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In a recent paper we showed that the collapse to a black hole in one-parameter
families of initial data for massless, minimally coupled scalar fields in spherically
symmetric semi-classical loop quantum gravity exhibited a universal mass scaling
similar to the one in classical general relativity. In particular, no evidence of a
mass gap appeared as had been suggested by previous studies. The lack of a mass
gap indicated the possible existence of a self-similar critical solution as in general
relativity. Here we provide further evidence for its existence. Using an adaptive mesh
refinement code, we show that “echoes” arise as a result of the discrete self-similarity
in space-time. We also show the existence of “wiggles” in the mass scaling relation,
as in the classical theory. The results from the semi-classical theory agree well with
those of classical general relativity unless one takes unrealistically large values for
the polymerization parameter.

I. INTRODUCTION

In 1993 Choptuik [I] studied numerically the collapse of a massless scalar field in spher-
ically symmetric general relativity. Such a system has two possible final states: either the
field disperses to infinity or forms a black hole. He concentrated on one-parameter families
of initial data. Starting from values of the parameter for which no black hole forms, if
one varies the parameter one eventually passes a“critical value” for which it does. Three
novel observations were made. On the one hand, no minimal black hole mass appears to
exist. In other words, one can create black holes as small as desired by fine tuning the
initial parameter. Although this was somewhat expected since the problem does not have
any characteristic mass scale, there was some debate about the existence of a gap before
Choptuik’s results. The second observation is that the mass of the resulting black hole
depends on the distance in parameter-space from the critical value as a power law. The
exponent of the power law is universal: it takes the same value for all families of initial data.
In addition, Choptuik used sophisticated adaptive mesh refinement techniques to study the
features of the solutions for values of the parameter very close to criticality. This study
led to the third surprising behavior: as one approaches criticality the solution exhibited a
discrete self-similarity in space-time.

Let us put these results a bit more quantitatively. The universality in the exponent
means that the mass of the black hole formed mpy satisfies mpy ~ C|p — p*|” where p



is the parameter characterizing the initial data and p* its critical value. This relationship,
strictly speaking, holds in the limit p — p*. The universal exponent takes the value v ~ 0.37
for all the initial data families studied within this model. The values of p* and (C') are family
dependent.

Subsequently, Hod and Piran [2] noted that there was a small correction to the above law

In (mgn) ~ yIn|p — p*| + ¢; + V[(In [p—p7[]. (1.1)

with W[ln |p — p*|] taking the form of a “wiggle” of universal character.

The result for discrete self similarity says that if one considers a variable Z(r,t) (repre-
senting say the scalar field or the metric components g;; or g,,-) in the problem and writes it
in terms of logarithmic coordinates p, 7 (for the detailed relation to 7, see [I]) one has that
Z(p—A,7—A) ~ Z(p,7) with A = 3.4 a universal constant independent of the initial data.
Due to the self-similarity manifesting itself in the logarithmic coordinates, this “echoing”
behavior is hard to see if one uses codes with a fixed mesh, as it would require a very small
grid spacing throughout the mesh. It is better tackled using adaptive mesh refinement.

In a recent paper [3] we have revisited these results using an approach to the semi-classical
equations of loop quantum gravity. In reality, determining the true semi-classical equations
is a hard problem that requires identifying semiclassical states in the theory. Our current
understanding of loop quantum gravity is not there yet, even for a simplified, spherically
symmetric situation. In view of this we used a common approach to generate candidates
for the semiclassical equations known as “polymerization.” In this approach, some of the
variables of the theory that would be represented by holonomies (or point holonomies) in
loop quantum gravity are replaced by a “polymer” version of them. For a generic variable
¢ this looks like ¢ — sin(k¢)/k with k the “polymerization parameter.” The justification
for this comes from the fact that in loop quantum gravity variables like the connection are
not well defined at the quantum level, but their holonomy (“their exponential”) is.

