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Abstract

We show how to characterize integral models of Shimura varieties over places of
the reflex field where the level subgroup is parahoric by formulating a definition of
a “canonical” integral model. We then prove that in Hodge type cases and under
a tameness hypothesis, the integral models constructed by the author and Kisin in
previous work are canonical and, in particular, independent of choices. A main tool is
a theory of displays with parahoric structure that we develop in this paper.
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1 Introduction

1.1. In this paper, we show how to uniquely characterize integral models of Shimura
varieties over some primes where non-smooth reduction is expected. More specifically,
we consider integral models over primes p at which the level subgroup is parahoric.
Then, under some further assumptions, we provide a notion of a “canonical” integral
model.

At such primes, the Shimura varieties have integral models with complicated sin-
gularities [31, 32]. This happens even for the most commonly used Shimura varieties
with level structure, such as Siegel varieties, and it foils attempts to characterize the
models by simple conditions. The main observation of this paper is that we can char-
acterize these integral models by requiring that they support suitable “G-displays”,
i.e. filtered Frobenius modules with G-structure, where G is the smooth integral p-
adic group scheme which corresponds to the level subgroup. We then prove that these
modules exist in most Hodge type cases treated by the author and Kisin in [20]. As
a corollary, we show that these integral models of Shimura varieties with parahoric
level structure, are independent of the choices made in their construction.

Let us first recall the story over “good” places, i.e. over primes at which the level
subgroup is hyperspecial. One expects that there is an integral model with smooth
reduction at such primes. This expectation was first spelled out by Langlands in the
80’s. Later, it was pointed out by Milne [26] that one can uniquely characterize smooth
integral models over the localization of the reflex field at such places by requiring that
they satisfy a Neron-type extension property. Milne calls smooth integral models with
this property “canonical”. The natural integral models of Siegel Shimura varieties,
at good primes, are smooth and satisfy the extension property. Therefore, they are
canonical. In this case, the extension property follows by the Neron-Ogg-Shafarevich
criterion and a purity result of Vasiu and Zink [38] about extending abelian schemes
over codimension > 2 subschemes of smooth schemes. This argument extends to the
very general class of Shimura varieties of abelian type at good primes, provided we
can show there is a smooth integral model which is, roughly speaking, constructed
using moduli of abelian varieties. This existence of such a canonical smooth integral
model for Shimura varieties of abelian type at places over good primes was shown by
Kisin ([19], see also earlier work of Vasiu [37]).

The problem becomes considerably harder over other primes. Here, we are consid-
ering primes p at which the level subgroup is parahoric. For the most part, we also
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On integral models of Shimura varieties

require that the reductive group splits over a tamely ramified extension, although our
formulation is more general. Under these assumptions, models for Shimura varieties of
abelian type, integral at places over such p, were constructed by Kisin and the author
[20]. This follows work of Rapoport and Zink [32], of Rapoport and the author, and of
many others, see [29]. The construction in [20] uses certain simpler schemes, the “local
models” that depend only on the local Shimura data. Then, integral models for Shimura
varieties of Hodge type are given by taking the normalization of the Zariski closure
of a well-chosen embedding of the Shimura variety in a Siegel moduli scheme over
the integers. More generally, models of Shimura varieties of abelian type are obtained
from those of Hodge type by a quotient construction that uses Deligne’s theory of
connected Shimura varieties. All these integral models of Shimura varieties have the
same étale local structure as the corresponding local models. However, the problem of
characterizing them globally or showing that they are independent of choices was not
addressed in loc. cit.! Here, we give a broader notion of “canonical” integral model
and solve these problems when the varieties are of Hodge type. Such a characterization
was not known before, not even for general PEL type Shimura varieties.

1.2. Let us now explain these results more carefully.

Let (G, X) be a Shimura datum [10] with corresponding conjugacy class of minus-
cule cocharacters {u} and reflex field E. To fix ideas, we will always assume that the
center Z(G) of G has the same Q-split rank as R-split rank. (This condition holds for
Shimura data of Hodge type.) For an open compact subgroup K G (A/) of the finite
adelic points of G, the Shimura variety

Shy(G, X) = G@\(X x G(Ay)/K)

has a canonical model over E.
Fix an odd prime p. Suppose K = K,K”, with K, C G(Q,) and K C G(A?), both
compact open, with K? sufficiently small. Denote by L the pro-étale G(Z)-cover

Ly := l(in ShK/pr(G, X) — Shg(G, X),
K, CKp

with K/p running over all compact open subgroups of K.

Assume that:

(a) The level K, is a parahoric subgroup in the sense of Bruhat-Tits [36], i.e. K, is
the neutral component of the stabilizer of a point in the (enlarged) building of G(Q,).
Then K, = G(Z,), where G is the corresponding parahoric smooth connected affine
group scheme over Z, with G ®z, Qp, = Gq, ([36]).

We will occasionally assume the slightly stronger:

(a+) The level K, is a connected parahoric subgroup. By definition, this means
that K, is parahoric and is the stabilizer of a point in the enlarged building, i.e. we
can choose the point such that the stabilizer is actually connected. (Such a subgroup
is sometimes also called a parahoric stabilizer.)

1 with the exception of the very restricted result [20,Prop. 4.6.28].
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Now choose a place v of E over p. Let Of () be the localization of the ring of
integers Of at v. Denote by E the completion of E at v, by Of the integers of E
and fix an algebraic closure k of the residue field kg of E. We can also consider
{u} as a conjugacy class of cocharacters which is defined over E. Under some mild
assumptions (see Sect. 2.1), we have the local model

M = M°¢(G, {u}),

as characterized by [35,Conj. 21.4.1]. This is a flat and projective Og-scheme with G-
action. Its generic fiber is G g-equivariantly isomorphic to the variety X, of parabolic
subgroups of G g of type 1, and its special fiber is reduced.

We will assume:

(b) There is a closed group scheme immersion ¢ : G < GL, over Z, such that
() is conjugate to one of the standard minuscule cocharacters of GL,,, t(G) contains
the scalars, and the map ¢ gives an equivariant closed immersion

L : M < Gr(d, n)o,

in a Grassmannian, where d is determined by ¢().

Under the assumptions (a) and (b), we define “(G, {1t})-displays” which are group-
theoretic generalizations of Zink’s displays [39, 40]. This is the main invention in the
paper, see below. We think it has some independent interest.

We now ask for O, v)-models .7k = .k k» (separated schemes of finite type and
flat over O (y)) of the Shimura variety Shx(G, X) which are normal. In addition, we
require:

1. For K'? c KP, there are finite étale morphisms
nK;,,Kp . prK/p — prK/p
which extend the natural morphism SthK//? (G, X) —> SthKp (G, X).

2. The scheme %k, = limK], prKp satisfies the “extension property” for dvrs of
mixed characteristic (&p), i.e. for any such dvr R

Sk, (R[1/p]) = F, (R).

3. The p-adic formal schemes .7k = 1<1r_nn K B0y OF, )/ (p)" support locally
universal (G, {u})-displays Zx which are associated with L. We ask that these
are compatible for varying K7, i.e. that there are compatible isomorphisms

* ~
7"K’p,Kp@K = Y

over the system of morphisms 7K, K, of (1).

We will explain below the rest of the terms in (3) including the meaning of having a
(G, {n})-display being “associated” with the pro-étale G(Z)-cover L. Our first main
result is (always under the standing hypothesis on the center Z(G), also p # 2):
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Theorem 1.3 Assume (G, X, v, Kp) satisfy (a) and (b) above. Then there is at most
one (up to unique isomorphism), pro-system of normal O, )-models Sx = Sk
of the Shimura variety Shx(G, X) which satisfy (1), (2) and (3) above.

In fact, we prove a slightly more general result. (See Theorem 7.1.7 and Corollary
7.1.8.)

We call integral models .k which satisfy the above, canonical.

Assume now that the global Shimura datum (G, X) is of Hodge type and that G splits
over a tamely ramified extension of Q,. Then, under the assumption (a+), assumption
(b) is also satisfied. In this situation, “nice” integral models .k (G, X) of the Shimura
variety Shk(G, X) have been constructed in [20,§ 4], see [20,Theorem 4.2.7]. These
integral models depend, a priori, on the choice of a suitable Hodge embedding. Our
second main result is:

Theorem 1.4 (Theorem 8.2.1) Assume (G, X) is of Hodge type, G splits over a
tamely ramified extension of Qp, and K, is connected parahoric. The integral models

Sk(G, X) of [20,Theorem 4.2.7] satisfy (1), (2), and (3).

Since the integral models .7 (G, X) of [20,Theorem 4.2.7] are normal, by com-
bining the two results, we obtain:

Corollary 1.5 (Theorem 8.1.6) Assume (G, X) is of Hodge type, G splits over a
tamely ramified extension of Qp, and K,, is connected parahoric. The integral models
“k(G, X) of [20,Theorem 4.2.7] are, up to unique isomorphism, independent of the
choices in their construction.

1.6. We now explain the terms that appear in condition (3). For more details, the reader
is referred to the main body of the paper.
Suppose R is a p-adic flat O -algebra. Denote by W (R) the ring of ( p-typical) Witt
vectors with entries from R and by ¢ : W(R) — W (R) the Frobenius endomorphism.
A (G, MIOC)—display D = (P,q,¥) over R consists of a G-torsor P over
Spec (W(R)), a G-equivariant morphism

q : P Xspec (W (R)) Spec (R) — M,
and a G-isomorphism ¥ : Q = p. Here, Q is a G-torsor over Spec (W (R)) which
is the modification of ¢*P along p = 0, given by g (see Proposition/Construction

4.1.2).
By its construction, Q comes together with an isomorphism of G-torsors

@ Pispec WR)1/pD) = QiSpec (W(R)[1/p])

over Spec (W(R)[1/p]). Composing this isomorphism with Wspec (w (r)(1/p]) gives

@ 2 9™ Pispec (W(R)1/p]) = PlSpec (W(R)1/p))-

This is the “Frobenius” of the (G, M'°)-display.
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Since M'°¢ is determined by (G, {11}) we often just say “(G, {1})-display”. The def-
inition of a (G, {u})-display resembles that of a shtuka and of its mixed characteristic
variants ([35]). (In the shtuka lingo, one would say that “there is one leg along p = 0,
bounded by ©”.) It is also a generalization of the concept of (G, {u})-display due to
the author and Biiltel [7]. (This required the restrictive assumption that G is reductive
over Z; the extension to the parahoric case is far from obvious). When G = GL,
and M!°° = Gr(d, n), it amounts to a display of height n and dimension n — d in
the sense of Zink (see Sect. 4.4). By using Zink’s Witt vector descent, we obtain a
straightforward extension of this definition from Spf(R) to non-affine p-adic formal
schemes like ..

If R is, in addition, a Noetherian complete local ring with perfect residue field and
p # 2, there is a similar notion of a Dieudonné (G, {u})-display over R for which all
the above objects P, g, W, are defined over Zink’s variant W(R) of the Wittring. After
applying a local Hodge embedding ¢ : G — GL,,, a Dieudonné (G, {u})-display D
induces a classical Dieudonné display over R. By Zink’s theory [39, 40], this gives a
p-divisible group over R.

In (3), we ask that Zx = (Px, gk, Yk) is “associated” with Lx. This definition
(Definition 6.2.1) is modeled on the notion of “associated” used by Faltings, e.g. [12].
Itrequires that the Z ,-étale local system over the generic fiber given by the Tate module
of the p-divisible group obtained from % and ¢ as above, agrees with the local system
given by Lk and ¢. It also requires that, after specializing at each point with values
in a mixed characteristic dvr, the étale-crystalline comparison isomorphism sends the
étale (i.e. Galois invariant) tensors defining Lk to the crystalline tensors defining Px.

Finally, we explain the term “locally universal” in (3):

For x € #k(k), denote by ﬁ; the completion of the strict Henselization of the local
ring of . at x. Set Dk ; for the (G, {u})-display over R : obtained from Zk by base
change.

We say that the (G, {u})-display % is locally universal? if for all X € .%(k), there
is a “rigid” section s; of the G-torsor Pk z over Spec ( W (R;)), so that the composition

q - (si x 1) 1 Spec (Re) = Pis Xgpee (w(hy) SPEC (R7) — M
gives an isomorphism between R; and the corresponding completed local ring of the
local model M'°¢. Therefore, condition (3) fixes the “singularity type” of .% at x. In
the above, rigid is for a version of the Gauss-Manin connection in our set-up.

Note that this somewhat unusual definition is justified by the fact that (G, {u})-
displays are defined only over Z,-flat bases, so these objects do not have deformation
theory in the usual sense.

1.7. Let us discuss the proofs of the two main theorems.

We use an intermediate technical notion, the “associated system” (Lk, { Dk, }re.o% k)
(Definition 6.1.5), in which Dk ; are Dieudonné (G, {i})-displays over the com-
pletions of the strict Henselizations R, as before. A (G, {u})-display Pk which is
associated with Lk, gives such an associated system by base change, as above. In
fact, most of our constructions just use (Lk, {Dk i }ze.%k))- Using Tate’s theorem on

2 A more correct, but also more cumbersome, term would probably be “locally formally universal”.
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extending homomorphisms of p-divisible groups, we show that (L, {Dk i }ze.7 k)
is uniquely determined by L and that the existence of a locally universal associated
system is enough to characterize the integral model .k uniquely. This leads to the
proof of Theorem 1.3. We also show that when Lk comes from the Tate module of a
p-divisible group with Galois invariant tensors, it can be completed to a (unique up to
isomorphism) associated system. This employs comparison isomorphisms of integral
p-adic Hodge theory that use work of Kisin, Scholze and others [4, 35], and of Faltings
[12, 13].

To show Theorem 1.4, we first show that the integral models given in [20] support
a locally universal associated system. The issue is to show that the unique associated
system obtained as above is locally universal. (Recall that this imposes that the sin-
gularities of the integral model . agree with those of the local model M'°°.) This is
done, by reexaming the proof of the main result of [20]. Then, as in work of Hamacher
and Kim [16], we can also show that these models support a (global) locally universal
g, MIOC)-display 9 associated with L. It then follows, that in this case, the integral
models of [20] are canonical as per the definition above.

Our point of view fits with the well-established idea, going back to Deligne, that
most Shimura varieties should be moduli spaces of G-motives with level structures.
As such, they should have (integral) canonical models. We can not make this precise
yet. However, we consider the locally universal G-display as the crystalline avatar
of the universal G-motive and show that its existence is enough to characterize the
integral model. In fact, there should be versions of this characterization for other p-adic
cohomology theories (see [2, 4, 33]). In joint work of the author with M. Rapoport
[28], which developed after the first version of this paper was written, this idea is
realized and a different characterization is given. This uses, instead of G-displays, p-
adic G-sthukas over the v-sheaf .7, as defined by Scholze (see [35]). Our approach in
the current paper is more “classical”, since it does not use any of the tools of modern
p-adic analysis (perfectoid adic spaces, v-sheaves and diamonds, Banach-Colmez
spaces, etc.) and when it applies it gives somewhat more precise information.

1.8. Finally, we give an outline of the contents of the paper. In Sect. 2 we prove
some preliminary facts about rings of Witt vectors and other p-adic period rings, that
are used in the constructions. We continue on to define some terminology and give
some more preliminaries on torsors in Sect. 3. In Sect. 4 we give the definition of
(Dieudonné) displays with G-structure. We also construct various relevant structures
such an infinitesimal connection and give the notion of a rigid section of a G-display.
In Sect. 5, we show how to construct, using the theory of Breuil-Kisin modules, such
a display from a G(Z,)-valued crystalline representation of a p-adic field. We also
give other similar constructions, for example a corresponding Breuil-Kisin—Fargues
G-module. In Sect. 6, we give the definition of an associated system and show how to
compare two normal schemes with the same generic fiber which both support locally
universal associated systems for the same local system. We also show how to give
an associated system starting from a p-divisible group whose Tate module carries
suitable Galois invariant tensors. In Sect. 7, we apply this to Shimura varieties and
show that systems (%, L, {Dk i }ze.#k)) as above are unique. In Sect. 8, we prove
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that the integral models of Shimura varieties of Hodge type constructed in [20] carry
locally universal associated systems and are therefore uniquely determined.

1.10. Notations

Throughout the paper p is a prime and, as usual, we denote by Z,, Q,, the p-adic
integers, resp. p-adic numbers. We fix an algebraic closure Q p of Q,. If F is a finite
extension of Q,,, we will denote by O its ring of integers, by kf its residue field and
by F the completion of the maximal unramified extension of F in Q »- We often write
X ®4 B to denote the base change of a scheme X over Spec (A) to Spec (B).

