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Characterizing internal structures and defects in materials is a challenging

task, often requiring solutions to inverse problems with unknown topology,

geometry, material properties and nonlinear deformation. Here we present

a general framework based on Physics-Informed Neural Networks (PINNs)

for identifying unknown geometric and material parameters. By employing a

mesh-free method, we parameterize the geometry of the material using a dif-

ferentiable and trainable method that can identify multiple structural features.

We validate this approach for materials with internal voids/inclusions using

constitutive models that encompass the spectrum of linear elasticity, hypere-

lasticity, and plasticity. We predict the size, shape, and location of the internal

void/inclusion as well as the elastic modulus of the inclusion. Our general

framework can be applied to other inverse problems in different applications



that involve unknown material properties and highly deformable geometries,

targeting material characterization, quality assurance and structural design.

Teaser

Physics-informed deep learning helps detect unknown internal structures and defects with lim-

ited non-destructive measurements

Introduction

Deep learning (1) approaches play an increasingly significant role in a wide range of technolo-

gies that benefit computer vision (2), natural language processing (3), and other data-rich areas

of societal interest. Despite the evolving sophistication of data analytics and neural networks

(NNs), much of this work to date has not been predicated on a large volume of scientific data,

through which predictive models can be constructed using experimentally validated mechanistic

inferences and laws of physics. In most scientific applications, by contrast, physical conserva-

tion laws (such as those for momentum and energy) are framed by highly general, mathematical

formulations (e.g., those invoking partial differential equations (PDEs) in areas such as solid

mechanics, fluid mechanics, and material diffusion), along with experimental authentication by

recourse to laboratory tests.

Emerging research reveals the profound untapped potential of physics-based, multidisci-

plinary, deep learning approaches with unprecedented opportunities for scientific and engineer-

ing advances in molecular analysis (4), design of materials with improved properties and per-

formance (5, 6) in structural and functional applications, and unique pathways for the charac-

terization of properties of materials (7–11). To further realize this potential, broadly applicable

methodologies in the area of NNs are needed to address a variety of issues that underpin deep

learning analyses, governed by physical laws and guided by mathematical formulations. To this



end, a physics-informed deep learning approach has recently been proposed (12) for the sim-

ulation of systems governed by physical laws that are represented by PDEs. While traditional 

methods based on deep learning encode such formulations implicitly by feeding training data 

governed by equations, this approach explicitly encodes known physical or scaling laws in the 

form of mathematical equations into the standard structure of NNs, formulating the so-called 

Physics-Informed Neural Networks (PINNs) (12). Such an approach integrates any existing 

knowledge expressible in terms of PDEs during the learning process, thereby markedly im-

proving predictability while reducing the amount of data required to achieve a desired level 

of accuracy. Studies have shown the applicability of PINNs in addressing a wide spectrum of 

forward and inverse problems spanning disciplines such as fluid mechanics (13–15), quantum 

mechanics (12), and solid mechanics (16–22). Such applications have shown promise for en-

hancing predictability when the amount of data is limited or when the problem is ill-posed, 

situations in which existing methods are not likely to yield accurate and reliable results. This 

approach has been further extended to offer new pathways to address relevant mathematical 

formulations, such as stochastic PDEs (23) and fractional PDEs (24).

Here, we address geometry identification problems in the field of continuum solid 

mechanics. Geometry identification problems are a class of inverse problems of scientific, tech-

nological and societal interest in fields as diverse as following (25–27): safety and failure 

analysis of civil, mechanical, nuclear and aeronautical structures; land, sea and air 

transportation; relia-bility analysis in microelectronic devices; non-destructive testing of 

materials; and processing of engineered materials. In a geometry identification problem, the 

unknown geometric fea-tures and parameters are determined in a solid material/structure 

given measured material re-sponse under static or dynamic loading, thereby characterizing 

unknown structures including internal defects or boundaries such as voids, vacancies or holes 

(28–32), inclusions and rein-forcements (31, 33–36), and/or cracks (30–32, 37).  Traditionally,



computational algorithms for geometry identification are established based on the finite 

element method (FEM) (38) as  the forward solver. Beyond the forward solver, considerable 

effort is required for the design and implementation of iterative algorithms for updating the 

estimated values of geometric parame-ters (39) (see Section S1 in Supplementary Materials 

(SM) for a brief review of the algorithms), through which the discrepancy (loss) between the 

observed data and the results of the forward solver is minimized. However, the embedded 

forward FEM solver as a mesh-based method in-herently brings about complications in these 

algorithms. The estimated geometry is updated by repeatedly re-meshing the domain through 

iterations (33). Alternatively, the unknown domain is embedded in a larger fixed domain while 

introducing an auxiliary field to track the presence of material (28, 36, 40). The problem 

becomes even more challenging when large deformations (i.e., geometric nonlinearity) and 

nonlinear mechanical properties (i.e., highly nonlinear consti-tutive behavior of the solid 

material) are involved. These issues are still not well resolved, and available methods are 

cumbersome and resource-intensive for deriving automated solutions to such inverse problems 

involving unknown geometry.

Here we present a unique, systematic approach based on PINNs for solving geometry iden-

tification p roblems i n c ontinuum s olid m echanics. T his m ethod i ntegrates k nown P DEs of 

importance in solid mechanics with NNs, composing a unified c omputational f ramework in-

volving both the forward solver and the inverse algorithm. Notably, we propose a method 

for directly parameterizing the geometry of the solid in a differentiable and trainable man-

ner. By utilizing the workflow of NNs, our method can automatically update the geometry 

estimation. To demonstrate the efficacy of our method, we study a two-dimensional 

prototypical problem on a matrix-void/inclusion system as a proof of concept (see Fig. 1). A 

square-shaped matrix material contains a void/inclusion with unknown geometry. To 

characterize the location, size and shape of the void/inclusion, we apply loading P0 on the ma-

trix boundary and monitor the displacement response on the measurement points at the matrix



boundary under such loading. We expect the PINN to inversely characterize the geometry of

the void/inclusion according to the displacement data. To test the performance of our method

with various parametric assessments, we build a set of detailed cases for this problem, includ-

ing different shapes and topologies of the void and different constitutive models for describing

the mechanical properties of the material. For the particular case of inclusion, the PINN is

also required to estimate the unknown material parameter of the inclusion, through which we

demonstrate the capability of our model in solving combined material and geometry identifica-

tion problems. In addition to the major results shown in the main text, we report in SM more

systematic studies of additional cases and parametric analyses highlighting the advantages and

limitations of the method.

Results

Setup of the Prototypical Inverse Problem. The general setup of the prototypical inverse

problem has been presented in the introduction and in Fig. 1. We consider a plane-strain prob-

lem in the X1 −X2 plane about a square-shaped matrix specimen with an void/inclusion. The

goal of the inverse problem is to estimate the geometric parameters θgeo (and material parame-

ters θmat in the constitutive model) of the void (inclusion) Ωi inside the matrix Ωm, by applying

uniaxial/biaxial loading P0 and collecting displacement data on the matrix boundary. We de-

signed six specific plane-strain problems as shown in Fig. 2. For each case, we specify the

type of the inhomogeneity (void/inclusion), the unknown parameters (θgeo for void, or θgeo and

θmat for inclusion; denoted together as θ = (θmat,θgeo)), the material model (compressible lin-

ear elasticity, incompressible Neo-Hookean hyperelasticity, or compressible deformation plas-

ticity), type of the loading (uniaxial/biaxial), and the location of displacement measurements

(uniformly on the outer boundary/inside the solid). All unknown parameters describe the ge-

ometry of the void/inclusion except µi in case 5 which is a material parameter representing the



shear modulus of the inclusion. The sketch and all the geometric parameters are shown in the

reference (undeformed) configuration. The material properties of the matrix are known for all

the cases.

The solution of the six cases will provide a proof of concept for our method under different

practical scenarios, demonstrating the wide applicability of the method. The three material

models (cases 0, 1, and 3 as the baseline cases) cover a wide range of mechanical behavior

patterns of natural and engineered materials in a vast array of practical applications. We place

the displacement measurement points only on the outer boundary of the matrix, to mimic the

real-world situation where the internal details are not available. Case 2 explores the scenario

of engineering application where the void has a large aspect ratio (such as a crack), which we

approximate by a slender slit. For this case only, we allow the displacement measurements to

be inside the solid due to the relative insensitivity of the boundary displacement with respect

to the slit geometry. Case 4 demonstrates the applicability of the method for materials with

multiple voids (such as porous materials or those with multiple cracks/slits). Finally, for case

5, we estimate the material and geometric parameters for a soft circular inclusion, to show that

our method can handle combined material and geometry identification problems.

Summary of PINN Architecture for Continuum Solid Mechanics. We setup the general

formulation of PINNs in continuum solid mechanics involving both material and geometry

identification. Corresponding to our computational examples, we design the architectures of

the PINNs for plane-strain problems for the three material models, as shown in (1) Fig. 3A for

(compressible) linear elasticity, (2) Fig. 3B for (incompressible) hyperelasticity, and (3) Fig. 3C

for (compressible) deformation plasticity. The architectures of the PINNs are slightly different

for different material models due to the characteristics of their mathematical expressions. Fig.

3D includes the definitions of the the mechanical quantities of interest in the architectures.

