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Dynamic average consensus is a decentralized control/estimation framework where a group of agents
cooperatively track the average of local time-varying reference signals. In this paper, we develop
a novel state decomposition-based privacy preservation scheme to protect the privacy of agents
when sharing information with neighboring agents. Specifically, we first show that an external
eavesdropper can successfully wiretap the reference signals of all agents in a conventional dynamic
average consensus algorithm. To protect privacy against the eavesdropper, a state decomposition
scheme is developed where the original state of each agent is decomposed into two sub-states:
one succeeds the role of the original state in inter-node interactions, while the other sub-state only
communicates with the first one and is invisible to other neighboring agents. Rigorous analyses are
performed to show that (1) the proposed privacy scheme preserves the convergence of the average
consensus; and (2) the privacy of the agents is protected such that an eavesdropper cannot discover
the private reference signals with guaranteed accuracy. The developed privacy-preserving dynamic
average consensus framework is then applied to the formation control of multiple non-holonomic
mobile robots, in which the efficacy of the scheme is demonstrated. Numerical simulation is provided
to illustrate the effectiveness of the proposed approach.
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1. Introduction

Average consensus has been extensively studied in recent
years. It underpins many advantages of distributed systems and
is emerging as an effective tool for diverse applications, including
sensor fusion (Aragues et al., 2012; Olfati-Saber & Shamma, 2005),
distributed resource allocation (Kia, 2017), and multi-agent coor-
dination (Montijano et al., 2016; Porfiri et al., 2007). Based on the
type of signals to be averaged, average consensus algorithms can
be categorized as static (Olfati-Saber et al., 2007; Ren & Beard,
2008; Ren & Cao, 2010) or dynamic (Bai et al., 2010; Chen et al.,
2012, 2015; Freeman et al., 2006; Spanos et al., 2005; Zhu &
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Martinez, 2010). In static average consensus agents seek to reach
agreement on the average of initial agent states, whereas the
dynamic average consensus is to design a distributed update law
such that all agents can track the average of locally available
time-varying reference signals. As dynamic average consensus
has many emerging applications, such as economic dispatch for a
power generating network (Cherukuri & Cortés, 2016), it will be
the focus of this paper.

So far, different approaches have been proposed to address the
dynamic average consensus problems. The initial work (Spanos
et al,, 2005) designs a consensus algorithm that can track the
average of reference signals with steady states. Based on input-
to-state stability property, a proportional-integral (PI) algorithm
is proposed in Freeman et al. (2006) to achieve consensus for
slowly time-varying and static reference signals. The PI algorithm
is further generalized in Bai et al. (2010) and can converge with
zero steady-state error if the Laplace transform of reference sig-
nals has a common monic denominator polynomial. Moreover,
nonsmooth algorithms are developed in Chen et al. (2012, 2015)
to accomplish finite-time consensus convergence.
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In the aforementioned dynamic average consensus methods,
each agent needs to share the explicit state value with its neigh-
boring agents, which can breach the privacy of participating
agents as the state values typically contain privacy-sensitive in-
formation such as its local reference signals. For example, an
eavesdropper can wiretap the communication channel and infer
privacy-sensitive information based on the exchanged signals.
When dynamic average consensus is adopted in some specific
areas, such as smart grid and intelligent transportation, the dis-
closure of the privacy-sensitive information may induce safety
risk and economic loss (Dotzer, 2005). For example, multiple
power generators in the smart grid can exploit the dynamic
average consensus to estimate the mismatch in load satisfaction
as discussed in Cherukuri and Cortés (2016). The evolving power
generated by each generator is used as local reference informa-
tion in consensus scheme and had to be kept secret since the
individual power generation information is sensitive in energy
bidding (Fang et al., 2012). Considering the aforementioned is-
sues and growing awareness of security, it is an urgent need
to protect the agents’ privacy in dynamic average consensus. So
far the privacy preservation schemes have been mainly focused
on static average consensus while results on the privacy of dy-
namic average consensus are very sparse. For example, studies
in Altafini (2020), He et al. (2020), Huang et al. (2012), Mo and
Murray (2017), Nozari et al. (2017), Rezazadeh and Kia (2019)
use carefully designed perturbation signals to obfuscate the true
state information. One commonly adopted technique is differen-
tial privacy (He et al, 2020; Huang et al., 2012; Nozari et al,,
2017), which injects uncorrelated noise for state obfuscation but
cannot ensure exact consensus convergence. Another idea is to
exploit cryptography to improve the resilience of static average
consensus algorithms to privacy attacks (Freris & Patrinos, 2016;
Hadjicostis & Dominguez-Garcia, 2020; Ruan et al, 2019). In
our prior work (Wang, 2019), a state decomposition method is
developed for static average consensus, which can guarantee the
privacy of all participating agents and is light-weight in calcula-
tion. In this work, we extend the state decomposition technique
to dynamic average consensus. Note that as dynamic average
consensus involves time-varying reference signals, the privacy
design in static average consensus cannot be directly applied (Kia
et al., 2019; Nozari et al.,, 2017). The privacy design and analysis
herein rely upon algebraic graph theory and Lyapunov-based
control theory, which are more challenging as compared to those
in Wang (2019).