2 Algebraic preliminaries

2.1.1. We begin with some preliminaries about rings of Witt vectors and other p-adic
period rings. The proofs can be omitted on the first reading.

We consider the following conditions for a Z,-algebra R. In what follows, we will
have to assume some of these.

1. R is complete and separated for the adic topology given by a finitely generated
ideal A that contains p, and
2. R is formally of finite type over W = W (k), where k is a perfect field of
characteristic p.
(N) R is a normal domain, is flat over Z,, and satisfies (1) and (2).
(CN) R satisfies (N) and is a complete local ring.

By “p-adic”, we always mean p-adically complete and separated.

2.1 Witt vectors and variants

For a Z,)-algebra R, we denote by
W(R) ={(ri,r2,....1n,...) | 1i € R}

the ring of (p-typical) Witt vectors of R. Let ¢ : W(R) — W(R)and V : W(R) —
W (R) denote the Frobenius and Verschiebung, respectively. Let Ig = V(W (R)) C
W (R) be the ideal of elements with r; = 0. The projection (r1, 72, ...) > r gives
an isomorphism W(R)/Ig =~ R. For r € R, we set as usual

[r1=(r,0,0,...) € W(R)
for the Teichmiiller representative. Also denote by
gh: W(R) — ]_L_Zl R
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the Witt (“ghost”) coordinates gh = (gh;);. Recall,

i—1 i—2 i—1

ghi((ri.rasrs, . ) =l +prd 44 p

2.1.2. Let R be a complete Noetherian local ring with maximal ideal mg and perfect
residue field k of characteristic p. Assume that p > 3. There is a splitting W(R) =
W (k) @& W (mpg) and following Zink [39], we can consider the subring

W(R) = W(k) & W(mg) C W(R),

where W(m r) consists of those Witt vectors with r, € mg for which the sequence r,
converges to 0 in the mg-topology of R. The subring W (R) is stable under gand V.
In this case, both W (R) and W (R) are p-adically complete and separated local rings.
2.2. In this section, we assume that the Z,-algebra R satisfies (1) and (2):

Let 9 € W(R) be a maximal ideal with residue field k’. We have I C I,
since W(R) is Ig-adically complete and separated [40,Prop. 3]. Let mg = 9 /Ig C
W (R)/Ir = R be the corresponding maximal ideal of R. Suppose that R is the com-
pletion of R at m. Then W (Ié) is local henselian. Denote by W(R)gﬁ the henselization
of the localization W (R)gy.

Lemma 2.2.1 Assume, in addition to (1) and (2); that R is an integral domain and
Zp-flat. Then, the natural homomorphism R — R induces injections

W(R) C W(R)hy C W(R).

Proof Since R is p-torsion free,
gh: W(R) — ]—[izl R

is an injective ring homomorphism. If f = (f1, f2,...) ¢ 9N, then f; ¢ m. Since
p € m, we have gh;(f) ¢ m, for all i. In particular, gh;(f) # 0 and so since R
is a domain, f is not a zero divisor in W(R). It follows that W (R) is a subring of
W(R)gn. We now consider W(R) C W(Ié) Notice that f is invertible in W(R)
since R is p-adically complete and f; is invertible in R. Hence, we have an injection
W(R)on — W(R) The ring W(R) is local and henselian and W(R)g)jt — W(R) is
a local ring homomorphism. It follows that the henselization W(R) is contained in

W(R). O
2.3. Here we suppose that the Z,-algebra R satisfies (N).

2.3.1. We start by recalling a useful statement shown by de Jong [9,Prop. 7.3.6], in a
slightly different language.

Proposition 2.3.2 We have
={f € R[1/p]|VF,V& : R — OF, &§(f) € Or},
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where F runs over all finite extensions of W(k)[1/p] and & over all W (k)-algebra
homomorphisms. O

Corollary 2.3.3 We have
WR) = WMR/ph N ], W(©Or)

where F, & are as above.

Proof Under our assumption, W(R) is Z,-flat. Consider f € W(R)[1/p] so that
g = p*f € W(R) for some a > 0. Assume that £(g) is divisible by p® in W(OF),
forall¢ : R — Op. We would like to show that g is divisible by p® in W (R). This will
be the case when certain universal polynomials in the ghost coordinates gh; (g) which
have coefficients in Z[1/ p], take values in R. By Proposition 2.3.2, this is equivalent
to asking that the same polynomials in gh; (£(g)) take values in OF, for all €. This is
true by our assumption. O

Proposition 2.3.4 Suppose R satisfies (CN). We have

wryn| [ Wop|=WwR.
&R—Op

Here the product is over all finite extensions F of W(k)[1/p] and all W (k)-algebra
homomorphisms & : R — Op. The intersection takes place in HE:R—>(9F W(OF).

Proof This follows from the definitions and:

Proposition 2.3.5 Suppose that (f,), is a sequence of elements of the maximal ideal
mpg such that, for every finite extension F of W(k)[1/p] and every W (k)-algebra
homomorphism & : R — OF, the sequence (§(f,))n converges to 0 in the p-adic
topology of F. Then ( f,), converges to 0 in the mpg-topology.

Proof Under our assumption on R, there is a finite injective ring homomorphism
©* :Ro=WWm)[t,...,t,] — R.

(See [24,p. 212], also [9,proof of Lemma 7.3.5].) We will use this to reduce the proof
to the case R = Ry. Let d be the degree of the extension Frac(R) /Frac(Ry) of fraction
fields. For f € R, we let P(T; f) be the irreducible polynomial of f over Frac(Ry);
this has degree d’ < d. Since R, Ry are both normal and ¢* is integral, we see that
P(T; f) has coefficients in Ry.

Assume that (f;,), is a sequence of elements in mp that satisfies the assumption
of the proposition. Fix a finite Galois extension F’ of Frac(Ry) that contains Frac(R)
and let R’ be the integral closure of Ry in F’ so that Ry C R C R’. Then R’ is finite
over Ry [24,(31.B)]. For each n we can write
d,
P(T; f) = [](T = fu)

i=1
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with f,; € R"and f,, 0 = fu. The elements f, ; are Galois conjugates of f,. Every
& : R — Op as in the statement of the proposition extends to & : R’ — Op,
where F’/F is finite, and the valuations of &’( f;, ;) agree with that of £(f;,). It follows
that for every &' : R — Op, the total sequence (§'(f,.;))n.; goes to 0. Hence, the
assumption of the proposition is satisfied for the sequence of the symmetric functions
(a; (fn))n in Ro, for each i. These give the coefficients of the P(T'; f,) and f, is a
root of T4~ P(T; fn) which we can write

TGP ) =T+ b1 T+ 4+ bg_1T +ban.  bin € Ro.

Suppose now that we know that the proposition is true for Rg. Then, we obtain that b; ,
converges to 0 in the mg,-topology. The identity f,f’ + b1, f,f”l 4+ A ba—infa+
ba,n = 0 implies that fnd converges to 0 in the mg-topology. For f € R, consider the
sequence of ideals

o Clapr = (g ) C L= (s f) C -

of R. Krull’s intersection theorem implies N2/, = (0) and so, by Chevalley’s
lemma, the ideals (1), also define the mg-topology of R. Since fnd € m% implies
f”d “le (m%; fn), we quickly obtain, by decreasing induction on d, that f;, converges
to 0 in the mg-topology.

It remains to prove the proposition for the power series ring Ry:

Set Y = Spec (Rp), and let & : Y — Y be the blowup of Y at the maximal ideal
m = (p, 11, ..., ). The exceptional divisor E can be identified with P(m/mz) = IP’,’C.
We argue by contradiction: Assume that (f,,), is a sequence of elements in m that
satisfies the assumption of the proposition but is such that ( f,,), does not converge to
0 in the m-topology. Then, by replacing ( f,,), by a subsequence, we can assume that,
there is an integer N > 1, such that f, € m" — m¥*! for all n. Write

fo=Dfuis fui= D [cagaya, M@ttt

i>N ag+-+ap=i

with cgoq...q, (1) € k.

Then the proper transform Z( f,,) C Y of f, = 0 intersects the exceptional divisor
E = P}, along the hypersurface S, C P}, = Proj; (k[u, ..., u,]) of degree N defined
by the homogeneous equation

3 Capareea, MUu - ul =0, (2.3.6)
ao+-+a,=N

Lemma 2.3.7 After replacing (f,)n by a subsequence, we can find a k-valued point x
of the exceptional divisor P, which does not lie on any of the proper transforms Z( f,,)
of fn =0, for all n.

Proof We argue by contradiction: Assume that for any given point x € P’ (k) and
almost all n, Z(f,) contains x. Then, also for every finite set of points A(m) =
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{x1,...,xm}, we have A(m) C Z(f,), for almost all n. Since Z( f,) NP" is, for each
n, a hypersurface S, of fixed degree N, when m > N this is not possible. O

Now choose x as given by the lemma and lift it to a point x € Y (OF), where F is
some finite extension of W (k)(; this induces an O g-point of ¥ by Y (OfF) — Y(OF)
and we also denote this by X. By assumption, X*(f,) — 0 in F. By our choice, the
image of X : Spec (Of) — Y intersects the exceptional divisor E = [P}, away from
the hypersurface S,,. Using this and Eq. (2.3.6) which cuts out §,;, we obtain

V(E*(fa,n) = N - minj_o{&* ()},

where v is the p-adic valuation and, for uniformity, we denote p by #y. Since
V(E*(fn,i)) = (N + 1) - minf_{x*(#;)} fori > N + 1, we also have v(X*(f,)) =
N -min]_,{X*(#;)}, which contradicts v(X*(f,)) — +oc. O

2.4 Some perfectoid rings

We assume that the Z-algebra R satisfies (CN) with k =TF,.

2.4.1. Fix an algebraic closure F'(R) of the fraction field F(R) = Frac(R). Denote by
R the union of all finite normal R-algebras R’ such that:

1. RC R C F(R), and
2. R'[1/p] is finite étale over R[1/p].

Note that all such R’ are local and complete. We will denote by R the integral
closure of R in F(R), so that R is the union of all R” as in (1).
Let us set

T'r = Gal(R[1/p]/RI[1/p)),

which acts on R. Also denote by

PA _ 1 B/l P BA _ 1 B/ P
R _1<£1nR/p R, R _@nR/p R,
the p-adic completions. ) y

2.4.2. When R = W = W (k), we denote W" = W" by O.

Proposition 2.4.3 The natural maps Ig — IEA, IE — Iéf, are injections and induce
isomorphisms R/p"R ~ R"/p"R", R/p"R >~ R"/p"R", foralln > 1.

Proof This is given by the argument in [5,Prop. 2.0.3] which deals with the case of R

and the case of R is similar. O

Proposition 2.4.4 Let S be R or R".
(a) S is p-adically complete and separated and is flat over Z,,.
(b) S is an integral perfectoid algebra (in the sense of [4,3.2]).
(¢) S is local and strict henselian.
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Proof Part (a) is also given by [5,Prop. 2.0.3]. Let us show (b) for § = R”. The
argument for R” is similar and actually simpler. We see that R and so S, contains
an element 7w with 7” = p. Then S is w-adically complete. Using [4,Lemma 3.10],
it is now enough to show that the Frobenius ¢ : S/7S — S/pS is an isomorphism
and that 7 is not a zero divisor in S. Since § is Z,-flat, 7 is not a zero divisor. By
Proposition 2.4.3, we have R/pR ~ §/pS and s1m11arly R/JTR ~ §/mS. Hence, it
is enough to show that ¢ : R /7rR — R/ pR is an isomorphism. Suppose now x € R
satisfies x” = py with y € R. Then (x /m)P = y and since R is a union of normal
domains, we have x /7 = z € R. This shows injectivity. To show surjectivity, consider
a € R’ C R and consider

R" = R[X1/(X"" — pX —a).

This is a finite R-algebra, and so also p-adically complete. It is étale over R'[1/p]
since, by p-adic completeness, the derivative p(poz_1 — 1) is a unit in R"[1/p].
Now there is R” — F(R) that extends R" C F(R) and the image b of X in F(R) is
contained in a finite R’-algebra which is also étale over R'[1/p]. This gives b € R
with b”° = a mod p R which implies surjectivity.

For part (c), since S = R is p-adically complete, it is enough to show that these
properties are true for S/pS ~ R/ pR We can see that R is both local and strict
henselian, and then so is the quotient R / pR The argument for R” is similar. O

Theorem 2.4.5 The action of I'g on R extends to a p-adically continuous action on
R" and we have

(RMHTr = R.

Proof By Faltings [13] or [5,Prop. 3.1.8], we have
R C (RMT® ¢ R[1/p].

Usipg this, we see that it rergains to show that R N R[1/p] = R, with the intersection
in R*[1/p]. Suppose f € R™ N R[1/p]. By applying Proposition 2.3.2, we see that it
is enough to show that £( f) € Op, for all W-algebra homomorphisms £ : R — OF
with F a finite extension of W[1/p]. Choose sucha § : R — Op. We can extend §
to & : R — Or = Op and then by p-adic completion to

EN RN > 0.
This gives £ : R"[1/p] — O[1/p]. Butthen E"(f) € FN O = OF. o

2.5 Period rings

We continue with the same assumptions and notations. In particular, R satisfies (CN)
withk = F
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2.5.1. We now restrict to the case S = R”. We will use the notations of [4,8 3].
Consider the tilt

b_. T
§’ =lim_5/pS=lim S

and similarly for O”.

Lemma 2.5.2 The ring S” is local strict henselian with residue field k.

Proof As we have seen, the rings S and S/pS = R/pR are local and strict henselian
with residue field k. Denote by x +— x the map S/pS — k. The Frobenius S/pS —
S/ pS is surjective and, hence, S — S/ pS is surjective. If x = (xq, x1, x2,...) € S
with x; € S/pS, x| = xi, has x a unit, then all x; and also x are units. Hence, S” is
local with residue field k and (xg, x1, x2, ...) — (X0, X1, X2, ...) is the residue field
map SP — k. Now consider f(T) € SP[T] with a simple root x = (xg, k1, k2, .. .)

in k, with x; = #/kg. Since S /pS is local henselian, the simple root k; € k of
[fi(T) lifts uniquely to a root @; € S/pS. By uniqueness, we have al.’:rl = a; and so
a = (ag, ay, ...) is aroot in S° that lifts «. Hence, S” satisfies Hensel’s lemma. O

2.5.3. We set Ajpe(S) = W(Sb) for Fontaine’s ring. By [4,Lemma 3.2], we have
Ainf(S) = Lian W, (S).
This gives corresponding homomorphisms
O, Aini(S) = W, (S).
We also have the standard homomorphism of p-adic Hodge theory
0 : A (S) — S,

given by

0 (ano[xn]Pn> = Z 120 n(o)pn

Here, we write x = (x(o), x® )€ S = l(ir_n(p S. As in [4,§ 3], the homomorphism
6 lifts to

boo : Ainf(S) = W(S),
given by

Ooo (ano[xn]p”) = o1

2.5.4. In the following, « runs over all rings homomorphisms & : § — O which are
obtained from some W-homomorphism R — W = W by p-adic completion. There
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is a corresponding Ajnr(S) — Ajnr(O) given by applying the Witt vector functor to
o’ : §” — O Note that if F is a finite extension of W[1/ p], then any homomorphism
£:R— Opextendstosuchana : S — O.

Lemma 2.5.5 a) The homomorphism Aips(S) — ]_[a Aing (O) is injective.
b) The ring Aint(S) is p-adically complete, local strict henselian and Z,-flat.

Proof We first note that R — Il W is injective (reduce to the case R is a formal power

series ring by an argument as in the proof of Proposition 2.3.5). Also, RN (I, P W) =
PR, as this easily follows by Proposition 2.3.2 applied to the algebras R’. Therefore,

S/pS=R/pR C ]_[a W/pW = ]‘[a 0/pO

is injective. Hence, S” — I, O is injective and part (a) follows.

To show part (b), recall Ay (S) = W(S?). The ring S” is perfect, and so pW (S”) =
I, W(S")/pW(S”) = S”. It follows that A;n¢(S) is p-adically complete and that p is
not a zero divisor. Lemma 2.5.2 now implies that Ajn¢(S) is local and strict henselian.

O

2.5.6. Now let us fix an embedding W < R, which induces © < S. Let
— b _ 13
€ _(1,§p,§Pz,...) eO —Lin(p(’)
be a system of primitive p-th power roots of unity. Set

n=[e] —=1¢€ A (O) C A (S).