Therefore one replaces the variables by their exponentiated versions (the sin comes from
the fact that one is interested in the real part of the exponentiated variable). The polymer-
ization parameter would correspond in the case of connection type variables to the length of
the loop along which one computes the holonomy. In the limit where that loop shrinks to a
point, the exponentiated variable returns the original variable and one recovers the original
classical theory. However, in loop quantum gravity one expects areas to be quantized and
to have a minimum eigenvalue and therefore the length of a loop cannot be shrunk to zero,
there will be a minimum value. That minimum value would be the value of the polymer-
ization parameter. The minimum eigenvalue of areas is related to the Planck length and
therefore one expects polymerization parameters to be very small. Scalar fields also need
to be polymerized to have a well defined Hilbert space compatible with diffeomorphism
invariance [4].

Our study of the Choptuik phenomena using the polymerized equations as a candidate
for semiclassical loop quantum gravity revealed some surprising elements. On the one hand,
in the slicing chosen by Choptuik, most of the variables to be polymerized disappear. The
only one left is the scalar field itself. And therefore the polymer theory differs from general
relativity coupled to a scalar field only in the terms involving the scalar field. Moreover,
we observed that although the polymerization parameter now introduces a mass scale (the
Planck mass), the scaling observed by Choptuik still remains: there is no observed minimal
mass for the black holes one can form. This is in contrast to previous studies of the problem
using polymerized metric variables [5] that found a mass gap. The critical exponent pre-



sented a dependence on the polymerization parameter, but it is very mild; for all practical
values the results are indistinguishable from those of classical general relativity. Our study
only used a fixed, uniform mesh code for simplicity, and so we were not able to observe the
“echoes” of the discrete self-similarity, nor the “wiggles” observed by Hod and Piran [2].

In this paper we wish to explore the latter two issues, making use of a code with adaptive
mesh refinement. We will observe that wiggles and echoes appear in the semi-classical theory
and that their features differ little from those of classical general relativity unless one takes
unrealistically large values of the polymerization parameter.

II. COLLAPSE IN SPHERICALLY SYMMETRIC SEMICLASSICAL LOOP
QUANTUM GRAVITY

In [3] we studied the collapse of a massless scalar field in spherical symmetry minimally
coupled to gravity using semiclassical equations stemming from loop quantum gravity

Following the treatment of Choptuik [I], we fix the radial coordinate to the usual
Schwarzschild one so E* = 22, where E is the radial component of the triad. This allows
to eliminate the K, component from the problem by solving the diffeomorphism constraint.
The “polar” condition that Choptuik chooses (KZ = Tr(K)) corresponds in these variables
to K, = 0. With these choices, the gravitational part of the semi-classical equations reduces
to classical general relativity and the only effect of the semi-classical theory is in the poly-
merization of the scalar field, ¢ — w, and its canonical momentum Py — P,, where k
is the polymerization parameter. We will take the resulting theory to be a candidate for a
semi-classical approximation to the full quantum theory. This is based on the experience
of many authors in the cosmological context, but is not guaranteed in ours. At the mo-
ment, no one knows how to do a full quantization of this system and derive a semi-classical
approximation from it. The resulting equations are,
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where NV is the lapse, £ the densitized triad in the ¢ direction and ¢ and P, the polymerized
scalar field and its conjugate momentum and k the polymerization parameter. More details
of the equations can be see in [3]. We are using the same code we developed in that
reference, based on Choptuik’s original one, but in this paper we have turned on adaptive
mesh refinement.



III. RESULTS FOR THE MASS SCALING
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FIG. 1: The mass scaling (upper panel) and the “wiggles” in the deviations from the linear fit (in
log-log scale) first noted by Hod and Piran, for the case of general relativity (polymerized theory
with & = 0). The crosses indicate the results of numerical evolutions and the red line is obtained as
a least-squares fit to this data. The fit here has a slope v = 0.37, consistent with the value obtained
by Choptuik. The range of the parameters considered here was chosen to maximize visibility of
the “wiggles,” and does not necessarily give the best fit for the exponent, that is why we have less

accuracy for it than in [3].

Figure (|1)) shows the power law of the mass as a function of the deviation of the parameter
in the initial data in general relativity (polymerized theory with k& = 0). The initial data
consisted of a Gaussian profile in the scalar field parameterized by its amplitude. The mass
scaling in the upper panel is quite linear modulated by a periodic wiggle, and the scaling is
consistent with that observed by Choptuik. The lower panel shows the deviations from the
linear fit (in the log-log diagram), exhibiting the “wiggles” that Piran and Hod first noticed,
consistent (within our accuracy) with the expected periodicity w ~ 4.6.