In this paper, we first illustrate the necessity of privacy pro-
tection by designing an attack model where an external eaves-
dropper can wiretap the reference signals when the agent states
are updated following a conventional dynamic average consensus
algorithm. We will then develop a state decomposition scheme to
decompose the original state of each agent into two sub-states
to achieve privacy preservation in dynamic average consensus.
Specifically, one sub-state takes the role of the original state to
interact with neighboring agents, while the other sub-state is
invisible to the outside world and only exchanges information
with the first sub-state. To ensure that the consensus algorithm
with state decomposition retains the similar average consensus
results as the conventional method, the reference signals of the
two sub-states are randomly selected from the set of bounded
real numbers with their mean equal to the reference signals of
the original state. We rigorously show that the proposed state
decomposition scheme can protect the private reference signals
from being inferred by the external eavesdropper. In addition, a
case study on formation control of non-holonomic mobile robots
is presented, which shows that the developed approach can be
integrated with the tracking controller to accomplish privacy-
preserving distributed control. Simulation results are given to
validate the performance of the proposed scheme.
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2. Preliminaries
2.1. Dynamic average consensus

We first review the dynamic average consensus problem. Con-
sider n agents where each has a time-varying reference r;(t) € R™,
i=1,2,...,n, satisfying the following dynamics:

fi(t) = fi(t). (1)
In (1) fi(t) € R™ is the derivative of the reference signal. Each
agent i has access to rj(t), fi(t) as well as information from a subset
of the other agents. This subset is referred to as the neighborhood
of agent i and denoted by A;. A graph G £ {V, &} is used to
describe the network topology between the agents, where V £
{1,2,...,n}isthe node setand € 2 {(i,j)li € Nj,j = 1,2,...,n}
is the edge set. We consider undirected graph where j € A
implies i € WNj. A graph is connected if and only if there is a
path from any node to any other node. The adjacency matrix
A2 [aij] € R™" of G is defined as follows: a; = 1if (i,j) € &;
a; = 0 otherwise. The degree of agent i is d; = Z};l a;;, and
the degree matrix is given by D £ diag (dy, ..., d,) € R"™". The
Laplacian matrix of G is then defined as L £ D — A € R™",

In addition, each agent i keeps an internal state x;(t) € R™,
i € V, and the objective of the dynamic average consensus
is to design a distributed algorithm, such that all agents will
finally track the average of the n time-varying reference signals,
ie., ||xi(t) — % 1'7:1 r(t)l — 0ast — oo. Assuming that the
graph is undirected and connected, and the signals r;(t) and fi(t)
are bounded, the following algorithm can be exploited to achieve
the dynamic average consensus (Spanos et al., 2005):
Xi(£) = filt) + 1 i@ (5(6) = x(0) @)
xi(0) =r;(0), Viev,
where « € R is a positive constant. Using a time-domain analy-
sis, Kia et al. (2019) shows that if each input signal fi(t), i € V,
is bounded, all the agents implementing algorithm (2) over a
connected graph are input-to-state stable and the tracking errors
are ultimately bounded. Moreover, the convergence rate to the
error bound is no worse than «A,(L), where A»(L) € R is the
second smallest eigenvalue of the Laplacian matrix L.

2.2. Privacy definition

As can be seen from (2), the conventional dynamic aver-
age consensus algorithm involves the exchange of states among
neighboring agents, which can leak privacy-sensitive information
such as the local reference signals. In this paper, we consider an
eavesdropping attacker who knows the network topology and can
wiretap communication channels to access exchanged informa-
tion. Specifically, we consider the case where the eavesdropper
is interested in obtaining the reference signals r;(t) and f;(t) from
the agents. We next introduce the considered privacy definition
as follows.