Proposition 2.5.7 a) The element 1 is not a zero divisor in Ajns(S).
_ b) Suppose that f in Aint(S) is such that, for every a : S — O obtained from
R — W as above, a(f) is in the ideal (1) of Aine(O). Then, f is in ().

Proof Part (a) follows~from [4,Prop. 3.17 (ii)]. As in the proof of loc. cit., the ghost
coordinate vectors of 6, (1) are

gh@ () = —1,....5p =D e S,

and the result follows from this.
Let us show (b). Recall

Aing(8) = lim W,($) €[] _, Wa(8): ar> G (@)
Now suppose that «(f) = i - by, for by, € Aine(O). Apply ér to obtain
a @ () = 0r(@(f) = 0r(1n) - 0, (b).
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This implies that, foralli = 1,...,r,and all @,
¢y — 1] a(gh;(0:()))

in O. The same argument as in the proof of Lemma 2.5.5 (a) above, gives
S/, — DS — ]‘[a O/(¢, — 1O.

This implies that $pi —1 (uniquely) divides gh; (6( f))in S.
We claim that the quotients g; , = gh; G- (f)) /(¢,i — 1) in § are the ghost coor-

dinates of an element y, of W,.(S), which is then the quotient ér f) /ér (). To check
this we have to show that certain universal polynomials in the g; , with coefficients in
Z|[1/ p] take values in S. This holds after evaluating by « : S — O and so the same
argument using Proposition 2.3.2 as before, shows that it is true. It follows that, for
all , 6, (w) uniquely divides 6, (f) in W,(S) and, in fact,

6,(f) = 0r(1) - r.
Applying ¢ gives
Or1(f) = 0r—1(10) - ().
in W,_1(S). Therefore, ¢(y-) = yr—1. Hence, there is y € Ay (S) = 1<ir_n(p W, (S)
such that y, = 6,(y). Then, f = 1 - y. O
Corollary 2.5.8 (a) We have Aing(S) = (Aint (S)[1/]) N T, Aint(O).
(b) Suppose that M| and M»> are two finite free Ains(S)-modules with M1[1/u] =

M>[1/u], and such that «* M| = a*My as Ain(O)-submodules of a*M[1/u] =
a*My[1/u], for all a. Then M| = M.

Proof Part (a) follows directly from the previous proposition. Part (b) follows by
applying (a) to the entries of the matrices expressing a basis of M| as a combination
of a basis of M>, and vice versa. O

2.5.9. Asin[4,§ 3], set& = u/ (p‘l (u) which is a generator of the kernel of the homo-
morphism 0 : Ajyr(S) — S. Let Aqis(S) be the p-adic completion of the divided
power envelope of Aj¢(S) along (£). By [35,App. to XVII], the natural homomor-
phism

Ainf(S) - Acris(S)

is injective. We also record:

Lemma2.5.10 A (S)*~! = 7Z,,.
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Proof Tt is enough to show that ($")#=! = T, i.e. that (R/pR)*=" = (§/pS)¢=! =
F,. Now argue as in [5,6.2.19]: Suppose a € R is such that a” = a mod pé. Thena €
R’, for some R’/R finite normal with R’[1/ p] étale over R[1/p]and a” = amod pR’.
By Hensel’s lemma for the p-adically complete R’, the equation x” — x = 0 has a
root b in R’ which is congruent to a mod pR’. But R’ is an integral domain, so any
such root is one of the standard roots in Zp, so b is in Z, and b = amod pR’
inF,. O

3 Shimura pairs and G-torsors
2.1 Shimura pairs

We first set up some notation for (integral) Shimura pairs and then define the notion
of a local Hodge embedding.

3.1.1. Let G be a connected reductive algebraic group over Q, and {1} the G@Q p)-
conjugacy class of a minuscule cocharacter  : Gm’(@p — G@p.

To such a pair (G, {u}), we associate:

e The reflex field E C Q p- As usual, E is the field of definition of the conjugacy
class {u} (i.e. the finite extension of Q, which corresponds to the subgroup of
o € Gal(Q,/Q)) such that o (1) is G(Q)-conjugate to 1.)

e The G-homogeneous variety X,, = X, (G) of parabolic subgroups of G of type
. This is a projective smooth G-variety over E with X, (@p) = G(@p)/P,L (Ql,).

3.1.2. An integral local Shimura pair is (G, M) where:

(i) G is a parahoric group scheme over Z, with generic fiber G.
(i1) M is a normal flat and projective Og-scheme M with G-action which is a model
of X, in the sense that there is a G-equivariant isomorphism

M®@EE2X#.

3.1.3. The theory of local models suggests that there should be a canonical choice of
a scheme M as in (ii) which depends only on (G, {i}), up to unique G-equivariant
isomorphism.

More precisely, Scholze conjectures [35,Conjecture 21.4.1], the existence of such a
scheme M!°¢ = M'°¢(G, {u}) (the local model), which has, in addition, reduced special
fiber (and hence is normal), and which is uniquely characterized by its corresponding
v-sheaf (see loc. cit. for details). Local models M¢ a5 in [35,Conjecture 21.4.1], have
been constructed in many cases. We list some results:

1. If G splits over a tamely ramified extension of Q,, there is a construc-
tion of local models in [30,§ 7] (which was adjusted as in [17,§ 2.6] when p
divides |m; (Gder(Q p)). Conjecturally, these satisfy the conditions of Scholze’s
[35,Conjecture 21.4.1] ([17,Conjecture 2.16]). This has been shown in almost all
cases that (G, {u}) is of local abelian type (see Sect. 2.1) [17,Theorem 2.15], see also
[23].

2.If (G, {i}) is of local abelian type and p is odd, the local models M'°® have been
constructed by Lourenco [23,4.22, 4.24].
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In our application to Shimura varieties, we would like to choose M = M,
However, it is convenient to develop the set-up for a more general M.
3.1.4. Let (G, M) be an integral local Shimura pair. We consider the following con-
ditions:

(H1) There is a group scheme homomorphism

t:G — GL,

which is a closed immersion such that {¢(x)} is the conjugacy class of one the standard
minuscule cocharacters g (a) = diag(a(d), 1=d)) of GL,, forsome 1 <d <n — 1,
and ((G) contains the scalars Gyy,.

Note that the corresponding GL,,-homogeneous space X, (GL,,) is the Grassman-
nian Gr(d, n) of d-spaces in (@'I’,. Under the assumption (H1), ¢ gives an equivariant
closed embedding X, C Gr(d,n)g. Set A = Z;’,. The Grassmannian Gr(d, n) has a
natural model over Z, which we will denote by Gr(d, A).

(H2) The normalization of the Zariski closure of X, in Gr(d, A)p, is G-
equivariantly isomorphic to M. Hence, there is a G-equivariant finite morphism

e : M — Gr(d, Ao,

whichis X, C Gr(d, n)g on the generic fibers.

We call an ¢, that satisfies (H1) and (H2), a integral local Hodge embedding for
the pair (G, M). When such an integral local Hodge embedding exists, we say that
(G, M) is of integral local Hodge type.

We often need the following stronger version of (H2):

(H2%*) The Zariski closure of X, in Gr(d, A)o, is G-equivariantly isomorphic to
M. Hence, X,, C Gr(d, n)g extends to a G-equivariant closed immersion

ty : M= Gr(d, Ao,

We call an ¢, that satisfies (H1) and (H2*), a strongly integral local Hodge embedding
for the pair (G, M). When such an embedding exists, we say that (G, M) is of strongly
integral local Hodge type.

3.1.5. This notion should also be compared to the often used weaker notion of local
Hodge type which refers to the (rational) local Shimura pair (G, {1t}):

We say that (G, {u}) is of local Hodge type if there is a group scheme homomor-
phism ¢ : G — GL, which is a closed immersion such that {¢(u)} is the conjugacy
class of one of the standard minuscule cocharacters p4. (There is also the following
related notion: (G, {u}) is “of abelian type” means that there is a central lift (G, {i1})
of (Gad, {itag}) Which is of local Hodge type.)

The following statement that relates the two notions when M = M'*® can be
extracted from the proof of [17,Theorem 2.15]:

Proposition 3.1.6 Suppose that (G, {u}) is of local Hodge type with 1 : G — GL,
as above such that G, C ((G), and G is a parahoric stabilizer with G = G @z, Q.
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Assume also that p is odd, p { |71 (G der (@ )|, and that G splits over a tamely ramified
extension of Q. Then (G, M%) is of strongly integral local Hodge type. O

3.2 Torsors

In this paragraph, G is a smooth connected affine flat group scheme over Z, with
generic fiber G. We will collect some general statements about G-torsors. We denote
by Repr (G) the exact tensor category of representations of G on finite free Z,-
modules, i.e. of group scheme homomorphisms p : G — GL(A’) with A’ a finite free
Zp-module.

3.2.1. Suppose ¢ : G — GL(A) >~ GL, is a closed group scheme immersion such that
t(G) contains the scalars Gr,. Here A is a free Z,-module of rank n. Denote by A® =
Bm.n=0 A" @z, (AY)®" the total tensor algebra of A, where AY = Homz, (A, Z).
By using the improved3 version of [19,Prop. 1.3.2] given in [11], we can realize G as
the scheme theoretic stabilizer of a finite list of tensors (s,) C A®: For any Z p-algebra
R we have

G(R)={g€GL(A®z,R) |8 (5a®1) = (54 ® 1), Va}.

Since we assume that ((G) contains the scalars Gy, and a € G, acts on A®™" ®z,
(AV)®" via a™ ", we see that the s, are contained in the part of the tensor algebra
with n = m. In particular, we can assume that every tensor s, is given by a Z ,-linear
map A®" — A®" for some n = n,.
3.2.2. Let A be a Z,-algebra. Set S = Spec (A). Suppose that T — S is a G-torsor.
By definition, this means that 7 supports a (left) G-action G x T — T such that
GxT ST xgs T given by (g,t) +— (gt,t) is an isomorphism, and 7 — S is
faithfully flat and quasi-compact (fpqc). By descent, T is affine, so T = Spec (B)
with A — B faithfully flat.

If p: G — GL(A') is in Repr (G), we can consider the vector bundle over S
which is attached to T and p:

T(p) = T XGpee 2,y D) = (T Xspec(z,) A/ ~

where (g7!t, 1) ~ (¢, p(g)A). Here, A(A’) is the affine space Spec (Symmyg, (A™))
over Spec (Zp). In what follows, we often abuse notation, and also denote by 7 (p)
the corresponding A-module of global sections of the bundle 7' (p).

By [6], see also [35,19.5.1], this construction gives an equivalence between the
category of G-torsors 7 — S and the category of exact tensor functors

T: Repr(g) — Bun(S); p+— T(p),

into the category of vector bundles Bun(S) on S.
Assume now that T is a G-torsor and ¢ : G — GL(A) is as in Sect. 3.2.

3 In the sense that one does not need symmetric and alternating tensors, as in [19,Prop. 1.3.2].
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Proposition 3.2.3 The A-module M = T (1) is locally free of rank n and comes
equipped with tensors (m,) C M® such that there is a G-equivariant isomorphism

T >~ Isom, ., (T (1), A ®z, A).

Proof This is quite standard, see for example [6,Cor. 1.3] for a similar statement. We
sketch the argument: By the above, M = T'(¢) is a locally free A-module of rank
n= rankzp (A). Since the construction of T (p) commutes with tensor operations (i.e.
p — T (p) gives a tensor functor) we have

® ~ g
M==T > Spec (Z,)

A(A®).

We can think of s, € A® as G-invariant linear maps s, : Z, — A® which give 1 x s, :
S =G\T — M®,ie.tensorsm, = 1 x5, € M®.Set T" = Isom,, , (M, A®z,
A) with its natural left G-action. The base change T’ x g T is equivariantly identified
with G x T >~ T xg T and the proof follows. O

Remark 3.2.4 Suppose that ' : G < GL(A’) is another closed group scheme immer-
sion that realizes G as the subgroup scheme that fixes (s;) C (A’ )®. Tt follows that
there is a G-equivariant isomorphism

Isﬂ(m;’)’(yl;) (M/a A/ ®Zp A) - Isﬂ(ma),(sa)(Mv A ®ZP A)

For the following, we assume in addition that A is local and henselian.

Proposition 3.2.5 Suppose that M is a finite free A-module and let (my,) C M®.
Consider the A-scheme

T = Isom(ma)’(sa)(M, A ®Zp A)

which supports a natural G-action. Suppose that there exists a set of local Z,-algebra
homomorphisms & : A — Rg, with Ngker(§) = (0), and such that, for every§ : A —
Rg, the base change £*T := T xgs Spec (R¢) is a G-torsor over Spec (Rg). Then,
T — S is also a G-torsor.

Proof The scheme T is affine and T — S is of finite presentation. The essential
difficulty is in showing that 7 — S is flat but under our assumptions, this follows
from [15,Thm. (4.1.2)]. The fiber of T — S over the closed point of S is not empty,
hence T — S is also faithfully flat. Now the base change T x g 7 admits a tauto-
logical section which gives a G-isomorphism 7" xg T >~ G x T. This completes the
proof. O

We will now allow some more general Z ,-algebras A:

Corollary 3.2.6 Set A = W (R), where R satisfies (N). Suppose that M is a finite
projective A-module, (m,) C M®, and T = Isom(ma)’(xﬂ)(M, A ®z, A). Assume
that for all W (k)-algebra homomorphisms X : R — Op, where F runs over all finite

@ Springer



On integral models of Shimura varieties

extensions of W (k)q, the pull-back T ® o W(OF) is a G-torsor over W(OF). Then T
is a G-torsor over A.

Proof We first show the statement when R is in addition complete and local, i.e. it
satisfies (CN). Then W (R) is local henselian and the result follows from Proposition
3.2.5 applied to the set of homomorphisms & : A = W(R) — R = W(Or) given as
E=W(X).

We now deal with the general case. Under our assumptions, A = W (R) is flat over
Zp. Let M C W(R) be a maximal ideal with residue field k'. We have I C M,
since W(R) is Ig-adically complete and separated [40,Prop. 3]. Let mp = /I C
W(R)/Ir = R be the corresponding maximal ideal of R. Our assumptions on R imply
that the residue field &’ is a finite extension of k. Suppose that R is the completion
of R@w W (k') at mg @w W (k'). Then W (R) is local and strictly henselian. Denote
by W(R)glj‘z the strict henselization of the localization W(R)gn. By Lemma 2.2.1 we
have

W(R) € W(R).

We also have
Rc Hé:R—)OF Or

where the product is over all £ : R — Op that factor through R. By Proposition
3.2.5 applied to Re = W(OF), the base change T Qw (r) W(R)%;‘I is a G-torsor. By
descent, so is the base change T ®w gy W (R)9n over W (R)gn. Since this is true for
all maximal ideals 9 C W (R), it follows that T is flat over W (R). The result now
follows as in the proof of Proposition 3.2.5. O

Remark 3.2.7 When R satisfies (CN), Corollary 3.2.6 also holds with W(R), W(OpF),
replaced by W (R), W(OpF) respectively.

3.2.8. Set D = Spec (W (k)[ul)), D* = Spec (Wk)[[u]) — {(p, u)}, with k perfect.
We will use the following purity result of Anschiitz:

Theorem 3.2.9 [1,Theorem 8.4] Assume G is parahoric. Then, every G-torsor over
D> is trivial.

Remark 3.2.10 This purity property was previously shown [20,Prop. 1.4.3] fork = F »
and all parahoric group schemes G with G = G ®z, Q) that splits over a tamely
ramified extension of @@, and has no factors of type Eg [20,Prop. 1.4.3]. This is the

only case needed for the proofs of Theorem 1.4 and Corollary 8.1.6. The result fails
for most smooth affine group schemes over Z, with reductive generic fiber.

4 Displays with G-structure
In this section, we define (G, M)-displays and give some basic properties. We also
define and study the notion of a locally universal (G, M)-display. Recall (G, M) is

an integral Shimura pair; in particular G is parahoric.
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4.1 The construction of the modification

4.1.1. This subsection contains the main construction needed for the definition of a
(G, M)-display. We assume R is a p-adic flat Og-algebra. Set A = W(R). (If, in
additiqn, R is complete local Noetherian and p > 3, there is an obvious variant with
A=W(R).)

