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Abstract

Impact-induced brain strains are spatially rich and intrinsically dynamic. However, the dynamic
information of brain strain is not typically used in any injury investigation. Here, we study the
dynamic characteristics of maximum and minimum principal strain (maxPS and minPS) of the
corpus callosum and highlight the significance of impact simulation time window. Three datasets
are used: laboratory reconstructed National Football League (NFL; N=53), measured impacts
from Stanford (SF; N=110) and Prevent Biometric (PB; N=314). Impact cases are discarded (by
20.8%, 11.8%, and 66.2%, respectively), when the simulation time window is considered
inadequate to capture sufficient strain temporal responses. Fitted Gaussian peaks (with average
relative root mean squared error of ~5% and R? >0.9) from all datasets have a similar median
(15—18 ms) and inter-quantile range (5—9 ms) for the full width at half maximum (FWHM). FWHM
significantly and negatively correlates with strain magnitude for NFL and SF, but not for PB.
However, ratios between the largest minPS and maxPS magnitudes are similar across datasets
(median of 0.5-0.6 with inter-quantile range of 0.2-0.7). Dynamic strain features improve injury
prediction. This study motivates further development of advanced deep learning models to
instantly estimate the complete details of spatiotemporal history of brain strains, beyond spatially
detailed peak strains obtained at maximum values currently available. In addition, this study
highlights the time lag between impact kinematics and corpus callosum strain deep in the brain,
which has important implications for impact simulation and result interpretation as well as impact

sensor designs in the future.

Keywords: traumatic brain injury; dynamic characteristics; Gaussian peak; full width at half

maximum (FWHM); Worcester Head Injury Model (WHIM)
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Introduction

Traumatic brain injury (TBI) has been called “the most complicated disease of the most
complex organ of the body” (Marklund and Hillered 2011) and is an increasingly high-profile public
health issue (Kenzie et al. 2017). Blunt TBI is the result of mechanical insult to the brain induced
by external head impact. It is now well accepted that brain mechanical responses such as strain
and stress, rather than peak linear and/or rotational acceleration, is the direct cause of brain injury
(King et al. 2003; Meaney et al. 2014; Fahlstedt et al. 2021). Due to the near incompressibility
property of the brain, linear acceleration leads to little strain, as verified in several head injury
models (Kleiven 2007; Ji et al. 2014; Bian and Mao 2020). In contrast, head rotation plays the
primary role in inducing brain strain, which is consistent with recent efforts in developing various

rotational kinematics-based injury metrics (Gabler et al. 2018; Bian and Mao 2020).

Historically, brain strain has been characterized by the peak maximum principal strain
(maxP$S) of the whole brain from impact simulation using a computational head injury model. This
scalar numeric value quantifies the peak magnitude of tissue stretch in a three-dimensional (3D)
space, regardless of the anatomical location, stretch direction, or time of occurrence. MaxPS
remains in wide use and currently serves as a benchmark to measure the quality of numerous

kinematics-based injury metrics (Gabler et al. 2018; Bian and Mao 2020).

However, maxPS of the whole brain grossly oversimplifies the brain biomechanical
responses. First, it does not inform the anatomical location of where the peak strain occurs.
Effectively, it treats the entire brain as a single unit, which lacks spatial resolution in correlating
with detailed pathology of brain injury such as those observed in neuroimages (Bigler 2016).
Second, the direction of maxPS does not (necessarily) correspond to that of the stretch along
white matter fiber tracts based on which injury thresholds in terms of magnitudes of axonal strain
and/or strain rate are typically established (Morrison et al. 2011). Studies have identified

significant disparities between maxPS and strain along white matter fibers (Giordano and Kleiven
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2014; Ji et al. 2015), which highlight the potential deficiency in using maxPS for injury correlation

in the white matter.

There have been ongoing efforts to extend maxPS of the whole brain to regional maxPS
such as those in the gray/white matter, corpus callosum, mid-brain, brainstem, and other sub-
regions of the brain (Viano et al. 2005; Kleiven 2007; McAllister et al. 2012; Post et al. 2017; Bian
and Mao 2020). Recently, efforts have extended to the entire 50 deep white matter regions (Zhao
et al. 2017) and 129 gray matter areas (Anderson et al. 2020). Orientation-dependent strains
along white matter fiber directions have also been proposed to study the mechanism of injury
(Giordano and Kleiven 2014; Ji et al. 2015; Sahoo et al. 2016; Wu et al. 2019b; Garimella et al.
2019; Li et al. 2020). A recent network-based injury metric further extends these efforts by
sampling both regional maxPS in isotropic gray matter areas as well as their interconnecting white
matter fiber strains for injury prediction (Wu et al. 2020). A theoretical framework has also been
established to comprehensively delineate white matter tract-related deformation (Zhou et al.
2021), which can be made much more efficient and accurate using a voxelized relative brain-skull
displacement field (Ji and Zhao 2022). These regional and direction-specific strains exploit the

richness in brain strain spatial distribution that generic maxPS of the whole brain is unable to offer.

