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a b s t r a c t

Dynamic average consensus is a decentralized control/estimation framework where a group of agents
cooperatively track the average of local time-varying reference signals. In this paper, we develop
a novel state decomposition-based privacy preservation scheme to protect the privacy of agents
when sharing information with neighboring agents. Specifically, we first show that an external
eavesdropper can successfully wiretap the reference signals of all agents in a conventional dynamic
average consensus algorithm. To protect privacy against the eavesdropper, a state decomposition
scheme is developed where the original state of each agent is decomposed into two sub-states:
one succeeds the role of the original state in inter-node interactions, while the other sub-state only
communicates with the first one and is invisible to other neighboring agents. Rigorous analyses are
performed to show that (1) the proposed privacy scheme preserves the convergence of the average
consensus; and (2) the privacy of the agents is protected such that an eavesdropper cannot discover
the private reference signals with guaranteed accuracy. The developed privacy-preserving dynamic
average consensus framework is then applied to the formation control of multiple non-holonomic
mobile robots, in which the efficacy of the scheme is demonstrated. Numerical simulation is provided
to illustrate the effectiveness of the proposed approach.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Average consensus has been extensively studied in recent
ears. It underpins many advantages of distributed systems and
s emerging as an effective tool for diverse applications, including
ensor fusion (Aragues et al., 2012; Olfati-Saber & Shamma, 2005),
istributed resource allocation (Kia, 2017), and multi-agent coor-
ination (Montijano et al., 2016; Porfiri et al., 2007). Based on the
ype of signals to be averaged, average consensus algorithms can
e categorized as static (Olfati-Saber et al., 2007; Ren & Beard,

2008; Ren & Cao, 2010) or dynamic (Bai et al., 2010; Chen et al.,
2012, 2015; Freeman et al., 2006; Spanos et al., 2005; Zhu &
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artínez, 2010). In static average consensus agents seek to reach
greement on the average of initial agent states, whereas the
ynamic average consensus is to design a distributed update law
uch that all agents can track the average of locally available
ime-varying reference signals. As dynamic average consensus
as many emerging applications, such as economic dispatch for a
ower generating network (Cherukuri & Cortés, 2016), it will be
he focus of this paper.

So far, different approaches have been proposed to address the
ynamic average consensus problems. The initial work (Spanos
t al., 2005) designs a consensus algorithm that can track the
verage of reference signals with steady states. Based on input-
o-state stability property, a proportional–integral (PI) algorithm
s proposed in Freeman et al. (2006) to achieve consensus for
lowly time-varying and static reference signals. The PI algorithm
s further generalized in Bai et al. (2010) and can converge with
ero steady-state error if the Laplace transform of reference sig-
als has a common monic denominator polynomial. Moreover,
onsmooth algorithms are developed in Chen et al. (2012, 2015)
o accomplish finite-time consensus convergence.
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In the aforementioned dynamic average consensus methods,
each agent needs to share the explicit state value with its neigh-
boring agents, which can breach the privacy of participating
agents as the state values typically contain privacy-sensitive in-
formation such as its local reference signals. For example, an
eavesdropper can wiretap the communication channel and infer
privacy-sensitive information based on the exchanged signals.
When dynamic average consensus is adopted in some specific
areas, such as smart grid and intelligent transportation, the dis-
closure of the privacy-sensitive information may induce safety
risk and economic loss (Dötzer, 2005). For example, multiple
power generators in the smart grid can exploit the dynamic
average consensus to estimate the mismatch in load satisfaction
as discussed in Cherukuri and Cortés (2016). The evolving power
generated by each generator is used as local reference informa-
tion in consensus scheme and had to be kept secret since the
individual power generation information is sensitive in energy
bidding (Fang et al., 2012). Considering the aforementioned is-
sues and growing awareness of security, it is an urgent need
to protect the agents’ privacy in dynamic average consensus. So
far the privacy preservation schemes have been mainly focused
on static average consensus while results on the privacy of dy-
namic average consensus are very sparse. For example, studies
in Altafini (2020), He et al. (2020), Huang et al. (2012), Mo and
Murray (2017), Nozari et al. (2017), Rezazadeh and Kia (2019)
use carefully designed perturbation signals to obfuscate the true
state information. One commonly adopted technique is differen-
tial privacy (He et al., 2020; Huang et al., 2012; Nozari et al.,
2017), which injects uncorrelated noise for state obfuscation but
cannot ensure exact consensus convergence. Another idea is to
exploit cryptography to improve the resilience of static average
consensus algorithms to privacy attacks (Freris & Patrinos, 2016;
Hadjicostis & Dominguez-Garcia, 2020; Ruan et al., 2019). In
our prior work (Wang, 2019), a state decomposition method is
developed for static average consensus, which can guarantee the
privacy of all participating agents and is light-weight in calcula-
tion. In this work, we extend the state decomposition technique
to dynamic average consensus. Note that as dynamic average
consensus involves time-varying reference signals, the privacy
design in static average consensus cannot be directly applied (Kia
et al., 2019; Nozari et al., 2017). The privacy design and analysis
herein rely upon algebraic graph theory and Lyapunov-based
control theory, which are more challenging as compared to those
in Wang (2019).

In this paper, we first illustrate the necessity of privacy pro-
tection by designing an attack model where an external eaves-
dropper can wiretap the reference signals when the agent states
are updated following a conventional dynamic average consensus
algorithm. We will then develop a state decomposition scheme to
decompose the original state of each agent into two sub-states
to achieve privacy preservation in dynamic average consensus.
Specifically, one sub-state takes the role of the original state to
interact with neighboring agents, while the other sub-state is
invisible to the outside world and only exchanges information
with the first sub-state. To ensure that the consensus algorithm
with state decomposition retains the similar average consensus
results as the conventional method, the reference signals of the
two sub-states are randomly selected from the set of bounded
real numbers with their mean equal to the reference signals of
the original state. We rigorously show that the proposed state
decomposition scheme can protect the private reference signals
from being inferred by the external eavesdropper. In addition, a
case study on formation control of non-holonomic mobile robots
is presented, which shows that the developed approach can be
integrated with the tracking controller to accomplish privacy-
preserving distributed control. Simulation results are given to
validate the performance of the proposed scheme.
2

