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Self-supervised Clustering of Mass Spectrometry Imaging Data 
Using Contrastive Learning† 

Hang Hu a, Jyothsna Padmakumar Bindu b and Julia Laskin *a 

Mass spectrometry imaging (MSI) is widely used for the label-free molecular mapping of biological samples. The 

identification of co-localized molecules in MSI data is crucial to the understanding of biochemical pathways. However, 

complex MSI data are too large for manual annotation but too small for training deep neural networks. Herein, we introduce 

a self-supervised clustering approach based on contrastive learning, which shows an excellent performance in clustering of 

MSI data. We train a deep convolutional neural network (CNN) using MSI data from a single experiment without manual 

annotations to effectively learn high-level spatial features from ion images and classify them based on molecular 

colocalizations. We demonstrate that contrastive learning generates ion image representations that form well-resolved 

clusters. Subsequent self-labeling is used to fine-tune both the CNN encoder and linear classifier based on confidently 

classified ion images. This new approach enables autonomous and high-throughput identification of co-localized species in 

MSI data, which will dramatically expand the application of spatial lipidomics, metabolomics, and proteomics in biological 

research.

Introduction 

Mass spectrometry imaging (MSI) is a powerful label-free 

molecular imaging technique for biological research, which 

enables simultaneous localization of multiple classes of 

biomolecules with high sensitivity and unprecedented 

molecular specificity.1–4 By acquiring a full mass spectrum in 

each pixel of a virtual grid, MSI generates hundreds of molecular 

images in a single experiment. Recent advances in MSI 

technology focus on the enhancement of the spatial 

resolution,5,6 depth of molecular coverage7–9 and acquisition 

throughput,10–12 all of which substantially increase the data size. 

The interpretation of complex MSI data is a major bottleneck on 

the path to scientific discovery, which motivates the 

development of computational tools for data mining and 

visualization13,14. 

    A recurring task in MSI data analysis is to identify co-localized 

molecules, which is critical to the identification of key 

biochemical pathways of interest to biomarker discovery,15,16 

drug development,17,18 and clinical diagnostics.19–21 Previous 

computational approaches used image vector-based similarity 

measurements to determine molecular colocalizations.22–25 

However, these methods cannot correlate high-level spatial 

features making them disproportionately sensitive to the 

experimental artifacts and noise, which reduces their 

generalization capacity towards spatial patterns with similar 

localization but different contrast. Recently, transfer learning 

and semi-supervised deep learning approaches using 

convolutional neural network (CNN) have been developed to 

cluster ion images and quantify the molecular colocalization, 

respectively26,27. These reports indicate that the limited size of 

MSI data presents a challenge to conventional CNN training 

frameworks, which typically rely on a large number of 

annotated images. As a result, these approaches provide a 

relatively minor improvement over the traditional machine 

learning methods for finding co-localized molecular images. 
Recent advances in self-supervised contrastive learning 

approaches for computer vision including MoCo28, SimCLR29 and 

SwAV30 have opened up new opportunities for learning visual 

representations without manual annotations. In natural image 

classification, these approaches provide comparable results to 

those obtained using supervised learning. In contrastive 

learning, image representations are learned by generating 

augmented instances of unlabeled images and using contrastive 

loss to minimize the difference between augmentations 

generated from the same image and maximize the difference 

between augmentations generated from different images. 

Following its success in computer vision, this strategy has been 

adopted in several applications in other research fields 

including classification of electrocardiograms31 and clustering of 

scRNA-seq data32. It has been demonstrated that the 
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development of modality-specific data augmentation is critical 

to the performance of models trained using contrastive 

learning. 

Herein, we report on the development and performance of 

the contrastive learning approach for clustering of MSI data. We 

demonstrate that this strategy may be used to overcome the 

existing gap in the classification of MSI data due to the limited 

data size. We introduce a robust self-supervised clustering 

approach, which enables efficient colocalization of molecules in 

individual MSI dataset by retraining a CNN and learning 

representations of high-level molecular distribution features 

without annotation. The modality-specific data augmentation 

and classification fine-tuning methods were developed to build 

a fully unsupervised framework with optimal molecular 

colocalization performance. 

