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 2 

Abstract 20 

Impact-induced brain strains are spatially rich and intrinsically dynamic. However, the dynamic 21 

information of brain strain is not typically used in any injury investigation. Here, we study the 22 

dynamic characteristics of maximum and minimum principal strain (maxPS and minPS) of the 23 

corpus callosum and highlight the significance of impact simulation time window. Three datasets 24 

are used: laboratory reconstructed National Football League (NFL; N=53), measured impacts 25 

from Stanford (SF; N=110) and Prevent Biometric (PB; N=314). Impact cases are discarded (by 26 

20.8%, 11.8%, and 66.2%, respectively), when the simulation time window is considered 27 

inadequate to capture sufficient strain temporal responses. Fitted Gaussian peaks (with average 28 

relative root mean squared error of ~5% and R2 >0.9) from all datasets have a similar median 29 

(15–18 ms) and inter-quantile range (5–9 ms) for the full width at half maximum (FWHM). FWHM 30 

significantly and negatively correlates with strain magnitude for NFL and SF, but not for PB. 31 

However, ratios between the largest minPS and maxPS magnitudes are similar across datasets 32 

(median of 0.5–0.6 with inter-quantile range of 0.2–0.7). Dynamic strain features improve injury 33 

prediction. This study motivates further development of advanced deep learning models to 34 

instantly estimate the complete details of spatiotemporal history of brain strains, beyond spatially 35 

detailed peak strains obtained at maximum values currently available. In addition, this study 36 

highlights the time lag between impact kinematics and corpus callosum strain deep in the brain, 37 

which has important implications for impact simulation and result interpretation as well as impact 38 

sensor designs in the future.  39 

 40 

Keywords: traumatic brain injury; dynamic characteristics; Gaussian peak; full width at half 41 

maximum (FWHM); Worcester Head Injury Model (WHIM)  42 
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Introduction 43 

Traumatic brain injury (TBI) has been called “the most complicated disease of the most 44 

complex organ of the body” (Marklund and Hillered 2011) and is an increasingly high-profile public 45 

health issue (Kenzie et al. 2017). Blunt TBI is the result of mechanical insult to the brain induced 46 

by external head impact. It is now well accepted that brain mechanical responses such as strain 47 

and stress, rather than peak linear and/or rotational acceleration, is the direct cause of brain injury 48 

(King et al. 2003; Meaney et al. 2014; Fahlstedt et al. 2021). Due to the near incompressibility 49 

property of the brain, linear acceleration leads to little strain, as verified in several head injury 50 

models (Kleiven 2007; Ji et al. 2014; Bian and Mao 2020). In contrast, head rotation plays the 51 

primary role in inducing brain strain, which is consistent with recent efforts in developing various 52 

rotational kinematics-based injury metrics (Gabler et al. 2018; Bian and Mao 2020).  53 

Historically, brain strain has been characterized by the peak maximum principal strain 54 

(maxPS) of the whole brain from impact simulation using a computational head injury model. This 55 

scalar numeric value quantifies the peak magnitude of tissue stretch in a three-dimensional (3D) 56 

space, regardless of the anatomical location, stretch direction, or time of occurrence. MaxPS 57 

remains in wide use and currently serves as a benchmark to measure the quality of numerous 58 

kinematics-based injury metrics (Gabler et al. 2018; Bian and Mao 2020).  59 

However, maxPS of the whole brain grossly oversimplifies the brain biomechanical 60 

responses. First, it does not inform the anatomical location of where the peak strain occurs. 61 

Effectively, it treats the entire brain as a single unit, which lacks spatial resolution in correlating 62 

with detailed pathology of brain injury such as those observed in neuroimages (Bigler 2016). 63 

Second, the direction of maxPS does not (necessarily) correspond to that of the stretch along 64 

white matter fiber tracts based on which injury thresholds in terms of magnitudes of axonal strain 65 

and/or strain rate are typically established (Morrison et al. 2011). Studies have identified 66 

significant disparities between maxPS and strain along white matter fibers (Giordano and Kleiven 67 
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2014; Ji et al. 2015), which highlight the potential deficiency in using maxPS for injury correlation 68 

in the white matter.  69 

There have been ongoing efforts to extend maxPS of the whole brain to regional maxPS 70 

such as those in the gray/white matter, corpus callosum, mid-brain, brainstem, and other sub-71 

regions of the brain (Viano et al. 2005; Kleiven 2007; McAllister et al. 2012; Post et al. 2017; Bian 72 

and Mao 2020). Recently, efforts have extended to the entire 50 deep white matter regions (Zhao 73 

et al. 2017) and 129 gray matter areas (Anderson et al. 2020). Orientation-dependent strains 74 

along white matter fiber directions have also been proposed to study the mechanism of injury 75 

(Giordano and Kleiven 2014; Ji et al. 2015; Sahoo et al. 2016; Wu et al. 2019b; Garimella et al. 76 