2. Preliminaries

2.1. Dynamic average consensus

We first review the dynamic average consensus problem. Con-
sider n agents where each has a time-varying reference ri(t) ∈ Rm,
i = 1, 2, . . . , n, satisfying the following dynamics:
ṙi(t) = fi(t). (1)
In (1) fi(t) ∈ Rm is the derivative of the reference signal. Each
agent i has access to ri(t), fi(t) as well as information from a subset
of the other agents. This subset is referred to as the neighborhood
of agent i and denoted by Ni. A graph G ≜ {V, E} is used to
describe the network topology between the agents, where V ≜
{1, 2, . . . , n} is the node set and E ≜

{
(i, j)|i ∈ Nj, j = 1, 2, . . . , n

}
is the edge set. We consider undirected graph where j ∈ Ni
implies i ∈ Nj. A graph is connected if and only if there is a
path from any node to any other node. The adjacency matrix
A ≜

[
aij
]
∈ Rn×n of G is defined as follows: aij = 1 if (i, j) ∈ E;

aij = 0 otherwise. The degree of agent i is di ≜
∑n

j=1 aij, and
the degree matrix is given by D ≜ diag (d1, . . . , dn) ∈ Rn×n. The
Laplacian matrix of G is then defined as L ≜ D− A ∈ Rn×n.

In addition, each agent i keeps an internal state xi(t) ∈ Rm,
i ∈ V , and the objective of the dynamic average consensus
is to design a distributed algorithm, such that all agents will
finally track the average of the n time-varying reference signals,
i.e., ∥xi(t) − 1

n

∑n
j=1 rj(t)∥ → 0 as t → ∞. Assuming that the

raph is undirected and connected, and the signals ri(t) and fi(t)
are bounded, the following algorithm can be exploited to achieve
the dynamic average consensus (Spanos et al., 2005):
ẋi(t) = fi(t)+ κ

∑n
j=1aij

(
xj(t)− xi(t)

)
,

i(0) = ri(0), ∀i ∈ V,
(2)

here κ ∈ R is a positive constant. Using a time-domain analy-
is, Kia et al. (2019) shows that if each input signal fi(t), i ∈ V ,
s bounded, all the agents implementing algorithm (2) over a
connected graph are input-to-state stable and the tracking errors
are ultimately bounded. Moreover, the convergence rate to the
error bound is no worse than κλ2(L), where λ2(L) ∈ R is the
second smallest eigenvalue of the Laplacian matrix L.

2.2. Privacy definition

As can be seen from (2), the conventional dynamic aver-
age consensus algorithm involves the exchange of states among
neighboring agents, which can leak privacy-sensitive information
such as the local reference signals. In this paper, we consider an
eavesdropping attacker who knows the network topology and can
wiretap communication channels to access exchanged informa-
tion. Specifically, we consider the case where the eavesdropper
is interested in obtaining the reference signals ri(t) and fi(t) from
the agents. We next introduce the considered privacy definition
as follows.

Definition 1. Let I(t) be the set of information accessible to an
eavesdropper having access to all shared messages in the network
where the reference signals are {ri(t), fi(t)}i∈V . After adding arbi-
trary bounded perturbations to the reference signals of an agent
p, i.e., replacing rp(t) and fp(t) by r̄p(t) = rp(t) + ϵp(t) and f̄p =

fp(t)+δp(t), respectively, with perturbations ϵp(t) and δp(t) ∈ Rm,
if there always exist

{
r̄i(t), f̄i(t)

}
i∈V\{p} from the remaining agents

such that under the dynamic average consensus mechanism, the
set of information Ī(t) accessible to the eavesdropper is the same
as I(t), then the privacy of the reference signals rp(t) and fp(t)
from agent p is preserved.
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Several privacy definitions have been utilized in the security
community, such as differential privacy, mutual information, and
semantic security. Differential privacy injects independent noise
to obfuscate a private value, which will inevitably compromise
algorithmic accuracy. Mutual information relies on explicit sta-
tistical models of source data and side information (Sankar et al.,
2013) which, however, is not generally available in the context of
dynamic average consensus. Semantic security requires ‘‘nothing
is learned’’ by the adversary from outputs, which intrinsically
inhibits any meaningful data utility and can resist arbitrary side
information (Dwork & Roth, 2014; Lu & Zhu, 2020). In our prob-
lem, the eavesdropper has access to all exchanged information
that is non-encrypted and necessary for the agents to achieve
consensus utility. Thus, semantic security is too restrictive and
not applicable to our problem. On the other hand, the considered
privacy is defined by virtue of indistinguishability. More precisely,
Definition 1 implies that the privacy of each agent is preserved
as the available information to the adversary, which is an aggre-
gated output, can correspond to infinitely many realizations of
reference signals. This definition is essentially similar to the l-
diversity (Machanavajjhala et al., 2007) which has been widely
adopted in formal privacy analysis on attribute privacy of tabular
datasets and has recently been extended to define privacy in
the data release of linear dynamic networks (Lu & Zhu, 2020).
-diversity requires that there are at least l different values for
ensitive attributes, and a greater diversity indicates greater in-
istinguishability. In our problem, the reference signals can be
iewed as the sensitive attributes. Definition 1 requires that there
xist infinite sets of reference signals that can generate the same
ccessible information to the adversary, and the difference of
he reference signals from the same agent in these sets can be
rbitrary bounded values. Such diversity notion is an extension
f l-diversity, which makes the adversary unable to find a unique
alue or even estimate a rough range of the private parameters.
ifferent from differential privacy and mutual information, our
rivacy notion does not require independent noise injection or
tatistical model for the multiple agent system. Compared with
emantic security, our privacy definition cannot resist arbitrary
ide information and is weaker than the ‘‘nothing is learned’’
otion.

. Privacy attack model

We now show that the dynamic consensus algorithm (2) is not
rivacy preserving, that is, the external eavesdropper can success-
ully obtain the reference signals ri(t) and fi(t) when agents follow
he consensus algorithm in (2).

