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ABSTRACT: Polyfunctionalized cyclohexanes are privileged

scaffolds in drug discovery. Reported herein is a method

for

synthesizing 1,2,4-trifunctionalized cyclohexanes via diastereose-
lective reductive Cope rearrangement. The scaffolds obtained can
be derivatized by orthogonal functional group interconversion to
cyclohexanes bearing a 1-amide, 2-branched arylallyl, and variable

4-functional group.

P olysubstituted cyclohexanes bearing pharmaceutical-rele-
vant functionality (e.g., combinations of carboxylic acid
derivatives, amines, (hetero)aromatics, aliphatics, etc.) are
valuable scaffolds in drug discovery. Desirable qualities include
the rigid nature of the ring, locked positioning of the functional
groups, and three-dimensionality that the sp>-rich chairlike
structure imparts.'~* While the 1,4-disubstitution é)attern is
extremely common (e.g,, Oclacitinib,” Nateglinide,” Caripra-
zine,’ Atovaquone,8 Velneperit,9 Balovaptan,10 Candoxatril,"*
among many others), analogous trisubstituted cyclohexanes
are rare (Figure 1A). A potential reason for this is that while
the necessary building blocks for constructing 1,4-difunction-
alized cyclohexanes are abundantly available, the trifunction-
alized variants are comparatively less so. For example, this
substitution pattern has been accessed for drug discovery from
Hagemann’s ester'” (en route to BMS-986251) and by Diels—
Alder cycloaddition" (en route to CAS: 1350711-03-3). Other
ways to access this and related cyclohexane substitution
patterns include arene hydrogenation,"*™** conjugate addi-
tion,”>"** and C—H functionalization®™>' (Figure 1B). That
said, all of these routes have their own unique challenges and
limitations (e.g., stereoselectivity, functional group compati-
bility).

With an emphasis on pharmaceutical-like functionality,
reported herein is the development of a reductive Cope
rearrangement-centered route toward 1,2,4-trisubstituted
cyclohexanes that bear appropriate functional groups for late-
stage divergence into complex and unique drug-like leads.
Specifically, it was envisaged that readily available 1,5-dienes 1
(Scheme 1A), while not being thermodynamically favored to
undergo Cope rearrangement to 2, can be driven forward by
chemoselective reduction (Scheme 1B). We previously
reported the “reductive Cope rearrangement” concept,” but
herein we address unique stereochemical considerations,
expand the scope to ketone-derived (and prochiral)
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Figure 1. (A) Comparison of 1,4-disubstituted and trisubstituted
drug-like space. (B) Methods to access this substitution pattern.
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Scheme 1. This Report: Diastereoselective Reductive Cope
Rearrangement Yields Trisubstituted Cyclohexanes
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alkylidenemalononitriles, and contribute a convergent and
divergent route toward challenging trisubstituted cyclohexane
drug-like molecules.

At the outset of our studies, we already appreciated the
inherent kinetic, thermodynamic, and stereochemical chal-
lenges associated with the Cope rearrangement of 6-function-
alized-3,3-dicyano-1,5-dienes. Solutions we have previously
reported for achieving Cope rearrangement include the use of
“promoting groups” ! and the “reductive Cope rearrange-
ment”,>**> the latter of which is particularly relevant to this
work. Thus, we were not surprised to find that model substrate
la yielded [3,3] equilibrium mixtures of la and 2a with
decreasing diastereoselectivity with time (Table 1). That said,
we were intrigued by the high diastereoselectivity in the early

Table 1. Cope Rearrangement Has No Thermodynamic
Preference for One Side of the Equilibrium or the Other
and Epimerization Occurs

NC
NC | constants:
Ph 115 °C, toluene or DMF (0.X M)
® [3,3] reaches equillibrium favoring neither side
Ph 1@ e diastereselectivity is high at low conversion Ph 22
Toluene DMF
entry | time conv. dr. conv. dr.
(%) (%)