2019; Li et al. 2020). A recent network-based injury metric further extends these efforts by 77 

sampling both regional maxPS in isotropic gray matter areas as well as their interconnecting white 78 

matter fiber strains for injury prediction (Wu et al. 2020). A theoretical framework has also been 79 

established to comprehensively delineate white matter tract-related deformation (Zhou et al. 80 

2021), which can be made much more efficient and accurate using a voxelized relative brain-skull 81 

displacement field (Ji and Zhao 2022). These regional and direction-specific strains exploit the 82 

richness in brain strain spatial distribution that generic maxPS of the whole brain is unable to offer.  83 

Nevertheless, brain strain is not only spatially rich but also intrinsically dynamic. For the 84 

vast majority of TBI incidents including mild TBI where no macroscopic tissue tear occurs or is 85 

expected, it is reasonable to assume that brain strain would start from zero and return to zero 86 

after impact. Most injury studies use peak, positive principal (Viano et al. 2005; Kleiven 2007; 87 

McAllister et al. 2012; Post et al. 2017; Bian and Mao 2020) or fiber strain (Giordano and Kleiven 88 

2014; Ji et al. 2015; Sahoo et al. 2016; Wu et al. 2019b; Garimella et al. 2019; Li et al. 2020) over 89 

the entire impact duration to evaluate the risk of injury. This implies that tissue experiencing the 90 

same peak positive strain will have an identical risk of injury, irrespective of whether they 91 

experience tension only or both tension and compression, sustain different strain rates (Morrison 92 
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et al. 2011; Bar-Kochba et al. 2016), or have different temporal exposure to above-threshold 93 

strains, as illustrated in Fig. 1 for four hypothetical scenarios.  94 

 95 

Fig. 1. Illustration of four hypothetical strain response time histories. All history curves have the 96 

same peak strain magnitude. This would imply an identical risk of injury based on the current 97 

practice, even though they may experience single (1, 2, and 3) or multiple (4) strain cycles, tension 98 

only (2 and 3) vs. tension and compression (1 and 4), or of different strain rates that lead to shorter 99 

(2) or longer (3) exposure to above-threshold strains. Although strain is expected to start from 100 

zero and return to zero in a realistic head impact for the vast majority of TBI incidents, it is possible 101 

that only an incomplete strain history is available (e.g., case #3) due to limited time window for 102 

impact simulation. 103 

 104 

It is known that strain rate plays a critical role in neuronal injury (Morrison et al. 2011; Bar-105 

Kochba et al. 2016). Combining strain and strain rate (e.g., using their product (King et al. 2003)) 106 

would somewhat mitigate the lack of consideration of the strain history, beyond peak strain 107 

magnitude alone. However, this is still not sufficient to address the uncertainty of the risk of injury 108 

related to whether both positive and negative strains are experienced, or the number of strain 109 
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peaks sustained (Fig. 1). More fundamentally, current model-based TBI studies generally do not 110 

consider the dynamic brain strain time history but this is critical when using it as input to drive a 111 

microscale, axonal injury model (Montanino et al. 2021). In addition, little attention has been paid 112 

to the negative, compressive strains (with few recent exception (Miller et al. 2021)), even though 113 

they are also injury-causing as observed in in vitro neuronal injury studies (Bar-Kochba et al. 114 

2016).  115 

Therefore, the primary purpose of this study is to investigate the dynamic characteristics 116 

of impact-induced brain strain. Previous studies have investigated the dynamics of relative brain-117 

skull displacement or strain in the frequency domain (Laksari et al. 2015; Abderezaei et al. 2019; 118 

Mojahed et al. 2020; Escarcega et al. 2021). Here we report dynamic characteristics of brain 119 

strain in the temporal domain. We focus on maxPS and the negative, minimum principal strain 120 

(minPS; 1st and 3rd principal strains, respectively) in the mid-sagittal section of the corpus callosum 121 

as this region is known to be vulnerable both biomechanically (Kleiven and Hardy 2002; Zhao et 122 

al. 2017; Hernandez et al. 2019) and in neuroimaging (Bigler and Maxwell 2012). In addition, 123 

limiting the investigation to a specific region eliminates a potential confounding factor when 124 

comparing findings across impacts. Quantifying the global strain dynamic characteristics of the 125 

corpus callosum may facilitate downstream microscale axonal injury model simulations in this 126 

region (Montanino et al. 2021), e.g., by eliminating the need for a costly global model simulation. 127 

This may be especially important when there is a need to consider the cumulative effects from 128 

many head impacts that require high throughput in model simulations.  129 

As a secondary goal, we also investigate whether impact simulation using the given 130 

kinematic loading profile is sufficient to characterize dynamic strains in the corpus callosum. Given 131 

the unique material properties of the brain, it takes finite amount of time for the stress wave 132 

initiated at the brain-skull boundary to propagate into this anatomical region deep in the brain. 133 