We consider that the eavesdropper has access to the network
opology and the exchanged information between agents (based
n Eq. (2)). Therefore, the available information to the eavesdrop-
er is Icon(t) ≜ {A, κ, xi(t)}i∈V . The eavesdropper’s target is to use
con(t) to infer the reference signals ri(t) and fi(t). In particular,
et x̂i(t) ∈ Rm, r̂i(t) ∈ Rm, and f̂i(t) ∈ Rm be the eavesdropper’s
stimates of xi(t), ri(t), and fi(t), respectively. An observer based
ttack model can be designed to estimate ri(t) and fi(t) as follows:
˙̂
i(t) = f̂i(t)+ κ

∑n
j=1aij

(
xj(t)− xi(t)

)
+ k1x̃i(t),

˙̂ri(t) = k2
(
xi(t)− zi(t)− r̂i(t)

)
+ f̂i(t),

f̂i(t) = k3xi(t)+ f̂ ′i (t),

(3)

here k1, k2, k3, k4 ∈ R are positive constants to be designed,
˜i(t) ≜ xi(t) − x̂i(t) ∈ Rm is the estimation error, f̂ ′i (t) ∈ Rm is an
uxiliary variable, and zi(t) ∈ Rm is the local filter. f̂ ′i (t) and zi(t)
re updated by
˙̂′
i (t) = −k3

(
f̂i(t)+ κ

∑n
j=1aij

(
xj(t)− xi(t)

))
+ k4x̃i(t),∑n ( ) (4)
żi(t) = κ j=1aij xj(t)− xi(t) , zi(0) = 0. t

3

et r̃i(t) ≜ ri(t) − r̂i(t), f̃i(t) ≜ fi(t) − f̂i(t) ∈ Rm be the reference
stimation errors. Then, from (1)–(4), it follows that
˙̃
i(t) = f̃i(t)− k1x̃i(t),
˙̃ri(t) = f̃i(t)− k2 r̃i(t),
˙̃fi(t) = ḟi(t)− k3 f̃i(t)− k4x̃i(t).

(5)

he observer based attack model in (3) is designed via an iterative
rocedure. The auxiliary variable f̂ ′i (t) and local filter zi(t) are
ntroduced to shape the time derivative of x̃i(t), r̃i(t), and f̃i(t) into
he desired form presented in (5). This desired form is derived
ia Lyapunov-based techniques and will be used to facilitate the
tability analysis of the following theorem.

heorem 1.When the algorithm in (2) is utilized to achieve dynamic
verage consensus, the external eavesdropper can infer the reference
ignals ri(t) and fi(t) by using the observer in (3). More precisely,
ssuming that the signals ri(t), fi(t), and ḟi(t) are bounded, i.e., ri(t),
i(t), ḟi(t) ∈ L∞, then

1. The attacker using (3) is guaranteed to obtain the private
reference information in the sense that the estimation errors
r̃i(t) and f̃i(t) are uniformly ultimately bounded (UUB).

2. If ḟi(t) is in the L2-space, the estimation errors r̃i(t) and f̃i(t)
converge to zero asymptotically.

roof. See Appendix A. □

emark 1. The design of the observer in (3) is to illustrate that the
consensus algorithm in (2) is vulnerable to privacy attacks. Vari-
us techniques can be exploited to construct the attack model,
nd it is not the focus of this paper. In the following, we will
resent a privacy scheme and show that the approach can provide
rivacy protection against the external eavesdropper no matter
hat attack model is used.

. Privacy preservation via state decomposition

Building upon our prior work (Wang, 2019), in this section,
e extend the state decomposition scheme to dynamic average
onsensus. Note that here we aim at protecting privacy against
ny eavesdropping scheme (including the example shown in
ection 3). More specifically, the state decomposition scheme de-
omposes the state and reference signals {xi(t), ri(t), fi(t)} of each
gent into two sub-sets

{
xα
i (t), r

α
i (t), f

α
i (t)

}
and

{
xβ

i (t), r
β

i (t),

f β

i (t)
}
. The initial values rα

i (0) and rβ

i (0) can be randomly chosen
rom the set of all bounded real numbers under the following
onstraint:
α
i (0)+ rβ

i (0) = 2ri(0). (6)

urthermore, f α
i (t) and f β

i (t) are bounded and chosen to satisfy:
α
i (t)+ f β

i (t) = 2fi(t). (7)

rom (6) and (7), it can be obtained that rα
i (t) + rβ

i (t) = 2ri(t),
hich implies 1

2n

∑n
j=1

(
rα
j (t)+ rβ

j (t)
)

=
1
n

∑n
j=1 rj(t), i.e., the

average consensus value remains the same before and after the
state decomposition. Moreover, in the decomposition mechanism,
the sub-state xα

i (t) takes the role of the original state xi(t) in
inter-agent interactions and is the only state value from agent
i that is shared with its neighbors. The other sub-state xβ

i (t)
involves in the distributed updates by (and only by) exchanging
information with xα

i (t) internal to agent i. Therefore, xβ

i (t) will
affect the evolution of xα

i (t), but its existence is invisible to the
neighbors of agent i and hence the eavesdropper, indicating that
he available information for the eavesdropper changes to I ≜
dec
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Fig. 1. Illustration of state decomposition: (a) Before decomposition. (b) After
decomposition.

{
A, κ, xα

i (t)
}
i∈V . An example is given in Fig. 1 to illustrate the state

decomposition of a network with four agents.
Under the decomposition mechanism, the conventional aver-

age consensus algorithm in (2) becomes

ẋα
i (t) = f α

i (t)+ κ
∑n

j=1aij
(
xα
j (t)− xα

i (t)
)
+ κ

(
xβ

i (t)− xα
i (t)

)
,

ẋβ

i (t) = f β

i (t)+ κ

(
xα
i (t)− xβ

i (t)
)

,

xα
i (0) = rα

i (0), xβ

i (0) = rβ

i (0), ∀i ∈ V.

(8)

In the following, we first show that all states xα
i (t) and xβ

i (t)
will present similar convergence properties as in the conven-
tional case (2). Then, we prove that the privacy of each agent is
protected against an external eavesdropper.