1 5 min 3.8 20:01 9.1 20:01
2 10 min 10.7 20:01 15.3 9.1:1
3 30 min 16.7 10:01 29.6 5.9:1
4 1hr 25.9 8.5:1 38.3 3.1:1
5 2 hr 27.8 7:01 44.4 2.4:1
6 3hr 32.3 3.3:11 455 2.21
7 4 hr 29.5 3.1:1 46 1.8:1
8 5hr 28.4 2.6:1 47.4 1.9:1
9 6 hr 32.7 2.1:1 47.9 1.8:1
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stages of transformation (20:1 dr after S min, Table 1, entry 1,
in DMF solvent). Specifically, we sought conditions that could
diastereoselectively reduce the in situ generated alkylidene faster
than epimerization. If found, then complete, stereoselective
conversion to tetra-stereogenic, 1,2,4-trifunctionalized cyclo-
hexanes would be possible. Indeed, we were pleased to find
after some optimization that the reductive Cope rearrangement
proceeded with 100% conversion to the reduced Cope product
in 12.4:1.0:0.7 dr (Table 2, entries 4 and 8). While eight

Table 2. Reductive Cope Rearrangement Can Promote the
[3,3] Step with Stereochemical Fidelity

(o} [0}

NC
NC
| R || R conditions
Ph N —
H 12 - 24h
R = OEt; Hantzsch Ester (HE)
Ph 1a

R = Me; Hantzsch Ketone (HK) Ph 3a
Entry | Reductant \?:rllt C(oern)c : T;rg)p : d.r.

1 5 equiv. HE DMF 0.2 100 5.8:1.0:0.5
2 5 equiv. HE DMF 0.1 115 6.0:1.0:0.3
& 10 equiv. HE | DMF 0.1 100 7.7:1.0:0.5
4 20 equiv. HE | DMF 0.1 100 12.4:1.0:0.7
5 5 equiv. HE tol 0.1 115 2.7:1.0:0.3
6 5 equiv. HE EtOH 0.1 100 4.9:1.0:1.0
7 10 equiv. HK | DMF 0.1 100 8.3:1.0:0.6
8 20 equiv. HK | DMF 0.1 100 12.3:1.0:0.2

diastereomers are possible, the major diastereomer is one of
only three diastereomers by crude NMR analysis. As shown in
entries 4 and 8, the optimized conditions utilize 20 equiv of a
dihydropyridine reductant (Hantzsch ester (HE, entry 4);
Hantzsch ketone (HK, entry 8)), in DMF at 100 °C. Changes
from these optimal conditions, including temperature,
concentration, solvent, and equivalents of reductant, yielded
inferior results.

With conditions in hand for achieving diastereoselective
reductive Cope rearrangement, we turned to the scope of the
reaction (Scheme 2). Notably, the necessary starting materials
1 are readily available for 4-substituted-cyclohexylidene
malononitriles and cinnamyl bromides (see Scheme 1A). We
opted to reé)ort a two-step procedure capped with an oxidative
amidation®® reaction as the reduced Cope products often could
not be separated from the reductant and/or its byproduct
pyridine, which complicated isolation and characterization. We
found that, within the scope examined, trifunctionalized
cyclohexanes 4a—4o, could be prepared with a range of yields
and diastereoselectivity. While the reductive Cope rearrange-
ment produced three diastereomers (major and two minors),
following oxidative amidation only two diastereomers were
observed, suggesting epimeric convergence for two of the
diastereomers. Further, when synthesizing Weinreb amides, in
many cases, the diastereomeric ratio had a notable improve-
ment. This is likely due to the epimeric convergence, but also
improved chromatographic separation of the amide diaster-
eomers. The mild reductant (Hantzch ester (HE) or Hantzsch
ketone (HK)) was tolerant to various 4-functional groups
including phenyl, aliphatics, esters, amides, and phthalimides.
There was also a decrease in diastereoselectivity for both
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Scheme 2. Scope of the Reductive Cope Rearrangement/Oxidative Amidation Sequence

o i i i i NCCN K,CO3, O, (1 atm)
NC . o : ii. K,CO3, O, (1 atm),
| EtO T OFEt Me | Me i.100°C : MeCN )\ i. drafter step i.
Ar N or N DMF (0.1M) Ar /\ Me, A Ar i dr after step ii.
H H
FG