Proposition/Construction 4.1.2 Assume that (G, M) is of integral local Hodge type.
There is a functor

(P’ CI) = (P, Q, O()

[from the groupoid of pairs (P, q) of a G-torsor P over Spec (A) together with a G-
equivariant morphism q : P ®4 R — M, to the groupoid of triples (Q', Q, a) of two
G-torsors Q', Q over Spec (A) and a G-equivariant isomorphism

o : Q Xspec (4) Spec (A[1/p]) = (¢*Q) Xspec (4) Spec (A[1/p]) (4.1.3)

over Spec (A[1/p]).

We will also see that there are natural base change transformations for R — R’.
Also, the functor is constructed using a choice of an integral local Hodge embedding,
but, up to natural isomorphism, is independent of this choice, see Remark 4.1.14.

The isomorphism « allows us to think of Q as a “modification” of ¢*P along p = 0;
this modification is “bounded by M”. The construction of (P, g) — (Q, @) occupies
most of this subsection. The main point is the construction of a functorial map

ig(R) : M(R) — Grg(R)

(see Proposition 4.1.8), where Grg(R) is as below.
4.1.4. If X is a scheme over Spec (A), we will write, for simplicity, X[1/p] instead of
X X Spec (A) Spec (A[1/p]).

For A = W(R), we will consider the set

Grg(R) = {(Q. o)}

of isomorphism classes of pairs (Q, «) of

e a G-torsor Q over Spec (A),
e a G-trivialization o : Q[1/p] — G[1/p] of Q[1/p] over Spec (A[1/p]).

The group G(A[1/p]) acts on Grg(R) by g - (Q, o) = (Q, g - «). Since p isnot a
zero divisor in A, pairs (Q, «) as above form a discrete groupoid.

If, in addition, R is complete local with algebraically closed residue field, then
W (R) is local strictly henselian, and

Grg(R) = G(W(R)[1/pD/G(W(R)).
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The set Grg (R) resembles the set of R-points of an affine Grassmannian of some sort.
4.1.5. Let R be a p-adic flat Z ,-algebra and set A = W(R). Since o V = p-idw (g,
we have ¢ (Igp)W(R) = pW(R). Hence, we obtain a ring homomorphism

§:R=WR/Ig > A/pA
induced by the Frobenius ¢ : A — A.
4.1.6. We first discuss the case G = GL(A) and P is trivial.
SetM = A ®z, A LetF C A ®z, R = M ®4 R be the R-locally direct summand
which corresponds to an R-valued point in the Grassmannian Gr(d, A). Set
My = (idy ® gh) ™' (F)
so that
IgM C My C M,
and take M| to be the image of the map ¢* M| — ¢*M induced by M| — M.
The quotient (A ®z, R)/F is R-projective and W (R) is Ig-adically complete. By
lifting idempotents we can see that, locally on R, we can write
M=A®ZPA=L@T,
with L and T finite projective A = W/(R)-modules such that F is the image of
L @ IgT underidy ® gh; : A ®z, A— A ®z, R. (For more details, see the proof
of [40,Lemma 2].) Then
My = ¢*(L) & pp™(T) C 9*(M) = A ®z, A

so that

PA®z, AC M| C ARz, A.

The module M, has also the following description: Base change 7 C A ®z, R via
¢ : R — A/pA to obtain an A/pA-submodule

§*F C A ®z, A/pA

which is locally an A/pA-direct summand. Then M is the inverse image of ¢*F
under the reduction A ®z, A — A ®z, A/pA.

The A-module M 1 gives a GL(A)-torsor Qgr, = Isom([l711, A ) over A, together
with a trivialization o of Qgr[1/p] over A[1/p]. Sending

F = (QoL, o)
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gives a functorial (in R) map
iGL . Gr(d, A)(R) — GI‘GL(A)(R).
This satisfies

igL(gh;(g) - x) = ¢(g) -icL(x),

for g € GL(A)(A), x € Gr(d, A)(R).

4.1.7. We will now explain how to extend the construction above from GL(A) to
a parahoric G C GL(A). We assume that R is a p-adic flat Of-algebra. Recall
A= W(R).

Proposition 4.1.8 Suppose that (G, M) is of integral local Hodge type. There are
functorial (in R) maps
ig(R) : M(R) — Grg(R)
which satisfy
ig(gh;(g) - x) = ¢(g) - ig(x), (4.1.9)
for g € G(A), x € M(R).

Proof We choose a integral local Hodge embedding ¢ : G < GL(A) which induces
ty : M — Gr(d, A)o,. Let a € M(R) be an R-valued point of M. It will be
enough to give ig(R) for R = B, the p-adic completion of B, where Spec (B) C M
varies over affine charts of M and a the tautological point. Recall that M is normal,
flat and proper over Og. So, we can assume that R satisfies (N). The image t,(a) is
an R-valued point of the Grassmannian Gr(d, A), and is given by a locally direct
summand

F=F,CA ®Zp R
In what follows, we will omit a from the notation. The construction above for GL(A),
applied to F, gives pA ®z, A C M| C A ®z, A. Notice that M C M{[1/p] =
AR[1/p). We have s, ® 1 € AS < AZ[1/p].

Proposition 4.1.10 (a) The tensors s, ® 1 belong to 1\;[1®.
(b) The scheme of isomorphisms that respect the tensors

Q= Isomva®lysa®1(1\~41, Ay)

is a G-torsor over Spec (A).
(c) Since M1[1/p] = Aall/p]l, we have a trivialization

a: Ql/pl = Gaji/p)-
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Proof Using purity for G (Theorem 3.2.9), we see that the proof of [20,Lemma 3.2.9]
goes through in our situation and gives a) and b) after base-changing to Ok, for all
& : R — Okg. By Proposition 3.2.5 and Corollary 3.2.6 this now implies parts a) and
b), cf. the proof of [20,Cor. 3.2.11]. (This uses that R satisfies (N), in particular that it
is normal.) Part c) is easy. O

The proof of Proposition 4.1.8 now follows from Proposition 4.1.10 above: Indeed,
we setig(a) = (Q, «), with Q and « as above. This gives the desired map. O

Remark 4.1.11 The maps ig(R) are independent of the embedding ¢. To see this sup-
pose that ' : G < GL(A’) is another integral local Hodge embedding which gives
U, : M — Gr(d', A)o,. We can consider the product

U =ix1 G5 GxG s GL(A) x GL(A)) C GL(A @ A).
This induces
UM B Mxo, M > Grid, A) xo, Gr(d', A) C Gr(d +d', A ® Ao, .

Considera € M(R) and set F = F,, F' = F,, F" = F,, for the submodules which
correspond to the points ¢, (a), ¢, (@), !/ (a), in the Grassmannians. By the construction,
we have 7" = F @ F', M{ = M| & M{, and the projections give M{ — M,
I\;I{ - M 1. These maps induce G-equivariant morphisms Q@ — Q” and Q' — Q"
which identify these G-torsors.

4.1.12. Proof of 4.1.2

We can now give the construction of the modification. We assume that (G, M) is
of integral local Hodge type. We choose a integral local Hodge embedding ¢ : G —
GL(A) which induces 1, : M — Gr(d, A)o,. Suppose that P is a G-torsor over
A = W(R) given together with a G-equivariant morphism

q:P®sR—> M.

The case that P is a trivial G-torsor follows immediately from the proof of Proposition
4.1.8: If s is section of the G-torsor P then the composition a(s) = g - (s ®4 R) is an
R-valued point of M. The proof of Proposition 4.1.8 gives a pair ig(a(s)) of a new
G-torsor Q with a trivialization g of Q,[1/p].

Let us discuss the general case: Note that A = W(R) is complete and separated in
the Ig-adic topology ([40,Prop. 3]), so (W(R), Ig) is a henselian pair. Hence, since
G is smooth, P acquires a section over W(R’), where R’ is an étale cover of R (cf.
[7,Prop. (B.0.2)]); we can make sure that R’ is also p-adic. The construction above
and the equivariance property (4.1.9) combined with descent as in [40,1.3], shows that
‘P together with ¢, gives a G-torsor Q together with an isomorphism of G-torsors

a:Q[l/pl = ¢*Pl1/p] (4.1.10)
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over A[1/p].
Explicitly, if P(t) = M is the corresponding finite projective W (R)-module with
tensors (m,) (see Proposition 3.2.3), then ¢, - g gives

F CMQwwr) R.

Set M1 = (idy ® ghl)_ (F) so that IxrM C M; C M and take Ml to be the
image of the map ¢*M; — ¢*M induced by M; <> M. As in Sect. 4.1, we obtain
pe*(M) C My C ¢*(M). Then, as in Proposition 4.1.10, we have ¢*m, € M and

Q = IS0M g, (5,) (M1, A ).

O

Remark 4.1.14 Note that in the above, the pair (Q, « : O[1/p] = ¢*P[1/p]) only
depends on P, M and g and is independent of ¢, up to unique isomorphism; this
follows from Sect. 4.1.11. In fact, the argument gives that the functor of 4.1.2 is, up to
natural isomorphism, independent of the choice of the integral local Hodge embedding
L.

Remark 4.1.15 (a) The above applies to M = M, where M!°® = M!°¢(G, {u1}) are
the local models of [30], when G(Z,) is connected parahoric, p 1 |n1(Gder(@p))|
and there is a local Hodge embedding ¢ : G — GL,, with G, C «(G). This follows
from Proposition 3.1.6.

(b) We conjecture that, for the local models M = M!°¢, the maps ig existin general
(without assuming any Hodge type condition) and that Proposition 4.1.2 still holds:

More precisely, suppose that M'¢ = M'°¢(G, {u}) is the local model over
Spec (Og) conjectured to exist by Scholze [35,Conjecture 21.4.1]. Then, we expect
that there are canonical functorial injective maps

ig u(R) : M°(R) — Grg(R),

for R p-adic flat over O, which also satisfy the equivariance property (4.1.9).
(One can speculate that the maps ig , come from natural maps

loc A
M*® — Grg,
where Gré is a “prismatic affine Grassmannian” for G.)
4.2 (G, M)-displays.

4.2.1. We now give the definition of a (G, M)-display over R, where R is a p-adic
flat Og-algebra. We assume that (G, M) is of integral local Hodge type.

Definition 4.2.2 A (G, M)-display over R is a triple D = (P, ¢, V) of:
e A G-torsor P over W(R),
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e a G-equivariant morphism g : P Qwr) R — M over Og,

e a G-isomorphism W : Q = P where Q is the G-torsor over W (R) which is the
modification of ¢*P given by (P, ¢) in 4.1.2.

Recall that, by 4.1.2, the pair (P, ¢g) gives Q together with an isomorphism (4.1.10)
o Q[1/p] = ¢*PIL/pl.

Composing o~ with W[1/p]: Q[1/p] = P[1/p] gives an isomorphism of G-torsors
over W(R)[1/p]

@ : ¢*P[1/p] — PI1/p]

which is also attached to the (G, M)-display D = (P, g, V).

4.2.3. Suppose (G, {u}) is a pair of a parahoric group scheme and a conjugacy class
of a minuscule cocharacter y of Q@p. Assume Scholze’s conjecture [35,Conj. 21.4.1]
on the existence of the local model M'° = M'°¢(G, {u}).

Suppose that either (G, M'°°) is of integral local Hodge type, or more generally,

that the conjecture of Remark 4.1.15 (b) is true for (G, {u}). Then the construction
of the modification Q from (P, ¢) goes through and the definition of a (G, M!°°)-
display makes sense. In this case, instead of “(G, M!°®)-display”, we will simply say
“(G, {1))-display”.
4.2.4. Assume now that X is a p-adic formal scheme which is flat and formally of
finite type over Spf(OF). By Zink’s Witt vector descent [40,§1.3, Lemma 30], there
is a sheaf of rings W (Ox) over X such that for every open affine formal subscheme
Spf(R) C X, we have I'(Spf(R), W(Ox)) = W(R). It now makes sense to give
the natural extension of the above definition: A (G, M)-display over X is a triple
D = (P, q, V) with the data P, ¢, W, as above given over W (Ox).

4.3 Dieudonné (G, M)-displays

4.3.1. We now assume that p is odd and that R is in addition complete local Noetherian.
We continue to suppose that (G, M) is of integral local Hodge type.

Definition 4.3.2 A Dieudonné (G, M)-display over R is a triple D = (P, g, ¥) of a
G-torsor P over W(R), a G-equivariant morphism

q:P O (R R—- M
over O, and a G-isomorphism W : Q = P where Q is the G-torsor over W(R)
induced by ¢ in 4.1.2 (applied to A = W(R)).

4.3.3 Note that a Dieudonné (G, M)-display over R, produces a (G, M)-display over
R by base change along the inclusion W(R) < W(R). Proposition 4.5.3 holds for
Dieudonné (G, M)-displays over R with W (R) and W (R /ag) replaced by W (R) and
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W(R /ag). Most of the notions defined for (G, M)-displays, for example, the notion of
rigid section and of locally universal, have obvious analogues for Dieudonné (G, M)-
displays. The obvious variant of Proposition 4.5.11 for Dieudonné displays holds. We
will sometimes refer to these statements when we are really using their W-variants
instead, without explicitly alerting the reader.

4.4 Relation with Zink’s displays

4.4.1. In the next paragraph, we relate our notion of a (Dieudonné) (G, M)-display
over R to the classical notion of Zink [39, 40]. This involves the use of the integral
local Hodge embedding. To fix ideas, we only discuss Dieudonné displays and for that
we assume p is odd and R is also complete local Noetherian.

4.4.2. Suppose that D = (P, g, V) is a Dieudonné (G, M)-display over R, and that
t: G = GL(A) is an integral local Hodge embedding.

We set M = P(¢) which is a finite projective W(R)-module of rank equal to
rankz, (A). Then g composed with ¢ produces P B (r) R — Gr(d, A)o,. This
morphism gives a locally direct summand 7 C M By (r) R. Let us denote by M the
inverse image of F under the reduction homomorphism M — M ®y;, (R) R.Thisis a

W(R)-module with jRM C My C M. As in [20,3.1.4], we denote by Ml the image
of ¢* M under the W (R)-homomorphism

"My — ™M
which is induced by the inclusion M; < M. We have
po*M C M, C ¢*M.

Then, our construction of Q from (P, ¢) implies an identification M; = O(). (See
Sect. 4.1, M corresponds to U there.) The isomorphism W gives an isomorphism

V() M) —> M.

We denote @ : ¢*M; — M 1 5 M the composition. Note here that we also have
® =) : 9*M[1/p] — M[1/p] given by ¢*M[1/p] = M;[1/p] composed with
W ()[1/p]. In fact, we see that

1
MC o(@*M)C —M.
p

We can now consider the triple (M, M7, ®1). By [20,3.1.3, Lemma 3.1.5], this triple
defines a Dieudonné display over R in the sense of Zink [39]. (Recall that we assume
that R is flat over Z,,.)

It is useful to compare the notations here to those in display theory (e.g. [39]): &
here corresponds to the linear map F’ ]# induced by the semi-linear map denoted there
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by Fi = V~!. The linear map F* that corresponds to the (semi-linear) Frobenius F
of Zink’s display is given here as*

Ff=p . ®:¢o*M > M,

so®=pl.F¥ & = F*
We will denote the Dieudonné display

(M, M, F, F)

by D(1), since it is derived from D and ¢ : G < GL(A). By [39], there is a corre-
sponding p-divisible group ¥z = BT(D(1)) over R. By [39], [21,Theorem B],

(M, My, Fi, F) = D(@R)(W(R))
where D(¥R) denotes the (filtered) covariant Dieudonné crystal of ¥ (the Frobenius
is given by F.) Then, the tangent space of ¢ is canonically identified with the R-
module M /M. Since F is determined by Fy, we will write this as

(M, My, Fr)

in what follows.

4.5 Rigidity and locally universal displays

4.5.1. In this subsection, we assume until further notice that R satisfies (CN), in
particular it is normal and complete local Noetherian.

We also continue to assume that (G, M) is of integral local Hodge type and that
D = (P,q, V) is a (G, M)-display over R. Under our assumptions on R, the G-
torsors P, Q over W(R) are trivial. We denote by Dy = (Py, qo, Vo) the display over
k obtained by reduction of D = (P, ¢, ¥) modulo mg.
4.5.2. Denote by mg the maximal ideal of R. Set ag = m%e + (wg), where g is a
uniformizer of Of. Observe that the Frobenius ¢ factors as

W(R/ar) — W(k) % W(k) — W(R/ag).