Results and discussion 

Self-supervised training of a CNN model for molecular localization 
clustering 

The self-supervised approach for molecular colocalization 

developed in this study is illustrated in Fig. 1. The approach is 

based on training a CNN to learn representations of molecular 

localizations and classify molecular images into groups based on 

high-level spatial features. The clustering results provide a 

concise presentation of the spatial patterns present in large MSI 

data, which is critical to understanding the relevant biochemical 

pathways. To facilitate the autonomous and high-throughput 

MSI-based scientific discovery, we train our model in a self-

supervised manner without manual annotations. This is 

achieved using image augmentation, which enables an effective 

self-supervised training of a deep CNN with a limited number of 

ion images. The self-supervised clustering approach developed 

in this study is summarized in Fig. 1. The approach relies on the 

following three steps described in detail later: 1) Contrastive 

learning of molecular localization representations using SimCLR; 

2) Image clustering based on the learned representations and 

3) Self-labeling of the clustered images. 

    In order to assess the improvement of the model during the 

self-supervised training, we systematically evaluated each 

training step using a manually annotated benchmark MSI 

dataset of a mouse uterine tissue acquired using nanospray 

desorption electrospray ionization (nano-DESI).33 The mouse 

uterine tissue with several distinct cell types is an excellent 

model system, which presents diverse molecular localizations. 

From the data acquired in both positive and negative ionization 

modes, we manually selected 367 ion images (96 x 96 pixels) 

and clustered them into 13 classes (see ESI, Methods). We then 

validated our approach using a publicly available mouse brain 

tissue MSI dataset from METASPACE.34 It was acquired using 

matrix-assisted laser desorption/ionization (MALDI),5 which 

contains 1101 high resolution ion images (224 x 224 pixels) 

without annotations. Detailed dataset information are 

summarized in Table S1. Our results demonstrate the 

robustness of the self-supervised clustering approach for MSI 

datasets of different sizes, spatial resolutions, tissue types, and 

acquisition conditions.  

Contrastive learning of image representations 

In the contrastive learning step, we use SimCLR to train a CNN 

encoder for learning image representations. We used 

EfficientNet-B0 trained on ImageNet as a baseline CNN. 

EfficientNet35 has been demonstrated to achieve high accuracy 

on ImageNet and provide an order of magnitude higher 

efficiency than previous models, such as ResNet and Xception. 

Fig. 1 self-supervised training of CNN model for molecular 

colocalization. (1) CNN encoder is trained by contrastive 

learning of images in minibatches to learn ion image 

representations. (2) Learned image representations are 

classified by spectral clustering. This classification pretext 

task is utilized to initiate a linear classifier after CNN 

encoder. (3) The classification CNN model is further fine-

tuned by self-labeling of each image in minibatches. Black 

arrows indicate the data flow associated with images. The 

pale indigo arrow indicates the updating of CNN model 

across three steps of training. 
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In SimCLR framework (see ESI, Fig. S1), a mini-batch of N ion 

images is sampled and each image is subjected to a pair of 

stochastic transformations to generate 2N augmented images. 

A positive augmented pair is derived from the same ion image. 

Meanwhile, the remaining 2(N-1) augmented images are 

treated as negative instances. SimCLR learns visual 

representations by maximizing the similarity between the 

positive pair of images while minimizing their similarity to the 

negative instances via a contrastive loss in the latent space. 

Details of the framework are described at ESI Methods section.  

Data augmentation plays a critical role in the training step. It 

ensures that the learned visual representations of ion images 

are independent of the employed transformations. This 

generalization power of SimCLR is critical to learning high-level 

spatial features instead of pixel-level details. In order to 

evaluate the performance of this step, we systematically 

investigated the impact of image augmentation operations on 

image classification in the benchmark dataset as shown in Fig. 