16 — 20 hrs O NH or ) 2-step yield

10 equivalents MeO

Hantzsch Ester (HE) Hantzsch Ketone (HK)

1a-1j _ 3
0.2 mmol 3a-3j 4a - 4o

(o) Cl)Me o

N K

Ph Me CO,Et COzEt NHAc
1aHE »3a—»4a 1aHE—>3a—4b 1bHE—>3b—4c 1bHE—3b—4d 1c/HE—>3c—4de 1d/HE—>3d—4f 1dHE—-3d—4g 1e/HE — 3e — 4h
i. 7.7:1:0.55 dr i 7.7:1:0.55 dr i. 4.6:1:02dr i. 4.6:1:0.2dr i.5.3:1.0:0.4 dr i. 5.9:1:02dr i.5.9:1:0.2 dr i. 34:1:02dr
ii. 7.7:1 dr ii. >20:1 dr i. 7:1 dr ii. 16.7:1 dr i. 11.4:1 dr i. 8.3:1 dr ii. >20:1 dr ii. 3.4:1 dr
53% yield 39% yield 46% yield 19% yield 62% yield 59% yield 25% yield 41% yield
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i 3.4:1:02dr i. 8.3:1:05dr i.8.3:1:0.5 dr i.4.2:1:05 dr i. 2.5:1:0.4 dr i.4.5:1:0.83 dr i.4.5:1:0.83 dr
ii. 19:1 dr ii. 10:1 dr i. 9.1:1 dr il 8:1 dr ii. 5:1 dr ii. 8:1 dr ii. 8:1 dr
17% yield 67% yield 64% yield 50% yield 50% yield 46% yield 47% yield
o)
o o LN
Me Me
OO .
N
H
20 equivalent
S i, 5.6:1:0.8 dr COEL i 7351086 dr NPhth ' 3:1:0.42 dr NPhth  3.9:1:05 dr NPAM . 3.1:1:0.3dr
il. 9.6:1:0.5 dr ii. 15.5:1 dr ii.13.4:1 dr i. 7.7 dr ii. 5.7:1dr
47% yield 57% yield 42% yield 47% yield 36% yield
electron-rich and -poor arenes (3g—3j); however, good yields Scheme 3. Scalability of the Sequence
and increased diastereoselectivity were observed post-amida- NG
tion (41—40), again, likely a result of epimeric convergence and NC | 0 0 100 °C, 30 hrs
chromatographic separation. Ultimately, the process can yield Ph M DMF (0.1 M)
many combinations of trifunctionalized cyclohexanes with 60% yield
. . ) o 11 N 9.1:1:0.4 dr
practical yields and diastereoselectivity in many of the cases NPhth NPhth
from the scope study.
p Yy . 1 mmol Hantzch recrystallized to >25:1 d.r.
To be most valuable, it was deemed necessary to showcase 407 mg Kztgne (HK) 65% recovery
. . equiv.
that gram amounts of material could be prepared for divergent 443 mmols of
. . 7 ® recovere: mmols Of
synthesis. In this regard, attempted scale up procedures (S and 1? ’;Jp’;‘:;ﬁél & aa?“"\‘l’v%r?u";f""e HK by crystallization
10 mmol) were unsatisfactory providing decreased diaster- e crude dr of 3f: 6.4:1:0.6 dr
eoselectivity as well as challenges associated with removal of o™
the excess reductant and byproduct pyridine. For batch
. o " . 2-steps, 71% yield
chemistry, the optimized conditions were only reproducible 81 dr
up to 1 mmol scale (Scheme 3A). Thus, we opted to run 3 X 1 0.969 grams 4k
mmol scale reactions in parallel, which yielded a near-gram
quantity of 4k (71% yield, 8:1 dr) by the standard procedure NP
(Scheme 3B). Notably, in these scale-up studies, we also were
able to confirm that the excess Hantzsch ketone could be 3f, whereas, in Scheme 4B, substrate 3f with 11.9:1 dr was
collected in high purity via crystallization (43 mmol examined. First, oxidative amidation®® of the diastereomerically
(theoretical = 57 mmol); 75% recovery) and recycled. pure 3f with a representative 2°-amine (morpholine) resulted
With a method in hand for producing gram quantities of the in good yields and, surprisingly, epimerization of the a-amide
reduced Cope products (Scheme 3), the next goal was to stereocenter on 4j (Scheme 4A). 3f obtained as an 11.9:1
demonstrate how these scaffolds can be rapidly diverted to diastereomeric mixture also converges to a single amide 4j
trifunctionalized drug-like cyclohexanes (Scheme 4). In (Scheme 4B). We propose that epimerization occurs via
Scheme 4A, we utilized a diastereomerically pure substrate enolization of either intermediate acyl cyanide or the resulting
8806 https://doi.org/10.1021/acs.orglett.1c03310
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Scheme 4. Divergent Functional Group Interconversion of
the Malononitrile, Alkene, and Phthalimide Functional
Groups: (A) Oxidative Amidation, Oxidative Esterification,
and Redox Interconversion of Malononitriles; (B)
Diastereomeric Mixtures of Malononitriles Can Converge
via Oxidative Amidation; (C) Complete Functional Group
Interconversion to Functionally Dense Drug-like
Cyclohexanes
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i. 5 equiv. NH,NH,eH,0, MeOH (0.05M), 70 °C, 1.5h, ii. 2 equiv. MsCl, 4 equiv.
Et3N, CH,Cl, (0.1M), 0 °C - rt, 2h, 73% yield (2 steps) iii. 10% Pd/C, H, (1
atm), MeOH (0.05M), rt, 4h, 82% yield. iv. 4 equiv. ethyl acrylate, 15 mol% HG-
II, tol (0.2M), 80 °C, 16h, 42% yield.