Definition 1. Let I(t) be the set of information accessible to an
eavesdropper having access to all shared messages in the network
where the reference signals are {ri(t), fi(t)};c,,. After adding arbi-
trary bounded perturbations to the reference signals of an agent
p, i.e., replacing r,(t) and f,(t) by 7p(t) = 1p(t) + €p(t) and f, =
fo(t)+8,(t), respectively, with perturbations €,(t) and é,(t) € R™,
if there always exist {7i(t), ﬁ(t)}iev\{p] from the remaining agents
such that under the dynamic average consensus mechanism, the
set of information I(t) accessible to the eavesdropper is the same
as I(t), then the privacy of the reference signals r,(t) and f,(t)
from agent p is preserved.
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Several privacy definitions have been utilized in the security
community, such as differential privacy, mutual information, and
semantic security. Differential privacy injects independent noise
to obfuscate a private value, which will inevitably compromise
algorithmic accuracy. Mutual information relies on explicit sta-
tistical models of source data and side information (Sankar et al.,
2013) which, however, is not generally available in the context of
dynamic average consensus. Semantic security requires “nothing
is learned” by the adversary from outputs, which intrinsically
inhibits any meaningful data utility and can resist arbitrary side
information (Dwork & Roth, 2014; Lu & Zhu, 2020). In our prob-
lem, the eavesdropper has access to all exchanged information
that is non-encrypted and necessary for the agents to achieve
consensus utility. Thus, semantic security is too restrictive and
not applicable to our problem. On the other hand, the considered
privacy is defined by virtue of indistinguishability. More precisely,
Definition 1 implies that the privacy of each agent is preserved
as the available information to the adversary, which is an aggre-
gated output, can correspond to infinitely many realizations of
reference signals. This definition is essentially similar to the I-
diversity (Machanavajjhala et al.,, 2007) which has been widely
adopted in formal privacy analysis on attribute privacy of tabular
datasets and has recently been extended to define privacy in
the data release of linear dynamic networks (Lu & Zhu, 2020).
I-diversity requires that there are at least [ different values for
sensitive attributes, and a greater diversity indicates greater in-
distinguishability. In our problem, the reference signals can be
viewed as the sensitive attributes. Definition 1 requires that there
exist infinite sets of reference signals that can generate the same
accessible information to the adversary, and the difference of
the reference signals from the same agent in these sets can be
arbitrary bounded values. Such diversity notion is an extension
of [-diversity, which makes the adversary unable to find a unique
value or even estimate a rough range of the private parameters.
Different from differential privacy and mutual information, our
privacy notion does not require independent noise injection or
statistical model for the multiple agent system. Compared with
semantic security, our privacy definition cannot resist arbitrary
side information and is weaker than the “nothing is learned”
notion.

3. Privacy attack model

We now show that the dynamic consensus algorithm (2) is not
privacy preserving, that is, the external eavesdropper can success-
fully obtain the reference signals r;(t) and f;(t) when agents follow
the consensus algorithm in (2).

We consider that the eavesdropper has access to the network
topology and the exchanged information between agents (based
on Eq. (2)). Therefore, the available information to the eavesdrop-
per is Ion(t) £ {A, &, Xi(t)};cy,- The eavesdropper’s target is to use
Icon(t) to infer the reference signals ri(t) and fi(t). In particular,
let X;(t) € R™, 7i(t) € R™, and fi(t) € R™ be the eavesdropper’s
estimates of x;(t), ri(t), and fi(t), respectively. An observer based
attack model can be designed to estimate r;(t) and fi(t) as follows:

() = Fit) + 1 0y (%i(6) — x(6)) + kaki(e),

F(t) = ky (xi(t) — (1) — (1)) + i), (3)
filt) = kaxi(t) +  (t),

where ki, ka, k3, ks € R are positive constants to be designed,
Xi(t) £ xi(t) — Xi(t) € R™ is the estimation error, f/(t) € R™ is an
auxiliary variable, and z;(t) € R™ is the local filter. f/(t) and z(t)
are updated by

fl(6) = —ks (fi(t) + KZlea,-j (xi(t) — x,-(t))) + kaXi(t),
@i (6(0) — xi(1)) . z(0)=0.

(4)

zi(t) =«
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Let 7(t) 2 ri(t) — Fi(t), fi(t) 2 fi(t) —ﬁ(t) € R™ be the reference
estimation errors. Then, from (1)-(4), it follows that

xi(t) = filt) — ki&i(t),
Fi(t) = fi(t) — kaFi(1), (5)
filt) = fi(t) — kafi(t) — kaXi(t).

The observer based attack model in (3) is designed via an iterative
procedure. The auxiliary variable f/(t) and local filter z(t) are
introduced to shape the time derivative of %(t), 7(t), and fi(t) into
the desired form presented in (5). This desired form is derived
via Lyapunov-based techniques and will be used to facilitate the
stability analysis of the following theorem.

Theorem 1. When the algorithm in (2) is utilized to achieve dynamic
average consensus, the external eavesdropper can infer the reference
signals r;(t) and f(t) by using the observer in (3). More precisely,
assuming that the signals r;(t), fi(t), and fi(t) are bounded, i.e., r;(t),
fi(t), fi(t) € Lo, then

1. The attacker using (3) is guaranteed to obtain the private
reference information in the sense that the estimation errors
ri(t) and fi(t) are uniformly ultimately bounded (UUB).

2. If fi(t) is in the £y-space, the estimation errors 1;(t) and fi(t)
converge to zero asymptotically.

Proof. See Appendix A. O

Remark 1. The design of the observer in (3) is to illustrate that the
consensus algorithm in (2) is vulnerable to privacy attacks. Vari-
ous techniques can be exploited to construct the attack model,
and it is not the focus of this paper. In the following, we will
present a privacy scheme and show that the approach can provide
privacy protection against the external eavesdropper no matter
what attack model is used.