2a. In particular, we used stochastic Gaussian blur, Gaussian 

noise, and intensity distortion to alter the appearance of ion 

Fig. 2 Self-supervised clustering enables effective molecular localization representation learning and classification in benchmark 

data. (a) Illustration of studied image augmentation operators. (b) Linear evaluation of re-trained CNN encoder with individual 

or composite image augmentation operators. t-SNE visualizations of ion image representations obtained from (c) pre-trained 

CNN encoder and (d) re-trained CNN encoder. Each data point corresponds to an ion image. (e) Contrastive learning 

substantially improves the purity of local neighborhoods of ion images in the representation space. (f) The relationship between 

classification accuracy and fraction of confidently classified ion images, which are selected based on a series of softmax 

probability thresholds. (g) Changes in the training loss, accuracy, and number of confidently classified ion images during the 

self-labeling process. 
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images along with stochastic translation, resized crop, and 

rotation to alter their geometry. For each type of augmentation, 

we performed SimCLR using the same training protocol and 

evaluated the learned representations using a linear evaluation, 

in which the accuracy describes the quality of the 

representation (see ESI, Methods). We also examined the 

performance of a direct transfer learning (annotated as “no 

SimCLR” in Fig. 2b and Fig. S2b) and SimCLR in the absence of 

augmentation (annotated as “no augmentation”) for 

comparison. Fig. 2b shows that all the appearance-changing 

augmentations improve the performance of the representation 

learning. Meanwhile, all the geometry-changing augmentations 

except for rotation do not provide a measurable improvement. 

Stronger geometric transformations reduce the classification 

accuracy (Fig. S2). This observation indicates that in contrast to 

the semantic classification of natural images, strong alteration 

of the geometry of ion images is detrimental to representation 

learning of molecular localizations. We also examined the 

combined effect of the appearance-changing augmentations on 

the learned representations. Fig. 2b shows that a combination 

of three stochastic appearance-changing augmentation 

operators results in >80% accuracy in the linear evaluation. An 

example shown in Fig. S3 illustrates the power of the 

generalization provided by this augmentation strategy. In 

particular, for ion images that have different contrast and noise 

level, augmented images generated for one molecule (m/z 

789.561 in positive mode) become similar to the original images 

of other molecules (m/z 746.5108 in positive and 599.3205 in 

negative modes, respectively). As a result, these molecules are 

classified into one group in the self-supervised clustering 

process. Our results indicate that, for MSI data, the 

generalization power of contrastive learning stems from the 

appearance-changing image augmentations. 

The learned representations for the benchmark dataset are 

visualized using t-SNE in Figs. 2c and 2d with the color coding 

obtained from the manual image classification. The results 

demonstrate that the pre-trained EfficientNet-B0 model does 

not separate different classes of ion images (Fig. 2c). In contrast, 

the separation and compactness of clusters are dramatically 

improved using the re-trained encoder (Fig. 2d). These findings 

indicate that contrastive learning provides meaningful 

localization representations, which may be used for image 

clustering without annotations. We also studied the impact of 

training time on the learned representations as shown in Fig. S4. 

Because the algorithm maximizes the similarity of positive pairs 

and minimizes the similarity of negative instances, we observe 

a trade-off between the alignment and uniformity in the 

learned image representations.36 Alignment indicates that 

feature vectors of two images from a positive pair should be 

mapped together while uniformity indicates that all feature 

vectors should be uniformly distributed. For the benchmark 

dataset, alignment dominates the training process in the first 50 

epochs, in which ion images from the same class tightly 

aggregate together in the 2D feature space (Fig. S4a). Further 

training beyond this point disproportionately increases the 

uniformity of data distribution, which is detrimental to the 

downstream classification. In addition, a fast decrease in the 

contrastive loss observed in the first 50 epochs is followed by a 

much slower trend at longer training times (Fig. S4b) indicating 

the diminished benefit of a longer training. The linear 

evaluation results shown in Fig. S4c indicate that 50 epochs of 

training provide the best classification of the benchmark data. 

Image clustering 

In the second step illustrated in Fig. 1, we performed image 

clustering based on the representations and generated the 

initial classification labels for the self-labeling task. Spectral 

clustering (SC) approach is selected, which constructs a k-

nearest neighbor graph from ion image representations and 

then identifies clusters through the Laplacian embedding. 