Nevertheless, brain strain is not only spatially rich but also intrinsically dynamic. For the
vast majority of TBI incidents including mild TBI where no macroscopic tissue tear occurs or is
expected, it is reasonable to assume that brain strain would start from zero and return to zero
after impact. Most injury studies use peak, positive principal (Viano et al. 2005; Kleiven 2007;
McAllister et al. 2012; Post et al. 2017; Bian and Mao 2020) or fiber strain (Giordano and Kleiven
2014; Ji et al. 2015; Sahoo et al. 2016; Wu et al. 2019b; Garimella et al. 2019; Li et al. 2020) over
the entire impact duration to evaluate the risk of injury. This implies that tissue experiencing the
same peak positive strain will have an identical risk of injury, irrespective of whether they

experience tension only or both tension and compression, sustain different strain rates (Morrison
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et al. 2011; Bar-Kochba et al. 2016), or have different temporal exposure to above-threshold

strains, as illustrated in Fig. 1 for four hypothetical scenarios.
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Fig. 1. lllustration of four hypothetical strain response time histories. All history curves have the
same peak strain magnitude. This would imply an identical risk of injury based on the current
practice, even though they may experience single (1, 2, and 3) or multiple (4) strain cycles, tension
only (2 and 3) vs. tension and compression (1 and 4), or of different strain rates that lead to shorter
(2) or longer (3) exposure to above-threshold strains. Although strain is expected to start from
zero and return to zero in a realistic head impact for the vast majority of TBI incidents, it is possible
that only an incomplete strain history is available (e.g., case #3) due to limited time window for

impact simulation.

It is known that strain rate plays a critical role in neuronal injury (Morrison et al. 2011; Bar-
Kochba et al. 2016). Combining strain and strain rate (e.g., using their product (King et al. 2003))
would somewhat mitigate the lack of consideration of the strain history, beyond peak strain
magnitude alone. However, this is still not sufficient to address the uncertainty of the risk of injury

related to whether both positive and negative strains are experienced, or the number of strain
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peaks sustained (Fig. 1). More fundamentally, current model-based TBI studies generally do not
consider the dynamic brain strain time history but this is critical when using it as input to drive a
microscale, axonal injury model (Montanino et al. 2021). In addition, little attention has been paid
to the negative, compressive strains (with few recent exception (Miller et al. 2021)), even though
they are also injury-causing as observed in in vitro neuronal injury studies (Bar-Kochba et al.

2016).

Therefore, the primary purpose of this study is to investigate the dynamic characteristics
of impact-induced brain strain. Previous studies have investigated the dynamics of relative brain-
skull displacement or strain in the frequency domain (Laksari et al. 2015; Abderezaei et al. 2019;
Mojahed et al. 2020; Escarcega et al. 2021). Here we report dynamic characteristics of brain
strain in the temporal domain. We focus on maxPS and the negative, minimum principal strain
(minPS; 1stand 3™ principal strains, respectively) in the mid-sagittal section of the corpus callosum
as this region is known to be vulnerable both biomechanically (Kleiven and Hardy 2002; Zhao et
al. 2017; Hernandez et al. 2019) and in neuroimaging (Bigler and Maxwell 2012). In addition,
limiting the investigation to a specific region eliminates a potential confounding factor when
comparing findings across impacts. Quantifying the global strain dynamic characteristics of the
corpus callosum may facilitate downstream microscale axonal injury model simulations in this
region (Montanino et al. 2021), e.g., by eliminating the need for a costly global model simulation.
This may be especially important when there is a need to consider the cumulative effects from

many head impacts that require high throughput in model simulations.

As a secondary goal, we also investigate whether impact simulation using the given
kinematic loading profile is sufficient to characterize dynamic strains in the corpus callosum. Given
the unique material properties of the brain, it takes finite amount of time for the stress wave
initiated at the brain-skull boundary to propagate into this anatomical region deep in the brain.

