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Abstract

Sporobolomyces lactosus is a pink yeast-like fungus that is not congeneric with other members of Sporobolomyces (Basidiomy-
cota, Microbotryomycetes, Sporidiobolales). During our ongoing studies of pink yeasts we determined that S. lactosus was most
closely related to Pseudeurotium zonatum (Ascomycota, Leotiomycetes, Thelebolales). A molecular phylogenetic analysis using
sequences of the ITS region and the small and large subunit (SSU, LSU) rRNA genes, indicated that four isolates of S. lactosus,
including three ex-type isolates, were placed in Thelebolales with maximum support. A new genus is proposed to accommodate
S. lactosus, Inopinatum. This is the first pink yeast reported in Leotiomycetes.

Pink-pigmented yeasts in the order Sporidiobolales (Basidi-
omycota, Pucciniomycotina, Microbotryomycetes) produce
lipid droplets with carotenoid pigments — mostly S-carotene
and torulene — contributing to the pink to orange-reddish
colour of colonies [1-3]. These pigments are thought to offer
antimicrobial, anticancer, and anti-ageing activities and to
protect against radiation [4, 5]. Because of these characteris-
tics, pink-pigmented yeasts have gained interest from phar-
maceutical, cosmetics, and biotechnology industries [6-8].
The pink yeasts were historically placed in two anamorphic
basidiomycete genera, Rhodotorula and Sporobolomyces. In
their traditional sense, both these asexual genera are poly-
phyletic, occurring in all three subphyla and several classes
and orders of Basidiomycota [9-11].

Following the elimination of the use of dual naming systems
for asexual and sexual morphs of fungi, Rhodotorula and
Sporobolomyces are now retained only for those species within
Sporidiobolales [12]. Efforts to reassign many of the species
once classified into Rhodotorula and Sporobolomyces into
natural genera are ongoing [8, 12, 13]. At present, the order
Sporidiobolales is estimated at ca. 260 species of which 42
have been described [3]; Sporobolomyces currently includes

ca. 22 species [8, 14, 15]. These are reported from diverse
habitats including freshwater and marine ecosystems, fruit
must, surfaces of buildings, food, soil, air, and—the most
common habitat from which they are isolated—leaf surfaces
(3, 15-22].

During our studies of pink yeasts in the genus Sporobolomyces,
we noted that the internal transcribed spacer (ITS) barcode
sequence of Sporobolomyces lactosus [23] was not similar to
other species in the genus. Moreover, S. lactosus is not treated
in Kurtzman et al. [24]. A general Nucleotide blast search
(https://blast.ncbi. nlm.nih.gov/Blast.cgi?) of S. lactosus
against ex-type sequences of all fungi resulted in Pseudeuro-
tium zonatum CBS 329.36" (Ascomycota, Leotiomycetes,
Thelebolales) as the closest match with 90.84% shared iden-
tity. An ex-type culture of S. lactosus was obtained from the
Culture Collection of Yeasts (CCY:19-21-17) [23] at the Slovak
Academy of Sciences (Bratislava, Slovakia). Here we present
the results of our phylogenetic analyses of S. lactosus and
formally describe Inopinatum gen. nov. to accommodate it in
the Thelebolaceae (Thelebolales), as the first known yeast-like
species in the Leotiomycetes.
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The GenBank/EMBL/DDBJ accession numbers of the SSU and ITS sequences of Inopinatum lactosum gen. & comb. nov. CCY 19-21-1"=JCM 8510
are AB021676 and AB038132. The GenBank/EMBL/DDBJ accession number of the ITS sequence of /. lactosum C4 is EU551181. The GenBank/
EMBL/DDBJ accession numbers of the newly generated SSU, ITS, and LSU sequences of /. lactosum CCY 19-21-1"7 are MW471137, MW471138
(SSU), MW471139, MW471140 (ITS), MW471141, and MW471142 (LSU). The MycoBank accession numbers are MB835917 for Inopinatum gen. nov.
and MB835918 for /. lactosum comb. nov. The aligned three-locus dataset used for ML phylogenetic inference is available from the figshare online

repository with the URL https://doi.org/10.6084/m?9.figshare.12495878.
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Table 1. Sequences of Thelebolales used in phylogenetic analysis