The detailed formulations and relevant governing equations of PINNs are explained in Ma-



terials and Methods and in Section S2 in SM. Here we summarize the basic workflow of PINNs

as follows. First, we apply a neural network (NN; with trainable parameters λ) to approximate

the primary solution fields (top left panels in Fig. 2A-2C) with respect to the in-plane coordi-

nates X = (X1, X2). Secondly, we integrate the mechanical laws into the PINN architecture

(top right panels in Fig. 2A-2C) by deriving relevant mechanical quantities of interest from the

NN outputs, such as strain, stress, and the residual of equilibrium PDEs. In this process, un-

known material parameters θmat are involved. Thirdly, we formulate the loss function L(λ,θ),

which measures the discrepancy between the predicted mechanical quantities of interest and

their respective true values provided by mechanical laws and measured data (bottom right pan-

els in Fig. 2A-2C). For example, for linear elasticity in Fig. 2A, the loss function is expressed

as

L(λ,θ) = αPDELPDE(λ,θ) + αBCLBC(λ,θ) + αDataLData(λ,θ), (1)

where the three loss terms Lj(λ,θ) (j = PDE,BC,Data) weighted by αj correspond to PDEs,

boundary conditions (BCs), and data, respectively. Each loss term is the mean squared error

evaluated on Nj residual points

Lj(λ,θ) =
1

Nj

Nj∑
i=1

∣∣∣∣rj(X(i)
j (θgeo);λ,θmat

)∣∣∣∣2, (2)

where rj is the residual of the condition j at the i-th residual point X(i)
j (θgeo). The Nj residual

points are distributed in the domain of condition j to correctly evaluate Lj(λ,θ). As an exam-

ple, we show the residual points for each condition in case 0 before and during the simulation

in Fig. 4. The coordinates of the residual points X
(i)
j depends on geometric parameters θgeo

because of the variable computational domain, which will be explained in detail in the next

section. Lastly, we conduct parameter estimation through the training of the PINN (bottom left

panels in Fig. 2A-2C), during which the estimated unknown parameters θ = (θmat,θgeo) and

neural networks parameters λ are updated/trained to minimize the loss function. This process



can be expressed as

λ̂, θ̂ = argminL(λ, θ), (3)
λ,θ

where the hat symbol refers to the value of these trainable parameters after the training process 

completes. As the solution to the inverse problem, the estimation of the unknown parameters is 

θ̂.

Formulation for Geometry Identification. Geometric parameters θ geo play an essentially 

different role in the inverse problem compared to material parameters θmat. Material parameters 

parameterize the governing PDEs of mechanics, which are naturally endowed with trainability 

through automatic differentiation of (physics-informed) neural networks. As a result, material 

parameters can be directly estimated using the standard formulation of PINNs for inverse prob-

lems (12, 18, 41, 42). Geometric parameters θgeo, on the other hand, parameterize the computa-

tional domains of the PDEs and boundary conditions, which do not naturally serve as trainable 

parameters in the framework of PINNs. To make the geometric parameters θgeo differentiable 

and hence trainable in a similar way to material parameters θmat, we propose to parameterize the 

coordinates of residual points by geometric parameters θgeo. Technically, such parameterization 

can be implemented by utilizing the definition of trainable variables in deep learning libraries 

such as TensorFlow (43): we first define the geometric parameters θg eo as  trainable variables; 

then we express the locations of residual points as functions of these trainable variables. As 

a result, the coordinates of residual points are automatically updated as the estimation of θgeo 

are updated throughout the iterative training process (see Fig. 4). In this way, we ensure that the 

residual points for different conditions are always located in their correct domains. 

Furthermore, this implementation allows us to capture the gradient of the loss function L with 

respect to the ge-ometric parameters θgeo, which otherwise could not be realized using the 

standard formulations of PINNs (44, 45). With the geometry-parameterized residual points, the 

PINN can correctly update the geometric parameters θgeo throughout the training process, 

thereby  characterizing  the  unknown  geometry.   To  the best of our knowledge,  such form of



parameterization invoking PINNs to solve geometry identification problems have hitherto not 

been addressed.

Procedure of Simulation. We adopted Abaqus (46) as the finite element solver to generate 

the computational examples. Specifically, we preset reference values of unknown parameters to 

be θ∗ and conducted forward simulations, which generated the displacement data provided to 

the PINN and ground-truth full-field solution for assessing the performance of the PINN. The 

PINN initialized the estimation of unknown parameters to be θ0. The PINN firstly went through 

a pre-training procedure for stabilizing the forward prediction, where the estimated parameters 

were fixed to be θ 0 (see Materials and Methods for d etails). As the PINN initiated parameter 

estimation through the iterative training process, we expected that the estimated parameters θ 

would migrate towards the correct value θ∗. The training process terminated after the loss func-

tion and the estimated parameters reached a relative plateau, yielding the parameter estimation 

results θ̂. The detailed setups of the prototypical problem, the finite e lement s olver, and the 

hyperparameters of the PINN are included in Section S3 in SM.

We present the major results for cases 0-5 in the main text. Further results for cases 0-5 are 

included in Section S4 (Figs. S1 and S2) in SM. To justify our choice of hyperparameters of the 

PINN (width and depth of the NN, weights of loss components, and number of residual points), 

we show the results of a parametric study for a forward problem in Sections S5 and S6 (Figs. S3-

S5) in SM. Additionally, we consider other modified setups of our inverse problem in Sections 

S7-S11 (Figs. S6-S9 and Table S1) in SM for illustrating the applicability, characteristics, 

and limitations of our method for the prototypical problems. For these additional cases, we 

summarize the objectives and major findings in the following sections and present the detailed 

results in SM.

Parameter Estimation Results. The results of parameter estimation for cases 0-5 are 

shown in Table 1. For each case, we compare the estimated and reference values of the un-



known parameters by presenting absolute errors and relative errors. To calculate the relative

error, we normalize the coordinates, the lengths and the modulus, and the tilting angle by the

domain size (side length of the matrix), respective reference values, and 180◦, respectively. Ta-

ble 1 indicates that the PINN estimates unknown parameters with high accuracy, with relative

error O(10−2) on most parameters and as small as O(10−4) for some parameters.

It is worth noting that the estimated shear modulus of the inclusion µi in case 5 has an error

slightly more than 10%. We provide a discussion on this issue in a following section (“Inter-

preting the Convergence Histories”). To improve the accuracy of case 5, we suppose that five

additional data points inside the solid are available as in case 2. We re-train the PINN with the

expanded measurement data and append the results in Table 1 as the modified case 5. With

the additional data, the relative error of estimated parameters decreases to O(10−2), similar to

other cases. In summary, given scattered displacement measurements, the PINN can accurately

characterize the geometry (and material properties) of the internal void(s)/inclusion for vari-

ous problem setups, including different constitutive relations, shapes of voids, and numbers of

voids. The result indicates the generality of our method for solving a broad spectrum of inverse

problems in mechanics of materials.

In Sections S7-S10, we provide additional parametric studies based on simplified cases 1

and 5 for demonstrating the influence of various factors on the estimation accuracy of unknown

parameters, including the locations of measurement points (S7), the size of the void (S8), the

location of the void (S9), and the moduli ratio of matrix and inclusion (S10). These studies

show that our method is robust against various choices of true values θ∗, including different

locations and different sizes (no smaller than O(10−1) of the matrix geometry) of the void, and

moduli ratio of matrix and inclusion spanning within roughlyO(101). In addition, without prior

knowledge on the location of the void, the measurement points should be uniformly placed

on the matrix boundary, to make sure that the displacement data effectively captures the key



λ

λ

information related to the void/inclusion.

Inference of Deformed Patterns. Our method not only is capable of estimating unknown 

parameters but also provides quantitative measures of the deformed patterns of the solid as 

well. Specifically, we apply the estimation results ˆ and θ̂geo (see Eq. 3) to the neural network 

part of the PINN (top left panels in Figs. 2A-2C) to infer the deformed configuration, where 

θ̂geo determines the reference/undeformed configuration, and ˆ determines the mapping from 

the reference/undeformed configuration to the deformed configuration. In Fig. 5, we display the 

comparison of the deformed configurations between the FEM ground truth (blue) and the PINN 

inference results (red for matrix; green for inclusion in case 5) for the six cases. Three snapshots 

are shown for each case after different numbers of training iterations (k = 103, M = 106), 

which from the left to the right correspond to the completion of pre-training (begin-ning of 

parameter estimation), amid the training, and the completion of training, respectively. For 

clarity of presentation, this figure shows the outer and inner boundaries of the specimen 

visualized from the FEM and PINN analyses. In the snapshots in the second column, the two 

outlines match each another to a high extent. The remaining minor discrepancy gradually di-

minishes through the remaining iterations. After the training process completes, the deformed 

configurations from the PINN are almost identical to those from the FEM ground t ruth. For case 

5, specially, the inner boundary of the matrix (red) and the boundary of the inclusion (green) 

predicted by the PINN also overlap well with each other, indicating that the continuity of the 

material surfaces in the matrix-inclusion system is preserved in the inference of the PINN.

For case 3 where plasticity is involved, we also examined the inference of the plastic zone. 