Therefore, it is possible that corpus callosum strain may not have reached its peak even if the 134 
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input kinematics capture the peak rotational acceleration or velocity. A recent study investigates 135 

the minimum time window required for impact simulation by comparing simulated peak strains of 136 

the whole brain using truncated kinematic profiles with those obtained from the original (Liu et al. 137 

2021). However, it used the 95th percentile peak MPS and its rate of the whole brain, which do 138 

not inform the anatomical region where the peak strain/strain rate occurs. The importance of 139 

sufficient impact time window for simulation was similarly noted in another study, where only 36 140 

out of the 53 reconstructed NFL head impacts were retained by examining whether maximum 141 

strains were reached within the provided load trace duration (Zhou et al. 2021). In this study, 142 

again, we focus on the mid-sagittal section of the corpus callosum to mitigate a confounding factor 143 

resulting from the uncertainty in anatomical location where peak strain occurs.  144 

Findings from this study may contribute towards a comprehensive understanding of the 145 

spatiotemporal dynamics of brain strain. In addition, the significance of impact simulation time 146 

window may have some practical implications on impact simulation and result interpretation in 147 

general, as well as impact sensor designs in the future. 148 

Methods 149 

Impact datasets 150 

We employed three impact datasets for analyses in this study: head kinematics generated 151 

by laboratory reconstructions of professional football helmet impacts (NFL; N=53) (Sanchez et al. 152 

2018), measured on-field head impacts from a variety of contact sports at Stanford University (SF; 153 

N=110) (Hernandez et al. 2015) and from Prevent Biometrics (PB; N=314) (Zhao et al. 2019) 154 

using mouthguards. These datasets were previously used to train and test deep learning models 155 

for rapid strain estimation with high accuracy (Wu et al. 2019a; Ghazi et al. 2021).  156 

All datasets provide time-varying linear acceleration and rotational velocity profiles relative 157 

to the head center of gravity. For each NFL impact case, we used the prescribed impact duration 158 
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that is considered “valid” (Sanchez et al. 2018) and further trimmed the initial time period of 159 

essentially zero rotational velocity magnitude. This helped decrease the impact simulation runtime 160 

without inducing any difference in strain. The average length of temporal window of recorded non-161 

zero kinematic profiles for the NFL dataset was 8863 ms (range of 18–240 ms). In comparison, 162 

the temporal length for the SF and PB datasets were fixed to 97 ms and 50 ms, respectively. The 163 

temporal resolutions for the NFL, SF and PB were 0.1 ms, 1.0 ms, and 0.31 ms, respectively. 164 

They were all resampled at 1 ms temporal resolution, as required by the previous deep learning 165 

models by design (Wu et al. 2019a; Ghazi et al. 2021). The impact datasets are summarized in 166 

Fig. 2 in terms of peak rotational and linear accelerations vs. velocity magnitudes.  167 

 168 

 169 

Fig. 2. Summary of peak rotational acceleration (arot) vs. peak rotational velocity (vrot; top) and 170 

summary of peak linear acceleration vs. vrot for the NFL (ad), SF (be), and PB (cf) datasets. 171 

Circles indicate discarded cases (by 20.8%, 11.8%, and 66.2%, respectively, for the three 172 
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datasets) because their time windows were considered not sufficient to completely capture the 173 

temporal responses of either maxPS or minPS in the corpus callosum (explained in next section).  174 

 175 

Impact simulations and exclusion criterion  176 

The three impact datasets were previously simulated using the anisotropic Worcester 177 

Head Injury Model (WHIM) V1.0 (Zhao and Ji 2019) when developing our deep learning models 178 

(Wu et al. 2019a; Ghazi et al. 2021). The WHIM V1.0 was recently validated against a wide range 179 

of blunt impact conditions, achieving a peak strain ratio (simulation vs. experiment) of 0.94±0.30 180 

based on marker-based strains from 12 high/mid-rate cadaveric impacts and reasonable 181 

agreement with strains from four low-rate in vivo head motions (Zhao and Ji 2020a). A ratio of 182 

1.00±0.00 relative to experimental strains would be “perfect”, although errors from experimental 183 

strains, themselves, should not be ignored (Zhao et al. 2021). The head coordinate system was 184 

chosen such that the posterior-to-anterior, right-to-left, and inferior-to-superior directions 185 

corresponded to the x, y, and z directions, respectively. The simulation time window was identical 186 

to the corresponding impact duration from the given head impact kinematics. These simulations 187 

provided time history curves for maxPS and minPS for every brain element across all time frames 188 

(at a resolution of 1 ms). In this study, we focused the analyses on the corpus callosum strains.  189 

Due to the brain’s near incompressibility property, only head rotational velocity profiles 190 

(transformed into a ground-fixed coordinate system to decouple head translational and rotational 191 

motions (Wu et al. 2021)) were used for impact simulation. This was because linear acceleration 192 

produces little strain for the majority of the brain, including the corpus callosum, as confirmed by 193 

several head injury models, including the WHIM (Kleiven 2007; Ji et al. 2014; Bian and Mao 2020). 194 