Theorem 2. Under the decomposition mechanism, all sub-states
xα
i (t) and xβ

i (t) in (8) are input-to-state stable, and the tracking
errors xα

i (t) −
1
n

∑n
j=1 rj(t) and xβ

i (t) −
1
n

∑n
j=1 rj(t) are ultimately

ounded. Moreover, the convergence rate of the tracking errors is no

orse than κ
2

(
λ2(L)+ 2−

√
λ2
2(L)+ 4

)
, where L is the Laplacian

atrix of graph before state decomposition and λ2(L) ∈ R is the
econd smallest eigenvalue of L.

roof. It is clear that the decomposition mechanism ensures
hat all sub-states also compose a connected graph. Based on
he results in Kia et al. (2019), dynamic average consensus can
still be achieved, i.e., all sub-states are input-to-state stable,
and the convergence errors xα

i (t) −
1
2n

∑n
j=1

(
rα
j (t)+ rβ

j (t)
)

and
β

i (t) −
1
2n

∑n
j=1

(
rα
j (t)+ rβ

j (t)
)

are ultimately bounded. It can

be concluded from (6) and (7) that 1
2n

∑n
j=1

(
rα
j (t)+ rβ

j (t)
)

=

1
n

∑n
j=1 rj(t). Therefore, all sub-states xα

i (t) and xβ

i (t) in (8) re-
tain the convergence to the neighborhood of the same average
consensus value as the original states.

Let Lαβ
∈ R2n×2n be the Laplacian matrix of the graph com-

posed by all sub-states. By leveraging the results in Kia et al.
(2019), it can be concluded that the convergence rate of the
consensus algorithm is no worse than κλ2(Lαβ ), where λ2(Lαβ ) ∈
R is the second smallest eigenvalue of Lαβ . To complete the proof

of Theorem 2, we next show that λ2(Lαβ ) =
1
2

(
λ2(L)+ 2−√

λ2
2(L)+ 4

)
. According to the decomposition mechanism, Lαβ

an be formulated as
αβ

=

[
L+ In −In
−In In

]
, (9)

with In ∈ Rn×n being the n-dimensional identity matrix. Let
λ(L ), λ(L) ∈ R be the eigenvalue of L and L, respectively.
αβ αβ

4

Based on (9) and the eigenvalue–eigenvector equation (Horn
& Johnson, 2012), it can be derived that λ(Lαβ ) =

1
2

(
λ(L)

+2±
√

λ2(L)+ 4
)
, from which it follows that the second small-

est eigenvalue of Lαβ , i.e., λ2(Lαβ ), is 1
2

(
λ2(L)+ 2−

√
λ2
2(L)+ 4

)
,

hich completes the proof. □

emark 2. Given a graph topology, the second smallest eigen-
alue of Laplacian λ2(·) is a measure of the convergence rate
f consensus algorithms (Olfati-Saber et al., 2007). The conver-

gence rate of the algorithm in (2) is no worse than κλ2(L),
and after state decomposition, this measure will decrease to
κ
2

(
λ2(L)+ 2−

√
λ2
2(L)+ 4

)
since the connectivity of the graph

becomes weaker.

We next show that the decomposition scheme can protect the
privacy of the agents against the external eavesdropper.

Theorem 3. Under the decomposition mechanism, an external eaves-
dropper cannot infer the reference signals rp(t) and fp(t) of any agent
p with guaranteed accuracy.

Proof. Under the decomposition mechanism, the reference sig-
nals {ri(t), fi(t)} of each agent are divided into two sub-sets{
rα
i (t), f

α
i (t)

}
and

{
rβ

i (t), f
β

i (t)
}
, and the information accessible

o the eavesdropper is Idec(t) ≜
{
A, κ, xα

i (t)
}
i∈V . Let

{
r̄i(t), f̄i(t),

r̄α
i (t), f̄

α
i (t), r̄β

i (t), f̄
β

i (t)
}
and

{
x̄α
i (t), x̄

β

i (t)
}
be another set of ref-

rences and their corresponding sub-states, respectively. To show
hat the privacy of rp(t) and fp(t) can be protected against the
avesdropper, it suffices to show that under any bounded per-
urbations ϵp(t) = ϵp(0) +

∫ t
0 δp(τ )dτ that alter the reference

ignals to r̄p(t) = rp(t) + ϵp(t) and f̄p(t) = fp(t) + δp(t), there
xists a new constructed set

{
r̄α
i (t), f̄

α
i (t), r̄β

i (t), f̄
β

i (t)
}
i∈V\{p}

such

hat the information Īdec(t) ≜
{
A, κ, x̄α

i (t)
}
i∈V accessible to the

avesdropper is exactly the same as the information I(t) cu-
ulated under

{
rα
i (t), f

α
i (t), rβ

i (t), f
β

i (t)
}
i∈V

. This is because the
nly information available to the eavesdropper is Idec(t), and if
dec(t) could be the outcome of any perturbed values of rp(t) and
p(t), then the eavesdropper has no way to even find a range
or rp(t) and fp(t). Therefore, we only need to prove that for any
¯p(t) ̸= rp(t) and f̄p(t) ̸= fp(t), we can always find a set of signals
r̄α
i (t), f̄

α
i (t), r̄β

i (t), f̄
β

i (t)
}
i∈V\{p}

such that Īdec(t) = Idec(t) holds.