Because contrastive learning provides image representations 

with meaningful local neighborhoods, SC is an appropriate 

method for this task.37 For representations of benchmark 

dataset given by contrastive learning, we quantified the purity 

of local neighborhoods by counting the annotation-matching 

pairs for each image and its k-nearest neighbors, where k ranges 

from 1 to 30. (see ESI, Methods) Our results confirm that 

contrastive learning substantially improves the purity of local 

neighborhoods of ion images in the representation space as 

shown in Fig. 2e. In particular, we observe that for a relatively 

large neighborhood size (k > 3), the re-trained encoder 

improves the pair-matching percentage by more than 15%. For 

example, for ten nearest neighbors, the pair-matching 

percentage is 88% and 66% for the re-trained and pre-trained 

encoders, respectively. In our implementation of the SC 

algorithm, we used ten nearest neighbors to construct the 

nearest-neighbor graph. The ten-neighbor condition provides a 

good balance between the connectivity and purity of each 

neighborhood, which are important to the data structure 

detection and clustering. As shown in Fig. 2e and Table S2, the 

CNN encoder trained using SimCLR provides meaningful local 

neighborhoods for neighborhood sizes (k) ranging from 3 to 15. 

A combination of contrastive learning and SC provides 81.5% 

classification accuracy for benchmark dataset with 13 clusters 

as shown in Table 1. However, this machine learning classifier is 

non-learnable, which hinders further model improvement. In 

order to further enhance the clustering performance, we used 

the initial labels obtained from SC to initialize a learnable linear 

classifier at the end of the CNN encoder and then fine-tuned the 

model using a self-labeling approach38. This classifier is 

composed of a linear layer followed by a softmax function. Its 

initialization is performed by training it on top of the frozen 

encoder with the original ion images and initial labels as inputs 

as illustrated in step 2 of Fig. 1. 

Self-labeling 

The self-labeling step shown in Fig. 1 fine-tunes both the CNN 

encoder and linear classifier by ensuring that augmentations of 

the same ion image are classified into the same group. This 

approach further enhances the generalization power of the 

model, which becomes tolerant towards visual variations 

originating from strong data augmentations (see ESI, Methods). 
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To optimize the training process, only confidently classified 

images are included in self-labeling.  

    Because the initial labels are generated using an unsupervised 

machine learning approach, we anticipate that some false 

classification may be present. We identified falsely classified 

images based on their softmax probabilities.39 By excluding 

these images from training, we improved the robustness of the 

CNN model, which benefits the classification accuracy. In order 

to select images with correct classification during the training, 

we first examined the relationship between the softmax 

probability and classification accuracy for the CNN model using 

the benchmark dataset. This model was trained by initial labels 

obtained from SC and classified ion images into 13 classes. We 

used a range of softmax probability thresholds to examine the 

classification accuracy (red trace) and fraction of confidently 

identified images (blue trace) as shown in Fig. 2f. We observe 

that the classification accuracy increases with increase in the 

softmax probability threshold. Meanwhile, the number of 

confidently classified images decreases. Additional examples of 

this analysis are shown in Fig. S5 indicating that the observed 

trend is general.  

The results shown in Fig. 2f indicate that there is a trade-off 

between the number of confidently classified images and 

classification accuracy.  In self-labeling, we chose a probability 

threshold of 0.9 to start training, for which 58% of confidently 

classified images were selected with 96% classification 

accuracy. Self-labeling is performed by re-training both the CNN 

encoder and classifier using selected images. For each ion 

image, we use one weak and one strong data augmentation (see 

ESI, Table S3 and Methods), which provides two pseudo labels 

as the classifier outputs. A cross-entropy loss is calculated for 

the pseudo labels and the model parameters are updated to 

minimize the loss as illustrated in Fig 1. In each epoch, we 

update the confidently classified images for training using the 

same softmax probability threshold of 0.9. As illustrated in Fig. 

2g, the loss (purple line) decreases with training time. 

Meanwhile we observe a significant increase in the number of 

confidently classified images and a slight increase in the 

accuracy with training time. These results demonstrate that the 

CNN model corrects itself during the self-labeling process, 

which gradually includes additional confidently classified ion 

images into the training and increases the overall classification 

accuracy. 

Table 1 Summary of the performance of different clustering 

methods on benchmark data. 