4. Privacy preservation via state decomposition

Building upon our prior work (Wang, 2019), in this section,
we extend the state decomposition scheme to dynamic average
consensus. Note that here we aim at protecting privacy against
any eavesdropping scheme (including the example shown in
Section 3). More specifically, the state decomposition scheme de-
composes the state and reference signals {x;(t), ri(t), fi(t)} of each

agent into two sub-sets {x¥(t), ré(t), f*(t)} and {Xf(t), rf(e),

ff(t)}. The initial values r{*(0) and rl.ﬂ(O) can be randomly chosen

from the set of all bounded real numbers under the following
constraint:

r¥(0) + r’(0) = 2r,0). (6)
Furthermore, f(t) and fiﬂ (t) are bounded and chosen to satisfy:
FEO)+ £ () = 2f (). 7)

From (6) and (7), it can be obtained that r{*(t) + riﬂ(t) = 2ri(t),

which implies L 3" | (rﬁ(c)+rf(t)) = 15 r(e), ie, the

2n £-j
average consensus value remains the same before and after the
state decomposition. Moreover, in the decomposition mechanism,
the sub-state x{'(t) takes the role of the original state x;(t) in
inter-agent interactions and is the only state value from agent
i that is shared with its neighbors. The other sub-state xf (t)
involves in the distributed updates by (and only by) exchanging
information with x{(t) internal to agent i. Therefore, xf (t) will
affect the evolution of x{(t), but its existence is invisible to the
neighbors of agent i and hence the eavesdropper, indicating that
the available information for the eavesdropper changes to Iz £
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agent 1 agent 2

agent 4 agent 3

(@) (b)

Fig. 1. Illustration of state decomposition: (a) Before decomposition. (b) After
decomposition.

{A, Kk, x¥(t)},_,,- An example is given in Fig. 1 to illustrate the state
decomposition of a network with four agents.

Under the decomposition mechanism, the conventional aver-
age consensus algorithm in (2) becomes

R() = FE(0 + 00 ay (x4(6) — X4(0)) + (xf(t) - x;"(t)) ,

B B o B

ey =10+ (0 = 0), (8)
X2(0) =r(0), x°(0)=rP(0), Viev.

In the following, we first show that all states x{(t) and x? (t)
will present similar convergence properties as in the conven-

tional case (2). Then, we prove that the privacy of each agent is
protected against an external eavesdropper.

Theorem 2. Under the decomposition mechanism, all sub-states
x{(t) and xf’(t) in (8) are input—to-state stable and the tracking
errors xj(t) — 1 Z]"ﬂ rj(t) and x; ( ) — ) are ultimately
bounded Moreover the convergence rate of t/ze trackmg errors is no

worse than 5 <A2(L) +2—,/ 2( )+ 4 ), where L is the Laplacian

matrix of graph before state decomposition and A,(L) € R is the
second smallest eigenvalue of L.

Proof. It is clear that the decomposition mechanism ensures
that all sub-states also compose a connected graph. Based on
the results in Kia et al. (2019), dynamic average consensus can
still be achieved, i.e., all sub-states are input-to-state stable,

and the convergence errors x(t) — 5 >, (r;"(t) + rf(t)) and

X(t) - ST ( S(6)+ 1 B )) are ultimately bounded. It can

be concluded from (6) and (7) that lZ]" 1( “(t )+r (t )) =

1 Z ). Therefore, all sub-states x{'(t) and x; (t) in (8) re-
fain the convergence to the nelghborhood of the same average
consensus value as the original states.

Let [*f € R*™*?" be the Laplacian matrix of the graph com-
posed by all sub-states. By leveraging the results in Kia et al.
(2019), it can be concluded that the convergence rate of the
consensus algorithm is no worse than xA,(L%#), where A,(L%#) €
R is the second smallest eigenvalue of L*?. To complete the proof

of Theorem 2, we next show that A,([*f) = % (XZ(LH-Z—

\/A3(L)+4 ). According to the decomposition mechanism, L%/
can be formulated as

L+1, —I
af __ n n
wo Lo 4] @

with I, € R™" being the n-dimensional identity matrix. Let
MLep), ML) € R be the eigenvalue of L,g and L, respectively.
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Based on (9) and the eigenvalue-eigenvector equation (Horn

& Johnson, 2012), it can be derived that A(L.,g) = %(A(L)

+2 4+ /A%(L) + 4), from which it follows that the second small-

est eigenvalue of Lyg, i.e., 2o(L*), is 5 <k2(L) +2— /ML) + 4),

which completes the proof. O

Remark 2. Given a graph topology, the second smallest eigen-
value of Laplacian A,(-) is a measure of the convergence rate
of consensus algorithms (Olfati-Saber et al., 2007). The conver-
gence rate of the algorithm in (2) is no worse than xA;(L),
and after state decomposition, this measure will decrease to

L (AZ(L) +2—/23(L) + 4)
becomes weaker.

since the connectivity of the graph

We next show that the decomposition scheme can protect the
privacy of the agents against the external eavesdropper.

Theorem 3. Under the decomposition mechanism, an external eaves-
dropper cannot infer the reference signals r,(t) and f,(t) of any agent
p with guaranteed accuracy.