Species Isolate/strain SSU ITS LSU Reference(s)
Antarctomyces pellizariae UFMG 12416" NA NR_164245 NA [62]
Antarctomyces IMI 378528" NA AJ133431 NA [69]
psychrotrophicus*
Inopinatum lactosum* JCM 8510 AB021676 AB038132 NA -
Inopinatum lactosum* C4 NA EU551181 NA [64]
Inopinatum lactosum™ D. Haelew. F-3088a MW471137 MW471139 MW471141 This study
(ex-CCY 19-21-17%)
Inopinatum lactosum* D. Haelew. F-3088b MW471138 MW471140 MW471142 This study
(ex-CCY 19-21-17%)
Cleistothelebolus CBS 778.70" NA NR_164284 MH871738 [70]
nipigonensis*
Connersia rilstonii* CBS 537.74 AF096174 KJ755499 FJ176866 [71-73]
Crinula caliciiformis* AFTOL-ID 272 AY544729 KT225524 AY544680 -
Geomyces auratus CBS 108.14" AB015785 NR_ 111872 NG_042776 (42,74, 75]
Gymnostellatospora alpina CBS 620.81" NA MH861383 MH873132 [70]
Gymnostellatospora japonica* ~ UAMH 9239 NA DQ117454 NA [76]
Holwaya mucida* TU 112863 KX090898 MH752062 KX090844 [44,77]
Leuconeurospora AFTOL-ID 1397 FJ176828 KF049206 FJ176884 [73]
pulcherrima*
Pleuroascus nicholsonii CBS 345.73" AF096182 NR_156627 AF096196 [71]
Pleuroascus rectipilus CBS 120411" NG_067690 NR_165899 NA [78]
Pseudeurotium hygrophilum CBS 102670" AY129282 AY129291 NA [79]
[as Teberdinia hygrophila)
Pseudeurotium sp. 01NHO1 NA JX270336 NA [80]
Pseudeurotium zonatum AFTOL-ID 19127 DQ471040 NR_111127 DQ470988 [75, 81]
Pseudogymnoascus JGI Genome NA JGI genome NA -
destructans
Pseudogymnoascus roseus* CBS 395.65" ABO015778 NR_165894 MH&870271 [70, 74]
Ramgea ozimecii CNF 2/9997" NA NR_164248 KY368753 [82]
Thelebolus balaustiformis MUT 2357° NA NR_159056 NG_067559 [83]
Thelebolus globosus CBS 113940" NG_062682 NR_138367 NG_067263 [60, 73]
Thelebolus stercoreus CBS 718.69" NA MH859396 MHS871167 [70]
Thelebolus stercoreus* JGI Genome NA JGI genome NA -

*, Type species; |, ex-type; NA, Not available.

Sporobolomyces lactosus, CCY:19-21-17, (Poland: Warsaw,
Plock Refinery sewage treatment plant) [23], was grown on
potato dextrose agar (PDA) with 2% agar, supplemented
with 50 pg ml™ chloramphenicol and 100 pg ml™ ampi-
cillin (BD, Franklin Lakes, New Jersey) to inhibit bacterial
growth. Samples were removed for DNA isolation by using
a J-hook to superficially scrape off pieces of fungal tissue.
DNA was extracted using the Wizard Genomic DNA Purifi-
cation kit (Promega Co., Madison, Wisconsin), following the

manufacturer’s instructions. Next, we amplified the internal
transcribed spacer, and nuclear small and large subunits of
the ribosomal DNA repeat (ITS, SSU, and LSU, respectively).
Primer combinations used were NS1/NS4 for SSU [25], ITS1{/
ITS4 for ITS [25, 26], and LROR/LR5 and LROR/LR7 for LSU
[27,28]. PCR reactions consisted of 12.5 ul of Promega 2xPCR
Master Mix, 1.25pl of each 10 um primer, 9.0 ul of H,O, and
1.0 ul of template DNA. All amplifications were done in an
Eppendorf Mastercycler ep Thermal Cycler (Hauppauge, New
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Fig. 1. Phylogenetic placement of /Inopinatum lactosum gen. and comb. nov. within Thelebolales, reconstructed from a combined dataset
of SSU, ITS, and LSU sequences (26 isolates, 2496 characters). The topology is the result of Bayesian inference performed with BEAST.
Crinula caliciiformis AFTOL-ID 272 and Holwaya mucida TU 112863 were used as outgroups. For each node, pp =0.6 and ML bootstrap =60
are presented above/below the branch leading to that node. Thick branches, maximum support from both Bayesian and ML inference; ",

ex-type; bar, number of substitutions per site.

York) under the same cycling conditions as in Haelewaters
etal. [13].