Proposition 4.5.3 There is a canonical isomorphism of G-torsors

c: Q®wr W(R/ag) = Qo ®wa W(R/ag), (4.5.4)

where Q, resp. Qy, is the G-torsor for the display D, resp. Dy, as in Definition 4.2.2.

4 Note ® = p_l - F¥ says that the Frobenius of the classical theory is here scaled by p_l, cf. [35,p. 158].
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Proof Note that [20,Lemma 3.1.9] gives the corresponding statement for classical
displays and O = Z,. Recall that the G-torsor Q is given as in the paragraph 4.1,
using the corresponding 7 C M Qw gy R and Ml. We denote by My, M o, 1\;11,0, the
modules associated to the display Dy over k obtained from D by base change, as above.
Letus write M = L @ T, with L and T free W (R)-modules, such that F is given by
L modulo Ig. Then M1 = L & IRT, so F gives the filtration I[xrM C M; C M. Then,
as in the proof of [20,Lemma 3.1.9]

My @wry W(R/ag) = ¢*(L) ® (p ® ¢*(T))

and ¢* (L) >~ ¢*(Lo) ®wx) W(R/ag), ¢*(T) = ¢*(To) ®wx) W(R/ag). Here, we
write p ® — for pZ ) ®z, —, and we have Lo = L ®w ) W (k), To = T ®w ) W (k).
This gives the isomorphism of [20,Lemma 3.1.9]

¢ My ®wry W(R/ag) = M1 Qw W(R/ag) (4.5.5)

which is independent of the choice of the normal decomposition L @ T'. Using Proposi-
tion 3.2.3 we see that it is enough to show that c preserves the tensors that correspond to
sq. Asin Sect. 3.2, we can assume these are of the form s, : A®" — A®" withn > 1.
These induce m, : M®" — M®" which induce u, := ¢*(m,) : MZ" — MP". In
this situation, we have to show that ¢ is compatible with u,, in the sense that the obvious
diagram

ME" @w(r) W (R/ag) —— M® ®wr) W(R/ag)

{: {:

Uq)o®1
MEG ®ww W(R/ag) {a®) M) ®@waxy W(R/ag).

is commutative. We start by giving a description of M 1®”.
The filtration IgkM C M, C M induces a filtration on M®" and we are interested
in the W (R)-submodule

N = @"_o(L®" @ I;T®)) c M®" (4.5.6)

which is the image of M 1®” — M®" (and so is independent of the normal decompo-
sition M = L & T.) (Note that when n > 2, the map Mig’” — M®" israrely injective.
Also note that Iy = p" g, if m > 1 ([40,(7)]), and e(Ig) = (p™).) The image of
the map ¢* N — ¢*M®" induced by the inclusion N — M®", is MY".

Next, we show that m, : M®" — M®" preserves N, i.e. restricts to m, : N —
N. The rough idea is that this should hold because the point in the Grassmannian
corresponding to F is in the closure of the G-orbit of the cocharacter x and the tensors
m, are fixed by the group G. More precisely, we show m,(N) C N using “restriction
to Op-points" as follows: Suppose & : R — Op is a local Og-homomorphism.
Denote by Mo, and Np, the corresponding W (Or)-modules for the display over
OF obtained by base change of D by &. As in the proof of [20,Lemma 3.2.6], we
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see, using that £*F is given by a G-cocharacter conjugate to u, that £*m, preserves

No, C M%ﬁ. We can now deduce that m, : M®" — M®" preserves N: It is enough

to check that certain elements of W (R) which are given as the coefficients of images

of m in a basis given by the decomposition (4.5.6) lie in I = p"~!Ig, while, by the

above, we know that their images in W (OF) liein p’"‘llop ,forallsuché& : R — Op.

But this is true by a simple extension of the argument in the proof of Lemma 2.3.3.
Now consider the commutative diagram

¢*N ®wr) W(R/ag) —— MZ" @wr) W(R/ag) — ¢*M®" Qwry W(R/ar)

o, 5
9*No @y W(R/ag) —— MEG @way W(R/ag) — ¢*ME" Qwy W(R/ag).

Here ¢/, ¢” are the canonical isomorphisms obtained by the factorization W (R /ag) —
W (k) — W(k) - W(R/ag) of the Frobenius ¢ above. We have a(¢p*(m,)) = u,.
The fact that ¢ is compatible with the tensor u#, now follows from the above, the
functoriality of ¢’ and the fact that « is surjective. O

4.5.7. Continuing with the same assumptions, we have:

Definition 4.5.8 A section of s of the G-torsor P is called rigid in the first order at mpg
when, under the isomorphism of Proposition 4.5.3,

W (s) mod W(ag) = ¥, ' (s0) ® 1,

where, again, the subscript O signifies reduction modulo mg.

In other words, we are asking that the diagram

(sag)™"
Q ®wr) W(R/ag) —— P @wr) W(R/ag) —— G ®z, W(R/ag)

CJ: \I}O'C-WIJ/: idl
—1

7 K
Qo ®wy W(R/ar) —— Po @wu) W(R/ar) —— G ®z, W(R/ag)

commutes. (In this, we write sq, = 5 @w(r) W(R/ag) for simplicity.)
Given any section s : G ®7z, W(R) — {, the composition

g=s5" (Wo-c- W) s5a, : G®z, W(R/ag) > G ®z, W(R/ag)

is given by an element g € G(W(R/ag)) which reduces to the identity in G(W (k)),
i.e. with gg = 1. Since G is smooth, G(W(R)) — G(W(R/ag)) is surjective, and we
can always find & € G(W(R)) with hmod W (ag) = g . Thenh -sis rigid in the
first order at mg. Hence, if for example k is algebraically closed, there is always some
section which is rigid in the first order at mpg.
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Remark 4.5.9 This notion of “rigid in the first order” is comparable to a corresponding
notion for Dieudonné crystals that appears in [32,Def. 3.31], see Proposition 4.5.15
(a) below. In fact, the isomorphism

0:=W-c" Uy Py @wx W(R/ar) = P ®wr) W(R/ar)

should correspond, in the case of Zink displays, to the trivialization given by the
crystalline structure. (Note that (mg/a #)? = 0.) Let us remark here that s is rigid in
the first order at mg when we have 6(sg) = sq;, a condition we might think of as
saying “s is horizontal with respect to 6 at the closed point of R”.

Definition 4.5.10 A (G, M)-display D over R is locally universal, if there is a section
s of P which is rigid in the first order, such that the composition

q-(s®1):Spec(R) - P®wwr R— M

gives an isomorphism between R and the completion of the local ring of M ®z, W (k)
at the image of the closed point of Spec (R).

Proposition 4.5.11 Suppose that the (G, M)-display D = (P, q, V) over R is locally
universal. Then q : P ®wr) R — M is formally smooth.

Proof The action morphism m : G Xgpec @,y M — M s smooth, since G is smooth.
Lets : Spec(R) — P ®@w(r) R be a section which is rigid in the first order and is
such that g - (s ® 1) identifies R with the completion of the strict Henselization of M.
Since g is G-equivariant, G Xgpec () Spec (R) ~ P ®w(r) R given by s identifies
q : P ®wwr) R — M with

idg xq-(s®1)
_—

g X Spec (Zp) Spec (R) g X Spec (Zp) M ﬂ) M.

This is the composition of formally smooth morphisms, so also formally smooth. O

4.5.12. We return momentarily to Zink displays. We continue with the same assump-
tions on D = (P, g, V) and ¢ as in Sect. 4.4. In particular, D is a Dieudonné display.

Recall that (e.g. [40,2.2], [39,Thm 3]) if (M, M1, F}) isa Dieudonné display, then M
gives a crystal. In fact, we only need the following consequence: For ag = m% +(7E)
as above, there is a canonical isomorphism

91 Mo @wey W(R/ag) = M ®yjp) W(R/ag). (4.5.13)

Using this (together with the main theorem of [39]) one can understand the deforma-
tions of the p-divisible group % given by Dy(t) = D(v) O (r) W (k) ([39,Thm 4]):

Fix an identification My = A Qg7 » W (k). The p-divisible group ¥g/q, which is
given by D(1) ®W(R) W(R/aR) produces a Spec (R/ag)-valued point of the Grass-
mannian Gr(d, A)g. This point is given by the submodule of A ®z, R/ag which is
the reduction of

A ®z, iR/uR C ﬂ_l(Ml,R/uR) C A®z, W(R/ag).
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modulo /g /ag- Conversely, every Spec (R/ag)-valued point of the Grassmannian
which lifts the k-point corresponding to M o comes as above from a unique deforma-
tion Yg/a, of % over R/ag. This way we can identify the tangent space ToGr(d, A)y
of Gr(d, A)y at M1 o with the tangent space ¥y of the formal deformation space of the
p-divisible group %. Here we need a more precise statement about the deformations
that lift over R and the corresponding Dieudonné G-displays which we will give next.
4.5.14. We continue with the same assumptions on D = (P, g, ¥) and ¢ as above.
If s is a section of P, then s(¢) is the corresponding frame, i.e. the isomorphism

s() 1 A®z, W(R) = M =P().
Proposition 4.5.15 (a) A section s of P is rigid in the first order at mg if and only if

D (s50(1)) = Sag (1), where ¥ is the map (4.5.13).
(b) Suppose s is a section of ‘P which is rigid in the first order at mpg. Let

Spec (R/agr) — %o

be the classifying morphism of Spec (R/ag) into the tangent space To of the defor-
mation space of %y, which is given by the deformation 9g;a,. Then there is an

isomorphism ToGr(d, n)x = %o over k such that

Sag®1 q®r1
Spec (R/aR) — P ®W(R) R/CLR —_— M - Gl'(d, n)OE

gives, after composing with ToGr(d, n) = %o, the classifying morphism above.

Proof 1t follows directly from the definitions that if s is rigid in the first order at mg,
then the trivialization s(¢) : A ®z, W(R) = M makes We(): Ml 5 M “constant
modulo ag” in the sense of [20,Definition (3.1.11)]. (By this we mean that we take
the identification A ®z, W(R) = M which is used in [20,Definition (3.1.11)] to be
s(1).) Both (a) and (b) now follow from the definition of ¢, the construction of the map
¥ in [40,2.2], [39], and the argument in the proof of [20,Lemma 3.1.12]. (This lemma
gives part (b) for a universal (M, My, F1).) O

5 Crystalline G-representations
In this section, we describe “G-versions” of objects of integral p-adic Hodge theory
which can be attached to a G(Z)-valued crystalline representation.
5.1. Fix (G, M) as in Sect. 2.1 of integral local Hodge type. Fix also an integral local
Hodge embedding

t:G<— GL(A)

with M — 1,(X,) C Gr(g, A)o,.
Let F be a finite extension of E or of E with residue field k. Let

p:Gal(F/F) — G(Zp)
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be a Galois representation. We assume that ¢ - p : Gal(F/F) — GL(A[1/p)) is
crystalline. We give three flavors of “G-versions” of Frobenius modules which can be
attached to p by integral p-adic Hodge theory.

5.2 The Breuil-Kisin G-module

5.2.1. Choose a uniformizer 7y of F and let E(u) € W(k)[u] be the Eisenstein
polynomial with E (st ) = 0. Choose also a compatible system of roots 2/7r in F.
The Breuil-Kisin G-module attached to p, is by definition, a pair (Ppk, ¢py, ) Where

e Pgx is a G-torsor over & = W (k)[u]l,
® ¢py is an isomorphism of G-torsors

PPs 1 ¢ Pek[1/E )] — Ppxl[1/E)].
(Here, ¢ : © — G is the ring homomorphism which extends the Frobenius on W (k)
and satisfies (1) = u”.)
It is constructed as follows. (It does depend on the choice of l%, n>0)
As in the proof of [20,Lemma 3.3.5], we write Og = h_rr)lie] A; with A; C Og of
finite Z ,-rank and G-stable. The Galois action on A gives actions on A; and on Og.
We apply the Breuil-Kisin functor

m : Rep%is‘O — M0d76

(see [19,§ 1], [20,Theorem 3.3.2] for nota_tions and details of its properties. This
depends on the choice of #/wr,n > 0,in F). Let

M(Og) := lim,_ M(A).

By [20,Theorem 3.3.2], the composition of 91 with restriction to D* is an exact
faithful tensor functor. Hence, we obtain that M(Og)|px is a sheaf of algebras over
D> and that

Ppk = Spec (M(Og)px)

is a G-torsor over D*. Using purity, we can extend Pgy to a G-torsor Pk over
D = Spec (W (k)[[u]]) as follows:

Let us consider the scheme

Pli=Isomg oo o1 (DUA), A @z, W) C HomN(A), A ®z, Wul)
of isomorphisms taking s, gk to s, ® 1. Here, as in loc. cit.,

sa,BK = S:a (S W(A)@)
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are the tensors obtained by applying the functor 1(—) to the Galois invariant tensors
sq« € A®. By [20,Lemma 3.3.5], the scheme P’ is naturally a G-torsor over D, which,
in fact, is trivial. As in the proof of [20,Lemma 3.3.5], we see that there is a natural
isomorphism 73‘/ px = PgK as G-torsors over D*. Hence, the G-torsor P’ over D gives
the desired extension; we denote it by Ppx. We can see that the G-torsor Pk over D
is uniquely determined (up to unique isomorphism) and is independent of the choice
of A. This follows from the fact that there is a bijection between sections of P’ over

Wlu]] and sections of 77( px = Pk over D*. The isomorphism ¢p,, comes directly

from the construction Pgg = P’ and is also independent of choices.
Note here that we can view the Breuil-Kisin G-module attached to p as an exact
tensor functor

RepZP G) — Modfg.

5.3 The Dieudonné G-display

5.3.1. Assume here that ¢ - p has Hodge-Tate weights in {0, 1} and that in fact, the
deRham filtration on Dgr (A[1/p]) is given by a G-cocharacter conjugate to 1. Then,
there is also a Dieudonné (G, M)-display

D, =(P,q,¥)

over OF which is attached to p. This is constructed as follows:
Consider the Breuil-Kisin module 9t = 91(A) attached to A. It comes with the

Frobenius @oy : ¢*M[1/E (u)] = ON[1/E (u)]. The condition on the weights implies
that

M C Qo (™M) C E(u) "' M.

Let S = W(k)[u] — W (OF) be the unique Frobenius equivariant map lifting the
identity on O which is given by u — [7r]. We set

P := Pk Q.o W(OF) = Isom, 1 (.01 (@ MM(A), A @z, W(OF)).
Here, we set
Sa,p ‘= QD*(Sa,BK) € ¢"M(A).

To obtain the rest of the data of the Dieudonné G-display we proceed as follows:
We can write 9t = L & T, with L and T free G-modules such that

Ppom(p™ M) = L® Ew)~'T.
Denote by 9] C ¢*9 the largest G-submodule such that @gn (9T) C M. We have

Eu)e™ M C 9y C ¢*M.

@ Springer



G. Pappas

Then ggn (D) = M and we have an isomorphism
o M = M.

The corresponding filtration

My C (¢* M)/ E (u)(¢* M)
gives an Op-valued point of a Grassmannian. Over F, this filtration is the deRham
filtration of Dgr (A[1/p]) by [20,Theorem 3.3.2 (1)]. The condition that the deRham
filtration on Dgr(A[1/p]) is given by a G-cocharacter conjugate to 1 now implies
that this point is in the closure of the G-orbit of u, hence gives an O g-point of M.
This produces a G-equivariant morphism

q:¢*Pek ®s O — M.
Since P i 0 Or = ¢*Ppk ®s OF we obtain

q: P ®W(OF) OF - M.
This gives Q and W is then determined by ¢p,, . To give these more explicitly, set
M = M Qs W(Op) = ¢*M Rs W(OF) which acquires the tensors s, p =
©*(sa.5x) € M®. We have

M ®s W(OF) C M ="M s W(OF).

Using that ¢(E([7rr]))/p is a unit in W (OF), after applying ¢, we obtain a filtration

p(@*M) C My := ¢* (M) @s W(OF)) C ¢*M.

As in the proof of [20,Lemma 3.2.9], the tensors ¢*(s,.p) € *M® lie in A;II@’ and
Q = Isom e, 1) seen) (M1, A ®z, W(Op)).

The “divided Frobenius” M| — M which s obtained by pulling back pgn : M) — 9
alongg : & — W(OF) sends the tensors ¢*(s4,p) to s, and gives the G-isomorphism

v:Q S P

5.4 The Breuil-Kisin-Fargues G-module

Here, we use the notations of Sgcts. 2.4 and 2;5. In particular, O is the p-adic com-
pletion of the integral closure Of of Of in F and O is its tilt. For simplicity, set

Ainf = Ainr(O).
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5.4.1. By definition, a (finite free) Breuil-Kisin—Fargues (BKF) module over Ajys is a
finite free Ajnr-module M together with an isomorphism

our = (@*M[1/9E)] = M[1/9(©)]
where £ is a generator of the kernel of 6. (See [4, 35]).