We used the self-supervised clustering approach to cluster 

benchmark ion images of the mouse uterine tissue (Fig. S6) into 

13 and 20 groups. The results obtained at different stages of the 

workflow for five replicates are summarized in Table 1. When 

clustering is performed using the CNN encoder and SC, 

contrastive learning (SimCLR) improves the classification 

accuracy from 64.8% to 81.5% with 13 clusters and from 71.9% 

to 90.0% with 20 clusters. An improvement of about 20% in 

accuracy clearly indicates the significance of the CNN retraining 

for learning image representations in MSI data. In addition, self-

labeling provides a 3% improvement in the classification 

accuracy for both 13 and 20 clusters. Collectively, our self-

supervised clustering approach enabled clustering of the 

benchmark data into 20 groups with 92.7% accuracy as shown 

in Fig. S7. Representative ion images for each group shown in 

Fig. 3 provide a concise summary of the spatial patterns present 

in the vast MSI data. Meanwhile, the generalization power of 

the self-supervised clustering approach and its tolerance to 

noise levels can be assessed by examining images in each class 

of Fig. S7. 

Comparison of the self-supervised clustering with vector-based 

methods 

We compared the performance of the self-supervised clustering 

developed in this study with conventional vector-based approaches 

used in MSI. Although all the approaches used in this comparison rely 

on the similarity measurement between vectors for image 

classification, the classification accuracy shown in Table S4 varies 

between the methods. In the self-supervised clustering approach, 

the CNN encoder converts the high-level spatial information of the 

observed molecular distributions into feature vectors. These feature 

vectors are subsequently classified into distinct spatial patterns using 

either a clustering algorithm or an iteratively trained classifier. In 

contrast, vector-based clustering methods convert ion images into 

image vectors, which are subsequently subjected to the clustering 

analysis.24,25,40 This flattening of the MSI data results in a substantial 

Fig. 3 20 average ion images obtained from self-supervised 

clustering results provide a concise summary for 

comprehensive molecular distribution patterns present in 

the benchmark MSI data. 
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loss of the spatial information content, which makes vector-based 

methods disproportionately sensitive to the experimental artifacts 

and noise. To compare the performance of the self-supervised 

clustering approach with vector-based methods, we used ion image 

similarity measurements as illustrated in Fig. 4 and Fig. S8. 

    In the example shown in Fig. 4a, we use an ion image of m/z 

875.5700 as a reference and correlate it to images of m/z 739.4681 

and m/z 868.5243. The pairwise cosine similarity scores obtained 

using both the CNN feature vectors, generated by the encoder shown 

in Fig. 2d, and image vectors are listed in Fig. 4b. Although ion images 

of m/z 875.5700 and 868.5243 indicate that these ions are enhanced 

in luminal epithelial (LE) cells, the signal of m/z 875.5700 in the LE 

region is relatively low and the distribution is less distinct than that 

of m/z 868.5243. In contrast, m/z 739.4681 is enhanced in both the 

LE and glandular epithelial (GE) cells. Therefore, we expect to obtain 

a better correlation between ion images of m/z 875.5700 and 

868.5243 than between m/z 739.4681 and other two species. The 

pairwise cosine similarity scores obtained using the CNN feature 

vectors suggest that the reference ion has a better colocalization 

with m/z 868.5243 (0.695) than with m/z 739.4681 (0.420), which is 

consistent with the expectation. However, the similarity scores 

calculated using image vectors are clearly affected by the low 

intensities of the reference ion in the GE region and predict the 

opposite trend. This comparison confirms that the self-supervised 

clustering approach is substantially more tolerant to chemical noise 

than vector-based approaches. 

    We also used the Uniform Manifold Approximation and Projection 

(UMAP) algorithm to project both the CNN feature vectors and image 

vectors onto a 2D space, as shown in Figs. 4c and 4d. In these plots, 

each ion image is represented by a filled circle and color coded by 

their manual image classification. The three ion images shown in Fig. 

4a are highlighted in the UMAP plot. In the UMAP plot obtained for 

the CNN feature vectors shown in Fig. 4c, m/z 875.5700 is mapped 

closer to m/z 868.5243 than to m/z 739.4681, which is in agreement 

with our expectations. In contrast, m/z 739.4681 is mapped between 

other two ions in the UMAP plot of image vectors shown in Fig. 4d. 