Maximum likelihood (ML) analyses were done using
IQ-TREE [29], on a multi-locus dataset of all three amplified
loci. Representative sequences for all genera in Thelebolales
were downloaded from NCBI GenBank (Table 1). Sequences
for each locus were aligned using MUscLE [30] available from
the Cipres Science Gateway [31], and then trimmed using the
command-line version of TrimAl 1.3 [32] with gap threshold
of 0.6 and minimal coverage of 0.5. Substitution models were

selected using ModelFinder [33] by considering the Akaike
Information Criterion corrected for small sample size (AICc):
TN+F+G4 for SSU (-InL=2007.697), TIM2e+R2 for ITS
(-InL=2411.356), and TIM3 +F+R2 for LSU (-InL=2300.016).
ML was inferred for the concatenated SSU-ITS-LSU dataset
under partitioned models, with rapid bootstrapping under
1000 replicates [34, 35].

Bayesian analyses were done using a Markov chain Monte
Carlo (MCMC) approach implemented in the BEAST package
[36], with a strict clock assuming a constant rate of evolution
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(a)

Fig. 2. Inopinatum lactosum gen. and comb. nov. Strain C4 from [64], growth on PDA supplemented with chloramphenicol (100mg ")
and ampicillin (100mg L), after incubation of 5-7 days. (a) Colony, with (b) detail of colony with thick and ‘veiny’ undulating margin. (c)
Vegetative cells, arrow pointing at daughter blastoconidium connected to its mother cell. Bar, 10 um.

across the tree and a Yule Speciation tree prior [37, 38]. The
nucleotide substitution models, as determined as by jMod-
elTest 2.1.6 [39] under AICc, were as follows: HKY+G for
SSU (-InL=2008.6823), TIM2ef+G for ITS (-InL.=2406.8675),
and TrN +I+G for LSU (-InL=2300.4287). Two runs were
undertaken from a random starting tree for 40million
generations, with a sampling frequency of 4000. Tracer 1.6
[40] was used to check MCMC trace plots. After removed of
10% as burn-in, trees files were combined, consensus trees
were generated (with 0% burn-in), and the Maximum Clade
Credibility (MCC) tree was inferred with the higher product
of individual clade posterior probabilities (pp).

Intra- and interspecific divergence in the ITS and LSU
regions was calculated using the Compute Pairwise Distances
function in MEGA7 [41] with model/method set at ‘No. of
differences, gaps/missing data treatment set at ‘pairwise dele-
tion, and default settings for other parameters. The aligned,
trimmed ITS sequences of our two ex-CCY 19-21-1" isolates
and of ex-type strain JCM 8510 were 100% identical. Isolate
C4 differed in its ITS in four nucleotides (nt), followed by
Pseudeurotium zonatum CBS 329.36'=AFTOL-ID 1912" with
42 nt differences in the ITS. The two ex-CCY 19-21-1" isolates
also shared 100% identity in their LSU sequences. The isolate
from our dataset with least nt differences in the LSU region
was Thelebolus balaustiformis MUT 2357" (28 nt), followed by
Leuconeurospora pulcherrima AFTOL-ID 1397 (29 nt), and
Cleistothelebolus nipigonensis CBS 778.70" and Pseudeurotium
zonatum CBS 329.36" (both 30 nt).

The phylogenetic reconstruction of Thelebolales based on the
concatenated three-locus dataset is shown in Fig. 1. Crinula
caliciiformis and Holwaya mucida (Leotiomycetes incertae
sedis) were chosen as outgroup taxa. All included genera
except Ramgea were placed in either Pseudeurotiaceae or
Thelebolaceae as currently accepted [42-44]. In our three-
locus phylogenetic reconstruction, Ramgea ozimecii CNF
2/9997" was retrieved as the earliest diverging clade in the
order with maximum support, resulting in a paraphyletic
family Thelebolaceae. Inopinatum lactosum gen. and comb.

nov. was maximally supported as sister to other members of
Thelebolaceae.

Leotiomycetes are a diverse class within subphylum Pezizo-
mycotina [44, 45] comprising ca. 6500 described species in
630 genera. These fungi are often found as major components
of environmental samples. Nonetheless, many taxa remain
unnamed or incertae sedis within the class. Leotiomycetes
species appear to be predominantly saprotrophic and para-
sitic, including economically and ecologically important
pathogens such as the powdery mildews (Erysiphaceae) and
the causal agent of white-nose syndrome in bats (Pseudogym-
noascus destructans, only known from its asexual morph)
[43, 44]. Other species, however, are mycorrhizal mutualists
(ectomycorrhizae and ericoid mycorrhizae) and plant endo-
phytes [46-49].