Fig. 6 shows the comparison of the plastic zone between the PINN prediction and the FEM 

ground truth. Not only is the geometry of the void characterized correctly (white region within 

the matrix) as previously verified in Table 1 and F ig. 5, the plastic zone of the loaded matrix is 

also inferred with high accuracy.



Interpreting the Convergence Histories. Besides the final results obtained for parameter 

estimation and inference of deformation, we also address how the estimated values evolve to-

wards the reference values during the training process. In Fig. 7, we consider case 1 (Fig. 7A 

and 7B) and case 5 (Fig. 7C and 7D) as representative examples and show the convergence 

process for the estimated parameters (Fig. 7A and 7C) and loss function (Fig. 7B and 7D). 

The same figures for other cases are included in Section S4 ( Fig. S1) in SM. F ig. 7A shows 

the evolution of the estimated values of unknown parameters (solid lines) of case 1 during the 

training process. As the estimated values become trainable after the initial 20k iterations of pre-

training (see Materials and Methods), they rapidly deviate from their respective initial guesses 

and gradually approach the reference values (dashed lines). After around 300k iterations, the 

estimations already approach the reference value. Within the remaining 700k iterations, the 

estimated values further approach the reference values slowly, reaching a high estimation accu-

racy at the end. Fig. 7B shows the evolution of the loss function during the training process. 

The loss decreases from O(10−1) to O(10−4). Such a small value of the loss function indicates 

that all the conditions involved in the loss function are approximately satisfied by t he PINN 

prediction. Similar to the evolution of estimated parameters, the loss decays rapidly at the early 

stage of training (from O(10−1) to O(10−3) within 200K iterations). The rate of decrease turns 

to be significantly slower during the late s tage. We find similar tendency for case 5 in Fi g. 7C 

and 7D on the evolution of estimated parameters and loss function.

Notably, we find that both the convergence rate and estimation accuracy differ among the un-

known parameters. For cases 1 and 5, the location of the void/inclusion described by (X1
(c), 

X2
(c)) almost converges with high accuracy after around 150k/300k iterations, while the 

remaining unknown parameters exhibit worse behavior in terms of both convergence rate and 

estimation accuracy, including (A, B, Γ) in case 1 and (R, µi) in case 5. We attribute these two 

phenomena  to  the  sensitivity  of Ldata  with respect to  estimated  unknown  parameters,  or  the



identifiability of unknown parameters. (X1
(c), X2

(c)) remarkably influence the displacement 

pattern at the outer boundary. Hence, a small deviation of estimated (X1
(c), X2

(c)) from their 

reference values causes a large increase of Ldata. In fact, by examining the displacement data, 

one may even roughly estimate (X1
(c), X2

(c)) by intuition. On the other hand, a significantly 

smaller increase of Ldata is rendered for certain combinations of perturbation on (A, B, Γ) in 

case 1 and (R, µi) in case 5.

To support our statement on the cause of different convergence rates and estimation accura-

cies, we use the FEM solver to analyze how a perturbation (∆R∗, ∆µi
∗) on the reference values 

(R∗, µi
∗) influences the displacement data collected on the measurement points in case 5. We 

show the root-mean-squared error of the displacement data caused by various combinations of 

(∆R∗, ∆µi
∗) in Fig. 8. From Fig. 8A, we observe that the error is significantly smaller for 

certain combinations of ∆R∗∆µi
∗ > 0 than for ∆R∗∆µi

∗ < 0. A detailed comparison along the 

two diagonal lines of the (R∗, µi
∗) domain in Fig. 8A is displayed in Fig. 8B. The error along 

line 1 is roughly O(10−1) the error along line 2. Such a phenomenon indicates that Ldata is 

insensitive to perturbations satisfying ∆R∗∆µi
∗ > 0. As the PINN estimates unknown pa-

rameters by minimizing the loss function, there exists intrinsically poor identifiability due to the 

coexistence of R and µi as unknown parameters and the placement of measurement points on 

the outer boundary. Such an interaction of R and µi has a two-fold effect: first, the accurate 

estimation of R and µi is postponed to rather late stages of the training process when the total 

loss has been relatively small; secondly, the estimation error of R and µi is notably larger than 

other unknown parameters. Such an analysis matches our observation in Fig. 7C, where many 

more iterations are needed to estimate R and µi. The issue of poor identifiability in case 5 may 

be mitigated by providing a small number of additional internal data points as shown in Table 1 

(see Section S4 and Fig. S2 in SM for complete results). We conclude that the interplay between 

the unknown parameters and available data measurements renders relatively poor identifiability 

for some unknown parameters.



Discussion

Inverse problems, especially those related to geometry identification, are notoriously difficult

to solve for solids with nonlinear constitutive relations. With the hyperelastic solid undergoing

severe distortion, it is hard to recover the unknown reference geometry with limited data. By

examining the deformed pattern of the void in case 2 (see Fig. 5), it is intuitively not a straight-

forward task to trace back to the original slit in the reference configuration. In this work, we

have demonstrated the capability of PINNs in effectively solving the geometry and material

identification problems for engineering solids that incorporate large deformation response and

plasticity through our computational examples for the matrix-void/inclusion system. We have

shown that the present framework is able to accurately estimate the unknown geometric and

material parameters with a relative error O(10−2) when proper displacement data are supplied

to ensure identifiability.

The approach presented here possesses some unique characteristics, endowing this method

with some distinct advantages. It provides a unified framework for solving forward problems

and inverse problems with unknown parameters in PDEs (material identification) and/or do-

mains (geometry identification), by combining the underlying mechanical principles and data

into a deep neural network. Unlike traditional methods based on FEM, there is neither the

need to design problem-specific algorithms to update estimated unknown parameters beyond

the forward solver, nor the need to repeatedly re-mesh the computational domain throughout

the iterations. In our method, the update of geometry is realized by the automated process built

in the deep learning algorithms. In particular, the estimation of geometric parameters is auto-

matically updated as the PINN seeks to minimize the loss function through the iterative training

process. With deep learning libraries such as TensorFlow (43), the entire length of our PINN

code for the current work is merely a few hundred lines. From the perspective of both design



and implementation of the algorithm, PINNs significantly reduce the human effort and related

costs in setting up algorithms for inverse problems. On the other hand, compared to typical

data-driven deep learning approaches, PINNs have the advantage of utilizing well-established

mechanics formulations as training guidelines, thereby requiring data only for the current in-

stance of the problem setup and ensuring data-efficiency.

Throughout this work, we adopt the Adam optimizer (47) as the optimization algorithm

to achieve best accuracy and to study the convergence history as a fundamental characteristic

of our method. The PINN is trained until both loss function and the estimated parameters

reach a relative plateau. With such a setup, the computational time for case 4, for example, is

around 11 hours on a typical machine (with CPU only) to complete the entire 1M iterations and

achieve high accuracy. We note that reasonable accuracy has been achieved within the first 200K

iterations. One may further combine Adam and the L-BFGS optimizer (48) to achieve similar

accuracy within much less computational time (around 30 minutes; see Section S11 and Table

S1 in SM for detailed results). Recently, parallel PINNs (49) have been proposed to accelerate

the learning process of PINNs by utilizing multiple CPUs and GPUs and introducing parallel

algorithms. In addition, other studies have focused on analyzing convergence rate of PINNs and

proposing practical techniques for accelerating convergence (50–52). With the ongoing efforts

to improve the original formulation of PINNs, the computational efficiency is expected to be

significantly enhanced over time.

We have focused on the prototypical problem as a simple proof of concept, seeking to char-

acterize the internal structures with static loading on outer boundaries. According to Saint-

Venant’s principle, under static loading, the inhomogeneous stress and deformation states caused

by the internal void/inclusion decays as the distance from the void/inclusion increases. Sub-

sequently, the measurements on outer boundaries essentially provide the PINN with limited

amount of information regarding the internal void/inclusion. Modern experimental techniques



have adopted dynamic external loading such as ultrasound (53) to acquire time-dependent mea-

surements, through which we anticipate that the performance of our method will benefit from

more information provided by measurements.

Our method can be applied to a wide range of engineering problems. Defect detection rep-

resents a broad class of practical engineering needs in various fields, where identification and

characterization of internal structures and defects in materials are essential. Experimental tech-

niques have so far been developed for different materials based on ultrasound (54), active ther-

mography (55), eddy current (56, 57), optical coherent tomography (58), and microwave (59).

By integrating the respective physical principles in these problems, our approach can potentially

be combined with these techniques for dealing with unknown and moving geometries, which

extends our method beyond continuum solid mechanics. Notably, one may need to carefully

consider the applicability of governing PDEs for practical problems. For instance, continuum

solid mechanics does not take into consideration the length scale of microstructures of materi-

als, so that continuum mechanics is accurate only when the key dimensions in the problem (e.g.,

void size) are much larger than these intrinsic length scales of materials. Our method can also

be utilized for structure design/optimization problems, where typically a mechanical structure

is designed with optimized stiffness within volume constraints. For these problems, PINNs can

incorporate the design target as a loss term, aspects of which have been preliminarily explored

in (60).