We also observe mixing between ion images from class 5 and class 8 

in Fig. 4d. This further highlights challenges associated with image 

clustering using vector-based approaches, which may lead to errors 

in data structure visualized using UMAP analysis. A similar 

phenomenon is observed when the Ward hierarchical clustering is 

applied to image vectors shown in Fig. S9. This analysis indicates that 

the Euclidean distance measurement cannot differentiate between 

the ion image of m/z 739.4681 and two other ion images used in this 

example. The biases in the similarity measurement using image 

vectors are observed for a range of ions, as shown in Fig. S8 and Table 

S5.  

    In summary, the CNN feature vectors generated in SimCLR training 

provide a more accurate pairwise ion image similarity detection than 

vector-based methods. This is largely due to the strong 

generalization capability of the re-trained CNN, which identifies high-

level spatial features even in noisy MSI data. 

Mass spectrometry image clustering of an unannotated mouse 

brain dataset  

To further demonstrate the robustness of the self-supervised 

clustering approach, we applied it to a publicly available mouse 

brain MALDI MSI dataset. The image size of 224 x 224 pixels is 

larger than the benchmark data. For the mouse brain MSI data, 

we generated 1101 ion images Shown in Fig. S10. We observe 

diverse spatial patterns of metabolites and lipids localized to 

different regions of the brain tissue. Ion images showing signal 

enhancement outside of the tissue region most likely 

correspond to matrix peaks. Using self-supervised clustering 

approach, we re-trained the CNN model and clustered 1101 ion 

images into 35 colocalization groups as shown in Fig. S11. This 

process took less than one hour with a single GPU card (see ESI, 

Methods). 

Fig. 5a illustrates ion image representations after self-

supervised learning using t-SNE visualization. Additional results 

are provided in Fig. S12. In the absence of a manual annotation, 

we use the black color for all the data points in Fig. S12. With 

the pre-trained EfficientNet-B0, we could only observe several 

aggregates at the edge of the 2D ion image representations. 

However, the uniformly distributed representations in the 

center of the plot cannot be used for identifying the co-localized 

ion images (Fig. S12a). After the contrastive learning step, the 

re-trained CNN encoder provides a substantially improved 

separation of the representations as shown in Fig. S12b. Fig. 5a 

Fig. 4 Comparison of the molecular colocalization 
measurements obtained using the self-supervised 
clustering approach and image vector-based methods. (a) 
Ion images of m/z 875.5700, 739.4681, and 868.5243 
denoted with a star, triangle, and square, respectively. and 
an optical image from the benchmark dataset. (b) Cosine 
similarity scores for both CNN feature vectors and image 
vectors obtained for the three ion images. UMAP 
visualizations of (c) CNN feature vectors and (d) image 
vectors. Zoom-in regions show the location of the three ion 
images in panel a on the UMAP plot.  
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shows ion image representations after self-labeling, which are 

color-coded with predicted colocalization labels. Tight clusters 

indicate co-localized molecular distribution patterns in the MSI 

data. Pairs of ion images were selected from clusters and placed 

around the t-SNE plot. Images from one pair have similar spatial 

features, while different pairs show distinct molecular 

localizations. These results confirm that the self-supervised 

clustering approach developed in this study provides accurate 

molecular localization representations of distinct spatial 

patterns observed in MSI data. Notably, some of the paired ion 

images have different noise levels (e.g., m/z 906.4314 vs m/z 

915.4561) or different intensity levels (e.g., m/z 613.3477 vs 

Fig. 5 Self-supervised clustering results on a publicly available MALDI mouse brain dataset. (a) t-SNE visualization of ion image 

representations obtained after two steps of self-supervised training. Data points are color-coded using the final clustering 

assignments of ion images. Pairs of representative ion images are selected from well-resolved clusters to visualize the quality 

of classification. (b) An average spectrum color-coded using the same color scheme as that in panel a. (c) A zoom in region of 

the average spectrum showing several isotopic patterns. The results of isotopic identification (ground truth), EfficientNet-B0 

and SC classification, and self-supervised clustering classification are annotated using independently assigned class numbers 

with different colors. Ions with the same color and number are grouped together in the corresponding classification. For 

clustering results, an asterisk indicates falsely classified isotopic ions. (d) A summary of the isotopic recall for different clustering 

methods. 
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m/z 817.1050). These results indicate that data augmentations 

used in the training step provide a sufficient generalization 

capability for the re-trained CNN model to identify high-level 

molecular localization. The ability to perform self-supervised 

clustering of the unannotated MSI data distinguishes our 

approach from previously reported methodologies.24–27 

We also visualized the ion clustering results in the m/z space. 