Figure shows the same results but now for the polymerized theory for £ = 1. It should
be recalled that a realistic polymerization parameter value is determined by the Planck scale
and therefore k = 1 is unrealistically large. We choose this large value to make the effects
more apparent. We see a mild dependence in the polymerization parameter for the mass
scaling exponent (0.38 for k = 1 vs. 0.37 for & = 0) and also on the frequency of the
“wiggles.” Within numerical errors we cannot see a distinction between the & = 1 and
general relativity (k = 0) cases.

IV. DISCRETE SELF-SIMILARITY

Choptuik noticed that his numerical evolutions very close to criticality demonstrated
a periodicity with an accompanying change of scale. To demonstrate this behavior, we
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FIG. 2: Mass scaling for k£ = 1, similar to Fig. 1. The value £ = 1 is quite large, since k is
supposed to be a parameter of the order of Planck’s length, which would be very small compared
to the other length scales of the problem like the radius of the initial data shell being collapsed or
the final black hole mass.

consider a representative field in the critical regime at times periodic in log time. Figure
shows the function 2M (r)/r (where M (r) is the mass aspect function) versus In(r) for the
polymerized case k = 1. Displacing this curve in the logarithmic radial coordinate outwards
an amount 3.4 gives a profile that matches well this same field at an earlier time 3.2 units
before. The agreement of these two curves suggests that the solution is repeating on a
smaller scale consistent with discrete self-similarity!. Because these observed periods (for
log time and separately log radius) for £ = 1 are consistent with Choptuik’s values, we do
not detect a change in the critical solution due to the polymerization.

V. CONCLUSIONS

We have shown, using simulations of a massless scalar field coupled to the polymerized
equations that may represent semi-classical loop quantum gravity, that the universality and
scaling observed by Choptuik are still present. Also present are the “wiggles” in the exponent
observed by Hod and Piran. The only effect of the polymerization is to alter slightly the
values of the exponential scaling of the mass. We do not detect, within numerical accuracy,
dependence of the period of the discrete self-similarity on the polymerization parameter.
This provides robust evidence for the existence of a critical solution in the semi-classical
regime and that the solution appears to have the same periodicity of that of classical general
relativity.

! The period in the time direction has a larger numerical error because the periodicity is strictly speaking
[1] defined in p =Inr and 7 = In (T§ — Tp) where T§ is the central proper time at which critical evolution

stops, and its determination introduces further error.
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FIG. 3: The curve 2M (r)/r plotted versus. In(r) for the polymerized case k = 1. To make the
echoing apparent, the field at a late time (¢ = 2.6741) is shown three times: The two bold curves
to the right are the same curve translated an amount 1.7 and 3.4. The lighter curve to the right
is the same field at two earlier times ¢ = 2.6650 (top), 2.6263 (bottom). The agreement of these
curves suggests the approach of the evolution to discrete self-similarity. From the curves we can
determine that the period in the radial direction is 1.7 and in time is 1.6, in broad agreement with
the ones observed by Choptuik of 3.4 (since we chose a function that is positive definite, the proper
period is twice the one observed with 2M (r)/r which ignores the sign of the scalar field). In the
figure the radial axis ranges from —11 to 3.7 and the vertical axis from 0 to 0.56.

It should be emphasized that the semi-classical theory considered has not been derived
from loop quantum gravity as at present no one knows how to build a quantum theory for
this system. However, it offers an indication of what is possible for such a theory. It should
also be emphasized that the semi-classical theory has a scalar field that is non-linear and
may exhibit shocks. Such behavior is likely to occur close to the origin when one considers
situations close to criticality, as large curvatures are expected there. We have not analyzed



this phenomenon in detail and may study it in future publications. Even such an analysis
should be taken with caution as in that region it is likely that any semi-classical theory may
fail. It might be that a proper understanding of the Choptuik phenomena near the origin
close to criticality will require a full quantization.
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