Proof. Under the decomposition mechanism, the reference sig-
nals {r;(t), fi(t)} of each agent are divided into two sub-sets
{re(e), f(6)} and {rl-ﬂ(t),fiﬁ(t)}, and the information accessible
to the eavesdropper is loec(t) = {A, x, x¥(1)},_,- Let {F(t). fi(t),
RO, fe (0. 70, 7(0)) and {%(0), %(6)} be another set of ref-
erences and their corresponding sub-states, respectively. To show
that the privacy of r,(t) and f,(t) can be protected against the
eavesdropper, it suffices to show that under any bounded per-
turbations e€,(t) = €,(0) + fo 8p(r)dr that alter the reference
signals to 7,(t) = rp(t) + €(t) and fo(t) = f(t) + 8,(t), there
exists a new constructed set | 7*(t )f“( ), T (t),fiﬁ(t) . such
1€

V\{p}
that the information Ipc(t) 2 {A, x,X¢(t)},_,, accessible to the

eavesdropper is exactly the same as the information I(t) cu-
mulated under [ ri(t), f(6), 1 ( )fﬁ( )]4 . This is because the

1
only information available to the eavesdropper is Igec(t), and if
lgec(t) could be the outcome of any perturbed values of r,(t) and
fp(t), then the eavesdropper has no way to even find a range
for rp(t) and f,(t). Therefore, we only need to prove that for any

1p(t) # 1p(t) and fp( ) # fp(t), we can always find a set of signals
r HOVHORHONAON suich that fee(t) = laee(t) holds.
Let agent [ be one of the neighbors of agent p. Next we show
that given 7,(t) (i.e., 7,(0) and fp( )) by su1tably selectlng the
values of 7i(0), 7%(0), 75 (0), 7#(0), 7/(0), f(t). £ (t). f*(¢), and
FP(0), Taee(t) = laec(t) could hold under 7p(t) # rp(t). Specifically,
under the following conditions:

11(0)=r(0) + 1,(0) — 1,(0),

7(0)=r2(0), 7 (0)=27,(0) — rZ(0),
. , (10)
T F(0)= n [ (0), T (0)=2r,(0) — r;*(0),
7g(0)=1,4(0), 75 (0)=rg(0), 7£(0)=1£(0), VgV \ {p. I} ,
and }
filt) = filt) + fp(8) = fo(t),
F(6) = £2(0) + 26 (rp(t) = 7p(0)) L FL (1) = 2fp(8) — F (1), an
Foe) = £2(0) + 2 (Fp(8) — rp(0)) L F (8) = 2fi(t) = fi(e),
fo(t) = fo(0), f (&) = £ (). P (&) = £ (1), Vg e v\ {p, I} ,
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and system dynamics

X(t) = FE(6) + e Yy (R (t) — %
Ho) =J0+x (0 -%w0).
%(0) =7(0), x{(0)=17(0),

x(0) +x (F0-%).

Viev,

(12)
the new sub-state x{'(t) will be the same as x(t), for all i € V,
i.e., Igec(t) = Igec(t). Note that the first equations in both (10) and
(11) are introduced to ensure that the average consensus value
+ 2_L, 7i(t) is the same as the original one } Y"1, rj(t). Now we

~ Jj= 1
prove that Igec( t} = Idec ) First, from (6), (10), and the facts that
x4(0) = 7(0), X(0) = /(0), x(0) =

, r*(0), x'(0) = r#(0), vie v,
lt can be obtalned that
X2(0) = x%(0), X5(0) = x£(0) + 2 (7,(0) — 1,(0)) ,
%1(0) = x{'(0), (0) = x(0) + 2 (r,(0) — 1,(0)) . (13)

7(0) = x2(0), X(0) = £(0). Vg € v\ {p. 1} .

q
Furthermore, based on (11) and (13), it can be verified that

XE(t) = x3(6), XE(t) = XD () + 2 (7p(t) — 1p(1)) ,

(6) = X0, % () = % (£) + 2 (rp(t) — Fo(1)) , (14)
R(6) = x4(0), %(6) = x(t), Vg € v\ {p. 1},

is the solution to (12). It is obvious that the solution (14) satisfies
Vi e V, x(t) = x{(t), and thus Igec(t) = Ilgec(t) holds under
rp(t) # rp(t). The above analysis shows that no matter what
attack model is used, the eavesdropper cannot infer r,(t) and f,(t)
from Igec(t) with guaranteed accuracy. O

Remark 3. The proposed state decomposition scheme is a general
privacy-preserving augmentation to dynamic average consensus
algorithms. While the above analysis is based on the dynamic
consensus algorithm in (2), the state decomposition framework
can be integrated with other dynamic average consensus ap-
proaches (e.g., Bai et al., 2010; Chen et al., 2012, 2015; Freeman
et al,, 2006) to improve the resilience of original methods to
privacy attacks.

Remark 4. Generally, the works (Altafini, 2020; Mo & Murray,
2017; Ruan et al., 2019; Wang, 2019) on privacy preservation in
static average consensus have an assumption that the honest-
but-curious adversary cannot have access to the entire neigh-
borhood set of an agent. However, the considered dynamic av-
erage consensus aims at protecting privacy against the external
eavesdropper, and it is not subjected to the invariant-state-sum
relationship as shown in the static consensus case. Thus such an
extra assumption is not needed anymore.