This strategy allowed to substantially reduce the input parametric space, and hence, the number 195 

of training samples required to achieve high accuracy with a deep learning model (Wu et al. 2019a; 196 

Ghazi et al. 2021). Linear acceleration does influence brain strain in the brainstem/foramen 197 
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magnum region for the WHIM when there is a large acceleration component along the superior-198 

to-inferior direction, which can be compensated for to further improve accuracy (Wu et al. 2021). 199 

Regardless, linear acceleration has virtually no effect on the corpus callosum strain analyzed in 200 

this study.  201 

For each simulated impact, the element within the mid-sagittal section of the corpus 202 

callosum that experienced the highest maxPS across all time frames was identified. Similarly, the 203 

element experienced the lowest minPS value across all time frames was also identified, which 204 

may not be the same as that to experience the highest maxPS. Nevertheless, for each dataset 205 

across all impacts, the identified elements were rather similar in location between maxPS and 206 

minPS. They were also similar across the three impact datasets (Fig. 3).  207 

 208 

Fig. 3. Across all impacts for the three datasets, the elements identified as having experienced 209 

the highest maxPS (top) or lowest minPS (bottom) are highlighted. They are clustered in a limited 210 

region and are rather similar between the two strain measures and across the three impact 211 

datasets. Coordinate system in meters.  212 

 213 
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No numerical artefacts were detected for either maxPS or minPS time histories, as 214 

compared to the those of their neighboring elements. For all peaks, the magnitude differences 215 

relative to those of the immediate neighboring elements were <5%, along with a correlation 216 

coefficient >0.95 (using a temporal window of 20 ms centered at the peak). Fig. 4 illustrates 217 

maxPS time histories of all corpus callosum elements for a typical impact for each dataset.  218 

 219 

Fig. 4. Illustration of maxPS time histories of corpus callosum elements in typical NFL, SF, and 220 

PB impact, with the one experiencing the highest maxPS highlighted. No obvious artifacts were 221 

detected. The same is true for minPS, which is not shown for brevity.  222 

 223 

For any impact, if the maximum magnitude of maxPS or minPS did not peak within the 224 

time window, or the peak occurred but it was too close to the right end of the impact window (<5 225 

ms), it was considered not enough to completely capture the strain temporal response to ensure 226 

a robust Gaussian peak fitting, see next section. Therefore, it was discarded from subsequent 227 

analyses of the corresponding strain measure (but not necessarily excluded for the other strain). 228 

This was justified because any strain is expected to start from zero and return to zero after impact 229 

(assuming the tissue continuum remains without residual strain). Fig. 5 shows example cases 230 

that were discarded.  231 

 232 

 233 
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Peak identification and analytical fitting  234 

For a given maxPS and negative minPS strain history curve, the peak with the largest 235 

magnitude was first identified. Some impacts also led to significant secondary strain peaks (e.g., 236 

minPS for the SF impact in Fig. 5). Secondary peaks that had a magnitude at least 50% of the 237 

largest peak with a minimum peak prominence or vertical drop of at least 10% of the largest peak 238 

value were also identified, if they existed. Visual inspections of the hundreds of peaks revealed 239 

that they typically resembled a “bell shape”. This inspired us to fit them into an analytical Gaussian 240 

form to facilitate analysis, which has been extensively used in other fields (e.g., in chromatography 241 

(Kalambet et al. 2011; Wahab and O’Haver 2020) and chemistry (Mittermayr et al. 1996)). A 242 

Gaussian peak is defined by a mathematical form of:  243 

𝑓(𝑥) = 𝑎 × 𝑒𝑥𝑝 (−
(𝑥−𝑏)2

2𝑐2
) , (1) 244 

where 𝑎 is the height of the curve’s peak, 𝑏 is the peak center position, and 𝑐 is the standard 245 

deviation. A more commonly used measure of the Gaussian peak is the full width at half maximum 246 

(FWHM) that quantifies the curve width at points on the y-axis that are half the maximum 247 

amplitude (O’Haver 2021). It is effectively ~2.355 times 𝑐.  248 

 249 

 250 
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 251 

Fig. 5. Examples of discarded cases showing the head rotational velocity profile and the 252 

corresponding maxPS and minPS time histories for the three impact datasets. The example NFL 253 

impact was excluded for both maxPS and minPS analyses. The example SF and PB impacts 254 

were both excluded for maxPS analysis but not for minPS analysis. Although maxPS achieved its 255 

peak in the PB case, its occurrence was too close to the temporal window boundary (within the 256 

empirical threshold of 5 ms) to allow robust Gaussian peak fitting.  257 
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The identified peaks were separately fitted into a Gaussian peak (O’Haver 2021) centered 258 

at the identified peak locations with a window size of 20 ms. The window size was empirically 259 

determined with trial and error. The fitting quality was assessed by fitting errors in terms of relative 260 

root mean squared error (RMSE divided by the mean of observed values) and coefficient of 261 