Materials and Methods

Physics-Informed Neural Networks for Continuum Solid Mechanics

We introduce the detailed formulation of PINNs for inverse problems in continuum solid me-

chanics. Here we focus on the PINN for hyperelasticity (specifically, incompressible Neo-

Hookean material) as most of our computational examples adopt this material model (see Sec-



tion S2 in SM for the mechanics of hyperelastic materials). To better clarify the quantitative

formulation, here we denote all the material and geometric parameters of interest as θmat and

θgeo, respectively. For incompressible Neo-Hookean materials, the only material parameter is

the shear modulus µ so that θmat = µ. The unknown part of θ = (θmat,θgeo) in the inverse

problem is denoted as θunk.

As summarized in Results, the workflow of PINNs comprises four steps. First, we ap-

ply a NN to approximate the primary solution fields (top left panel in Fig. 2B) in domain

Ω(θgeo), including the displacement field ũ(X;λ) and the pressure field p̃(X;λ), where λ rep-

resents trainable parameters of the NN, X = (X1, X2) is the in-plane coordinates in the refer-

ence/undeformed configuration, and the quantities with tilde represent the approximation from

the neural network. For incompressible materials, we need the hydrostatic pressure field p as

a Lagrange multiplier accompanying the displacement field u to uniquely determine the stress

field.

Secondly, we integrate mechanical laws into the PINN architecture (top right panel in Fig.

2B) by deriving relevant mechanical quantities of interest from the NN outputs. During this cal-

culation process, partial derivatives are handled by automatic differentiation. The deformation

gradient F̃(X;λ) and the first Piola-Kirchhoff stress P̃(X;λ, µ) are calculated by:

F̃(X;λ) = I +
∂ũ

∂X
(X;λ), (A1)

P̃(X;λ, µ) = −p̃(X;λ)F̃−T(X;λ) + µF̃(X;λ), (A2)

where I is the identity tensor, Eq. A1 is kinematics, and Eq. A2 is the constitutive relation for

incompressible Neo-Hookean materials. The residuals of the equilibrium PDE and the incom-

pressibility condition at X are expressed by:

r̃PDE(X;λ, µ) = Div P̃(X;λ, µ), X ∈ Ω(θgeo), (A3)

r̃inc(X;λ) = det(F̃(X;λ))− 1, X ∈ Ω(θgeo). (A4)



The residuals of Dirichlet/displacement and Neumann/traction boundary conditions at X are:

r̃D(X;λ) = ũ(X;λ)− u(X), X ∈ ∂ΩD(θgeo), (A5)

r̃N(X;λ, µ) = P̃(X;λ, µ)N(X)−T(X), X ∈ ∂ΩN(θgeo), (A6)

where N is the outward unit normal vector on the boundary, and u and T are the specified

displacement and traction on the boundary, respectively. ∂ΩD(θgeo) and ∂ΩN(θgeo) refer to the

domains for Dirichlet/displacement and Neumann/traction boundary conditions, respectively.

For inverse problems, we have displacement data {u∗(i)}Nu
i=1 at {X(i)

u }Nu
i=1. The residual of the

i-th displacement observation is:

r̃(i)
u (λ) = ũ(X(i)

u ;λ)− u∗(i). (A7)

Thirdly, we formulate the loss function according to the foregoing residuals from mechanics

and data (bottom right panel in Fig. 2B). To define the loss terms corresponding to the problem

definition, we place NΩ, ND and NN residual points in Ω, on ∂ΩD and ∂ΩN, denoted as X
(i)
Ω

(i ∈ {1, 2, ..., NΩ}), X(i)
D (i ∈ {1, 2, ..., ND}), and X

(i)
N (i ∈ {1, 2, ..., NN}), respectively. Since

we parameterize the coordinates of residual points by θgeo, these residual points are all param-

eterized by θgeo. We evaluate the mean squared residuals of the PDEs, the incompressibility

condition, Dirichlet and Neumann boundary conditions, and data, respectively. Each loss term



is defined by

LPDE(λ,θ) =
1

NΩ

NΩ∑
i=1

∣∣∣∣r̃PDE

(
X

(i)
Ω (θgeo);λ, µ

)∣∣∣∣2 (A8)

Linc(λ,θ) =
1

NΩ

NΩ∑
i=1

∣∣∣∣r̃inc

(
X

(i)
Ω (θgeo);λ

)∣∣∣∣2 (A9)

LD(λ,θ) =
1

ND

ND∑
i=1

∣∣∣∣r̃D

(
X

(i)
D (θgeo);λ

)∣∣∣∣2 (A10)

LN(λ,θ) =
1

NN

NN∑
i=1

∣∣∣∣r̃N

(
X

(i)
N (θgeo);λ, µ

)∣∣∣∣2 (A11)

Lu(λ,θ) =
1

Nu

Nu∑
i=1

∣∣∣∣r̃(i)
u (λ)

∣∣∣∣2, (A12)

and the loss function is:

L(λ,θ) = αPDELPDE(λ,θ) + αincLinc(λ,θ) + αDLD(λ,θ)

+ αNLN(λ,θ) + αuLu(λ,θ), (A13)

where αPDE, αinc, αD, αN, αu are the weights of the loss terms. Note that the two loss terms LD

and LN for the two types of boundary conditions are simplified into LBC in Eq. 1 in Results.

Lastly, we conduct parameter estimation through training/loss minimization (bottom left

panel in Fig. 2B). The trainable parameters of the PINN include the trainable parameters of the

NN, λ, and the unknown parameters of the inverse problem, θunk (⊆ θ). Using the notations in

this section, this process can be expressed as:

λ̂, θ̂unk = argmin
λ,θunk⊆θ

L(λ,θ). (A14)

With the PINN adjusting λ to minimize the loss function, we anticipate that all the mechanical

laws will be approximately satisfied, making the NN serve as an approximation to the primary

solution fields. Furthermore, the residual of displacement observations in the loss function



guides the estimated unknown parameters to evolve towards their respective target values. In

this way, the PINN is able to solve inverse problems.

In Section S2 in SM, we provide additional information regarding the formulation of PINNs.

This includes the formulation for forward problems, for linear elasticity and deformation plas-

ticity, and for multiple materials which is related to case 5 in our main text.

Pre-training Procedure

We find it necessary to pre-train the model before using the model to characterize unknown ge-

ometry. If we directly apply the model without pre-training, the estimated geometric parameters

rapidly depart from physically admissible values (e.g., void located outside the matrix) after a

few iterations. Inspired by the transfer learning technique, we propose to maintain all the esti-

mated unknown parameters fixed (not trainable) and only update the trainable parameters of the

NN λ for the first few iterations. During this pre-training process, the PINN essentially solves

a forward problem, seeking to roughly capture the qualitative pattern of the displacement field

and the stress field. After this pre-training process, we initiates the parameter estimation process

by making both λ and θ trainable. Such a pre-training procedure induces λ to converge towards

to the desired local minimum, hence serving as a good initialization for the geometry identifica-

tion problem. For our prototypical problem, technically, the PINN needs to be pre-trained until

there emerges a qualitative pattern indicating the existence of a stress concentration around the

void or the soft inclusion.
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Figures and Tables

Fig. 1. General setup of the prototypical problem on geometry and material identification
in this study. We consider a plane-strain problem in the X1 −X2 plane about a square-shaped
matrix specimen Ωm with a void/inclusion Ωi. Displacements are measured on the outer bound-
ary of the matrix when loading P0 is applied. The goal is to characterize the unknown geometry
of the internal void/inclusion according to the measurement data. For the case of inclusion,
material properties of the inclusion are also characterized.



Fig. 2. Setup of cases 0-5 of the prototypical problem. All the illustrations and geo-
metric parameters are given in the reference (undeformed) configuration. The target of each
case is to estimate the unknown parameters θ given the displacement data on the measure-
ment points. All unknown parameters describe the geometry of the void/inclusion except µi

in case 5, which is the shear modulus of the inclusion. For each case, we specify the type of
the inhomogeneity (void/inclusion), unknown parameters, the material model (linear elastic-
ity/hyperelasticity/deformation plasticity), type of the loading (uniaxial/biaxial), and the loca-
tion of displacement measurements (uniformly on the outer boundary/inside the solid). Addi-
tional cases are summarized in the main text and presented in detail in SM.



Fig. 3. Architectures of PINNs for continuum solid mechanics. We established the PINNs
for plane-strain problems involving geometry and material identification. Three material models
are considered, including (A) compressible linear elasticity, (B) incompressible hyperelasticity,
and (C) deformation plasticity. (A-C) We apply neural networks with trainable parameters λ to
approximate primary solution fields with respect to the in-plane coordinates (X1, X2). Mechan-
ical laws are integrated to derive relevant mechanical quantities of interest from the NN outputs,
such as strain, stress, and the residual of equilibrium PDEs, during which unknown material pa-
rameters θmat are involved. The loss function L is formulated to represents the prediction error
of each condition in the problem, such as PDEs, BCs, and data in (A), during which unknown
geometric parameters θgeo are involved due to the variable computational domain. Finally, pa-
rameter estimation is conducted through the minimization of loss function. In this process, λ
and θ = (θmat,θgeo) are iteratively updated. The final solution of the identification problem is
the updated value of θ after iterations. (D) Definitions of the notations in (A)-(C).



Fig. 4. Residual points for the initial geometry and updated geometry in Case 0. Dif-
ferent residual terms (PDEs, BCs, and data) require different residual points. We propose the
geometry-parameterized residual points, so that the locations of the residual points automati-
cally change as the geometric parameters θgeo are updated.