Fig. 5b shows an average mass spectrum over the m/z 600-1000 

range, in which peaks are highlighted using the same color 

coding as that in Fig. 4a. To further evaluate the accuracy of the 

clustering, we examined the isotopic recall26, which quantifies 

the percentage of ion images of isotopic peaks correctly 

grouped together. We identified isotopic ions based on both the 

accurate m/z shift and Pearson correlations of ion images (see 

ESI, Methods). For example, in Fig. 5c, co-localized isotopic 

peaks observed in the m/z range of 736-765 are annotated 

using compound indices in gray color, which are ranked by their 

primary isotopic m/z values. Ion image colocalization results of 

self-supervised clustering and EfficientNet-B0 followed by SC 

are also annotated by colocalization class number with blue and 

red colors, respectively. We note that independent class 

numbers were assigned to these two classification results. With 

the expectation that isotopic images should be clustered into 

the same group, we identified the correctly and falsely classified 

isotopic ions in clustering results (see ESI, Methods) and marked 

false isotopic classification with an asterisk. In the mass range 

shown in Fig. 5c, EfficientNet-B0 and SC falsely classified 3 

isotopic peaks, while the self-supervised clustering approach 

correctly grouped all the isotopic peaks. This result further 

confirms the accuracy and robustness of the self-supervised 

clustering. Values of the isotopic recall obtained using different 

clustering methods are summarized in Fig. 5d. For the clustering 

involving the CNN encoder and SC, contrastive learning 

(SimCLR) improves the isotopic recall from 75.4% to 90.2%. 

With the self-labeling, the final model reaches an isotopic recall 

of 92.1%, which indicates the superior clustering performance 

of this approach.   

Conclusion 

We developed a robust self-supervised clustering approach for 

classifying co-localized molecular images obtained using MSI. In 

this approach, data augmentation is combined with contrastive 

learning and self-labeling methods to train a deep CNN model 

without manual annotations. Systematic studies using a fully 

annotated mouse uterine tissue data and unannotated mouse 

brain tissue data demonstrate that the re-trained CNN model 

efficiently learns high-level molecular localization 

representations, which facilitate clustering of molecular images. 

Using a manually annotated benchmark dataset, we 

demonstrate that this approach achieves >90% classification 

accuracy. Meanwhile, clustering of a publicly available 

unannotated MSI data demonstrates the robustness of this 

approach and its applicability to different tissue types, image 

sizes, modes of ionization, instrument parameters, and data 

complexity.  

    Our findings indicate that the limited size of MSI data is not a 

bottleneck for self-supervised learning. However, data 

augmentation is critical to the model training. We use a 

combination of stochastic appearance-changing 

transformations, such as Gaussian blur, Gaussian noise and 

intensity distortion to maximize the generalization power of the 

CNN model towards the efficient recognition of distinct 

localization patterns in ion images with varying levels of signal 

and noise. A similar self-supervised learning paradigm may be 

applied to other hyperspectral chemical imaging modalities 

including Raman and infrared microscopy.  

    The self-supervised learning approach presented herein 

enables molecular colocalization analysis based on the MSI data 

in an autonomous and high-throughput manner. It provides a 

concise representation of the vast data containing several 

hundreds of molecular images, which is critical to 

understanding biochemical pathways in biological systems. 

Furthermore, we propose that this approach may be readily 

expanded into a larger semi-supervised learning framework. 

The self-supervised paradigm enables representation learning 

before supervised classification, which is particularly 

advantageous for automatic ion image labeling necessary for 

the high-throughput annotation of both MSI data and data 

obtained using other imaging modalities. 

Data availability 

The mouse brain MSI dataset can be obtained from METASPACE 
(https://metaspace2020.eu). The dataset title is: 
Mousebrain_MG08_2017_GruppeF. Mouse uterine MSI 
benchmark data and the source code for the model training and 
inference are available on GitHub 
(https://github.com/LabLaskin/MSI-self-supervised-clustering).  
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