determination (R2) (O’Haver 2021).  262 

Concussion prediction  263 

An ultimate use of model simulation is to predict the occurrence of injury. Therefore, we 264 

examined whether combining additional information from strain dynamics in the corpus callosum 265 

can improve injury prediction performance. The NFL dataset was used for this purpose. This 266 

dataset has 20 concussions and 33 non-injury cases, and it has been widely used to assess the 267 

performance of concussion prediction (Wu et al. 2020; Zhou et al. 2021). The other two datasets 268 

were not used, as they had too few or no injury cases to allow such an evaluation. To maximize 269 

the use of all impacts for injury prediction, an additional 20 ms beyond the recorded temporal 270 

window (padded with zero rotational acceleration (Ghazi et al. 2021)) were used for impact 271 

simulation. This ensured that both maxPS and minPS in the corpus callosum have reached their 272 

peak values.  273 

First, we employed peak maxPS in corpus callosum alone for concussion prediction using 274 

feature-based support vector machine (SVM). Baseline performances including accuracy, 275 

sensitivity, specificity, and positive predictive value were obtained via a leave-one-out cross-276 

validation framework, as conducted before (Wu et al. 2020). Specifically, one case was used for 277 

testing based on the trained model using all the remaining cases. This process was repeated until 278 

all cases were predicted for injury for exactly once, from which the performance was evaluated. 279 

Next, we combined both peak maxPS and minPS, and further adding their corresponding peak 280 

strain rate magnitudes (as produced from model simulation) for concussion prediction.  The same 281 

SVM and cross-validation framework were used for performance evaluation.  282 
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 283 

Data analysis 284 

All impact simulations were conducted previously using Abaqus/Explicit (Version 2018; 285 

Dassault Systèmes, France) on a Linux cluster (Intel Xeon E5-2680v2, 2.80 GHz, 128 GB 286 

memory). For each impact dataset, we reported the characteristics of fitted Gaussian peaks for 287 

maxPS and minPS in terms of the FWHM. Its association with respect to strain magnitude was 288 

also analyzed using Pearson correlation. For impact cases retained for both maxPS and minPS 289 

analyses, the ratio between their respective highest peak magnitudes within the simulation time 290 

window were also reported. Statistical significance was reached when p<0.05. Finally, injury 291 

prediction performances from leave-one-out cross-validations were compared. All data analyses 292 

were conducted in MATLAB (R2020a; Mathworks, Natick, MA). 293 

 294 

 295 

Results 296 

Table 1 summarizes the fitting quality of the Gaussian peaks, along with the percentage 297 

of discarded cases and the percentage of retained cases that had secondary peaks for the two 298 

strain measures from the three impact datasets.  299 

 300 

Table 1. Summary of Gaussian peak fitting errors (root mean squared error relative to the 301 

mean and R2), the percentage of cases that had to be discarded from relevant analysis (% 302 

discarded), the percentage of retained impacts that more than one peak was identified (% 303 

secondary), and the percentage of discarded cases when analyzing the ratio between minPS and 304 

maxPS magnitudes (% discarded for both, as both are necessary to compute the ratio). The 305 

corresponding numbers of discarded cases are also shown in parentheses.  306 
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 Relative RMSE R2 % discarded % secondary % discarded for both 

NFL maxPS 4.2±3.3% 0.95±0.08 9.4% (5) 47.2% (25) 24.5% (13) 

NFL minPS 4.9±3.9% 0.93±0.11 17.0% (9) 43.4% (23) 

SF maxPS 5.2±4.3 % 0.93±0.11 3.6% (4) 24.5% (27) 11.8% (13) 

SF minPS 7.2±5.5% 0.87±0.19 8.2% (9) 46.6% (51) 

PB maxPS 2.4±2.0% 0.98±0.06 31.8% (100) 1.3% (4) 66.2% (208) 

PB minPS 4.4±4.9 0.91±0.26 38.2% (120) 11.3% (35) 

 307 

 308 

For cases that were retained for analysis, Fig. 6 reports the strong linear relationships 309 

between maxPS/minPS and the peak resultant rotational velocity magnitude. The regression 310 

slopes were largely similar across datasets, especially between NFL and SF, which also had an 311 

improved fitting quality in terms of RMSE compared to PB. Fig. 7 shows typical maxPS and minPS 312 

peaks overlaid with their fitted Gaussian peaks, along with their corresponding rotational velocity 313 

profiles for each impact dataset.  314 
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 315 

Fig. 6. Summary of maxPS (circles, positive) and minPS (stars, negative) relative to the peak 316 

resultant rotational velocity (vrot) for the three impact datasets, NFL (a), SF (b), and PB (c). Only 317 

cases that are retained for analysis are shown for each strain. Both maxPS and minPS are 318 

significantly associated with the peak vrot magnitude (p<0.001). Linear regression fitting results 319 

with zero intersect are also shown, along with the fitting root mean squared error, RMSE.  320 
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 321 