Therefore, it is possible that corpus callosum strain may not have reached its peak even if the
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input kinematics capture the peak rotational acceleration or velocity. A recent study investigates
the minimum time window required for impact simulation by comparing simulated peak strains of
the whole brain using truncated kinematic profiles with those obtained from the original (Liu et al.
2021). However, it used the 95" percentile peak MPS and its rate of the whole brain, which do
not inform the anatomical region where the peak strain/strain rate occurs. The importance of
sufficient impact time window for simulation was similarly noted in another study, where only 36
out of the 53 reconstructed NFL head impacts were retained by examining whether maximum
strains were reached within the provided load trace duration (Zhou et al. 2021). In this study,
again, we focus on the mid-sagittal section of the corpus callosum to mitigate a confounding factor

resulting from the uncertainty in anatomical location where peak strain occurs.

Findings from this study may contribute towards a comprehensive understanding of the
spatiotemporal dynamics of brain strain. In addition, the significance of impact simulation time
window may have some practical implications on impact simulation and result interpretation in

general, as well as impact sensor designs in the future.
Methods
Impact datasets

We employed three impact datasets for analyses in this study: head kinematics generated
by laboratory reconstructions of professional football helmet impacts (NFL; N=53) (Sanchez et al.
2018), measured on-field head impacts from a variety of contact sports at Stanford University (SF;
N=110) (Hernandez et al. 2015) and from Prevent Biometrics (PB; N=314) (Zhao et al. 2019)
using mouthguards. These datasets were previously used to train and test deep learning models

for rapid strain estimation with high accuracy (Wu et al. 2019a; Ghazi et al. 2021).

All datasets provide time-varying linear acceleration and rotational velocity profiles relative

to the head center of gravity. For each NFL impact case, we used the prescribed impact duration
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that is considered “valid” (Sanchez et al. 2018) and further trimmed the initial time period of
essentially zero rotational velocity magnitude. This helped decrease the impact simulation runtime
without inducing any difference in strain. The average length of temporal window of recorded non-
zero kinematic profiles for the NFL dataset was 88+63 ms (range of 18—-240 ms). In comparison,
the temporal length for the SF and PB datasets were fixed to 97 ms and 50 ms, respectively. The
temporal resolutions for the NFL, SF and PB were 0.1 ms, 1.0 ms, and 0.31 ms, respectively.
They were all resampled at 1 ms temporal resolution, as required by the previous deep learning
models by design (Wu et al. 2019a; Ghazi et al. 2021). The impact datasets are summarized in

Fig. 2 in terms of peak rotational and linear accelerations vs. velocity magnitudes.
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Fig. 2. Summary of peak rotational acceleration (arot) vs. peak rotational velocity (vrot; top) and
summary of peak linear acceleration vs. vrot for the NFL (ad), SF (be), and PB (cf) datasets.

Circles indicate discarded cases (by 20.8%, 11.8%, and 66.2%, respectively, for the three



173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

datasets) because their time windows were considered not sufficient to completely capture the

temporal responses of either maxPS or minPS in the corpus callosum (explained in next section).

Impact simulations and exclusion criterion

The three impact datasets were previously simulated using the anisotropic Worcester
Head Injury Model (WHIM) V1.0 (Zhao and Ji 2019) when developing our deep learning models
(Wu et al. 2019a; Ghazi et al. 2021). The WHIM V1.0 was recently validated against a wide range
of blunt impact conditions, achieving a peak strain ratio (simulation vs. experiment) of 0.94+0.30
based on marker-based strains from 12 high/mid-rate cadaveric impacts and reasonable
agreement with strains from four low-rate in vivo head motions (Zhao and Ji 2020a). A ratio of
1.00£0.00 relative to experimental strains would be “perfect”, although errors from experimental
strains, themselves, should not be ignored (Zhao et al. 2021). The head coordinate system was
chosen such that the posterior-to-anterior, right-to-left, and inferior-to-superior directions
corresponded to the x, y, and z directions, respectively. The simulation time window was identical
to the corresponding impact duration from the given head impact kinematics. These simulations
provided time history curves for maxPS and minPS for every brain element across all time frames

(at a resolution of 1 ms). In this study, we focused the analyses on the corpus callosum strains.