5. Application to formation control

In this section, the privacy-preserving dynamic average con-
sensus is applied to the formation control of non-holonomic
mobile robots under the adversarial environment with eaves-
dropping attackers.

5.1. Formation control objective

In particular, consider n networked non-holonomic mobile
robots and n mobile moving targets in the motion plane. Each mo-
bile robot i has access to its own position s;(t) £ [sxi(t), syi(t)]T
R? and can monitor the mobile target i’s position p;(t) 2
[Pxi(t), Pyi(t)]" € R? and velocity pi(t) = ai(t) 2 [4u(0), q(D)]'
R2. si(t), pi(t), and qi(t) are all expressed with respect to the

m

m
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Fig. 2. Dynamic consensus based formation control. The triangles are the non-
holonomic mobile robots; the circles are the mobile targets; and the cross is
the center of the mobile targets.

inertial coordinate frame. Each mobile robot shares relevant in-
formation with its neighbors via wireless communication. We
consider the case that the mobile robots and targets are operating
in the adversarial environment with eavesdropping attackers.
The objective of the networked mobile robots is to follow the
set of mobile targets by spreading out in a pre-specified for-
mation while preserving the privacy of mobile targets against
the eavesdropper. Specifically, the formation control requires
that by using the information received from the communication
network, each mobile robot i is driven to a relative vector b;(t) £
[bxi(t), byi(t)]T € R? with respect to the time-varying geometric
center of the mobile targets, i.e., s;(t) — %Z?zl pi(t) + bi(t) as
t — oo. Meanwhile, since each mobile robot can only monitor
one mobile target, it needs to cooperate with its neighbors to
compute the geometric center, which induces the risk of breach-
ing the privacy of mobile targets. An external eavesdropper can
use the leaked sensitive information, such as the position and/or
velocity information, to maliciously track and attack the mobile
targets. Therefore, it is important that the formation control
scheme can protect the privacy of mobile targets against the
eavesdropping attacker, i.e., an external eavesdropper cannot
identify the position and/or velocity of mobile targets based on
the network information. An example scenario in which a team
of mobile robots tracks a group of mobile targets is depicted in
Fig. 2.

5.2. Control design

As discussed in Kia et al. (2019) and Porfiri et al. (2007), the
formation control problem in the aforementioned scenario can
be addressed with a two-layer method. In the cyber layer, the
privacy-preserving dynamic average consensus algorithm is used
to estimate the geometric center of mobile targets in a distributed
manner, while in the physical layer, the mobile robot i is actuated
to follow the estimate of the geometric center with a desired
relative bias b;(t). The implementation details are given now.

In the cyber layer, the state decomposition based dynamic
average consensus algorithm presented in Section 4 is utilized
for the calculation of the geometric center %ZL] pi(t) and the

privacy preservation of mobile targets. Specifically, let cf*(t) £

[cﬁ(t),cj‘j‘i(t)] € R? and cf(t) 2 [fl(t), cﬁ,(t)I c

o R? be two
sub-sets of the geometric center estimates, which are updated by

E4(6) = qE(0) + K0y (cH(0)— (1)) + (cf(r)—cg(t)) ,
Fiy=qf(t)+« (c{"(t) - cf(t)), (15)
c(0) = p2(0).  ¢/(0) = pf(0).
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where p{(0), pf(O), qi (), qf}(t) € R? are selected to satisfy

pi(0)+p{(0) = 2pi(0),  q{(t) + af (£) = 2qi(1). (16)
As shown in Theorems 2 and 3, ¢{*(t ) will converge to the neigh-
borhood of the geometric center = Z: 1 bi(t), and the mobile
targets’ information cannot be 1dent1f1ed by the external eaves-
dropper.

In the physical layer, the objective now is to design a track-
ing controller for non-holonomic mobile robot i to ensure that
si(t) — ¢f(t) + bi(t) as t — oo. The kinematic model of
non-holonomic mobile robot i is described by

5(t) = vi(t) cos(Bi(1)),  $yi(t) = vi(t) sin(B(t)),  Oi(t) = wi(t),

(17)
where 6;(t) € R is the heading angle expressed in the inertial
coordinate frame, and v;(t), wi(t) € R are the linear and angular
velocity, respectively. To facilitate the following development, the
desired heading angle 64(t) € R and desired linear velocity
vgi(t) € R are constructed as

Gdi(r)zarctan<y' )>, vai(t) =/ (Ea(O) + (E(0)?, (18)