Fig. 7. Selected cases from the three impact datasets to compare the head rotational velocity 322 

profile and the corresponding maxPS and minPS. The fitted Gaussian peaks are overlaid. Two 323 

peaks of maxPS in the NFL case are successfully fitted, but the case is discarded for minPS 324 

analysis because it did not reach the maximum peak.  325 
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Fig. 8 summarizes FWHM values from fitted Gaussian peaks. For both strain measures, 326 

the medians and inter-quantile ranges were similar across impact datasets (15–18 ms and 5–9 327 

ms, respectively). For the NFL and SF datasets, FWHM was significantly and negatively 328 

associated with the magnitudes of maxPS and minPS peak values (Pearson correlation 329 

coefficient range from –0.41 to –0.44, and from –0.29 to –0.22, respectively; p<0.001), but not for 330 

the PB dataset (p=0.5). 331 

 332 

 333 

Fig. 8. Boxplots summarizing the FWHM (in ms) for the fitted Gaussian peaks of maxPS (a) and 334 

minPS (b) for the three impact datasets. The median (m) and inter-quantile range (r) are also 335 

reported.  336 

 337 

Fig. 9 reports the ratio between minPS and maxPS magnitudes across the three datasets. 338 

Again, they had a similar median (0.5–0.6), although the inter-quantile range for the PB was 339 

notably larger (0.75 vs. 0.23–0.38 for NFL/SF).  340 

 341 
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 342 

Fig. 9. Boxplots summarizing the ratios between the largest minPS and maxPS magnitudes within 343 

the simulated time window for the three impact datasets. The median (m) and inter-quantile range 344 

(r) are also reported. 345 

 346 

 347 

Finally, the injury prediction performances when using peak maxPS alone (as commonly 348 

adopted), combining peak maxPS and peak minPS, as well as further combining their 349 

corresponding peak strain rate magnitudes are compared (Table 2). With every additional 350 

feature(s) added, injury prediction performances consistently improved across all measures using 351 

the objective leave-one cross-validation procedure.  352 

 353 

 354 

 355 
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 356 

Table 2. Comparison of injury prediction performances in terms of accuracy, sensitivity, specificity, 357 

and positive predictive value based on the NFL dataset when using peak maxPS alone, peak 358 

maxPS and peak minPS, as well as further combining their peak strain rate magnitudes.  359 

 peak maxPS peak maxPS and 

peak minPS 

peak maxPS, peak 

minPS, and their peak 

strain rates 

Accuracy 0.642 0.698 0.774 

Sensitivity 0.250 0.300 0.500 

Specificity 0.879 0.934 0.934 

Positive predictive 

value 

0.556 0.750 0.833 

 360 

 361 
 362 

Discussion 363 

Whenever the head changes its angular orientation in space during impact, a shear stress 364 

wave is continuously initiated at the brain-skull interface, which travels towards the center of the 365 

brain and interacts with all previously generated waves. This leads to complex dynamic 366 

deformation of regional brain tissue that experiences tension, compression, shear, and torsion. 367 

The brain’s viscoelasticity along with the low shear modulus and high bulk modulus causes a lag 368 

between the skull rotational kinematics and strain in the corpus callosum deep in the brain. 369 

Therefore, there is a rich time history of the dynamic brain strain, beyond the richness in its spatial 370 
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distribution. Although brain strain dynamics are readily available from impact simulation, they are 371 

not yet typically used in any injury investigation.  372 

Based on hundreds of real-world head impacts from three different sources, we found both 373 

maximum and minimum principal strains (maxPS and minPS, respectively) in the corpus callosum 374 

can experience one or more peaks within the captured time window. Each resembled a “bell” 375 

shape that can be approximated into a Gaussian peak. From all impacts in the three datasets, 376 

the FWHM values were rather similar in median (15–18 ms) and inter-quantile range (5–9 ms). In 377 

general, peak minPS magnitudes were lower than those of maxPS, with a median ratio 378 

consistently of 0.5–0.6 across the three datasets.  379 

The “bell” shape of maxPS response history has been observed in previous studies 380 

simulating typical NFL impacts, with either a single peak (Viano et al. 2005; Kleiven 2007) or a 381 

pair of major peaks (Kleiven 2007) across the impact duration. However, the earlier studies did 382 

not specifically report the associated anatomical locations, which prevented a direct comparison 383 

with the findings in the corpus callosum in the current study. A more recent study also reported 384 

single peaks of maxPS in different corpus callosum subregions when simulating a head impact 385 

from the SF dataset (Montanino et al. 2021), albeit somewhat more complicated with minor peaks 386 

as well (vs. mostly smooth here and in previous studies (Viano et al. 2005; Kleiven 2007)). These 387 

largely consistent observations across different impact datasets and diverse head injury models 388 

corroborate the quantitative findings reported here based on the anisotropic WHIM V1.0.  389 