Due to the brain’s near incompressibility property, only head rotational velocity profiles
(transformed into a ground-fixed coordinate system to decouple head translational and rotational
motions (Wu et al. 2021)) were used for impact simulation. This was because linear acceleration
produces little strain for the majority of the brain, including the corpus callosum, as confirmed by
several head injury models, including the WHIM (Kleiven 2007; Ji et al. 2014; Bian and Mao 2020).
This strategy allowed to substantially reduce the input parametric space, and hence, the number
of training samples required to achieve high accuracy with a deep learning model (Wu et al. 2019a;

Ghazi et al. 2021). Linear acceleration does influence brain strain in the brainstem/foramen
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magnum region for the WHIM when there is a large acceleration component along the superior-
to-inferior direction, which can be compensated for to further improve accuracy (Wu et al. 2021).
Regardless, linear acceleration has virtually no effect on the corpus callosum strain analyzed in

this study.

For each simulated impact, the element within the mid-sagittal section of the corpus
callosum that experienced the highest maxPS across all time frames was identified. Similarly, the
element experienced the lowest minPS value across all time frames was also identified, which
may not be the same as that to experience the highest maxPS. Nevertheless, for each dataset
across all impacts, the identified elements were rather similar in location between maxPS and

minPS. They were also similar across the three impact datasets (Fig. 3).

NFL

Fig. 3. Across all impacts for the three datasets, the elements identified as having experienced
the highest maxPS (top) or lowest minPS (bottom) are highlighted. They are clustered in a limited
region and are rather similar between the two strain measures and across the three impact

datasets. Coordinate system in meters.

10
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No numerical artefacts were detected for either maxPS or minPS time histories, as
compared to the those of their neighboring elements. For all peaks, the magnitude differences
relative to those of the immediate neighboring elements were <5%, along with a correlation
coefficient >0.95 (using a temporal window of 20 ms centered at the peak). Fig. 4 illustrates

maxPS time histories of all corpus callosum elements for a typical impact for each dataset.

NFL SF PB
0.4 0.4 T r T T 0.5 : .
0.4
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Fig. 4. lllustration of maxPS time histories of corpus callosum elements in typical NFL, SF, and
PB impact, with the one experiencing the highest maxP$S highlighted. No obvious artifacts were

detected. The same is true for minPS, which is not shown for brevity.

For any impact, if the maximum magnitude of maxPS or minPS did not peak within the
time window, or the peak occurred but it was too close to the right end of the impact window (<5
ms), it was considered not enough to completely capture the strain temporal response to ensure
a robust Gaussian peak fitting, see next section. Therefore, it was discarded from subsequent
analyses of the corresponding strain measure (but not necessarily excluded for the other strain).
This was justified because any strain is expected to start from zero and return to zero after impact
(assuming the tissue continuum remains without residual strain). Fig. 5 shows example cases

that were discarded.

11
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Peak identification and analytical fitting

For a given maxPS and negative minPS strain history curve, the peak with the largest
magnitude was first identified. Some impacts also led to significant secondary strain peaks (e.g.,
minPS for the SF impact in Fig. 5). Secondary peaks that had a magnitude at least 50% of the
largest peak with a minimum peak prominence or vertical drop of at least 10% of the largest peak
value were also identified, if they existed. Visual inspections of the hundreds of peaks revealed
that they typically resembled a “bell shape”. This inspired us to fit them into an analytical Gaussian
form to facilitate analysis, which has been extensively used in other fields (e.g., in chromatography
(Kalambet et al. 2011; Wahab and O’Haver 2020) and chemistry (Mittermayr et al. 1996)). A

Gaussian peak is defined by a mathematical form of:

f(x) =axexp (— (x_b)z) , (1)

2c2

where a is the height of the curve’s peak, b is the peak center position, and c is the standard
deviation. A more commonly used measure of the Gaussian peak is the full width at half maximum
(FWHM) that quantifies the curve width at points on the y-axis that are half the maximum

amplitude (O’Haver 2021). It is effectively ~2.355 times c.

12
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Fig. 5. Examples of discarded cases showing the head rotational velocity profile and the
corresponding maxPS and minPS time histories for the three impact datasets. The example NFL
impact was excluded for both maxPS and minPS analyses. The example SF and PB impacts
were both excluded for maxP$S analysis but not for minPS analysis. Although maxPS achieved its
peak in the PB case, its occurrence was too close to the temporal window boundary (within the

empirical threshold of 5 ms) to allow robust Gaussian peak fitting.
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The identified peaks were separately fitted into a Gaussian peak (O’Haver 2021) centered
at the identified peak locations with a window size of 20 ms. The window size was empirically
determined with trial and error. The fitting quality was assessed by fitting errors in terms of relative
root mean squared error (RMSE divided by the mean of observed values) and coefficient of