Similarly, a Breuil-Kisin—Fargues G-module over Ajys is, by definition, a pair
(Dint, ¢D,,c ), Wwhere Dipr is a G-torsor over Ajnr and

ODus + (@ Dind)[1/9(E)] = Dintl1/0(&)]
is a G-equivariant isomorphism.
5.4.2. Now fix a uniformizer 7 = 7y of F and also a compatible system of roots

al/P" forn > 1, giving an element 7° = (7, /P, ...) € O. These choices define
a g-equivariant homomorphism

fi6 =Wl = A

given by u+— [7r°]? and which is the Frobenius on W = W (k). By [4,Proposition 4.32],
the association

Mi—> M =M Aint

defines an exact tensor functor from Breuil-Kisin modules over & to Breuil-Kisin—
Fargues (BKF) modules over Ajys.
We can compose the above functor with the tensor exact functor

Repy, (G) — Modfg

given by the Breuil-Kisin G-module Ppx over D = Spec (&) of Sect. 5.2. We obtain
a tensor exact functor

RepZF (g) g MOdl/pAinf

to the category Mod‘; A, Of finite free BKF modules over Ajns. This functor gives a
G-torsor Diyr over Ajpr which admits a G-equivariant isomorphism

PDus * (@ Dint)[1/9(E)] = Dinl[1/9(E)].

(Here, ¢(§) = f(E(u)) for E(u) € W[u] an Eisenstein polynomial for . The
element & generates the kernel of 6 : Ajpyr — O.) Hence, (Dinf, ¢p. ) is a Breuil-
Kisin—Fargues G-module which is attached to p.

More explicitly, set

inf

Mint := Mipe(A) = IM(A) ®s, ¢ Aint.
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The tensors s, € A® induce g-invariant tensors Sq.inf € Mﬁ’f. These are the base
changes

Sa,inf = f*(sa,BK)

of 548 € M(A)®. We have
Dint = Isom, . (o.01) (Mint, A ®7, Aint(O))

as g-torsors.
5.4.3. Assume that A, acted on by p, is isomorphic to the Galois representation on the
Tate module 7' = T,(¥) of a p-divisible group ¢ over Or. We have

Ming = M(9). (5.4.4)

Here, M (%) is the BKF module associated ([35,Theorem 17.5.2]) to the base change
over O of ¢ of the p-divisible group ¢. The corresponding ¢-linear Frobenius ¢y,
satisfies

Mint C oty (Ming) C @(8) ™ Migg.

(Here, again, we denote a ¢-linear map and its linearization by the same symbol.)
5.4.5. Choose p-th power roots of unity giving € = (1,,,¢,2,...) € O" and set
n=1[e]l=1¢€ An.

Let Q,/Z, be the constant p-divisible group. By [35,theorem 17.5.2], there is a
comparison map

>~ ~ in =1
A =Homp(Qp/Zy, 90) — Homy, o (Aint, Mint) = M

inf
This induces the g-invariant isomorphism
A ®z, Ainf[1/p1] = Mine[1/p1] = M(A) @, 5 Ain[1/1].

It follows from the constructions and [4,4.26] that under these isomorphisms the
tensors s, ® 1, s4,inf and s, px ® 1 correspond.

5.4.6. The constructions of the previous paragraphs are compatible in the following
sense. Assume that p is as in the beginning of Sect. 5.3; then A is the Tate module of a
p-divisible group over O . Fix 7 = 5 of F and a compatible system of roots 7 '/7",
forn > 1, giving 7° = (7w, 7'/?, ...) € O" as above. Recall the homomorphism

b0 : Aint(0) = W(O°) — W(O), Ooo(((xP, xD, .. 0] =[x
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The diagram

& — An(O)
0l 1 s

where the bottom horizontal map is given by the inclusion, commutes. We then have
isomorphisms of G-torsors

P &0 W(O) = Pok @6 W(O) = Dint @ a0 W(O) (5.4.7)

which are compatible with the Frobenius structures: This can be seen by combining
results of [4,§ 4], [35,§ 17], and the above constructions. Similarly, we can see that
both the (G, M)-display D and the Breuil-Kisin—Fargues G-module (Diyt, ¢p, ) are,
up to a canonical isomorphism, independent of the choice of 7 and its roots »/7r
inF CC.

Remark 5.4.8 The various compatibilities after (often confusing) Frobenius twists
between these different objects, all attached to the same integral crystalline repre-
sentation, can be explained via the theory of prisms and prismatic cohomology of
Bhatt and Scholze [2]. Indeed, the BK and BKF G-modules should be “facets” of a
single object, a prismatic Frobenius crystal with G-structure over Spf(OF). On the
other hand, the G-display fits somewhat less directly into this and seems to be tied
more closely to p-divisible groups by using the Hodge embedding.

6 Associated systems

Here, we define the notion of an associated system and give several results. The main
result says, roughly, that a pro-étale G(Z,)-Galois cover which is given by the Tate
module of a p-divisible group over a normal base with appropriate étale tensors,
can be extended uniquely to an associated system (see Theorem 6.4.1 for the precise
statement). We also show how to use the existence of locally universal associated
systems to compare formal completions of normal schemes with the same generic fiber
(Proposition 6.3.1). Finally, we show that the definition of associated is independent
of the choice of the local Hodge embedding (Proposition 6.5.1).

In all of Sect. 6 we assume, without further mention, that (G, M) is of strongly
integral local Hodge type. All the Hodge embeddings ¢ : G < GL(A) we consider
are strongly integral: they induce a closed immersion ¢, : M < Gr(d, A)o,.

6.1 Local systems and associated systems
Let us suppose that X is a flat Og-scheme of finite type, which is normal and has
smooth generic fiber. Suppose that we are given a Galois cover of X = X'[1/p] with

group G(Z)) = l(iLnn G(Z/p"Z); this gives a pro-étale G(Zp)-cover L on X.
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6.1.1. For any x € X (k), let R; be the completion of the strict Henselization of the
local ring Rz of X at x.

Suppose we have a Dieudonné (G, M)-display Dz = (Px, gz, Wi) over ég. Choose
a (strongly integral) local Hodge embedding ¢.

In accordance with our notations in Sects. 3.2 and 4.4, we will denote by

Dz(1) = (Mz, My 3, F1.3)

the Dieudonné display over R; induced from Ds using ¢ and the construction of
[20,3.1.5]. As usual, Proposition 3.2.3 gives tensors m, z € M? corresponding to
sqa € A®.

By [39], there is a corresponding p-divisible group ¢ (x) over R:

¢ (x) = BT(D: (1),

of height n = rankZP (A). Recall (Sect. 4.4), we have a canonical isomorphism
Di () = D (D)) (W (Rs)) (6.1.12)

of Dieudonné displays, where on the right hand side, D denotes the evaluation of the
covariant Dieudonné crystal.

Consider the following two conditions. The first is:

A1) Thereis anisomorphismo = o of Z,-local systems over R 11/ p]between the
local system given by the Tate module 7 of the p-divisible group ¢ (x) = BT(D; (1))
and the pull-back of L(¢).

Before we state the second condition, we observe the following. Assuming (Al),
for any X € X(Op) that lifts x, the Galois representation p(x) obtained from x*L,
is crystalline. By [20,Theorem 3.3.2 (2)], the isomorphism « in (A1) induces an iso-
morphism .

Dpxy (1) ZDE*Y (X)(W(OF)). (6.1.13)

Here, X*¢ (x) is the p-divisible group over O obtained by base-changing ¢ (x) by x
and D, (y) is the Dieudonné (G, M)-display attached to p(x) by Sect. 5.3. Combining
(6.1.12), (6.1.13), and base change gives an isomorphism

Dy () = Di(0) @y, W(OF) (6.1.14)
of Dieudonné displays over OF.

We can now state the second condition (it only makes sense after we assume (A1)):
A2)Forevery x € X (Ofp) lifting x, there is an isomorphism of Dieudonné (G, M)-

displays above D, () = Ds B (k) W (OF) over O which, after applying ¢, induces
the isomorphism (6.1.14)

Dy = Dx(®) ®y .y W(OR).

More concretely, we see that condition (A2) is equivalent to the following:
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A2’) For every X € X (OF) lifting x, and every a, the isomorphism (6.1.14) maps
the tensor s, p = Sqaps € M® attached to p(x) in Sect. 5.3 to the base change
mgz®1e M)%Z’ O (ke W((’)F) of the tensor m, ; € Mg’.

Definition 6.1.5 If (A1) and (A2) hold for x € X(k), we say that £ and Dj; are
associated. If (A1) and (A2) hold for all x € X (k), with oz the isomorphism in (A1),
we call (£, {az, Di}zex k) an associated system.

Definition 6.1.6 The associated system (L, {az, Dz}zex k) is locally universal over
X, if for every x € X' (k), Ds is locally universal in the sense of Definition 4.5.10.

The definition of “associated” uses the local Hodge embedding ¢ which we, for
now, fix in our discussion. We will later show that it is independent of this choice, see
Proposition 6.5.1. Most of the time, we will omit the notation of the isomorphisms oz
and write (£, {Dx}zexx)) for the associated system.

Proposition 6.1.7 If L and Ds, for x € X (k), are associated, then Ds is, up to iso-
morphism, uniquely determined by L.

Proof Suppose that £ and D’ are also associated. Then ¢ (X)[1/p] ~ ¥'(X)[1/p] as

p-divisible groups over Rz[1 / p1, since they both have the same Tate module which
is given by the restriction of L£(¢) to Rz[1/p]. Tate’s theorem applied to the normal

Noetherian domain é;, extends this to a unique isomorphism 8 : ¥ (x) S ().
Therefore, using [39], we obtain an isomorphism of Dieudonné displays 6 : Dz (¢) 5
D’ (¢). This amounts to an isomorphism

(M. My, Fy) > (M. M|, F)).

Here both M, M’ are free W(I%;)-modules of rank n. The (G, M)-displays D; and
D’ have corresponding G-torsors P, P’. By the construction of Proposition 3.2.3,
these G-torsors are given by M, M’ and tensors m, € M®, m), € M'®, respectively.
We would like to show that § : M — M’ satisfies §®(m,) = m/, i.e. § lies in the

W(ﬁg)-valued points of the closed subscheme

Hom,,, ) m:) (M, M') = Spec (B/I) — Hom(M, M’) = Spec (B).

Here, B >~ W(Ié;)[(tij)lg,jsn], non-canonically. Let us consider f(#;;) € 1. We
would like to show that f(5;;) = 0in W(Ié %), where §;; € W(ﬁ +) are the coordinates
of the W(I@;)—linear map §. Condition (A2) implies that x*§ respects the tensors
X*mg, X*ml, so (X)*(f(8;j)) = 0, for all X lifting x. This implies that f(8;;) = 0, so
3 respects the tensors. It now follows that § respects the rest of the data that give the
(G, M)-displays D; and D~. O

6.2 Local systems and associated displays

Let Z bea (G, M)-display over the p-adic formal scheme X = l(u_nn X®0,Or/(p)".
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Definition 6.2.1 We say that the (G, M)-display Z over X is associated with L if, for
all x € X' (k), there is

e a Dieudonné (G, M)-display Z; which is associated with L,
e an isomorphism of (G, M)-displays
D ®W(1é.i) W(Ié;) ~9 QW (Ox) W(Ii’;)
Note that, then, (£, {Zz}zcx«)) is an associated system.

Definition 6.2.2 We say that the (G, M'°®)-display & over X which is associated with
L, is locally universal over X, if the associated system (L, {Zz}zex«)) is locally
universal over X .

6.3 Rigidity and uniqueness

Assume now that X’ and X are two flat Og-schemes of finite type, normal with the
same smooth generic fiber X = X[1/p] = X’[1/p]. Suppose that (L, {Dx}zex k)
and (L', {D% }zrex'k)) are locally universal associated systems on X" and A respec-
tively, with £ = £ on X.

Denote by Y the normalization of the Zariski closure of the diagonal embedding
of X in the product X' Xgpec (0,) X'. Denote by

X <—Yy> X,

the morphisms given by the two projections. For simplicity, we again set y=y ®0,
Op, X =X Qp, O, etc. For y € Y(k),setx = 7(y), X' =7'(y).

Proposition 6.3.1 (a) We have
n*Dz ~ DL,

as Dieudonné (G, M)-displays on the completion (’533 5
(b) The morphism m induces an isomorphism

A

* . . ~ A
T 'Ox,xﬁoy,y

between the completions of Yand X, at y and X, respectively. Similarly, for 7'.

Proof Part (a) follows by the argument in the proof of Proposition 6.1.7.

A

Let us show (b). For simplicity, set R = O ., R = O 2 R’ = (’35) 5 By the
construction of ), we have a local homomorphism

R®0, R — R"
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which is finite. Write R; for its image:
R®@FR’ — R — R”

Applying ¢ and the functor BT to Dy, D%, gives p-divisible groups ¢, 4’ over R, R’
respectively. By (a) we have
7*G ~ g"*qg’ (6.1.1)

over R”. This isomorphism specializes to give fy : ¥*(¢) — ¥'*(¢"), anisomorphism
of p-divisible groups over the field k.

Let us write T = Spf(U) for the base change to O of the universal deformation
space of a p-divisible group % over k which is isomorphic to the p-divisible groups
X*(4) and x"*(¥¢") above, and fix such isomorphisms. This allows us to view fy as an
isomorphism fy : % = 9.

Set Spf(R) = S, Spf(R’) = §', Spf(R”) = §”, and Z = Spf(R;). By the
locally universality condition on D; and D%, S and S’ can both be identified with
closed formal subschemes of T given by ideals I and I’ of U, respectively. There
is a closed formal subscheme I' of T%@ET = Spf(U ®OEU ) prorepresenting the
subfunctor of pairs of deformations of &) where fj extends as an isomorphism. The
subscheme I' is defined by the ideal generated by (u ® 1 — 1 ® £ (1)), u € U, where

fo:u = U is the “relabelling” automorphism corresponding to fo. By (6.1.1), we
havethat Z C T >A<@E T is contained (scheme theoretically) in the “intersection”

[N ($%0,8) = SpfUGOU/(® 1 =18 ffW)uev. | U, U I).

The projection makes this isomorphic to S N f()kl (8"), the formal spectrum of R/J,
where we set J := f;(I")R. From

Spf(R))=ZcCTnN (S%oés/) ~ Spf(R/J)

we have dim(R;) < dim(R/J). Since R] is integral of dimension equal to that of R”
and so of R, we have dim(R) = dim(R;) < dim(R/J) < dim(R). Since R is an
integral domain, this implies J = (0) and that Ry, which is a quotient of R/J of the
same dimension, is also isomorphic to R. Since R >~ R; — R’ is finite, and R, R’
and R” are normal, the birational Ry — R” is an isomorphism; so is R — R” and,
by symmetry, also R" — R”. O

6.4 Existence of associated systems

Suppose that X', £, and ¢ : G — GL(A), are as in the beginning of Sect. 6.
Theorem 6.4.1 Suppose that the étale local system L(1) is given by the Tate module of

a p-divisible group 4 over X. Then L is part of a unique, up to unique isomorphism,
associated system (L, {az, Dz }zex k)) for t.
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Proof The uniqueness part of the statement follows from Proposition 6.1.7. Our task
is to construct, for each x € X' (k), a (G, M)-display D; over R = Rj; that satisfies
(A1) and (A2). Let

(M, My, Fy)

be the Dieudonné display obtained by the evaluation M = ]D)(%)(W(R)) of the
Dieudonné crystal of 4 over R. This givesa (GL,,, Gr(d, A))-display (PgL, g6L, YGL)-
We want to upgrade this to a (G, M)-display, the main difficulty being the construction
of appropriate tensors m, € M®. The construction occupies several paragraphs:
6.4.2. We recall the notations and results of Sects. 2.4 and 2.5, for R. In particular, we
fix an algebraic closure F(R) of the fraction field F(R), we denote by R the integral
closure of R in F'(R) and by R the union of all finite normal R-algebras R’ in F(R)
such that R'[1/p] is étale over R[1/p]. Set R” and R" for their p-adic completions.
For simplicity, we set

S =R".