A potential application utilizing the Gaussian peak parameters is to establish simplified but 390 

realistic strain time history to design in vitro neuronal tissue injury experiments that are more 391 

closely related to real-world injury (Bar-Kochba et al. 2016), or to drive microscale axonal injury 392 

models (Montanino et al. 2021). Until most recently (Montanino et al. 2021), deformation of axonal 393 

injury models has been driven by assumed loading conditions such as a representative and fixed 394 

strain magnitude at a fixed strain rate (Ahmadzadeh et al. 2014; Montanino et al. 2019; Alisafaei 395 
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et al. 2020). These assumed loading conditions do not reflect the variable strain rate and do not 396 

have an unloading phase that must happen in the real world. Thus, they may not truly reflect a 397 

biofidelic loading condition. Nevertheless, it should be noted that the maxPS and minPS analyzed 398 

here still do not inform a specific direction of strain, such as along the white matter fiber tract. This 399 

is a limitation of the current study, which suggests the need for continual investigation into brain 400 

strain dynamic characteristics along the white matter fibers. Work is currently underway to 401 

calculate dense white matter fiber strains of the entire tractography with sufficient accuracy and 402 

efficiency (Shakiba et al. 2020), which will be utilized in the future.  403 

The strain dynamic characteristics can also serve as response “features” to enable 404 

machine learning methods such as SVM for injury correlation and prediction (vs. univariate logistic 405 

regression commonly used). Compared to using peak maxPS alone, adding additional “features” 406 

such as peak minPS and their peak rate magnitudes consistently improved injury prediction 407 

performances (Table 2). However, the performance was notably poorer than when using a 408 

network-based injury metric (Wu et al. 2020), as the latter was based on strain of the whole brain 409 

(e.g., maximum positive predictive value of 0.833 here vs. 0.938). This suggests the potential of 410 

extending the dynamic characterization to the whole brain strain, not just the corpus callosum in 411 

this study. Nevertheless, it is important to note that conventional injury “correlation” does not 412 

(necessarily) inform injury “causation”. A large-scale axonal injury modeling framework may have 413 

the potential to uncover the underlying injury pathology in axonal substructural damages (Johnson 414 

et al. 2013). The dynamic characteristics of brain strain investigated here would set the stage to 415 

facilitate such an effort in the future.  416 

Finally, we also observed that the three impact datasets had significantly different 417 

percentages of impacts considered insufficient to capture corpus callosum peak strains (from 11.8% 418 

for SF to 66.2% for PB; Table 1) as they either did not reach peak or occurred too close to the 419 

time window border (Fig. 5). Even if impact kinematics have captured the peak magnitudes of 420 
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head rotational velocity, they may still not be enough for corpus callosum to reach peak strain due 421 

to the time lag resulting from the brain’s viscoelasticity. For the PB and SF datasets with the 422 

shortest and longest impact time window, respectively, they also had the most and fewest cases 423 

considered insufficient for the time window, respectively (Table 1).  424 

To further quantify the time lag, we used idealized head rotational impulses for 425 

investigation. A head rotational acceleration impulse of a triangular shape (peak rotational 426 

acceleration of 4500 rad/s2) was imparted separately along the three major anatomical axes (Ji 427 

and Zhao 2015). The resulting maxPS had varying time-to-peak values, ranging from 5 ms to 16 428 

ms (for sagittal and axial rotation, respectively) relative to the rotational acceleration peak (Fig. 429 

10). When the magnitude of head rotational acceleration was reduced (to 1500 rad/s2), the time-430 

to-peak further delayed to 23 ms for the axial impulse. The elongated peak temporal shape was 431 

consistent with the earlier finding that FWHM significantly and negatively correlated with strain 432 

peak magnitude. 433 

These results could provide important insight into the minimum time window required for 434 

head impact sensors (Sanchez et al. 2018; Liu et al. 2020, 2021). Not only do they need to capture 435 

the maximum head rotational kinematics (Fig. 5 and Fig. 7), but they also need to consider at 436 

least ~20 ms additional time for the deep brain to reach peak strain. When absent, it is 437 

recommended to simulate an additional ~20 ms (e.g., by assuming a zero acceleration at the end 438 

of impact window), which could mitigate the issue and “rescue” the recorded impacts. This is 439 

confirmed for all the three discarded example cases in Fig. 5. This was also the reason that the 440 

previous pre-computed brain response atlas (pcBRA) had an additional 23 ms impact simulation 441 

beyond the peak acceleration (or, 18 ms after velocity reached its peak; Fig. 10b) (Ji and Zhao 442 

2015). Compared to simply discarding cases (Zhou et al. 2021), it may be more economical to 443 

retain cases by the additional simulation time window given the cost for each impact 444 

reconstruction (Sanchez et al. 2018).  445 
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 446 