determination (R?) (O’Haver 2021).
Concussion prediction

An ultimate use of model simulation is to predict the occurrence of injury. Therefore, we
examined whether combining additional information from strain dynamics in the corpus callosum
can improve injury prediction performance. The NFL dataset was used for this purpose. This
dataset has 20 concussions and 33 non-injury cases, and it has been widely used to assess the
performance of concussion prediction (Wu et al. 2020; Zhou et al. 2021). The other two datasets
were not used, as they had too few or no injury cases to allow such an evaluation. To maximize
the use of all impacts for injury prediction, an additional 20 ms beyond the recorded temporal
window (padded with zero rotational acceleration (Ghazi et al. 2021)) were used for impact
simulation. This ensured that both maxPS and minPS in the corpus callosum have reached their

peak values.

First, we employed peak maxPS in corpus callosum alone for concussion prediction using
feature-based support vector machine (SVM). Baseline performances including accuracy,
sensitivity, specificity, and positive predictive value were obtained via a leave-one-out cross-
validation framework, as conducted before (Wu et al. 2020). Specifically, one case was used for
testing based on the trained model using all the remaining cases. This process was repeated until
all cases were predicted for injury for exactly once, from which the performance was evaluated.
Next, we combined both peak maxPS and minPS, and further adding their corresponding peak
strain rate magnitudes (as produced from model simulation) for concussion prediction. The same

SVM and cross-validation framework were used for performance evaluation.

14
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Data analysis

All impact simulations were conducted previously using Abaqus/Explicit (Version 2018;
Dassault Systemes, France) on a Linux cluster (Intel Xeon E5-2680v2, 2.80 GHz, 128 GB
memory). For each impact dataset, we reported the characteristics of fitted Gaussian peaks for
maxPS and minPS in terms of the FWHM. Its association with respect to strain magnitude was
also analyzed using Pearson correlation. For impact cases retained for both maxPS and minPS
analyses, the ratio between their respective highest peak magnitudes within the simulation time
window were also reported. Statistical significance was reached when p<0.05. Finally, injury
prediction performances from leave-one-out cross-validations were compared. All data analyses

were conducted in MATLAB (R2020a; Mathworks, Natick, MA).

Results

Table 1 summarizes the fitting quality of the Gaussian peaks, along with the percentage
of discarded cases and the percentage of retained cases that had secondary peaks for the two

strain measures from the three impact datasets.

Table 1. Summary of Gaussian peak fitting errors (root mean squared error relative to the
mean and R?), the percentage of cases that had to be discarded from relevant analysis (%
discarded), the percentage of retained impacts that more than one peak was identified (%
secondary), and the percentage of discarded cases when analyzing the ratio between minPS and
maxPS magnitudes (% discarded for both, as both are necessary to compute the ratio). The

corresponding numbers of discarded cases are also shown in parentheses.
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314

Relative RMSE

R2

% discarded

% secondary

% discarded for both

NFL maxPS | 4.2+3.3% 0.95:0.08 | 9.4% (5) 47 2% (25) 24.5% (13)
NFL minPS | 4.9+3.9% 0.93:t0.11 | 17.0% (9) 43.4% (23)

SF maxPS | 5.2¢4.3 % 0.93:0.11 | 3.6% (4) 24.5% (27) 11.8% (13)
SF minPS | 7.25.5% 0.87:t0.19 | 8.2% (9) 46.6% (51)

PB maxPS | 2.4+2.0% 0.98:0.06 | 31.8% (100) | 1.3% (4) 66.2% (208)
PBminPS | 4.4+4.9 0.91:0.26 | 38.2% (120) | 11.3% (35)

For cases that were retained for analysis, Fig. 6 reports the strong linear relationships

between maxPS/minPS and the peak resultant rotational velocity magnitude. The regression

slopes were largely similar across datasets, especially between NFL and SF, which also had an

improved fitting quality in terms of RMSE compared to PB. Fig. 7 shows typical maxPS and minPS

peaks overlaid with their fitted Gaussian peaks, along with their corresponding rotational velocity

profiles for each impact dataset.
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Fig. 6. Summary of maxPS (circles, positive) and minPS (stars, negative) relative to the peak

resultant rotational velocity (vrot) for the three impact datasets, NFL (a), SF (b), and PB (c). Only

cases that are retained for analysis are shown for each strain. Both maxPS and minPS are

significantly associated with the peak vrot magnitude (p<0.001). Linear regression fitting results