Fig. 5. Inference of the deformed patterns compared with FEM ground truth for all cases
shown in Fig. 2. We displayed the visual outlines of deformed configurations of FEM/Abaqus
(blue) and PINN results (red for matrix; green for inclusion in case 5). Three snapshots are
shown for each case after different numbers of training iterations, which (from the left to right)
correspond to the completion of pre-training (beginning of parameter estimation), amid the
training, and the completion of training, respectively (K = 103, M = 106).



Fig. 6. Inference of the plastic zone compared with FEM ground truth in case 3 shown in
Fig. 2. We mark the plastic zone by yellow and the void by white.



Fig. 7. Evolution of estimated unknown parameters and loss function in case 1 and 
case 5 during the training process. Case 1 (A and B) involves geometry identification, 
while case 5 (C and D) involves both material and geometry identification. See Fig. 2 for 
the definitions of the cases. (A and C) The dashed lines and solid lines represent the reference 
value and estimated value of unknown parameters. Unknown parameters are not updated in 
the pretraining process during the first 20K (for case 1) and 50K (for case 5) iterations, 
respectively.(B and D) The value of the loss function during the training process. The results 
for cases 0, 2, 3, and 4 are shown in Section S4 (Fig. S2) in SM.



Fig. 8. Perturbation analysis of unknown parameters in case 5. Using the finite element
solver, we calculate the root-mean-squared error of the displacement data on the measurement
points caused by the perturbation (∆R∗,∆µ∗i ) on the reference values of the shear modulus
(µ∗i ) and the radius of the inclusion (R∗). (A) Absolute error of displacement data for vari-
ous perturbations on (R∗, µ∗i ). The red star at the center corresponds to the unperturbed state
(∆R∗ = ∆µ∗i = 0). (B) Absolute error of measurements along the diagonal lines of the (R∗, µ∗i )
domain in (A). Perturbation states on line 1 satisfy ∆R∗∆µ∗i > 0; Perturbation states on line 1
satisfy ∆R∗∆µ∗i < 0.



Case 0 X (c)
1 X (c)

2 A B Γ

Estimated Value 0.0488 0.0987 0.3475 0.1582 -29.42◦

Reference Value 0.05 0.10 0.35 0.15 -30◦

Absolute Error (×10−2, except Γ) 0.12 0.13 0.25 0.82 0.58◦

Relative Error (%) 0.12 0.13 0.71 5.47 0.32

Case 1 X (c)
1 X (c)

2 A B Γ

Estimated Value 0.0479 0.0991 0.3440 0.1602 -29.02◦

Reference Value 0.05 0.10 0.35 0.15 -30◦

Absolute Error (×10−2, except Γ) 0.21 0.09 0.60 1.02 0.98◦

Relative Error (%) 0.21 0.09 1.7 6.8 0.54

Case 2 X (1)
1 X (1)

2 X (2)
1 X (2)

2

Estimated Value -0.0399 0.3273 0.0396 -0.2315
Reference Value -0.0392 0.3474 0.0392 -0.2474
Absolute Error(×10−2) 0.07 2.01 0.04 1.59
Relative Error(%) 0.07 2.01 0.04 1.59

Case 3 X (c)
1 X (c)

2 R

Estimated Value 0.0506 0.0999 0.2525
Reference Value 0.05 0.10 0.25
Absolute Error(×10−2) 0.06 0.01 0.25
Relative Error(%) 0.06 0.01 1.00

Case 4 X (1)
1 X (1)

2 R(1) X (2)
1 X (2)

2 R(2)

Estimated Value -0.15089 0.10018 0.20007 0.25045 -0.05008 0.15019
Reference Value -0.15 0.10 0.20 0.25 -0.05 0.15
Absolute Error(×10−2) 0.089 0.018 0.007 0.045 0.008 0.019
Relative Error(%) 0.089 0.018 0.04 0.045 0.008 0.13

Case 5 X (c)
1 X (c)

2 R µi

Estimated Value 0.0496 0.0991 0.2583 0.0760
Reference Value 0.05 0.10 0.25 0.0667
Absolute Error (×10−2) 0.04 0.09 0.83 0.93
Relative Error (%) 0.04 0.09 3.3 13.9

Case 5 (With Internal Data) X (c)
1 X (c)

2 R µi

Estimated Value 0.0495 0.0998 0.2524 0.0687
Reference Value 0.05 0.10 0.25 0.0667
Absolute Error (×10−2) 0.05 0.02 0.24 0.20
Relative Error (%) 0.05 0.02 0.96 3.0

Table 1. Parameter estimation for all cases shown in Fig. 2. We compare the estimated
values (θ̂) and reference values (θ∗) of unknown parameters. To calculate the relative error, we
normalize the coordinates, the lengths and the modulus, and the tilting angle by the domain size
(side length of the matrix), their respective reference values, and 180◦, respectively. To improve
the accuracy of case 5, we provide the PINN with additional displacement measurement points
inside the solid and then re-train the PINN, which is shown in the table as “Case 5 (With Internal
Data)”.
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Section S1. A Brief Review on the Inverse Algorithms for Solid Mechanics

To determine how to update the estimations of unknown parameters, the most widely-used fam-

ily of methods is based on the calculation of gradients, where the differentiable loss function

provides guidance on the increments of estimations. For geometry identification problems, how-

ever, the geometry is not naturally differentiable. To address this issue, the shape/topological

gradient is proposed by some researchers (30, 35, 37, 61), with some studies combined with the

level set method (28). With the gradient with respect to geometry calculated, the remaining

issue is to apply an optimization method to minimize the loss function. Examples of commonly

applied optimization algorithms include the L-BFGS algorithm (36,48,62), a quasi-Newton iter-

ative method for nonlinear optimization, and the Levenberg-Marquardt method (33), a nonlinear

least square fitting algorithm. In some other studies, non-gradient methods such as evolutionary

algorithms (32,34), have also been applied for updating the geometry.

Section S2. Additional Information on the Formulation of PINNs

Mechanics of Incompressible Hyperelastic Materials. Here we summarize the mechanics

of incompressible hyperelastic materials. The reference (undeformed) and current (deformed)

configurations of the solid are described by the vectors X and x, respectively. Then, we may

define the displacement vector u(X) = x(X) � X, the deformation gradient tensor F(X) =

@x/@X = I+ @u/@X (with the FiJ component being @xi/@XJ , i 2 {1, 2, 3}, J 2 {1, 2, 3}; I

is the identity tensor), and the right Cauchy-Green tensor C = FTF.

For isotropic, incompressible materials, the three invariants of C are I1 = tr(C), I2 =

[tr(C)2 � tr(C2)]/2, and I3 = det(C)(= 1 because of incompressibility). The strain energy

density can be expressed asW (I1, I2;✓mat). Specifically, for incompressible Neo-Hookean ma-

terials, it takes the formW (I1;µ) = µ(I1�3)/2, where the shear modulus µ is the only material

parameter (✓mat = µ).



The first Piola-Kirchhoff (PK) stress for incompressible materials is expressed as

P = �pF�T + 2F
@W

@C
, (S1)

where p is the hydraulic pressure serving as the Lagrange multiplier for incompressible materi-

als to uniquely determine the stress field. For incompressible Neo-Hookean materials,

P = �pF�T + µF. (S2)

Given the first PK stress tensor P, the equilibrium equation without body force is

Div P = 0, (S3)

where the corresponding component form is @PiJ/@XJ = 0 (i 2 {1, 2, 3}; the Einstein sum-

mation convention is applied for J).

Now we define the computational domain and boundary conditions. In our current work,

we parameterize the domain by ✓geo. Hence, the domain of the PDEs follows as:

X 2 ⌦(✓geo) ⇢ Rd, (S4)

where ⌦ is the parameterized domain of the reference configuration of the problem, and d

is the dimension of the problem (d = 2 in our cases). The displacement/Dirichlet and trac-

tion/Neumann boundary conditions can be expressed as:

u = u,X 2 @⌦D(✓geo), (S5)

PN = T,X 2 @⌦N(✓geo), (S6)

where N is the outward unit normal vector in the reference configuration, and @⌦D(✓geo) and

@⌦N(✓geo) are the displacement and traction boundaries, respectively. The right-hand-side terms

u andT are the specified values of displacement and traction at the boundary, respectively. The

component form corresponding to Eq. S6 is PiJNJ = T i.



In the case where there is more than one material, the continuity of displacement and traction

along the interface �int(✓geo) (between material 1 and 2) must also be satisfied:

u(1) = u(2),X 2 �int(✓geo), (S7)

P(1)N = P(2)N,X 2 �int(✓geo), (S8)

where the superscripts refer to the materials 1 and 2, respectively, and N is the unit normal

vector of the interface �int in the reference configuration.

PINNs for Linear Elasticity and Deformation PlasticityWe summarize the differences in

the architecture of PINNs for compressible linear elasticity (Fig. 2A) and deformation plasticity

(Fig. 2C) compared to incompressible hyperelasticity (Fig. 2B). For these two constitutive

relations, the solid undergoes infinitesimal deformation, so that one does not need to distinguish

reference (undeformed) configuration (X1, X2) and deformed configuration (x1, x2). In this

section, the coordinates are written as (x1, x2) to keep consistent with the conventional notations

in solid mechanics community. Due to the compressibility, the hydrostatic pressure p is no

longer an independent state variable, so that p is not needed as a primary output of the NN.