 447 

Fig. 10. (a) Element locations in the corpus callosum where maxPS occurs during an idealized 448 

head rotational acceleration impulse (a triangulated temporal shape with peak magnitude of 4500 449 

rad/s2 and an impulse duration of 10 ms) along each of the three major axes. (b) Normalized head 450 

rotational acceleration impulse is compared with the resulting maxPS time histories in the corpus 451 

callosum. When the acceleration peak magnitude is reduced to 1500 rad/s2, maxPS not only 452 

reduces the peak value, but also further increases its time-to-peak (dashed line).  453 

 454 

Implications 455 

This work contributes towards a comprehensive time-domain characterization of impact-456 

induced dynamic brain strain in the corpus callosum. The resulting correlation with impact 457 

rotational peak velocity could allow instantly establishing the strain history to launch multiscale 458 

modeling of brain injury deep in the brain. This avoids a costly whole brain model simulation, 459 

which would significantly facilitate the exploration of brain injury pathology across length scales 460 

in this region.  461 

The rich dynamic information about brain strain also supports further development of 462 

advanced deep learning models that will instantly estimate the complete spatiotemporal details of 463 

brain strain on a low-end computer. Combining with such a tool, the work presented in this study 464 
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would set the stage for efficient and large-scale axonal injury model simulations in arbitrary brain 465 

regions, including other important white matter areas and the gray-white matter interface 466 

(Alisafaei et al. 2020). This may allow translating impact kinematics into the extent of axonal 467 

substructural damages (Johnson et al. 2013). The location and extent of these microscopic 468 

damages may uncover the pathology of brain injury, beyond statistical correlation commonly used 469 

at present for injury prediction that does not infer causation.  470 

 471 

Limitations 472 

A limitation of the study is that all results depend on the specific head injury model used, 473 

which suffers from any and all limitations with respect to its model assumptions. In particular, a 474 

generic WHIM was used for all impact simulations, which did not consider morphological 475 

differences such as head size. A larger head/brain would expect to require a longer time lag 476 

between kinematics and corpus callosum strain, as similarly found in another study analyzing the 477 

whole-brain strain (Liu et al. 2021).  478 

We also purposefully limited our investigation to the mid-sagittal section of the corpus 479 

callosum deep in the brain. The surrounding falx and tentorium have important roles in corpus 480 

callosum strain (Ho et al. 2017; Hernandez et al. 2019). They were modelled as linear elastic 481 

membranes, same as the isotropic KTH (Kleiven 2007), GHBMC (Mao et al. 2013) and another 482 

model (Lu et al. 2019), although a hyperelastic model based on more recent experimental data is 483 

emerging (Ho et al. 2017; Trotta et al. 2020; Li et al. 2020). In addition, cerebral vasculature also 484 

reduces corpus callosum strain (Zhao and Ji 2020b), which is not yet incorporated into the WHIM 485 

V1.0 model. It is possible that reanalyzing the results using a different head injury model or an 486 

upgraded WHIM V2.1 that embeds cerebral vasculature (Zhao and Ji 2020b, 2022) may change 487 

the quantitative results, albeit WHIM V1.0 is similar to other commonly used models when 488 

studying whole brain peak maxPS (Fahlstedt et al. 2021). Therefore, we anticipate that at least 489 



 27 

similar qualitative findings will follow, given that virtually all head injury models adopt 490 

viscoelasticity for the brain (Fahlstedt et al. 2021).  491 

The dynamic characteristics for other parts of the brain away from the corpus callosum 492 

may be even more complicated, as evident from a recent study showing time histories of maxPS 493 

in subcortical regions (Montanino et al. 2021). It does not appear feasible to fit them into idealized 494 

peaks. These additional observations on the richness of brain strain dynamics, once again, 495 

strongly support the need to further develop advanced deep learning models that will instantly 496 

estimate the complete spatiotemporal histories of elementwise brain strains, beyond the spatially 497 

detailed peak strains achieved at the maximum value (Ghazi et al. 2021). Dramatically improving 498 

head impact simulation efficiency (from hours or days to under a second) could have the potential 499 

of transforming acceleration-based TBI studies to focusing on brain strains. This could accelerate 500 

new scientific discoveries of TBI biomechanics in the future.  501 

 502 

Conclusions 503 

We find that dynamic maximum and minimum principal strains in the corpus callosum can 504 

be approximated by Gaussian peaks. The peak magnitudes are significantly correlated with peak 505 

impact rotational velocity. These results allow formulating tissue strain dynamics based on impact 506 

kinematics directly, without costly impact simulation at the global whole brain level. They can be 507 

subsequently used to design in vitro neuronal testing protocols and to drive microscale axonal 508 

injury model simulations. Extending these findings to real-time macroscopic dynamic simulation 509 

of the whole brain could facilitate large- and multi-scale brain injury modeling in arbitrary regions 510 

in the future, including the gray-white matter interface. These investigations are expected to 511 

enhance the biomechanical characterization and understanding of injury pathology across the 512 

length scales. Finally, “features” from dynamic brain strains could improve injury correlation and 513 

prediction, but strain time lag relative to kinematics should not be ignored in impact simulation.  514 
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