with zero intersect are also shown, along with the fitting root mean squared error, RMSE.
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Fig. 7. Selected cases from the three impact datasets to compare the head rotational velocity

profile and the corresponding maxPS and minPS. The fitted Gaussian peaks are overlaid. Two

peaks of maxPS in the NFL case are successfully fitted, but the case is discarded for minPS

analysis because it did not reach the maximum peak.
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Fig. 8 summarizes FWHM values from fitted Gaussian peaks. For both strain measures,
the medians and inter-quantile ranges were similar across impact datasets (15-18 ms and 5-9
ms, respectively). For the NFL and SF datasets, FWHM was significantly and negatively
associated with the magnitudes of maxPS and minPS peak values (Pearson correlation
coefficient range from —0.41 to —0.44, and from —0.29 to —0.22, respectively; p<0.001), but not for

the PB dataset (p=0.5).
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Fig. 8. Boxplots summarizing the FWHM (in ms) for the fitted Gaussian peaks of maxPS (a) and
minPS (b) for the three impact datasets. The median (m) and inter-quantile range (r) are also

reported.

Fig. 9 reports the ratio between minPS and maxPS magnitudes across the three datasets.
Again, they had a similar median (0.5-0.6), although the inter-quantile range for the PB was

notably larger (0.75 vs. 0.23-0.38 for NFL/SF).
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Fig. 9. Boxplots summarizing the ratios between the largest minPS and maxPS magnitudes within

the simulated time window for the three impact datasets. The median (m) and inter-quantile range

(r) are also reported.

Finally, the injury prediction performances when using peak maxPS alone (as commonly

adopted), combining peak maxPS and peak minPS, as well as further combining their

corresponding peak strain rate magnitudes are compared (Table 2). With every additional

feature(s) added, injury prediction performances consistently improved across all measures using

the objective leave-one cross-validation procedure.
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Table 2. Comparison of injury prediction performances in terms of accuracy, sensitivity, specificity,
and positive predictive value based on the NFL dataset when using peak maxPS alone, peak

maxPS and peak minPS, as well as further combining their peak strain rate magnitudes.

peak maxPS peak maxPS and | peak maxPS, peak
peak minPS minPS, and their peak
strain rates
Accuracy 0.642 0.698 0.774
Sensitivity 0.250 0.300 0.500
Specificity 0.879 0.934 0.934
Positive predictive | 0.556 0.750 0.833
value
Discussion

Whenever the head changes its angular orientation in space during impact, a shear stress
wave is continuously initiated at the brain-skull interface, which travels towards the center of the
brain and interacts with all previously generated waves. This leads to complex dynamic
deformation of regional brain tissue that experiences tension, compression, shear, and torsion.
The brain’s viscoelasticity along with the low shear modulus and high bulk modulus causes a lag
between the skull rotational kinematics and strain in the corpus callosum deep in the brain.

Therefore, there is a rich time history of the dynamic brain strain, beyond the richness in its spatial
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distribution. Although brain strain dynamics are readily available from impact simulation, they are

not yet typically used in any injury investigation.

Based on hundreds of real-world head impacts from three different sources, we found both
maximum and minimum principal strains (maxPS and minPS, respectively) in the corpus callosum
can experience one or more peaks within the captured time window. Each resembled a “bell”
shape that can be approximated into a Gaussian peak. From all impacts in the three datasets,
the FWHM values were rather similar in median (15—18 ms) and inter-quantile range (5-9 ms). In
general, peak minPS magnitudes were lower than those of maxPS, with a median ratio
consistently of 0.5-0.6 across the three datasets.

The “bell” shape of maxPS response history has been observed in previous studies
simulating typical NFL impacts, with either a single peak (Viano et al. 2005; Kleiven 2007) or a
pair of major peaks (Kleiven 2007) across the impact duration. However, the earlier studies did
not specifically report the associated anatomical locations, which prevented a direct comparison
with the findings in the corpus callosum in the current study. A more recent study also reported
single peaks of maxPS in different corpus callosum subregions when simulating a head impact
from the SF dataset (Montanino et al. 2021), albeit somewhat more complicated with minor peaks
as well (vs. mostly smooth here and in previous studies (Viano et al. 2005; Kleiven 2007)). These
largely consistent observations across different impact datasets and diverse head injury models

corroborate the quantitative findings reported here based on the anisotropic WHIM V1.0.