To build the PINN for linear elasticity, kinematics in Eq. 4 in the main text is replaced by

the definition of the infinitesimal strain tensor "ij = @ui/@xj , where u = (u1, u2) is the dis-

placement. Stress-deformation relationship in Eq. 5 is replaced by the stress-strain relationship

�ij = �"kk�ij + 2µ"ij, (S9)

where � and µ are Lamé constants. The equilibrium equation similar to Eq. 6 is @�ij/@xj = 0.

Note that the loss function for linear elasticity does not require the term for incompressibility

(see Eq. 1 and Eq. 16).

The PINN for the power-law deformation plasticity can be constructed based on the PINN



for linear elasticity. In this case, the nonlinear stress-strain relation is expressed as

E" = � +
3

2
↵

✓
�e

�Y

◆n�1

s, (S10)

where E (Young’s modulus), ↵, �Y (yield stress), and n (hardening exponent) are material

parameters. s is the deviatoric stress tensor (sij = �ij �
1
3�kk�ij), and �e (=

q
3
2sijsij) is the

von Mises stress.

According to Eq. S10, stress cannot be explicitly expressed by strain for power-law de-

formation plasticity, unlike linear elasticity (Fig. 2A) and hyperelasticity (Fig. 2B). There-

fore, the integration of constitutive relation through the analytical expression of stress tensor

no longer works for deformation plasticity. As an alternative approach, we include the stress

field � = (�11, �12, �22) as primary solution field of the neural network in addition to the dis-

placement field (u1, u2) (see Fig. 2C). After calculating the strain field, we bridge the strain

and stress fields with an additional loss term according to Eq. S10. In this way, we integrate

constitutive relation as an additional penalty term in the loss function for deformation plasticity.

Multiple materials. In the case of inverse problems for multiple materials as in case 5 in

the main paper, we apply two independent NNs to approximate the displacement and pressure

fields of the matrix and inclusion materials, respectively. Such approximation can be expressed

by

Matrix: (eu(X;�m), ep(X;�m)),X 2 ⌦m(✓geo) (S11)

Inclusion: (eu(X;�i), ep(X;�i)),X 2 ⌦i(✓geo) (S12)

In addition to the loss terms for each material, we need an additional loss term Lint to force the

continuity of displacement and traction on the interface �int(✓geo) of two materials. To do this,

we first write the residuals on a single point for the two conditions of continuity. The residual

of displacement continuity is

erDint(X;�m,�i) = eu(X;�m)� eu(X;�i),X 2 �int(✓geo), (S13)



and the residual of stress continuity is

erNint(X;�m,�i, µm, µi) = eP(X;�m, µm)N(X) � eP(X;�i, µi)N(X),X 2 �int(✓geo). (S14)

We place residual points X(i)
� (✓geo) (i 2 {1, 2, ..., N�}) on �(✓geo), and construct the loss com-

ponent on the interface of two materials by taking a weighted sum as

Lint(�m,�i,✓) = ↵DintLDint(�m,�i,✓) + ↵NintLNint(�m,�i,✓), (S15)

where

LDint(�m,�i,✓) =
1

N�

N�X

i=1

����erDint
⇣
X(i)

� (✓geo);�m,�i

⌘����
2

(S16)

LNint(�m,�i,✓) =
1

N�

N�X

i=1

����erNint
⇣
X(i)

� (✓geo);�m,�i, µm, µi

⌘����
2

. (S17)

Hence, the loss function in the case of multiple materials is the summation of the loss function

for each single material and the additional loss Lint for the material interface.

PINNs for forward problems. For forward problems with no unknown parameter (✓unk =

;, hence ✓ = ; for convenience), we do not have measurement data. For incompressible mate-

rials, for example, the loss function can be written as a weighted sum of all the four loss terms

that correspond to PDEs, the incompressibility condition, displacement boundary conditions,

and traction boundary conditions, respectively:

Lfor(�) = ↵PDELPDE(�) + ↵incLinc(�) + ↵DLD(�) + ↵NLN(�). (S18)



Each loss term is defined by

LPDE(�) =
1

N⌦

N⌦X

i=1

����erPDE
⇣
X(i)

⌦ ;�
⌘����

2

(S19)

Linc(�) =
1

N⌦

N⌦X

i=1

����erinc
⇣
X(i)

⌦ ;�
⌘����

2

(S20)

LD(�) =
1

ND

NDX

i=1

����erD
⇣
X(i)

D ;�
⌘����

2

(S21)

LN(�) =
1

NN

NNX

i=1

����erN
⇣
X(i)

N ;�
⌘����

2

. (S22)

The solution of forward problems using PINNs can be expressed as:

�̂ = argmin
�

Lfor(�), (S23)

The displacement solved by the PINN is eu(X; �̂) forX 2 ⌦.

Section S3. Technical Details

Details of the Prototypical Problem. For case 0, the Young’s modulus of the matrix is E =

1.0, the Poisson’s ratio is ⌫ = 0.3, and the loading is P0 = 0.003. For cases 1, 2, 4 and 5,

the shear modulus of the matrix (incompressible Neo-Hookean material) is µi = 0.333, and

the external load is P0 = 0.3. For case 3, the external load is P0 = 0.002, and the material

parameters include E = 1.0, ↵ = 0.1, n = 10 and �Y = 0.005. For cases 0, 1, 3, 4, 5, there are

Nu = 10 measurement points of on each edge of the matrix. For case 2, measurement points

are inside the solid, with 10 of them uniformly placed on the line X1 = �0.15, X1 = 0.15,

X2 = �0.45, X2 = 0.45, respectively. For the modified case 5 with additional measurements,

the five additional measurement points are located at (�0.3, 0.05), (�0.3, 0.10), (�0.3, 0.15) in

the matrix and (�0.05, 0.10), (0.15, 0.10) in the inclusion.

Details of the PINN. We use TensorFlow 1.14 (43) to build up our PINN. Each NN in the

PINN has 4 hidden layers, each with 30 neurons. For cases 0, 1, 2 and 4, there is one single



NN in the PINN. There are two NNs in the PINN in case 3 (one NN for (u1, u2), the other NN

for (�11, �22, �12)) and case 5 (one NN for each material). We adopt the layer-wise adaptive

“tanh” function (63) as the activation function for the NNs. Among the trainable parameters

of the NN, weights are initialized with Xavier initialization (64), biases are initialized as zeros,

and the variable of adaptive activation are initialized as ones. We use the Adam optimizer (47)

to train the network. The learning rate is 0.001 for all cases except cases 2 and 3.

For case 2, the unknown geometric parameters directly defined in the code are the location

of the center of the slit (X (c)
1 , X (c)

2 ), half length of the slit L, and tilting angle of the slit �,

which are post-processed to be the coordinates of the locations of the centers of the slit tips

(X (1)
1 = X (c)

1 � L sin�, X (1)
2 = X (c)

2 + L cos�, X (2)
1 = X (c)

1 + L sin�, X (2)
2 = X (c)

2 � L cos�).

The learning rate is 0.001 for � and 0.0002 for (X (c)
1 , X (c)

2 , L). For case 3, the learning rate is

0.00005.

For cases 0, 1, 3 and 5, the assignments of residual points are similar. We assign 3200

internal points for the PDE and incompressibility (800 points for each of the four sub-regions;

40 along the circumferential direction and 20 along the radial direction). For case 5 only, 400

residual points are assigned in the inclusion material. We place 160 residual points on the outer

boundary for enforcing traction boundary conditions. Another 160 residual points are placed on

the inner boundary of the matrix, which enforce the traction-free boundary conditions for cases

1 and 3 and the interface conditions for case 5. The points of displacement measurements are

uniformly placed on the outer boundary of the matrix.

For case 2, the smallest length scale is determined by the W , which poses a limitation for

the interval of residual points. To accurately resolve the displacement field, especially around

the slit tip where the displacement changes drastically and the stress concentration exists, we

need a large density of residual points in the computational domain. For this case, we have

49000 internal points, 700 points on the outer boundary, and 700 points on the inner boundary.



For case 4, we divide the square region into two parts, each with one void. For each part,

residual points are assigned in a similar way to case 1.

For all the cases, we choose the weights of the loss terms in Eq. 16 to be ↵PDE = ↵inc =

↵D = ↵u = 1 when applicable. The weight for traction boundary conditions ↵N is also set to be

1, but we evaluate the this part separately for each of the five boundaries (left, right, top, bottom,

inner), leading to five loss terms related to traction boundaries, each with weight 1, in the total

loss. In case 2, the calculation of the mean squared error of the PDE loss term LPDE(�,✓) is

further weighed inversely by the local density of residual points, so that different spatial regions

contribute equally to the loss term of PDEs.

For cases 0 and 3, the small values of loading (roughlyO(10�3)) cause difficulties in training

the PINN. To mitigate this issue, we scale up the external loading (and �Y = 0.005 in case 3) 100

times and feed the scaled loading into the PINN. According to Eqs. S9 and S10, such scaling

only results in 100 times the original displacement (and hence strain) and does not essentially

changes the characteristics of the solution. After obtaining the solution from the PINN, we scale

the displacement/strain solution back (0.01 times) to its original value.