1
&)

which indicates that ¢(t) and ¢,;(t) can be rewritten as ¢(t) =
vgi(t) cos(Ggi(t)), €yi(t) = vai(t)sin(Og(t)). Based on coordinate

transformation, the system errors are defined as
exi(t) £ cos(6i(t))(sxi(t) — ci(t) — byi(t))
+ sin(04(t))(syi(t) — cyi(t) — byi(t)),
eyi(t) = — sin(0;(t))(sx(t) — ,(,(t) byi(t))
+ cos(0;(t))(syi(t) — cyi(t) — byi(t)
epi(t) = 0i(t) — Oai(t).
It is clear that si(t) — c¥(t) + bi(t) as [ex(t), eyi(t), eai(t)] —
0. Note that the mobile robot is subjected to non-holonomic
constraint, and thus in general time-varying auxiliary variables
are needed to facilitate the controller design (Huang et al., 2013;
Jiang & Nijmeijer, 1997; Wang et al., 2015). Considering the non-
holonomic constraint, an auxiliary error ey;(t) € R is defined
as

(19)
);

ei(t) = egi(t) — pi(t), (20)
where the time-varying signal p;(t) € R is given by

pi(t) 2 omi(t) tanh (Ll e2(t) + e§i(t)) sin(iat) 1)
with @;(t) 2 exp( fo lvai(T |dr) € R and 1, ¢1, 12 € R being

positive constants. To achieve the formation control, the velocity
inputs v;(t) and w;(t) are designed as
vi(t) = —y1 tanh(ex(t)) + cos(epi(t))vai(t),
wi(t) = —y, tanh(eg(t)) + pi(t) — yasgn(epi(t))
. . (22)

sin(egi(t)) — Sm(Pi(f))v (©en®)

éi(t) R
where y4, y2, 3, ¥4 € R are positive control gains, and sgn(-) is
the standard signum function.

—Va

Theorem 4. The controller designed in (22) ensures that the system
errors ey;(t), eyi(t), and ey(t), i € V, asymptotically converge to zero
in the sense that

tllm exi(t), ey,-(t), eyi(t) = 0. (23)

Proof. See Appendix B. O

According to the definition of ey(t), e,(t), and eg(t), it can
be concluded that s;(t) — ¢f(t) + bi(t) as (23) holds. Since
¢f*(t) will converge to the neighborhood of the geometric center
% 2?21 pi(t), the formation control task is accomplished.
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Fig. 3. Simulation results of conventional dynamic average consensus (2):
(a) System state convergence. (b) Estimation of p;(t) and gq(t) with the
eavesdropping scheme developed in Section 3.

6. Simulation results

In this section, simulation is conducted to demonstrate the
performance of the developed approach. A team of six mobile
robots are employed to follow a group of six mobile targets and
maintain a rectangle formation. The network structure of the
mobile robots is the same as the one shown in Fig. 2. The initial
positions and velocities of mobile targets are as follows: p;(0) =

[1.8,1.2]", p(0) = [0.3,1.5], p3(0) = [~1.2,1.8]", pa(0) =
[-1.8,-1.2]", ps(0) = [-0.3,-1.5]", ps(0) = [1.2,-1.8],
qi(t) = qo(t) + [0.1cos(0.2t), —0.2¢os(0.4t)]", gs(t) = qo(t) +
[0.2 cos(0.4¢), 0.1 cos(0.26)]", ga(t) = LHLO),

qa(t) = qolt) + [—0.1c0s(0.2¢), 0.2 cos(0.4¢)],

gs(t) = qo(t) + Lo.z cos(0.4t), —0.1cos(0.2¢)]",

gs(t) = %(U;—%(f . and

sin(Z + 0.5 sin(0.2t))

Furthermore, the initial positions of the mobile robots are se-
lected as 51(0) = [1.3,5.2]", 52(0) = [~3.6,3.9]', 55(0) =
[~7.5,2.6]",54(0) = [-4.8, =5.5]", 55(0) = [~0.6, —5.35]', and

s6(0) = [5.2, —5.2]T. For the mobile robots, the desired relative
positions to the geometric center of mobile targets are given by
bi(0) = [4.4]', bo(0) = [0.4]', by(0) = [-4.4]", bs(0) =
[~4. —4]", bs(0) = [0. —4]", and bs(0) = [4, —4]". In the follow-
ing, we first evaluate the state decomposition based consensus
algorithm and then test the formation controller designed in (22).

Suppose that an external eavesdropper is interested in obtain-
ing the information of mobile target 1 and uses the eavesdrop-
ping scheme developed in Section 3 to infer p;(t) and q(t). To
better demonstrate the performance of the proposed consensus
scheme, both the conventional algorithm in (2) and the developed
privacy-preserving algorithm are used to estimate the geometric
center of mobile targets. Fig. 3 shows the evolution of the network
states as well as the eavesdropping states under the conventional
algorithm (2). It can be seen that the eavesdropper can success-
fully infer p1(t) and q;(t) when the agents are updated with
algorithm (2). The results under the privacy-preserving scheme
(15)is illustrated in Fig. 4. It is clear that the proposed scheme can
achieve dynamic average consensus while protecting the privacy
of the mobile target.