Let agent l be one of the neighbors of agent p. Next we show
hat given r̄p(t) (i.e., r̄p(0) and f̄p(t)), by suitably selecting the
alues of r̄l(0), r̄α

p (0), r̄
β
p (0), r̄α

l (0), r̄
β

l (0), f̄
α
p (t), f̄ β

p (t), f̄ α
l (t), and

¯β
l (t), Īdec(t) = Idec(t) could hold under r̄p(t) ̸= rp(t). Specifically,
nder the following conditions:
r̄l(0)= rl(0)+ rp(0)− r̄p(0),
¯
α
p (0)= rα

p (0), r̄
β
p (0)=2r̄p(0)− rα

p (0),

¯
α
l (0)= rα

l (0), r̄
β

l (0)=2r̄l(0)− rα
l (0),

r̄q(0)= rq(0), r̄α
q (0)= rα

q (0), r̄
β
q (0)= rβ

q (0),∀q∈V \ {p, l} ,

(10)

nd
f̄l(t) = fl(t)+ fp(t)− f̄p(t),
¯α
p (t) = f α

p (t)+ 2κ
(
rp(t)− r̄p(t)

)
, f̄ β

p (t) = 2f̄p(t)− f̄ α
p (t),

¯α
l (t) = f α

l (t)+ 2κ
(
r̄p(t)− rp(t)

)
, f̄ β

l (t) = 2f̄l(t)− f̄ α
l (t),

¯ ¯α α ¯β β

(11)
fq(t) = fq(t), fq (t) = fq (t), fq (t) = fq (t),∀q ∈ V \ {p, l} ,
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nd system dynamics

˙̄xα
i (t) = f̄ α

i (t)+ κ
∑n

j=1aij
(
x̄α
j (t)− x̄α

i (t)
)
+ κ

(
x̄β

i (t)− x̄α
i (t)

)
,

˙̄xβ

i (t) = f̄ β

i (t)+ κ

(
x̄α
i (t)− x̄β

i (t)
)

,

x̄α
i (0) = r̄α

i (0), x̄β

i (0) = r̄β

i (0), ∀i ∈ V,

(12)
the new sub-state x̄α

i (t) will be the same as xα
i (t), for all i ∈ V ,

i.e., Īdec(t) = Idec(t). Note that the first equations in both (10) and
(11) are introduced to ensure that the average consensus value
1
n

∑n
j=1 r̄j(t) is the same as the original one 1

n

∑n
j=1 rj(t). Now we

rove that Īdec(t) = Idec(t). First, from (6), (10), and the facts that
¯αi (0) = r̄α

i (0), x̄
β

i (0) = r̄β

i (0), x
α
i (0) = rα

i (0), x
β

i (0) = rβ

i (0), ∀i ∈ V ,
it can be obtained that
x̄α
p (0) = xα

p (0), x̄
β
p (0) = xβ

p (0)+ 2
(
r̄p(0)− rp(0)

)
,

x̄α
l (0) = xα

l (0), x̄
β

l (0) = xβ

l (0)+ 2
(
rp(0)− r̄p(0)

)
,

x̄α
q (0) = xα

q (0), x̄
β
q (0) = xβ

q (0),∀q ∈ V \ {p, l} .

(13)

Furthermore, based on (11) and (13), it can be verified that
¯
α
p (t) = xα

p (t), x̄
β
p (t) = xβ

p (t)+ 2
(
r̄p(t)− rp(t)

)
,

¯
α
l (t) = xα

l (t), x̄
β

l (t) = xβ

l (t)+ 2
(
rp(t)− r̄p(t)

)
,

¯
α
q (t) = xα

q (t), x̄
β
q (t) = xβ

q (t),∀q ∈ V \ {p, l} ,

(14)

s the solution to (12). It is obvious that the solution (14) satisfies
i ∈ V , x̄α

i (t) = xα
i (t), and thus Īdec(t) = Idec(t) holds under

¯p(t) ̸= rp(t). The above analysis shows that no matter what
ttack model is used, the eavesdropper cannot infer rp(t) and fp(t)
rom Idec(t) with guaranteed accuracy. □

emark 3. The proposed state decomposition scheme is a general
rivacy-preserving augmentation to dynamic average consensus
lgorithms. While the above analysis is based on the dynamic
onsensus algorithm in (2), the state decomposition framework
an be integrated with other dynamic average consensus ap-
roaches (e.g., Bai et al., 2010; Chen et al., 2012, 2015; Freeman
t al., 2006) to improve the resilience of original methods to
rivacy attacks.

emark 4. Generally, the works (Altafini, 2020; Mo & Murray,
017; Ruan et al., 2019; Wang, 2019) on privacy preservation in
tatic average consensus have an assumption that the honest-
ut-curious adversary cannot have access to the entire neigh-
orhood set of an agent. However, the considered dynamic av-
rage consensus aims at protecting privacy against the external
avesdropper, and it is not subjected to the invariant-state-sum
elationship as shown in the static consensus case. Thus such an
xtra assumption is not needed anymore.

. Application to formation control

In this section, the privacy-preserving dynamic average con-
ensus is applied to the formation control of non-holonomic
obile robots under the adversarial environment with eaves-
ropping attackers.

.1. Formation control objective

In particular, consider n networked non-holonomic mobile
obots and nmobile moving targets in the motion plane. Each mo-
ile robot i has access to its own position si(t) ≜

[
sxi(t), syi(t)

]T
∈

2 and can monitor the mobile target i’s position pi(t) ≜

pxi(t), pyi(t)
]T

∈ R2 and velocity ṗi(t) = qi(t) ≜
[
qxi(t), qyi(t)

]T
∈

2
. si(t), pi(t), and qi(t) are all expressed with respect to the

5

Fig. 2. Dynamic consensus based formation control. The triangles are the non-
holonomic mobile robots; the circles are the mobile targets; and the cross is
the center of the mobile targets.

inertial coordinate frame. Each mobile robot shares relevant in-
formation with its neighbors via wireless communication. We
consider the case that the mobile robots and targets are operating
in the adversarial environment with eavesdropping attackers.
The objective of the networked mobile robots is to follow the
set of mobile targets by spreading out in a pre-specified for-
mation while preserving the privacy of mobile targets against
the eavesdropper. Specifically, the formation control requires
that by using the information received from the communication
network, each mobile robot i is driven to a relative vector bi(t) ≜
bxi(t), byi(t)

]T
∈ R2 with respect to the time-varying geometric

enter of the mobile targets, i.e., si(t) →
1
n

∑n
i=1 pi(t) + bi(t) as

t → ∞. Meanwhile, since each mobile robot can only monitor
one mobile target, it needs to cooperate with its neighbors to
compute the geometric center, which induces the risk of breach-
ing the privacy of mobile targets. An external eavesdropper can
use the leaked sensitive information, such as the position and/or
velocity information, to maliciously track and attack the mobile
targets. Therefore, it is important that the formation control
scheme can protect the privacy of mobile targets against the
eavesdropping attacker, i.e., an external eavesdropper cannot
identify the position and/or velocity of mobile targets based on
the network information. An example scenario in which a team
of mobile robots tracks a group of mobile targets is depicted in
Fig. 2.