A potential application utilizing the Gaussian peak parameters is to establish simplified but
realistic strain time history to design in vitro neuronal tissue injury experiments that are more
closely related to real-world injury (Bar-Kochba et al. 2016), or to drive microscale axonal injury
models (Montanino et al. 2021). Until most recently (Montanino et al. 2021), deformation of axonal
injury models has been driven by assumed loading conditions such as a representative and fixed

strain magnitude at a fixed strain rate (Ahmadzadeh et al. 2014; Montanino et al. 2019; Alisafaei
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396 etal. 2020). These assumed loading conditions do not reflect the variable strain rate and do not
397 have an unloading phase that must happen in the real world. Thus, they may not truly reflect a
398 biofidelic loading condition. Nevertheless, it should be noted that the maxPS and minPS analyzed
399 here still do not inform a specific direction of strain, such as along the white matter fiber tract. This
400 is a limitation of the current study, which suggests the need for continual investigation into brain
401  strain dynamic characteristics along the white matter fibers. Work is currently underway to
402 calculate dense white matter fiber strains of the entire tractography with sufficient accuracy and

403 efficiency (Shakiba et al. 2020), which will be utilized in the future.

404 The strain dynamic characteristics can also serve as response “features” to enable
405 machine learning methods such as SVM for injury correlation and prediction (vs. univariate logistic
406  regression commonly used). Compared to using peak maxPS alone, adding additional “features”
407 such as peak minPS and their peak rate magnitudes consistently improved injury prediction
408 performances (Table 2). However, the performance was notably poorer than when using a
409  network-based injury metric (Wu et al. 2020), as the latter was based on strain of the whole brain
410 (e.g., maximum positive predictive value of 0.833 here vs. 0.938). This suggests the potential of
411  extending the dynamic characterization to the whole brain strain, not just the corpus callosum in
412  this study. Nevertheless, it is important to note that conventional injury “correlation” does not
413  (necessarily) inform injury “causation”. A large-scale axonal injury modeling framework may have
414  the potential to uncover the underlying injury pathology in axonal substructural damages (Johnson
415 et al. 2013). The dynamic characteristics of brain strain investigated here would set the stage to

416 facilitate such an effort in the future.

417 Finally, we also observed that the three impact datasets had significantly different
418  percentages of impacts considered insufficient to capture corpus callosum peak strains (from 11.8%
419 for SF to 66.2% for PB; Table 1) as they either did not reach peak or occurred too close to the

420 time window border (Fig. 5). Even if impact kinematics have captured the peak magnitudes of
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head rotational velocity, they may still not be enough for corpus callosum to reach peak strain due
to the time lag resulting from the brain’s viscoelasticity. For the PB and SF datasets with the
shortest and longest impact time window, respectively, they also had the most and fewest cases

considered insufficient for the time window, respectively (Table 1).

To further quantify the time lag, we used idealized head rotational impulses for
investigation. A head rotational acceleration impulse of a triangular shape (peak rotational
acceleration of 4500 rad/s?) was imparted separately along the three major anatomical axes (Ji
and Zhao 2015). The resulting maxP$S had varying time-to-peak values, ranging from 5 ms to 16
ms (for sagittal and axial rotation, respectively) relative to the rotational acceleration peak (Fig.
10). When the magnitude of head rotational acceleration was reduced (to 1500 rad/s?), the time-
to-peak further delayed to 23 ms for the axial impulse. The elongated peak temporal shape was
consistent with the earlier finding that FWHM significantly and negatively correlated with strain

peak magnitude.

These results could provide important insight into the minimum time window required for
head impact sensors (Sanchez et al. 2018; Liu et al. 2020, 2021). Not only do they need to capture
the maximum head rotational kinematics (Fig. 5 and Fig. 7), but they also need to consider at
least ~20 ms additional time for the deep brain to reach peak strain. When absent, it is
recommended to simulate an additional ~20 ms (e.g., by assuming a zero acceleration at the end
of impact window), which could mitigate the issue and “rescue” the recorded impacts. This is
confirmed for all the three discarded example cases in Fig. 5. This was also the reason that the
previous pre-computed brain response atlas (pcBRA) had an additional 23 ms impact simulation
beyond the peak acceleration (or, 18 ms after velocity reached its peak; Fig. 10b) (Ji and Zhao
2015). Compared to simply discarding cases (Zhou et al. 2021), it may be more economical to
retain cases by the additional simulation time window given the cost for each impact

reconstruction (Sanchez et al. 2018).
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Fig. 10. (a) Element locations in the corpus callosum where maxPS occurs during an idealized
head rotational acceleration impulse (a triangulated temporal shape with peak magnitude of 4500
rad/s? and an impulse duration of 10 ms) along each of the three major axes. (b) Normalized head
rotational acceleration impulse is compared with the resulting maxPS time histories in the corpus
callosum. When the acceleration peak magnitude is reduced to 1500 rad/s?, maxPS not only

reduces the peak value, but also further increases its time-to-peak (dashed line).