amide. In terms of scope, we were also able to produce a
Weinreb amide 4k with high diastereoselectivity. Primary
amines and alcohols®” were less diastereoselective en route to §
and 6, respectively. Redox interconversion™ of 3f to the
primary alcohol 7 was also achieved with moderate
diastereoselectivity. Notably, under these conditions, NaBH,
also partially reduced the phthalimide.”” Next, we aimed to
demonstrate that the other functional groups can be
manipulated in sequence resulting in a divergent route to
novel, functionally dense, drug-like cyclohexanes (Scheme 4C).
In this regard, we examined model substrate 4f. The
phthalimide can be deprotected and refunctionalized (e.g,

8807

sulfonylation) yielding 8. The alkene functionality can be
manipulated in various ways including hydrogenation (9) and
cross metathesis*>*' (10). This results in the synthesis of
cyclohexanes with a dense array of functionality.

In conclusion, described herein is a straightforward sequence
toward densely functionalized trisubstituted cyclohexanes
whereby a key diastereoselective reductive Cope rearrange-
ment yields cyclohexane building blocks decorated with a 1-
malononitrile, 2-branched arylallyl moiety, and variable 4-
functional group. Straightforward iterative functional group
interconversion can yield unique and complex drug-like
scaffolds. We envisage this chemistry to be useful in generating
new leads in drug discovery campaigns. In future studies, we
aim to further increase the scope, diastereoselectivity, and
enantioselectivity of the overall process.
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