5.2. Control design

As discussed in Kia et al. (2019) and Porfiri et al. (2007), the
formation control problem in the aforementioned scenario can
be addressed with a two-layer method. In the cyber layer, the
privacy-preserving dynamic average consensus algorithm is used
to estimate the geometric center of mobile targets in a distributed
manner, while in the physical layer, the mobile robot i is actuated
to follow the estimate of the geometric center with a desired
relative bias bi(t). The implementation details are given now.

In the cyber layer, the state decomposition based dynamic
average consensus algorithm presented in Section 4 is utilized
for the calculation of the geometric center 1

n

∑n
i=1 pi(t) and the

privacy preservation of mobile targets. Specifically, let cα
i (t) ≜[

cα
xi(t), c

α
yi(t)

]T
∈ R2 and cβ

i (t) ≜
[
cβ

xi(t), c
β

yi(t)
]T

∈ R2 be two
sub-sets of the geometric center estimates, which are updated by

ċα
i (t) = qα

i (t)+ κ
∑n

j=1aij
(
cα
j (t)−cα

i (t)
)
+ κ

(
cβ

i (t)−cα
i (t)

)
,

ċβ

i (t) = qβ

i (t)+ κ

(
cα
i (t)− cβ

i (t)
)

,

α α β β

(15)
ci (0) = pi (0), ci (0) = pi (0),
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here pα
i (0), p

β

i (0), q
α
i (t), q

β

i (t) ∈ R2 are selected to satisfy

pα
i (0)+ pβ

i (0) = 2pi(0), qα
i (t)+ qβ

i (t) = 2qi(t). (16)
As shown in Theorems 2 and 3, cα

i (t) will converge to the neigh-
orhood of the geometric center 1

n

∑n
i=1 pi(t), and the mobile

targets’ information cannot be identified by the external eaves-
dropper.

In the physical layer, the objective now is to design a track-
ing controller for non-holonomic mobile robot i to ensure that
si(t) → cα

i (t) + bi(t) as t → ∞. The kinematic model of
non-holonomic mobile robot i is described by

ṡxi(t) = vi(t) cos(θi(t)), ṡyi(t) = vi(t) sin(θi(t)), θ̇i(t) = ωi(t),

(17)
where θi(t) ∈ R is the heading angle expressed in the inertial
coordinate frame, and vi(t), ωi(t) ∈ R are the linear and angular
velocity, respectively. To facilitate the following development, the
desired heading angle θdi(t) ∈ R and desired linear velocity
vdi(t) ∈ R are constructed as

θdi(t) = arctan
( ċα

yi(t)

ċα
xi(t)

)
, vdi(t) =

√
(ċα

xi(t))2 + (ċα
yi(t))2, (18)

hich indicates that ċxi(t) and ċyi(t) can be rewritten as ċxi(t) =
vdi(t) cos(θdi(t)), ċyi(t) = vdi(t) sin(θdi(t)). Based on coordinate
transformation, the system errors are defined as
exi(t) ≜ cos(θi(t))(sxi(t)− cα

xi(t)− bxi(t))
+ sin(θi(t))(syi(t)− cα

yi(t)− byi(t)),
eyi(t) ≜ − sin(θi(t))(sxi(t)− cα

xi(t)− bxi(t))
+ cos(θi(t))(syi(t)− cα

yi(t)− byi(t)),
eθ i(t) ≜ θi(t)− θdi(t).

(19)

It is clear that si(t) → cα
i (t) + bi(t) as

[
exi(t), eyi(t), eθ i(t)

]
→

0. Note that the mobile robot is subjected to non-holonomic
constraint, and thus in general time-varying auxiliary variables
are needed to facilitate the controller design (Huang et al., 2013;
Jiang & Nijmeijer, 1997; Wang et al., 2015). Considering the non-
olonomic constraint, an auxiliary error ēθ i(t) ∈ R is defined
s
¯θ i(t) ≜ eθ i(t)− ρi(t), (20)
here the time-varying signal ρi(t) ∈ R is given by

i(t) ≜ ι0ϖi(t) tanh
(
ι1

√
e2xi(t)+ e2yi(t)

)
sin(ι2t) (21)

ith ϖi(t) ≜ exp
(
−
∫ t
0 |vdi(τ )|dτ

)
∈ R and ι0, ι1, ι2 ∈ R being

positive constants. To achieve the formation control, the velocity
inputs vi(t) and ωi(t) are designed as
vi(t) = −γ1 tanh(exi(t))+ cos(eθ i(t))vdi(t),

i(t) = −γ2 tanh(ēθ i(t))+ ρ̇i(t)− γ3sgn(ēθ i(t))

− γ4
sin(eθ i(t))− sin(ρi(t))

ēθ i(t)
vdi(t)eyi(t),

(22)

where γ1, γ2, γ3, γ4 ∈ R are positive control gains, and sgn(·) is
the standard signum function.

Theorem 4. The controller designed in (22) ensures that the system
errors exi(t), eyi(t), and eθ i(t), i ∈ V , asymptotically converge to zero
in the sense that
lim
t→∞

exi(t), eyi(t), eθ i(t) = 0. (23)

Proof. See Appendix B. □

According to the definition of exi(t), eyi(t), and eθ i(t), it can
be concluded that si(t) → cα

i (t) + bi(t) as (23) holds. Since
cα
i (t) will converge to the neighborhood of the geometric center
1 ∑n p (t), the formation control task is accomplished.
n i=1 i

6

Fig. 3. Simulation results of conventional dynamic average consensus (2):
a) System state convergence. (b) Estimation of p1(t) and q1(t) with the
avesdropping scheme developed in Section 3.