Details of the FEM. We use Abaqus as the FEM solver to generate the displacement data

{u⇤(i)
}
Nu
i=1 and the entire displacement field, given the reference values of unknown parameters

✓⇤
unk. The linear density of meshes is 120 per unit length, which is sufficiently dense so that

the FEM/Abaqus solution is accurate enough to serve as the reference solution. Plane strain

quadratic elements with hybrid formation (CPE8H elements) are applied for hyperelasticity.



Section S4. Additional Results for Cases in the Main Text

Fig. S1. Evolution of estimated unknown parameters and loss function in cases 0, 2, 3 and
4. See Fig. 2 for the definitions of the cases. (A, C, E, G) The dashed lines and solid lines
represent the reference value and estimated value of unknown variables. Unknown parameters
are not trainable in the pre-training process during the first 50K (case 0), 200K (case 2), 100K
(case 3), and 20K (for case 4) iterations, respectively. (B, D, F, H) Loss function during the
training process. See Fig. 7 in the main text for the results for cases 1 and 5.



Fig. S2. Results of case 5 with additional internal measurement points. (A) Compar-
ison of the visual outlines (including the material interface) of the deformed configurations
between FEM/Abaqus (blue) and PINN (red for the matrix; green for the inclusion) results
after 50K, 500K, and 2.5M iterations. (B) Evolution of the estimated unknown parameters
(X (c)

1 , X (c)
2 , R, µi) during the training process. The dashed lines and solid lines are reference

values and estimated values, respectively. (C) The loss function during the training process.

Section S5. Forward Problem on One Centered Circular Void

In this section, we study on a forward problem to verify the ability of PINNs in solving boundary

value problems of hyperelastic solids (see Section S2 for details of the formulation of PINNs for

forward problems). For forward problems, we have ✓unk = ; (hence ✓ = ; for convenience),

and we do not have any observation on the displacement field. The setup is a simplified, forward

version of case 1: the matrix includes a circular void located at the center (0.0, 0.0) with radius

0.1; all the other setup details are the same as the foregoing description for case 1. The target is

to solve the displacement field under the specified loading condition.



The results are shown in Fig. S3. We trained the PINN over 1M iterations in total. Fig.

S3A shows the comparison of deformed configurations of the solid between the FEM solver

and the PINN solver after 20K, 200K and 1M iterations, with the absolute L2 error of the

displacement field marked on each subfigure. For clarity of presentation, this figure shows

the outer and inner boundaries of the specimen visualized from the FEM and PINN analyses.

Although we trained the PINN for 1M iterations in total, the visual pattern of the PINN result

almost fully overlaps with the pattern of the FEM result after 200K iterations. The L2 error

finally decreases to as small as O(10�4), compared to the typical displacement of O(10�1).

Fig. S3B shows the distribution of the true stress component �11 along the central line of the

solid (X1 = 0) after 20K, 200K and 1M iterations. After training over 20K iterations, the

stress pattern of the PINN result is already qualitatively similar to that of the FEM result. The

remaining difference is gradually diminishing through the following training iterations. Fig.

S3C shows the value of the loss function throughout the training process. The total loss is

decreased to O(10�5) after 1M iterations. According to all the results presented in Fig. S3, the

PINN has accurately solved this forward boundary value problem of hyperelastic solids. This

example of a forward problem serves as a basis for the inverse problem where the introduction

of trainable unknown parameters slightly increases the complexity of the problem. In Section

S6, we present a parametric study based on this case.



Fig. S3. Results of the forward problem on one centered circular void. (A) Comparison
of the visual outlines of deformed configurations between FEM/Abaqus (blue) and PINN (red)
results after 20K, 200K, and 1M iterations. The absolute L2 error of the displacement field
between the two methods is marked in each subfigure. (B) Stress component �11 along the
vertical axis of symmetry (X1 = 0) after 20K, 200K, and 1M iterations (dashed lines), with
the FEM/Abaqus result as a comparison (solid line). (C) The loss function during the training
process.

Section S6. Parametric Study of the Forward Problem: Influence of NN
Architecture, Density of Residual Points, and Loss Weights

Here we conduct a parametric study on the forward problem in Section S5. We study the

influence of hyperparameters on the simulation results to justify choice of hyperparameters

in this paper. We consider changing the width and the depth of the NN from the reference

architecture 2-30-30-30-30-3 (d = 4 hidden layers each with width w = 30, called 4-30 for



short and similarly d-w for other architectures) in the main paper to be wider (4-45), narrower

(4-15), deeper (6-30), and shallower (2-30). In the forward problem in Section S5 (and also

case 1 in main text), we have placed 40⇥ 20 residual points in each of the four sub-regions (see

Section S3 for details). Here we change the number of residual points into variables: ⇢⇥ (⇢/2)

for each sub-region, where ⇢ is the linear density of residual points. With this definition, the

number of residual points on the boundary is proportional to ⇢, and the number of residual

points inside the solid is proportional to ⇢2. Here we consider changing ⇢ to range from 10

to 80. For each combination of ⇢ and d-w, we use the PINN to solve the forward problem.

The results of the absolute L2 error of the displacement field compared to the FEM solution

are shown in Fig. S4. We consider the displacement fields after 200K (averaged by taking

the geometric mean value after 180K, 190K and 200K iterations, to prevent the influence of

fluctuation) and 1M iterations (averaged similarly by 980K, 990K and 1M iterations) . For

any architecture, as ⇢ increases to around 30, the L2 error does not significantly depend on ⇢,

indicating that the chosen values of ⇢ in the main paper are sufficiently large for achieving a high

accuracy. From 200K to 1M iterations, theL2 errors of the shallower (2-30) and the narrower (4-

15) architectures do not further decrease significantly, while the errors of the reference (4-30),

deeper (6-30), and wider (4-45) architectures continue decreasing significantly. This indicates

that the insufficient depth for 2-30 and width for 4-15 limits the approximation ability of the

NN and hence restricts the further descent of the error. The reference architecture (4-30) is deep

and wide enough for reaching a small L2 error, because its error is close to the error from the

deeper (6-30) and wider (4-45) architectures. This simple parametric study indicates that our

choice of the architecture of the NN (4-30) and the linear density of the residual points (40) is

suitable for solving our prototypical problem.



Fig. S4. Parametric study of the forward problem in Section S5 on the NN architecture
and density of residual points. We compare the L2 error of displacement fields obtained by the
PINN and the FEM/Abaqus after training over (A) 200K and (B) 1M iterations. We consider
different depths (2, 4, and 6 hidden layers) and widths (15, 30, and 45 neurons for each hidden
layer) of the NN, as well as different linear densities of residual points. The results of the
network with d hidden layers and w neurons for each hidden layer are marked with “d-w”. The
linear density of residual points ⇢ means that the number of residual points is proportional to
⇢ for the boundary conditions and proportional to ⇢2 for the PDEs. The displayed value of L2

error is obtained by taking the geometric mean value after 180K, 190K and 200K iterations for
(A) and 980K, 990K and 1M iterations for (B), in order to prevent the fluctuation during the
training process.

We also consider changing the weights of the loss terms (↵’s with various subscripts) and

studying their influence on the convergence histories of the loss function and the accuracy of

the displacement field. Again, we conduct the study using the forward problem in Section S5.

For simplicity, we assume ↵PDE = ↵inc = 1 and ↵D = ↵N = ↵, where ↵ is a variable. With

this assumption, we group the loss weights by whether the corresponding residual points are

inside the domain or on the boundary. Note that in Section S5, the choice is ↵ = 1. Here

we train the PINN with ↵ = 1, 3, 10 and all the other setup details the same as Section S5.

The results are shown in Fig. S5. Figs. S5A-C show the evolution of the total loss (Lfor), the

internal loss (LPDE + Linc), and the boundary loss (LD + LN) during the training process for

↵ = 1, 3, 10, respectively. As ↵ increases, the boundary loss tends to descend faster, while the



evolution of the internal loss and the total loss does not change significantly. Fig. S5D shows

the evolution of the absolute L2 errors of the displacement fields for ↵ = 1, 3, 10 compared

to the FEM/Abaqus solution. With a larger ↵, the displacement field converges faster. On the

other hand, in the late stage the training process (after 500K iterations), the three values of L2

error reach the same plateau, meaning that the value of ↵ does not significantly influence the

final accuracy of the displacement field for the forward problem. Since this paper focuses on

the fundamental method and the prototypical problem as a proof of concept rather than tuning

the hyperparameters to achieve optimal practical efficiency, we simply fix all the weights to be

one in all the cases in the main text.



Fig. S5. Parametric study on the weights of loss components. We studied the influence of
loss weights on the evolution of the loss function and the accuracy of the displacement using
the forward problem in Section S5. We fix the weights of the loss terms inside the PDE domain
to be ↵PDE = ↵inc = 1, and set the loss terms on the boundary to be one variable ↵D = ↵N = ↵.
(A-C) The evolution of the total loss (Lfor), the internal loss (LPDE+Linc), and the boundary loss
(LD + LN) during the training process for ↵ = 1, 3, 10, respectively. (D) The absolute L2 error
of the displacement field by the PINN compared to the FEM/Abaqus result for ↵ = 1, 3, 10
during the training process.