Ascomycetous yeasts and yeast-like taxa are primarily found
in the subphyla Saccharomycotina (Saccharomycetes) and
Taphrinomycotina (Neolectomycetes, Pneumocystomycetes,
Schizosaccharomycetes, Taphrinomycetes) [24], but have also
been revealed in other lineages: Arthoniomycetes, Dothideomy-
cetes, Eurotiomycetes, Xylonomycetes (subphylum Pezizomy-
cotina), and Gemmulina (Ascomycota incertae sedis) [50-56].
Only recently, the black yeast genus Phaeococcomyces was placed
in a newly erected order Lichenostigmatales (Arthoniomycetes)
along with taxa forming colonies of stromatic ascomata or
conidiomata (Etayoa, Lichenostigma)—a lineage that is unique
within this class, which is otherwise composed primarily of
lichenized species [51].

Inopinatum lactosum is the first described yeast-like fungus in
Leotiomycetes, adding to the body of work that is expanding
the known morphological and ecological diversity in the class.
For example, the perithecioid apothecial Annabella australiensis
(Leotiomycetes, Cordieritidaceae) was recently discovered from
mangrove wood [57], a habitat that is otherwise mostly popu-
lated by Dothideomycetes and Sordariomycetes [58]. Inopi-
natum is placed in Thelebolaceae. This family includes many
coprophilic and psychrophilic species [59-62] and, based on
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genomic-scale data, was recently determined to be the sister to
Pseudeurotiaceae—the order that contains the asexual fungus
P, destructans [44, 63]. Although little is known of the ecology
of I lactosum, a coprophilous habit is likely given its isolation
from animal faeces [64] and petrochemical wastewater [23].

Inopinatum lactosum is represented in NCBI GenBank by SSU,
ITS, and LSU sequences of two ex-CCY 19-21-17 isolates (this
study); SSU, ITS, LSU, and cytochrome b (cytb) sequences of
strain JCM 8510 (unpublished data); and an ITS sequence
of isolate C4 [64], which shares 99.01% identity with the
ex-type sequences. The C4 isolate was screened for produc-
tion of enzymes on agar plates containing different substrates.
Protease, amylase, mannanase, and variable xylanase activity
was observed at 25°C, while at 15°C and 39°C all enzymatic
activity was either variable or absent [64].

DESCRIPTION OF INOPINATUM HAELEW. &
AIME, GEN. NOV.

Inopinatum (Latin, meaning ‘unexpected’ and referring to the
unexpected placement of this pink yeast genus in Leotiomy-
cetes) MycoBank number: MB835917.

Type species: Inopinatum lactosum (E. Slavikova and
Grab.-Lon.) Haelew. and Aime

Description: Yeast-like fungi belonging to Theobolaceae
(Theobolales, Leotiomycetes). Teleomorph unknown. Anamorph
pink-pigmented, forming pseudohyphae and hyphae; blastoco-
nidia bilaterally symmetrical; no known fermentation. Isolated
from animal faeces and wastewater.

Inopinatum lactosum (E. Slavikova and Grab.-Lon.) Haelew.
and Aime, comb. nov. MycoBank number: MB835918. Fig. 2.

Basionym: Sporobolomyces lactosus E. Slavikova and
Grab.-Lon., Anton Leeuw 61 (3): 246 (1992).

Inopinatum lactosum forms pink, glistening, ropey colonies
on PDA (Fig. 2a). The colony margin is coarsely fimbriate,
with a ‘veiny’ appearance (Fig. 2b) reminiscent of growth of
some Aureobasidium Viala and G. Boyer and Kabatiella Bubak
species in culture [65, 66]. Whereas Aureobasidium cultures
become black with time, I. lactosum retains its pink pigemen-
tation (Fig. 2a). Growth is dimorphic, producing short chains
of pseudohyphae and a few true hyphae near margins, and
blastoconidia from older growth in the center (Fig. 2c). CCY
19-21-17, the holotype strain of I. lactosum, was isolated from
an activated sludge in Poland [23]. The conidia were described
as ballistoconidia in the protologue but are blastoconidia [67],
analogous to Aureobasidium [68]. The C4 strain was isolated
from koala faeces [64], a habitat that is consistent with that
of other members of Thelebolaceae that are mainly known
from dung [59].

The holotype is CCY 19-21-1, from petrochemical waste-
water in Warsaw, Poland, and is permanently preserved in
a metabolically inactive state in the Culture Collection of
Yeasts, Bratislava, Slovakia. Ex-type cultures are preserved
as JCM 8510 and JCM 10082 in the Japan Collection of

Microorganisms, Tsukuba, Japan; and as NCYC 2618 in the
National Collection of Yeast Cultures, Norwich, UK.
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