Implications

This work contributes towards a comprehensive time-domain characterization of impact-
induced dynamic brain strain in the corpus callosum. The resulting correlation with impact
rotational peak velocity could allow instantly establishing the strain history to launch multiscale
modeling of brain injury deep in the brain. This avoids a costly whole brain model simulation,
which would significantly facilitate the exploration of brain injury pathology across length scales

in this region.

The rich dynamic information about brain strain also supports further development of
advanced deep learning models that will instantly estimate the complete spatiotemporal details of

brain strain on a low-end computer. Combining with such a tool, the work presented in this study
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would set the stage for efficient and large-scale axonal injury model simulations in arbitrary brain
regions, including other important white matter areas and the gray-white matter interface
(Alisafaei et al. 2020). This may allow translating impact kinematics into the extent of axonal
substructural damages (Johnson et al. 2013). The location and extent of these microscopic
damages may uncover the pathology of brain injury, beyond statistical correlation commonly used

at present for injury prediction that does not infer causation.

Limitations

A limitation of the study is that all results depend on the specific head injury model used,
which suffers from any and all limitations with respect to its model assumptions. In particular, a
generic WHIM was used for all impact simulations, which did not consider morphological
differences such as head size. A larger head/brain would expect to require a longer time lag
between kinematics and corpus callosum strain, as similarly found in another study analyzing the

whole-brain strain (Liu et al. 2021).

We also purposefully limited our investigation to the mid-sagittal section of the corpus
callosum deep in the brain. The surrounding falx and tentorium have important roles in corpus
callosum strain (Ho et al. 2017; Hernandez et al. 2019). They were modelled as linear elastic
membranes, same as the isotropic KTH (Kleiven 2007), GHBMC (Mao et al. 2013) and another
model (Lu et al. 2019), although a hyperelastic model based on more recent experimental data is
emerging (Ho et al. 2017; Trotta et al. 2020; Li et al. 2020). In addition, cerebral vasculature also
reduces corpus callosum strain (Zhao and Ji 2020b), which is not yet incorporated into the WHIM
V1.0 model. It is possible that reanalyzing the results using a different head injury model or an
upgraded WHIM V2.1 that embeds cerebral vasculature (Zhao and Ji 2020b, 2022) may change
the quantitative results, albeit WHIM V1.0 is similar to other commonly used models when

studying whole brain peak maxPS (Fahlstedt et al. 2021). Therefore, we anticipate that at least
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similar qualitative findings will follow, given that virtually all head injury models adopt

viscoelasticity for the brain (Fahlstedt et al. 2021).

The dynamic characteristics for other parts of the brain away from the corpus callosum
may be even more complicated, as evident from a recent study showing time histories of maxPS
in subcortical regions (Montanino et al. 2021). It does not appear feasible to fit them into idealized
peaks. These additional observations on the richness of brain strain dynamics, once again,
strongly support the need to further develop advanced deep learning models that will instantly
estimate the complete spatiotemporal histories of elementwise brain strains, beyond the spatially
detailed peak strains achieved at the maximum value (Ghazi et al. 2021). Dramatically improving
head impact simulation efficiency (from hours or days to under a second) could have the potential
of transforming acceleration-based TBI studies to focusing on brain strains. This could accelerate

new scientific discoveries of TBI biomechanics in the future.

Conclusions

We find that dynamic maximum and minimum principal strains in the corpus callosum can
be approximated by Gaussian peaks. The peak magnitudes are significantly correlated with peak
impact rotational velocity. These results allow formulating tissue strain dynamics based on impact
kinematics directly, without costly impact simulation at the global whole brain level. They can be
subsequently used to design in vitro neuronal testing protocols and to drive microscale axonal
injury model simulations. Extending these findings to real-time macroscopic dynamic simulation
of the whole brain could facilitate large- and multi-scale brain injury modeling in arbitrary regions
in the future, including the gray-white matter interface. These investigations are expected to
enhance the biomechanical characterization and understanding of injury pathology across the
length scales. Finally, “features” from dynamic brain strains could improve injury correlation and

prediction, but strain time lag relative to kinematics should not be ignored in impact simulation.
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