Section S7. Parametric Study of Simplified Case 1: Influence of Locations
of Measurement Points on the Outer Boundary

In this section, we conduct a parametric study on the influence of locations of measurement

points on the estimation results based on case 1. We alter the locations of displacement mea-

surements on the outer boundary, while keeping all the other setup details unchanged. The six



setups of displacement measurements (sensors) are illustrated in Fig. S6. In all the setups, 10

points are placed on the left and right boundaries, respectively. To create a relatively tough

condition, there is no measurement is on the top and bottom boundaries. The difference among

six setups comes from the specific locations of measurement points. The left and right edges are

equally partitioned into 3 segments, with different segments equipped with measurement points

in different setups: the bottom segment for setup 1, the middle segment for setup 2, the top

segment for setup 3, the bottom and middle segments for setup 4, the middle and top segments

for setup 5, and all segments for setup 6 (see Fig. S6A).

The tilting angle � is assumed to be the only unknown parameter for the study in this section.

The evolution of � (normalized by 180�) in the six setups over 1M training iterations is shown in

Fig. S6B. The reference value �⇤ is plotted with dashed line. In setups 3, 5 and 6, the estimated

values of � gradually approach the reference value, despite the existence of errors which may be

caused by the removal of measurement points on the top and bottom boundaries. In setups 1, 2

and 4, the estimated � do not approach the target value, indicating that the parameter estimation

fails. We further show the deformed configuration of each setup after 870K iterations in Fig.

S6C, where the fluctuating values of � in setup 2 and 4 are accidentally close to the reference

value �⇤. According to Fig. S6C, setups 3, 5 and 6 infer the displacement field accurately.

For setups 2 and 4, although � happens to be close to �⇤, their deformed configurations are

significantly different from the FEM results. Consequently, setups 3, 5 and 6 successfully

estimate the unknown tilting angle and infer the displacement field, while setups 1, 2 and 4 fail

to do so.

For the specific example we consider, a successful characterization of geometry requires

that the measurement points are on the top segment, while the middle and bottom segments do

not contribute much. This feature may be caused by the fact that the actual location of the void

is slightly above the center (X (c)*
2 > 0). Intuitively, the closer the measurement points are to



the void, the more informative the data is. This conforms with the Saint-Venant’s principle in

elasticity – if the measurements are located too far from the void, then the non-homogeneity

of the displacement field is diminished, so that these measurements do not contain enough

information regarding the void geometry. Therefore, solving geometry identification problems

with PINNs poses requirements on the location of measurement points. For the current problem,

without prior knowledge of the location and mechanical properties of the void, a safe way is to

place the measurement points uniformly in the admissible region (e.g., on the outer boundary)

to acquire as much information as possible.



Fig. S6. Parametric study on the locations of measurement points. We show the depen-
dence of parameter estimation results on the locations of measurement points. (A) In the 6
different setups, we place 10 points uniformly at different segments of the left and right bound-
aries, respectively. The left and right edges are equally partitioned into 3 segments, and then
measurement points (sensors) are placed on: the bottom segment for setup 1, the middle seg-
ment for setup 2, the top segment for setup 3, the bottom and middle segments for setup 4, the
middle and top segments for setup 5, and all segments for setup 6. (B) Parameter estimation
results of the tilting angle � (normalized by 180�) in the 6 setups. The curves for different se-
tups are marked with the setup numbers. The horizontal dashed line is the reference value �⇤.
The vertical dashed line marks the location of 870K training iterations. (C) The deformation
patterns of all setups after 870K iterations.



Section S8. Parametric Study on Simplified Case 1: Influence of the Length
Scale of the Void

We in this section study the influence of the length scale of the void on the estimation accuracy.

For the purpose of simplicity, we assume that the void is circular and is placed at the center of

the matrix, with the only unknown parameter being its radius (✓unk = R). We set the radius of

the void R⇤ to range from 0.025 to 0.2, and initialize the radius estimation to be R0 = 1.5R⇤

for each case. For each R⇤, we run the training process until the estimated value converges

evidently. Other technical details are the same as case 1 of the main paper.

The results of the relative error of estimated radius are shown in Fig. S7. Note that the side

length of the matrix is 1.0. As R⇤ decreases to around 0.1, the relative error starts to increase

beyond 10�2. As the radius decreases to R⇤ = 0.05, the identification error is around 20%,

indicating that the method starts to become inaccurate. Consequently, for this specific case

where displacement is measured only on the boundary, our approach is valid for voids within

around one order of magnitude smaller than the size of the entire domain.

Fig. S7. Parametric study on the length scale of the void. We show the relative error of the
estimated void radius for different values of R⇤ (radius of the void).



Section S9. Parametric Study of Simplified Case 1: Influence of the Loca-
tion of the Void

A natural question following Section S8 is how the location of the void influences the estima-

tion accuracy. Here we consider another simplified setup of Case 1. We suppose that only

(X (c)
1 , X (c)

2 , R) are unknown to the PINN. We fix R⇤ = 0.1 and change the location of the void

by choosing X (c)*
1 , X (c)*

2 2 {�0.3,�0.2,�0.1, 0.0, 0.1, 0.2, 0.3}, which essentially moves the

void throughout the square matrix. The absolute error of parameter estimation is shown in Fig.

S8, with the three panels forX (c)
1 ,X (c)

2 , andR, respectively. Despite some difference in the value

of error, the PINN can accurately estimate the three unknown parameters for all the locations

of the void. Consequently, our method is robust about the location of the void.



Fig. S8. Parametric study on the location of the void. We show the absolute error of param-
eter estimation for the three unknown parameters (X (c)

1 , X (c)
2 , R) for different true locations of

the void (X (c)*
1 , X (c)*

2 ).

Section S10. Parametric study on Simplified Case 5: Influence of the Mod-
uli Ratio

Here we study the influence of the moduli ratio of the inclusion to the matrix (µi/µm) on the

estimation accuracy. The circular inclusion with known radius R = 0.2 is placed at the center

of the matrix. The modulus of the matrix µm = 0.333 is known to the PINN, and the only

unknown parameter is the modulus of the inclusion (✓unk = µi). We set the moduli ratio µ⇤
i /µm

to range from 0.2 to 5.0, and initialize the modulus of the inclusion to be µ0
i = 1.5µ⇤

i for each

case. For each µ⇤
i /µm, we run the training process until the estimated value converges evidently.

Other technical details are the same as case 5 in the main text.



The results of the (signed) relative error for each µ⇤
i /µm are shown in Fig. S9. Within the

range we consider (0.2  µ⇤
i /µm  5.0), all cases produce very accurate results, with relative

error no larger than 10�2. Therefore, for the prototypical problem, our approach provides ac-

curate estimation results for the moduli ratio ranging from 0.2 to 5.0, which is reasonably large

and covers more than one order of magnitude.

Fig. S9. Parametric study on the moduli ratio of the matrix to the inclusion. We show the
(signed) relative error of the estimation of the moduli ratio for different values of µ⇤

i /µm.

Section S11. L-BFGS Optimizer

Here we do a simple comparison on the model performance in terms of accuracy and efficiency

with different strategies on optimizers based on case 4. In the main text, we adopt the Adam

optimizer as the only optimizer throughout the entire training process with 1M iterations (called

strategy 1A in this section), after which both the parameter estimations and loss function reach a

relative plateau. Such a strategy gives high accuracy and helps us study the convergence history

as a fundamental characteristic of our method. To achieve a reasonable accuracy practically,

one may not need as many as 1M iterations. Here, we consider training the PINN over 200K

iterations only (called strategy 1B). To further improve the computational efficiency, we also

consider using Adam for the first few iterations (40K iterations in our case), and then switch-



ing to L-BFGS (48) (called strategy 2), which is common for training PINNs practically. We

compare the results of the three strategies (1A, 1B and 2) in Table S1 in terms of accuracy

of parameter estimation and computational efficiency. The computational time is measured by

running the code on typical machines using CPU only. The results of strategy 1B indicates that

training the PINN with 200K iterations provides reasonably high accuracy. Strategy 2 using

L-BFGS performs even better – accuracy similar to strategy 1A is achieved, while the compu-

tational cost is significantly reduced.

Case 4 X (1)
1 X (1)

2 R(1) X (2)
1 X (2)

2 R(2)

Reference Value -0.15 0.10 0.20 0.25 -0.05 0.15
Strategy 1A: Adam 1M (around 667 minutes)
Estimated Value -0.15089 0.10018 0.20007 0.25045 -0.05008 0.15019
Absolute Error(⇥10�2) 0.09 0.02 0.01 0.05 0.01 0.02
Relative Error(%) 0.09 0.02 0.04 0.05 0.01 0.13
Strategy 1B: Adam 200K (around 133 minutes)
Estimated Value -0.15517 0.10191 0.19911 0.24975 -0.05033 0.15298
Absolute Error(⇥10�2) 0.52 0.19 0.09 0.03 0.03 0.30
Relative Error(%) 0.52 0.19 0.45 0.10 0.03 1.99
Strategy 2: Adam 40K and L-BFGS (around 35 minutes)
Estimated Value -0.15110 0.10002 0.19998 0.24993 -0.04953 0.15076
Absolute Error(⇥10�2) 0.11 0.00 0.00 0.01 0.05 0.08
Relative Error(%) 0.11 0.00 0.01 0.01 0.05 0.51

Table S1. Parameter estimation results for case 4 with different strategies on optimizers.
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