as the Pomeranchuk instability” ', which in the simplest
case of an isotropic (circular in 2D) Fermi surface is
described by the quadrupole density operator (see e.g.
Ref. 70)

2 _ 2
westa) = goi@) (%0 ) via). (s)

where f(q) and (q) are the electron cre-
ation/annihilation operators at momentum g. The
above matrix is also traceless, yielding traceless R2-Ul
theory upon integration of the phonon modes coupled to
®rgs asin Eq. (1). The elliptic Fermi surface distortion
thus has two independent DoFs: &, and ®,,, which can
also be cast in the form of a complex order parameter
Qe = @, + i®g,, with the amplitude ) proportional
to the eccentricity of the ellipse and angle +6 its
azimuthal direction.

We note that in the above example, the presence
of the underlying crystalline lattice can pin the Fermi
surface distortion along particular direction(s), such as
shown in Fig. 1(c). For instance, pinning to +x or +y
directions on the square lattice introduces a potential
Uiat(8) = —Up cos(26) for the azimuthal angle. The re-
sulting rank-2 theory would then become discrete, de-
scribed by a 4-state Potts model on a square lattice
(rather than the continuous U(1) parameter). Neverthe-
less, for temperatures and energy scales above Uy, the
classical theory could be approximately considered to be
U(1).

Our final example of the (discrete) nematic order is
realized on crystalline lattices with n-fold irreducible
representations (n = 2,3) of the point group. For in-
stance, hexagonal systems (with point groups Cg and
Dg in 2D) allow two-dimensional irreducible represen-
tations and hence the nematic order parameter can be
parametrized by ® = ®((cos(20),sin(26)), which can
be cast in the form of a traceless rank-2 tensor as in
Eq. (17). This well known fact has been exploited re-
cently in the discussion of nematicity in the twisted bi-
layer graphene, where coupling to acoustic phonons (dif-
ferent from the optical phonons in our case) was also
considered’’. Generically, the lattice pinning will result
in a four-state Potts model description of the nematic



DoF, analogous to the previous case, and upon integrat-
ing out the (optical) phonouns, the resulting rank-2 theory
will be a discrete one.

When designing possible experimental realizations
of the nematic-phonon coupling, one should thus be
aware of the consequence of such discretization and the
decreased number of the DoF (as exemplified by the
traceless condition in example 2 and 3 above), since
too few DoF may result in ordered phases or states
with subsystem symmetries only. This however could
also be a blessing in disguise, since it means we have a
wider range of R2-U1 theories accessible in experiment.
A particularly interesting type of such theories, for
instance, is built in 3D from tensors with all diagonal
components vanishing. Such “hollow” rank-2 theories
turn out to be the gateways toward gapped fracton
order uppon higgsing’ "7, with a great potential for
applications in quantum memory storage.

In summary, we presented a theoretical model with
simple ingredients that can realize the emergent rank-2
U(1) electrostatics via optical phonon-nematic coupling.
Given the intimate connection between this rank-2 gen-
eralized electrodynamics and the exotic fracton phases
of matter"”"°, which have recently garnered much at-
tention, the present work thus paves the way towards
natural implementations of the fracton matter in the ex-
periment. Given the simplicity of the ingredients (opti-
cal phonons and nematic DoF), we hope this proposal
may be realized in various settings, from liquid crystals
to bilayer systems, to polar molecules in a periodic op-
tical potential, and we have outlined several such possi-
ble constructions. The present proposal yields a classical
rank-2 theory, which is a necessary first step on the path
towards truly quantum rank-2 electrodynamics and frac-
ton physics. We have outlined a possible route towards
such quantum theory by incorporating the generalized
magnetic fields into our nematic model.

Methods

Self-consistent Gaussian Approximation. The Self-
Consistent Gaussian Approximation (SCGA) is an ana-
lytical method that treats the nematics in the large- N
limit, which is known to produce rather accurate results
in the spin/nematic liquid phases. Our calculation fol-

lows closely the exposition in Ref. 71. We first treat ®;;
as independent, freely fluctuating DoF. The Hamiltonian
in the momentum space is written as

1. .
gLarge-N = §<I’HLarge-N¢T7 (19)

written in terms of the triad of nematic components (for
the two-dimenstional model) ® = (®gy, Py, Poy). The
matrix Hparge—n is the Fourier transformed interaction

matrix from Eq. (4):

c2 0 G0,
Himgen =20 0 C2  C.C,
C.C, C,C, C2+ C2

o (20)

where C, and C, are the momentum dependent
functions.  For the square lattice model [Fig. 5],
Cy = 2sin(q,/2), Cy = 2sin(gy/2), with the lattice con-
stant set to 1.

We then introduce a Lagrange multiplier with coeffi-
cient 1(B) to the partition function to obtain

zZ = eXp (;/BZ dq/dé(i) [BHLarge—N + ,U,(ﬂ)I] §T> s

(21)
where 3 denotes the inverse temperature. The purpose
of the term p(B)®Z®T (T stands for the identity ma-
trix) is to impose, on average, an additional unimodular
constraint on the nematic DoF, such that

(@2, + @2, +92 ) =1. (22)

For a given temperature T' = 1/, the value of u(8) is
numerically obtained by searching for its value that must
satisfy the constraint

3
1
dq) v = (D0, + P, +P2,) =1, (23)
/Bz 2@ et Oy
where \;(q), ¢ = 1,2,3 are the three eigenvalues of
ﬁHLarge-N(q)'

With p fixed, the partition function is completely
determined for a free theory of ®, and all correlation
functions in Fig. 2 can be computed from extracting
the corresponding components in [fHarge-n + 1£(3)Z]~
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I. BRIEF REVIEW OF RANK-2 U(1) GAUGE
THEORY

We start by briefly reviewing a version of rank-2 U(1)
gauge theory, which is to be realized in the models we
propose in this paper.

As its name suggested, the R2-U1 gauge theory uses
rank-2 tensors E;; and A;; as its electric and gauge field
instead of vectors. More specifically, the tensor field is
symmetric,

Eij = Eji s Aij = Aji . (24)

The charge is a vector defined as

pi = (9kEki . (25)

The low-energy sector of the theory has to be charge-free,
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which dictates the form of the gauge invariance condition
Aij — Aij + 81>\J + 81)\] . (27)

The magnetic field is the simplest object that is gauge-
invariant,

Bij = EiabchdaaacAbd. (28)

One can now write down the Hamiltonian for the R2-
Ul gauge theory as

Hrov1 = UO¥Ey0'Ey; + EijEyj + Bij By

=Up® + E? + B? (29)
Here we assumed the Einstein’s summation rule while
not caring about the super- and sub-scripts.

Our aim in this paper is to find out a general, and
experimentally realistic routes to realize the classical part
of this Hamiltonian

HR2-Ul-cl = Up2 + E?. (30)

The quantum dynamics, i.e. the B? term, is also possible
to realize, but is highly dependent on the specific set up
of the physical system. It will not be a focus of this

paper.