. Simulation results

In this section, simulation is conducted to demonstrate the
erformance of the developed approach. A team of six mobile
obots are employed to follow a group of six mobile targets and
aintain a rectangle formation. The network structure of the
obile robots is the same as the one shown in Fig. 2. The initial
ositions and velocities of mobile targets are as follows: p1(0) =
1.8, 1.2

]T , p2(0) =
[
0.3, 1.5

]T , p3(0) =
[
−1.2, 1.8

]T , p4(0) =

−1.8,−1.2
]T , p5(0) =

[
−0.3,−1.5

]T , p6(0) =
[
1.2,−1.8

]T ,
1(t) = q0(t) +

[
0.1 cos(0.2t),−0.2 cos(0.4t)

]T , q3(t) = q0(t) +
−0.2 cos(0.4t), 0.1 cos(0.2t)

]T , q2(t) = q1(t)+q3(t)
2 ,

q4(t) = q0(t)+
[
−0.1 cos(0.2t), 0.2 cos(0.4t)

]T ,
q6(t) = q0(t)+

[
0.2 cos(0.4t),−0.1 cos(0.2t)

]T ,
q5(t) =

q4(t)+q6(t)
2 , and

q0(t) = (0.75− 0.25 cos(0.24t))
[
cos( π

9 + 0.5 sin(0.2t))
sin( π

9 + 0.5 sin(0.2t))

]
.

Furthermore, the initial positions of the mobile robots are se-
lected as s1(0) =

[
1.3, 5.2

]T , s2(0) =
[
−3.6, 3.9

]T , s3(0) =

−7.5, 2.6
]T , s4(0) = [

−4.8,−5.5
]T , s5(0) = [

−0.6,−5.35
]T , and

6(0) =
[
5.2,−5.2

]T . For the mobile robots, the desired relative
ositions to the geometric center of mobile targets are given by
1(0) =

[
4, 4

]T , b2(0) =
[
0, 4

]T , b3(0) =
[
−4, 4

]T , b4(0) =[
−4,−4

]T , b5(0) = [
0,−4

]T , and b6(0) =
[
4,−4

]T . In the follow-
ing, we first evaluate the state decomposition based consensus
algorithm and then test the formation controller designed in (22).

Suppose that an external eavesdropper is interested in obtain-
ing the information of mobile target 1 and uses the eavesdrop-
ping scheme developed in Section 3 to infer p1(t) and q1(t). To
better demonstrate the performance of the proposed consensus
scheme, both the conventional algorithm in (2) and the developed
privacy-preserving algorithm are used to estimate the geometric
center of mobile targets. Fig. 3 shows the evolution of the network
tates as well as the eavesdropping states under the conventional
lgorithm (2). It can be seen that the eavesdropper can success-
ully infer p1(t) and q1(t) when the agents are updated with
lgorithm (2). The results under the privacy-preserving scheme
15) is illustrated in Fig. 4. It is clear that the proposed scheme can
chieve dynamic average consensus while protecting the privacy
f the mobile target.
As discussed in Section 5, the dynamic average consensus

lgorithm is used to estimate the geometric center of mobile
argets, and then the mobile robots are driven according to (22) to
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Fig. 4. Simulation results of privacy-preserving dynamic average consensus
15): (a) System state convergence. (b) Estimation of p1(t) and q1(t) with the
eavesdropping scheme developed in Section 3.

Fig. 5. Motion trajectories of all mobile robots.

chieve the formation task. Fig. 5 depicts the motion trajectories
f all mobile robots, showing that all robots follow the geometric
enter by spreading out in a desired rectangle pattern.

. Conclusion

This paper developed a state decomposition based privacy-
reserving method for continuous-time dynamic average consen-
us. We showed that existing dynamic consensus algorithm is
usceptible to eavesdropping attacks with a carefully designed
ilter. We then rigorously proved that the state decomposition
cheme can enable privacy preservation without affecting the
onsensus results. Furthermore, the proposed method was suc-
essfully applied to achieve formation control for non-holonomic
obile robots. Simulation results showed that by using the pro-
osed method, the group of networked mobile robot can spread
ut in a pre-specified formation without disclosing private infor-
ation.

ppendix A. Proof of Theorem 1

roof. To prove the first claim, a non-negative Lyapunov function
V (t) ∈ R is introduced, as follows:

(t) ≜
1
2
k4x̃Ti (t)x̃i(t)+

1
2
r̃Ti (t)r̃i(t)+

1
2
f̃ Ti (t)f̃i(t), (A.1)

rom which it follows that V (t) can be bounded by
µyT (t)y(t) ≤ V (t) ≤ µyT (t)y(t), (A.2)
7

where µ ≜ min
{ 1
2k4,

1
2

}
, µ ≜ max

{ 1
2k4,

1
2

}
∈ R, and y(t) ≜[

x̃Ti (t), r̃
T
i (t), f̃

T
i (t)

]T
∈ R3m is the augmented estimate vector.

Taking the time derivative of (A.1) and substituting it in (5) yield
˙ (t) = −k1k4x̃Ti (t)x̃i(t) − k2 r̃Ti (t)r̃i(t) − k3 f̃ Ti (t)f̃i(t) + r̃Ti (t)f̃i(t) +
˜T
i (t)ḟi(t). According to Young’s inequality, we have r̃Ti (t)f̃i(t) ≤
k2
2 r̃Ti (t)r̃i(t)+

1
2k2

f̃ Ti (t)f̃i(t) and f̃ Ti (t)ḟi(t) ≤
k3
2 f̃ Ti (t)f̃i(t)+ 1

2k3
ḟ Ti (t)ḟi(t).