Also, we set O for the p-adic completion of the integral closure O of O in the
algebraic closure E.

By Sect. 2.4, RMN, S = RA, and O, are integral perfectoid Z,-algebras in the sense
of [4,3.1], which are local Henselian and flat over Z,. The Galois group I'g acts on
R,on S, and on Ay (S) = W(SP).
6.4.3.Let (M(9) = M(94)(S), ¢m(w)) be the (finite free) Breuil-Kisin—Fargues mod-
ule over Ajnr(S) attached to the base change ¥s of 4.

By [35,Theorem 17.5.2], M (¥)(S) is the value of a functor which gives an equiva-
lence between p-divisible groups over § and finite projective BKF modules (M, ¢jr)
over Ajnr(S) that satisfy

1
M M —M.
ComM C 5

By loc. cit., the equivalence is functorial in S. Therefore, M (¢)(S) supports an action
of I'g which commutes with ¢,s(%)(s) and is semi-linear with respect to the action of
I'g on Ajne(S). By loc. cit., we have

T =Homg(Q)/Z,, Fs) — Hom a,e(s). (Aint(S), M(9)) = M(G)? ="
(6.4.4)
This gives the comparison homomorphism

c: T ®z, Aint(S) = M(4)(S)
which is ¢ and Galois equivariant.
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Using the constructions in [35,§ 17] together with Lemma 2.5.5 and Proposition
2.5.7, we see that c is injective and gives

T @2, Ani(S) C M#)(S) C T @z, %Amf(sy
Therefore, we obtain a “comparison” isomorphism
T% ®z, Aint(S)[1/u] = M(@)(S)®[1/ul. (6.4.5)

6.4.6. Let us set:

Mine (S) := M(4)(S).
Let

Sainf € Ming($)®[1/u]
be the tensors which correspond to s, € T® under (6.4.5). We have

OMint (Sainf) = Sa,inf-

We can now construct a Breuil-Kisin—Fargues G-module (Diu¢(S), ¢p,,) over
Aint ().

Proposition 6.4.7 (a) We have s, inf € Ming(S)®.
(b) By (a), we can consider the G-scheme

Din (S) :=Isom, . o (. @1) (Mint (5), A ®2z,, Aint(S)).

The scheme Dins (S), with its natural G-action, is a G-torsor over Aint(S).
(¢c) There is a G-equivariant isomorphism

@Dy (9 Dint (S)I1/9(E)] = Dint (S)[1/9 (&),

where & is any generator of the kernel of 0 : Ajps(S) — S.

(d) Suppose x : S — O extends a point x : R — OF which lifts x. Then the base
change of (Dint(S), ¢p,;) by X : § — O is isomorphic to the BKF G-module over
Aing(O) which is attached to X*L by 5.4.

Proof Consider X : § — O as in (d). Let (M (9)(O), pp«)©)) be the BKF module
over Ainr(O) attached to the p-divisible group x*¢ over O. By functoriality under
S — O of the functor of [35,Theorem 17.5.2], we have a canonical isomorphism

Mint (S) ®aine(s) Ainf (O) = Mine(O) = M(94)(O)

respecting the Frobenius structures.
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Lemma 6.4.8 The pull-back
T (Sa,inf) € Mine(S)®[1/1] ® A (s) Aint(O) = Ming(O)®[1/1]
lies in Mins (0)®.

Proof Recall that the tensors S, inf € Mint (S)®[1/u] are defined using the comparison
isomorphisms (6.4.5). The statement then follows from functoriality under S — O
using the fact that (M (%) (O), ¢ () 0)) supports a G-BKF module structure (so, in
particular, the corresponding étale tensors in Mine(O)®[1/u] extend over Aj(O),
i.e. have no p-denominators.) O

Now we can proceed with the proof of the proposition. Part (a) follows from the
above Lemma and Lemma 2.5.7. By Lemma 2.5.5 and Proposition 3.2.5, Dips(S) is a
G-torsor, i.e. part (b) holds. The identity @z, ; (S4,inf) = Sq,inf holds in Mine ($)®[1/ 1]
and so also in My (S)® since

Ming (S) C Mins(S)[1/ 1]

by Lemma 2.5.7. Therefore,

PDus © (@* Dint (SNI1/9(E)] = Dint(S)[1/9(E)].

is G-equivariant, which is (c). Finally, (d) follows from the above and functoriality
under § — O. O

Remark 6.4.9 (a) Using these constructions and the comparison
T @z, Aint(H[1/1] = M(G)(H[1/ul,

we can see that the BKF G-module (Dinr (S), ¢p,,) only depends, up to isomorphism,
on L. Indeed, from Sect. 5.4, this statement is true when S = O. In general, the
comparison isomorphism first implies that the G-torsor Djns(S)[1/1] depends, up to
isomorphism, only on L. Then, by considering restriction along x : S — O and using
Lemma 2.5.7 (b), we see that we can determine Din(S) and ¢p, ; over Air(S).

(b) As usual, we may think of Djyr(S) as an exact tensor functor

¢
RePZ,, G) — Mod/Am[(S).
6.4.10. We can now complete the proof of Theorem 6.4.1. Recall that
Ooo : Aint(S) = W(S)
factors as a composition

boo : Ainf (S) = Acris(S) = W(S).
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By, [35,Theorem 17.5.2], the Frobenius module
Min () ® A () Acris(S) = M(ZD)(S) @ a,r(S) Acris(S)

describes the covariant Dieudonné module of the base change ¥s evaluated at the
divided power thickening A¢is(S) — S. By [21,Theorem B], this evaluation of the
Dieudonné module is naturally isomorphic to M i (R W(S), with its Frobenius
structure. Combining these now gives a natural isomorphism

M @y g W(S) = Mint(S) Qaye(s) W(S) (6.4.11)
which is compatible with Frobenius and the action of I"'g. We obtain
M® @ gy WS) 2= Ming ($)® ®aye(s) W(S).
Since the tensors S4inf @ 1 € M (9® ® Aini(s) W(S) are I' g-invariant, we see that

Sa.inf ® 1 € (M® WSH'F = M® @ ) (W(SHE.

i ()
By Theorem 2.4.5, (W(S))F'® = W(R). Therefore,

Sainf ® 1 € M® W(R). (6.4.12)

®W(R)
In fact, we also have:

Proposition 6.4.13 (a) The tensors my = Sq.inf ® 1 lie in M®.
(b) The identity
X*(ma) = Sap.s (6.4.14)

holds in M® @y, p W(OF) = M .

In the above, (Mo,., M1 0, F1,0,) is the Dieudonné display over OF associated
by Sect. 5.3 to the Galois representation on A given by X*£(t), and s, p; are the
corresponding tensors.

Proof Using the compatibility of the construction with pull-back along points x : R —
O we first see that the identity (6.4.14) holds in the tensor product M® ® W (R) W(OF).

However, the right hand side s, j ; lies in the subset M ® ®W( R) W(O F), and, hence,

so is the left hand side X*(m,,). Proposition 2.3.4 now implies (a), and (b) also follows.
O

We continue with the proof of Theorem 6.4.1. The tensors m, € M® allow us to
define

P :=1Isom,, | o(M,A®z, W(R)).
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By the above, £*P is isomorphic to the G-torsor given in Sect. 5.3. By Corollary 3.2.6
for A = W(R), ‘P is a G-torsor over W(R). By definition, we have P(1) = M. It
remains to construct ¢ and W.

The filtration IgxM C M1 C M gives a filtration of M /Ir M

(0) C Fil' := M /IxM C Fil® := M/Ix M.
This induces a filtration Fil®:? of (M /Igx M)® and we have
m, ®1 € Fil®0 ¢ (M/IxM)®[1/p]

since this is true at all F-valued points. Hence, ¢ : PgL Qwiry R = Gr(d, A)
restricted to P Oy (g R C PgL By (k) R lands in X, (G) on the generic fiber. Since
M is the Zariski closure of X, (G) in Gr(d, A)p,,, we obtain

q:P®W(R)R—>M.

Recall that we use ¢ to define the G-torsor Q. From the construction, we have a G-
equivariant closed immersion Q@ C QgL . Finally, let us give W: We consider Wg :
Q6L = Par.. We will check that this restricts to W : Q = P: For this, is enough to
show that the map ¥ = WgL (1) : M, S M given by WL, preserves the tensors, i.e.

U(p*(mg)) = my. (6.4.15)

This follows as in the proof of Proposition 6.1.7 by observing that the tensors are
preserved after pulling back by all X : R — Op: Indeed, we have W, (¢*sqps) =
Sa,p.5- Since, by (6.4.14) we also have X*m, = s, p ;, we conclude that X*W = Ve,
maps ¢*(X*mg) to X*m,. The identity (6.4.15) now follows.

The above define the (G, M)-display Dz = (P,q,V¥) = (Px, gz, Vz). By its
construction, Dj satisfies (A1) and (A2). This completes the proof of Theorem 6.4.1.

O
6.4.16. In fact, the proof of the Theorem 6.4.1 also gives:
Proposition 6.4.17 There is an isomorphism of G-torsors
Pz @y gy W(S) = Dint(S) ®aipe(s) W(S), (6.4.18)
which is also compatible with the Frobenius structures. O

6.5 Independence

We show that the notion of “associated” does not depend on the choice of the (strongly
integral) local Hodge embedding ¢. More precisely:

Proposition 6.5.1 If £ and Dj are associated for i, i.e. satisfy (Al) and (A2) for i, they
also satisfy (Al) and (A2) for any other (strongly integral) local Hodge embedding '.
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Proof Assume that £ and Dj are associated for ¢. By the uniqueness part of Theorem
6.4.1, we can assume that D; is obtained from £ and ¢ by the construction in its proof.
We will use the notations of Sects. 6.1 and 6.4: In particular, R = ﬁ; and¥9 = ¥ (x)is
the p-divisible group over R given by Dj (1). By [22], the Tate module T := 7, (%) (R)
can be identified with the kernel of

Fi—1: Ml — MZM@W(R) W(R)
Here, we denote abusively by W (R) the p-adic completion of

lim W(RL)
L/F(R)

where L runs over finite extensions of F'(R) in F (R) and R; is the normalization of
R in L. There is a natural surjective homomorphism W(R) — R”. In the above, we
set

M =ker(M — (M/M;) ®g R").
The isomorphism

per:T;ker(Fl—I:]\;h —>M)
induces the comparison homomorphism

T &z, W(R) > M @y W(R).

Let us consider a second local Hodge embedding ¢’ : G <> GL(A’) which realizes
G as the stabilizer of tensors (s},).

As before, we have a p-divisible group ¥’ = &/(x) over R = Rz givenby Dz () =
(M', M}, F{). Denote its Tate module by 7'(¢"). To show (A1) for ./, we have to give
an isomorphism of 7(4’) with T’ := L(/) = A’

Recall (Sect. 6.4), that we have a g-invariant isomorphism

A ®z, Ainf(S[1/p] = Min(S)[1/1]

that sends the tensors s, ® 1 to s4.inf. By a standard Tannakian argument we see that
this gives an isomorphism

A ®z, Aint (/1] = Mipe ($[1/14] (6.5.2)
where M/, f(S) Ding (S)(!) is obtained from the G-torsor Dine(S).
Since ¢’ is also a local Hodge embedding, we can see using [35,Theorem 17.5.2],

that M/ (S) is the BKF module M () of some p-divisible group .7 over S, so

M ((S) >~ M(F).
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Lemma 6.5.3 Forall x : S — O obtained from X : R — @E, we have:
(a) X*H ~ x*9/,
(b) T" >~ T,(x*9").

Proof Consider the Breuil-Kisin G-module (Ppk, ¢pg, ) attached to X* L by Sect. 5.2.
Then, (Pek (1), ¢py (1)) gives a “classical” Breuil-Kisin module which corresponds
to a p-divisible group % over Of. The construction of the Breuil-Kisin G-module
implies that 7" ~ X*L£(.') is identified with the Tate module 7}, (¢?). By the compati-
bility (Sect. 5.4) of the constructions in Sects. 5.4 and 5.3, Proposition 6.4.13, and the
fact [35,Theorem 17.5.2] that the functor M (—) gives an equivalence of categories
between p-divisible groups over O and (suitable) BKF modules over Aj(O), the
base change of ¢; to O is isomorphic to both ¥*.7#” and ¥*%". This gives (a). In fact,
since the Tate module of %fé is identified with T’, we then obtain (b). O

From (6.5.2), we obtain an injection

N =T — M (S)[1/u].

n

Lemma 6.5.4 The map c’ gives an isomorphism
TS ML) =t = M(opyemer =]
which identifies T’ with the Tate module of 7.
Proof Forall ¥ : S — O given by ¥ : R — OF, we consider the composition
T' < My (S$)[1/1] = My (O)[1/p]
where the second map is given by pull-back along Aiyr(S) — Ajnr(O) and functorial-

ity. From Lemma 6.5.3 and its proof, we see that this composition is identified with the

comparison isomorphism for X*.# and so its image is contained in M; ;(O), in fact

in M} (O)#m" =1 Tt follows from Corollary 2.5.8 (a) that the image of ¢’ is contained

in M/ ;(S). Hence, we obtain:

T =N s M (S)Pm=l
Now, for all such x : § — O, consider
T M (S)=' = M (O)Pm=!,

As above, this composition is identified with the comparison map for ¥*.5 and is
therefore an isomorphism. However,

(M; f(S))(pM/:l ~ (M(%))WM(,W)zl

mn

@ Springer



On integral models of Shimura varieties

is the Tate module of .7, a finite free Z ,-module of rank equal to rankzp (T"). There-
fore

T ML) =l = M(p)emerH =]
is an isomorphism and it identifies T’ with the Tate module of .7 as desired. O
Lemma 6.5.5 The natural homomorphism
g Ant(S) 25 W(S) = W(RY) — W(R")
factors through W(R) as a composition
Aint (S) = Aaiis(S) — W(R) — W(RY).
Proof The diagram

Ant(S) 25 w(s)

! !
Aint(RY) 25 W(RM

with vertical arrows given by § — R”, is commutative. Hence, the composition g is
equal to

- 600 -
Ainf (S) = Ainf(R") = W(RM).

We want to show 6 : Ainf(R”) — W(R") factors through W(R). We can argue as
in tlle p_roof of [22,_Lemn}a 6.1]: Note that, for each n > 1, all elements a of the kernel
of W(R)/p" — R"/pR" satisfy a?" = 0. Therefore, by the universal property of
the Witt vectors (e.g. [21,Lemma 1.4]), this gives

Aint(R") = W((R")") > W(R) - R"/pR".

This lifts 65, : Ainf(R") — R”. Now since W(R) — R” is a divided power
extension of p-adic rings, the map 63, factors

Aint (R") = Aciis(R") — W(R) — R
and using this we can conclude the proof. O
Asin (6.4.11), (6.4.18), we can use the above lemma to obtain an isomorphism
Mo (S) ®ai(s) WR) = M @y ) W(R) (6.5.6)
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which respects the Frobenius and Galois structures. This combined with the above
gives

T~ M ()= — M= ~ 7@

where both source and target are finite free Zj,-modules of the same rank as that of
T'. By pulling back via all X : R — Op and using Lemma 6.5.3, we see that this map
is an isomorphism. Therefore, we have

T ~T(9)

which shows (A1). For (A2), it is enough to show that the tensors m;) in D; (')® restrict
via X : R — OF to the corresponding tensors s; b iN Dp(x)(t’)‘g’. This now follows
from the above construction and (6.5.6). O

7 Canonical integral models

7.1. We now consider Shimura varieties and their arithmetic models. Under certain
assumptions, we give a definition of a “canonical” integral model.

7.1.1. Let G be a connected reductive group over Q and X a conjugacy class of maps
of algebraic groups over R

h:S = Resc/rGy — GRr,

such that (G, X) is a Shimura datum ([10] §2.1.)

For any C-algebra R, we have R ®r C = R x ¢*(R) where ¢ denotes complex
conjugation, and we denote by i = uj, the cocharacter given on R-points by R* —
(R x ¢*(R))* = (R ®r O)* = S(R) > Ge(R).

Let Ay denote the finite adeles over QQ, and A? C Ay the subgroup of adeles
with trivial component at p. Let K = K,K? C G(Ay) where K, C G(Q,), and
KP C G(A?) are compact open subgroups.