Therefore, V̇ (t) can be upper bounded by

V̇ (t) ≤ −k1k4x̃Ti (t)x̃i(t)−
k2
2
r̃Ti (t)r̃i(t)

−

(
k3
2

−
1
2k2

)
f̃ Ti (t)f̃i(t)+

1
2k3

ḟ Ti (t)ḟi(t)

≤ −µyT (t)y(t)+ ϱ(t),

(A.3)

here µ ≜ min
{
k1k4,

k2
2 ,

k3
2 −

1
2k2

}
∈ R and ϱ(t) ≜ 1

2k3
ḟ Ti (t)ḟi(t) ∈

R. It is clear that µ is positive provided that k2 and k3 are chosen
to satisfy k3 > 1

k2
. Since ḟi(t) ∈ L∞, ϱ(t) is bounded. By utilizing

(A.2) and (A.3), Theorem 4.18 in Khalil (2002) can be invoked to
how that y(t), i.e., x̃i(t), r̃i(t) and f̃i(t), is UUB.
We now prove the second claim. Based on the assumption

˙i(t) ∈ L2, it can be obtained that there exists a bounded positive
onstant ι ∈ R such that ∀t ≥ 0,

∫ t
0

1
2k3

ḟ Ti (τ )ḟi(τ )dτ ≤ ι. Let the
on-negative function W (t) ∈ R be defined as

(t) ≜ V (t)+ ι −

∫ t

0

1
2k3

ḟ Ti (τ )ḟi(τ )dτ . (A.4)

aking the time derivative of (A.4) and utilizing (A.3), it can be
oncluded that

˙ (t) = −k1k4x̃Ti (t)x̃i(t)−
k2
2
r̃Ti (t)r̃i(t)−

(
k3
2

−
1
2k2

)
f̃ Ti (t)f̃i(t)

≤ 0.

(A.5)
ccording to (A.4) and (A.5), it follows that W (t) ∈ L∞, i.e., x̃i(t),

r̃i(t), f̃i(t) ∈ L∞

⋂
L2. The boundedness of ri(t), fi(t), ḟi(t) and

the expression in (3) can be used to conclude that ˙̃xi(t), ˙̃ri(t),
˙̃
i(t) ∈ L∞. As x̃i(t), r̃i(t), f̃i(t) ∈ L∞

⋂
L2 and ˙̃xi(t), ˙̃ri(t),

˙̃fi(t) ∈ L∞,
arbalat’s lemma (Khalil, 2002) can be used to conclude that x̃i(t),

r̃i(t) and f̃i(t) converge to zero asymptotically. □

Appendix B. Proof of Theorem 4

Proof. To prove Theorem 4, the Lyapunov function Vi(t) ∈ R, i =
, 2, . . . , n is defined as

i(t) ≜
1
2
γ4

(
e2xi + e2yi

)
+

1
2
ē2θ i. (B.1)

Based on (17), (19)–(22) and the facts that ċxi(t) =

di(t) cos(θdi(t)), ċyi(t) = vdi(t) sin(θdi(t)), the closed-loop error
dynamics can be derived, as follows:
ėxi(t) = −γ1 tanh(exi(t))+ ωi(t)eyi(t),
ėyi(t) = −ωi(t)exi(t)+ sin(eθ i(t))vdi(t),
˙̄eθ i(t) = −γ2 tanh(ēθ i(t))− θ̇di(t)− γ3sgn(ēθ i(t))

− γ4
sin(eθ i(t))− sin(ρi(t))

ēθ i(t)
vdi(t)eyi(t).

(B.2)

After taking the time derivative of (B.1) and substituting (B.2) into
the derivative, it can be determined that

V̇i(t) = −γ1γ4exi(t) tanh(exi(t))− γ2ēθ i(t) tanh(ēθ i(t))
+ γ4vdi(t)eyi(t) sin(ρi(t))− ēθ i(t)

(
γ3sgn(ēθ i(t))+ θ̇di(t)

)
.

(B.3)
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f γ3 is selected sufficiently large to satisfy γ3 > supt∈[0,∞) |θ̇di(t)|,
hen V̇i(t) is upper bounded by
˙i(t) ≤ −Wi(t)+ γ4|eyi(t)||vdi(t) sin(ρi(t))|

≤

√
2γ4Vi(t)|vdi(t) sin(ρi(t))|,

(B.4)

here Wi(t) ≜ γ1γ4exi(t) tanh(exi(t)) + γ2ēθ i(t) tanh(ēθ i(t)) ∈ R
is a non-negative function. From (21), it can be found that 0 ≤

ϖi(t) ≤ 1, ϖ̇i(t) = −|vdi(t)|ϖi(t), and |ρi(t)| ≤ ι0ϖi(t). Using
these facts and integrating |vdi(t) sin(ρi(t))|, it can be concluded
that∫ t

0
|vdi(τ ) sin(ρi(τ ))|dτ

≤

∫ t

0
|vdi(τ )||ρi(τ )|dτ ≤ ι0

∫ t

0
|vdi(τ )|ϖi(τ )dτ

≤ ι0

∫ t

0
−ϖ̇i(τ )dτ ≤ ι0 (ϖ (0)− ϖ (t)) ≤ ι0.

(B.5)

Eq. (B.4) indicates that
d
√

Vi(t)
dt ≤

√
γ4
2 |vdi(t) sin(ρi(t))|, and then

ased on (B.5), it can be deduced that
√
Vi(t) ∈ L∞, i.e., Vi(t) ∈

L∞. Furthermore, it can be inferred from (22), (B.1), and (B.2) that
exi(t), eyi(t), ēθ i(t), vi(t), ωi(t), ėxi(t), ėyi(t), ˙̄eθ i(t) ∈ L∞. Taking
the time derivative of Wi(t) and using the above boundedness
analysis, it can be derived that Ẇi(t) ∈ L∞, which is a sufficient
condition for Wi(t) being uniformly continuous. Using (B.4), (B.5),
and Vi(t) ∈ L∞, it can be concluded that

∫ t
0 Wi(τ )dτ ∈ L∞.

Based on
∫ t
0 Wi(τ )dτ ∈ L∞ and the uniform continuity of Wi(t),

Barbalat’s lemma (Khalil, 2002) can be exploited to obtain that
limt→∞ Wi(t) = 0, i.e., limt→∞ exi(t), ēθ i(t) = 0. With the aid
of the extended Barbalat’s lemma (Dixon et al., 2000), it can
be further deduced that limt→∞ eyi(t) = 0. According to (20)
and (21), it is clear that limt→∞ exi(t), eyi(t), ēθ i(t) = 0 implies
limt→∞ exi(t), eyi(t), eθ i(t) = 0, which completes the proof. □
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