If K? is sufficiently small then the Shimura variety

Shk(G, X)c = GQ\X x G(Ay)/K

has a natural structure of an algebraic variety over C. This has a canonical model
Shk (G, X) over the reflex field; a number field E = E(G, X) which is the minimal
field of definition of the conjugacy class of w;. (See, for example, [27].) We will
always assume in the following that K7 is sufficiently small; in particular, the quotient
above exists as an algebraic variety. We will also assume that the center Z(G) has the
same Q-split rank as R-split rank. (This condition is automatic for Shimura varieties
of Hodge type.)

Now choose a place v of E over p, given by an embedding @ — Q p. We denote
by E = E,/Q, the local reflex field and by {u} the G@Q p)-conjugacy class -which is
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defined over E- of the minuscule cocharacter . We denote by OF () the localization
of the ring of integers Of at v.

Let G be a parahoric group scheme over Z), with generic fiber Gg, and take
Kp =G(Zp) C GQp).

We consider the system of covers Shy (G, X) — Shg(G, X) where K' = K’p KP C
K = K,K?, with K’p running over all compact open subgroups of K, = G(Z). Using
the condition on the center of G, we see that this gives a pro-étale G(Z,)-cover L
over Shyx(G, X) (eg. see [25,111], [27,Thm 5.2.6]).
7.1.2. Assume p > 2, (G, {u}) is of local Hodge type and M'*® = M!°°(G, {u}) is a
local model as in [35,Conjecture 21.4.1] (see the discussion in paragraph 2.1). Assume
also that the pair (G, M'°°) is of strongly integral local Hodge type.

Suppose that for all sufficiently small K” we have Of (,)-models .7k = K KP
(schemes of finite type, separated, and flat over Of (y)) of the Shimura variety
Shk (G, X) which are normal. We consider the conditions:

1. For K’? C KP, there are finite étale morphisms
K, Kp yK,,K’P - prK’P

which extend the natural Shy x» (G, X) — Shy kr (G, X).
2. The scheme %k, = hm YK kp satisfies the “extensmn property" for dvrs of
mixed charactenstlc (ﬁp

S, (R[1/p]) = F, (R

for any such dvr R.
3. The p-adic formal schemes VK = hm K B0y w OE./(p)" support locally

universal (G, M!°°)- -displays 2k Wthh are associated with Lx. We ask that these
are compatible for varying K, i.e. that there are compatible isomorphisms

*
T D ~ Dy .
K/,.K, 7K K

Instead of (3) we can also consider the condition:

(3*) The schemes .%k support locally universal associated systems

Dk = (L. {Dx)zesw)

where D; are Dieudonné (G, M'°®)-displays.

Note that (3) implies (3*); this follows from the definitions.
Theorem 7.1.7 below makes the following definition reasonable.

Definition 7.1.3 A projective system of Of (,)-models .k of the Shimura varieties
Shk(G, X), for K = K,K? with K, fixed as above, is canonical, if the models are
normal and satisfy the conditions (1), (2), (3) above.
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We conjecture that, under the hypotheses above, such canonical models always
exist. In the next section, we show this for Shimura varieties of Hodge type at tamely
ramified primes.

Remark 7.1.4 We could also consider a notion of a “M-canonical model”, where
(G, M) is a more general integral local Shimura pair, i.e. with M not M'°c However,
it is not clear if such added generality is very useful here.

Remark 7.1.5 Property (3) implies the existence of a local model diagram:

7 K (7.1.6)

ﬁ( Mloe

where 7k is a G-torsor and gk is G-equivariant and smooth. R
Indeed, let Dx = (Px, gk, Yk) be the “universal” (G, Mloc)-display over .7k as in
(3). We set

Sk = Px ®W((9fK) Oz

This is a G-torsor over ﬁ( and gives k. The morphism gk is obtained directly from
the display datum. The smoothness of gk follows from the local universality condition
by Proposition 4.5.11.

Theorem 7.1.7 Fix K, = G(Z) as above. Suppose that S, .7 are Of (y)-models
of the Shimura variety Shi(G, X) for K = K,KP that satisfy (1), (2) and (3%). Then
there are isomorphisms S ~ #y giving the identity on the generic fibers and which
are compatible with the data in (1) and (3%*).

Since condition (3) implies (3*), this immediately gives:

Corollary 7.1.8 FixK, = G(Zj) as above. Suppose that x, .-/ are canonical O, (y)-
models of the Shimura variety Shx(G, X) for K = K,KP. Then there are isomorphisms
Sk = Sy giving the identity on the generic fibers and which are compatible with the
data in (1). O

Proof Let us denote by .’ the normalization of the Zariski closure of the diagonal
embedding of Shx(G, X) in Sk x 0o, (U) ¢ Thisis athird O (,)-model of the Shimura
variety Shk(G, X) which is also normal. We can easily see that .#’, for varying K7,
come equipped with data as in (1) and that (2) is satisfied. Denote by

K S = Sk, mg S = S

the morphisms induced by the projections. Both of these morphisms are the identity
on the generic fiber and so they are birational. Using condition (3*), we see that by
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Proposition 6.3.1, 7k and 7, give isomorphisms between the completions of the strict
Henselizations at geometric closed points of the special fiber. It follows that the fibers
of mx and of my over all such points are zero-dimensional. Hence, 7y and my are
quasi-finite. The desired result now quickly follow from this, Zariski’s main theorem
and the following:

Proposition 7.1.9 The morphisms wtx and 7y, are proper.

Proof 1t is enough to prove that 7y is proper, the properness of my then given by
symmetry. We can also base change to the completion O of the maximal unramified
extension of O (y); for simplicity we will omit this base change from the notation.
We apply the Nagata compactification theorem ([8,Thm. 4.1]) to mk. This provides
a proper morphism 7x : 7 — % and an open immersion j : .# < 7 with
7k = 7K - j. By replacing 7 by the scheme theoretic closure of j, we can assume that
J(#¢) is dense in 7. Since 7g[1/p] is an isomorphism and hence proper, j[1/p] is
also proper. Hence, j[1/p] is an isomorphism as a proper open immersion with dense
image. Since 7 is the closure of its generic fiber by construction, it follows that 7 is
flat over O and that the “boundary", 7 — j(.#}), if non-empty, is supported on the
special fiber of 7 — Spec (OF).

If T — j(#) # 0, there is a k-valued point 7 of 7 — j(.#y). By flatness, 7 lifts
tof € T(OF), for some finite extension F/E. Set ¢+ = x for the corresponding F-
valued point of the Shimura variety 7[1/p] = #k[1/p] = .-#{'[1/ p]. This extends to
X = ax() € F(Or). Since O is strictly henselian, the point X lifts to a point

z € 7, (OF) =lim, , F, kr (OF).

By the dvr extension property for .y ; , this also gives a point 7" € Ylé; (Op). This
maps to a point 7 € . (OF) which agrees with x € /k(F) on the generic fiber.
Since 7k : T — Yk is separated, this implies that 7 lies on j(.-7’), which is a
contradiction. We conclude that j is an isomorphism and so 7k is proper. O

8 Shimura varieties at tame parahoric primes

8.1. We now concentrate our attention to Shimura varieties of Hodge type at tame
primes where the level is parahoric ([20]).

8.1.1. Fix a Q-vector space V with a perfect alternating pairing . For any QQ-algebra
R, we write Vg = V ®g R. Let GSp = GSp(V, v) be the corresponding group of
symplectic similitudes, and let S* be the Siegel double space, defined as the set of
maps i : S — GSpg such that

1. The C*-action on VR gives rise to a Hodge structure
Ve v 0gviT!

Oftype (_17 O)’ (0’ _1)
2. (x,y) — ¥(x, h(i)y) is (positive or negative) definite on V.
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8.1.2. Let (G, X) be a Shimura datum and K = K,K? C G(Ay) with K, C G(Q,)
and K? C G(A?) as above, where p is an odd prime. We assume:

1. (G, X) is of Hodge type: There is a symplectic faithful representation p : G —
GSp(V, ¥) inducing an embedding of Shimura data
(G, X) = (GSp(V. ¥). §5).

2. G splits over a tamely ramified extension of Q.

3. K, = G(Z)) is a parahoric stabilizer, so G is the Bruhat-Tits stabilizer group
scheme G, of a point x in the extended Bruhat-Tits building of G(Q),) and G is
connected, i.e. we have G = G, = G?.

4. p 1 m1(Gaer(Qp)).

We now fix a place v of the reflex field £ over p and let E = E,/Q, and {u} be
as in Sect. 7 above. Associated with (G, {i}) and x, we have the local model

M = M(G, (1}) = MY(G, {u}).

(Under the current assumptions, we can appeal to [30] for the construction of MI°¢,
This satisfies Scholze’s characterization by [17,Theorem 2.15].)

In [20,2.3.1, 2.3.15, 2.3.16], it is shown that under the assumptions (1)-(4) above,
there is a (possibly different) Hodge embedding

L1 (G, X) = (GSp(V, ¥), $%)

and a Z-lattice A C Vg, such that A C A" and

(a) There is a group scheme homomorphism which is a closed immersion
t:G— GL(A),
such that ¢(G) contains the scalars G,, and which extends
Gq, = GSp(Vg,, ¥q,) C GL(Vg,).
(b) There is a corresponding equivariant closed immersion

Ly s MI9C s Gr(g, No,.

(So ¢ is a strongly integral local Hodge embedding for (G, M!°¢).)

Here, dime(V) = 2g and Gr(g, A) is the Grassmannian over Z,.
8.1.3. Let VZ(p) = ANV, and fix a Z-lattice Vz C V such that Vz ®z Zp) =
Vi, n and Vz C VZv . Consider the Zariski closure Gz, - of G in GL(VZ(p)); then

Gz, Bz, Zp, = G. Fix a finite set of tensors (s,) C Vi‘z(’p) whose stabilizer is Gz, .
Such a set exists by [19,Lemma 1.3.2] and [11].
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SetK, = G(Z,), and K), = GSp(Vg,) N GL(A). We set K = K,K” and similarly
for K>. By [19,Lemma 2.1.2], for any compact open subgroup K’ C G(Alf’) there
exists K7 C GSp(A?) such that ¢ induces an embedding over E

Shk(G, X) = Shy» (GSp(V, ¥), 5%) ® E.

The choice of lattice V7 gives aninterpretation of the Shimura variety Shy» (GSp, S %)
as a moduli scheme of polarized abelian varieties with K°Plevel structure, and hence
an integral model Ay = %> (GSp, S*) over Zp) (see [19, 20]).

We denote by .7 (G, X) the (reduced) closure of Shx (G, X) in the O, (y)-scheme
Zx (GSp, ) ®z) OE,(v), and by (G, X), the normalization of the closure
(G, X)~. For simplicity, we set

S = %(G, X)

when there is no danger of confusion.

Theorem 8.1.4 Assume that p is odd and that the Shimura data (G, X) and the
level subgroup K satisfy the assumptions (1)-(4) of Sect. 8. Then, the Of -models
SK(G, X) support locally universal associated systems

Dk = (L, {Dilzesik))s

where D are Dieudonné (G, MIOC)-displays.

Proof Recall the pro-étale G(Z,)-cover Ly over Shx(G, X) given as in Sect. 7 above.
Let h : A — % denote the restriction of the universal abelian scheme via % —
Zx» (GSp, S%). Then the Zp-local system Lg(t) is isomorphic to the local system
given by the Tate module of the p-divisible group A[p>°] of the universal abelian
scheme over .#k. The tensors s, € A® give corresponding global sections Sq.ét Of
Lk (1)® over Shk(G, X). Theorem 6.4.1 implies that Lk extends to an associated system
(L, {Dz}se.sk))> where Dy are Dieudonné (G, M!°%)_displays. It remains to show:

O

Proposition 8.1.5 For every x € F«(k), the Dieudonné (G, M'°)-display D; over
R = Oy;K ; s locally universal.

Proof Set Dz = (P, g, V). Choose a section s of P overAW(R) which is rigid in the
first order at mg. Then the corresponding section Spec (W (R)) — P C Pgy is rigid
in the first order for the GL-display Dx(¢) = (PgL, gL, YoL) induced by ¢ and Dsx.
We have a morphism

g (s®1):Spec(R) — M C Gr(g, Ao,
We also have the morphism

i : Spec (R) = Spec (@,¢K,2) - A ®z, Op.
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induced by the Hodge embedding. By [20,Prop. 4.2.2] and its proof, i is a closed
immersion. Since Dz = (P, g, W) is associated with Lk (for ¢), the p-divisible group
that corresponds to Dz (1) is the p-divisible group obtained by pulling back the (versal)
p-divisible group of the universal abelian scheme via i. By Proposition 4.5.15 we
obtain that the morphism Spec (R) — Ml°® < Gr(g, A)o, induces a surjection on
cotangent spaces. It follows that Spec (R) — M!°° also induces a surjection

A A

OMloc& — R = O,S’ZK,)E
where y = (¢ - (s ® 1))(x). This surjection between complete local normal rings of
the same dimension has to be an isomorphism. This completes the proof. O

By combining Theorems 8.1.4 and 7.1.8 we now obtain:

Theorem 8.1.6 Assume that p is odd and that the Shimura data (G, X) and the level
subgroup K satisfy the assumptions (1)—(4) of Sect. 8. Suppose v is a place of E over
p- Then the O (y)-scheme k(G , X) of [20] is independent of the choices of Hodge
embedding p : (G, X) — (GSp(V, ), S, lattice Vz C V and tensors (s,), used
in its construction. O

8.2. Finally, we show:

Theorem 8.2.1 Assume that p is odd and that the Shimura data (G, X) and the
level subgroup K satisfy the assumptions (1)—(4) of Sect. 8. Then, the OF ()-models
Sx(G, X) of [20] are canonical, in the sense of Definition 7.1.3.

Proof We already know that %k = .#k(G, X) supports a locally universal asso-
ciated system by Theorem 8.1.4. We need to “upgrade” this and show_there is
also an associated (G, Mk’c)-display Yk as in Definition 6.2.1. Write %k for the
formal scheme obtained as the p-adic completion of .#k. The Dieudonné crystal
Dk := ]D)(A[poo])(W((’)ﬁ)) of the universal p-divisible group over .k gives a GL-
display over ﬁ( By work of Hamacher and Kim [16,3.3], there are Frobenius invariant
tensors Sg univ € ID)% which have the following property: For every x € .#k(k), the
base change isomorphism

Dk ®w(©,7) W(R:) = Mz ®yj o, W(Rs) (8.2.2)

maps Sq,univ to m, @ 1. Here, we write Dz (1) = (Mx, M\ 3, F 3) and we recall that
mg € M ? are the tensors which are associated with s, ¢ € Lk(1)® and are given by
the G-torsor P;x of the Dieudonné (G, Mloc)-display Dz = (Px, gz, Vi) (see the proof
of Theorem 6.4.1). We can now use this to give a (G, M!°%)_display Zk = (Pk., gk, ¥k)
over .%k as follows: First set

7)K = m(sa,univ)a(sa®l)(DK’ A ®Zp W(Oﬁ))

Consider an open affine formal subscheme Spf(R) C 5/4\( Then R satisfies condition
(N). Since (8.2.2) above respects the tensors, Px Qw© ) W(R;z) =~ Pi, for all
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x € Spec (R/p) (k). Hence, for example by Corollary 3.2.6, Px ®W(OVT<) W(R)is a
G-torsor over Spec (W (R)). Therefore, Pk is also a G-torsor. It remains to give gk and
Wy. Recall that, under our assumptions, [20,Theorem 4.2.7] gives a (“local model”)
diagram

>N
yK Mloc ,

in which the left arrow is a G-torsor and the right arrow is smooth and G-equivariant.
The G-torsor S — Yk is given as

T = Isomg, ) (o) bR (A", A ®2, 0.9).
Since by [16,Cor. 3.3.4] the comparison
Dk @w (0 ~) O 7 = Hpg(A)Y
takes S4,univ ® 1 to s, pr, We have
Pk WO 7) Oz = T L Mo

which gives the desired gk. Finally, we can give Wk using the Frobenius structure on
Dy following the dictionary in Sect. 4.4. By similar arguments as above, this respects
the tensors and so it gives an isomorphism of G-torsors. Then Zk gives the desired
(G, M'*)-display which satisfies the requirements of Sect. 7. The result follows. O

Remark 8.2.3 We expect that the above results (Theorems 8.1.6, 8.2.1), can be extended
so that they also apply to the integral models #k(G, X) constructed in [18]. In the
set-up of [18], assumption (2) of Sect. 8 is weakened to allow for some wildly ramified
groups with G,g ®g Q) =~ ]_[f”: 1 Resp, /Qp (H;), where each H; splits over a tamely
ramified extension of F;.
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