As discussed in Section 5, the dynamic average consensus
algorithm is used to estimate the geometric center of mobile
targets, and then the mobile robots are driven according to (22) to

do(t) = (0.75 — 0.25 cos(0.24¢)) [COS( +0.55in(0.2¢ ))]
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Fig. 4. Simulation results of privacy-preserving dynamic average consensus
(15): (a) System state convergence. (b) Estimation of p;(t) and gq;(t) with the
eavesdropping scheme developed in Section 3.
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Fig. 5. Motion trajectories of all mobile robots.

achieve the formation task. Fig. 5 depicts the motion trajectories
of all mobile robots, showing that all robots follow the geometric
center by spreading out in a desired rectangle pattern.

7. Conclusion

This paper developed a state decomposition based privacy-
preserving method for continuous-time dynamic average consen-
sus. We showed that existing dynamic consensus algorithm is
susceptible to eavesdropping attacks with a carefully designed
filter. We then rigorously proved that the state decomposition
scheme can enable privacy preservation without affecting the
consensus results. Furthermore, the proposed method was suc-
cessfully applied to achieve formation control for non-holonomic
mobile robots. Simulation results showed that by using the pro-
posed method, the group of networked mobile robot can spread
out in a pre-specified formation without disclosing private infor-
mation.

Appendix A. Proof of Theorem 1

Proof. To prove the first claim, a non-negative Lyapunov function
V(t) € R is introduced, as follows:

V() £ S KaFOR) + STTORO + 2 (00, (A1)
from which it follows that V(t) can be bounded by
wyT(Ew(e) < V() < my"(ew(e), (A2)
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A

where u 2 min{iks, 3}, @ 2 max{fks, 1} € R, and y(t) 2
[%F(6), 7T (6) f’(t)]T € R is the augmented estimate vector.
Taking the time derivative of (A 1) and substituting it in (5) yield
V(1) = —kikaX] (ORi(t) — ko] (0Fi(1) — kaf (0)fi(0) + FT(0)fi() +

~T(t)f'( t). According to Youngs mequahty we have 7 T(Ofi(t) <

in( OF(0)+ 5, FT(0f(e) and fT(0)fi(e) < BT (0f(e )+2k F k(o).

Therefore, V( ) can be upper bounded by

V() < —kikaX] (0Ri(0) — %F,-T F0)
(T 1 (A3)
(2 2k2>f (OF(E) + 5 ()
< —uy" (E)y(t) + o(t),
where y £ min{k1k4, "22 %3 — —] e Rand o(t) £ 51 i FT(E)fi(t) €

R. It is clear that M is posmve provided that k, and ks are chosen
to satisfy k3 > --. Since f( ) € Lo, 0(t) is bounded. By utilizing
(A.2) and (A.3), Tzheorem 4.18 in Khalil (2002) can be invoked to
show that y(t), i.e., X(t), Fi(t) and f(t), is UUB.

We now prove the second claim. Based on the assumption
f (t) € Ly, it can be obtained that there ex1sts a bounded positive
constant ¢ € R such that V¢t > 0, fo s i )f( )dt < v. Let the
non-negative function W(t) € R be detj ned as

W(t)éV(t)-i-t—/ —ff(r)',»(r)dr
0 2](3

Taking the time derivative of (A.4) and utilizing (A.3), it can be
concluded that

(A4)

. T ky o . k
W(t) = —kikaX] (0)%i(t) — frf (t)Fi(t) — (53 - —)ff(t)f(t)
<0.

(A5)
According to (A.4) and (A.5), it follows that W(t) € L, i.e., Xi(t),
fi(t), fit) € Lo () L2. The boundedness of ri(t), fi(t), fi(t) and
the expression in (3) can be used to conclude that x;(t), i(t),
fi(t) € Loo. AsXi(L), Ti(t), fi(t) € Loo [) L2 and Xi(t), Ti(£), fi(t) € Lo,
Barbalat’s lemma (Khalil, 2002) can be used to conclude that X;(t),
7i(t) and fi(t) converge to zero asymptotically. O

Appendix B. Proof of Theorem 4

Proof. To prove Theorem 4, the Lyapunov function Vi(t) € R,i =
1,2,...,nis defined as

1 1_
Vi(t) 2 7 (3 +e) + Eeg,.. (B.1)
Based on (17), (19)-(22) and the facts that ¢(t) =
vgi(t) cos(Bgi(t)), €yi(t) = wvgi(t)sin(fgi(t)), the closed-loop error
dynamics can be derived, as follows:
éxi(t) = —y1 tanh(e.(t)) + wi(t)eyi(t),
eyi(t) = —wj(t)ex(t) + sin(eg;(t))vai(t),
epi(t) = —y tanh(@gi(t)) — fai(t) — yasgn(@i(t))
sin(epi(t)) — sin(pi(t))
i(t)eyi(t).
eor(0) Vil )eyx( )
After taking the time derivative of (B.1) and substituting (B.2) into
the derivative, it can be determined that
Vi(t) = —y1v4exi(t) tanh(ey(t)) — y286i(t) tanh(@ei(t))
+ yavai(t)eyi(t) sin(pi(t)) — eqi(t) (v3sgn(esi(t)) + Oai(t)) .
(B.3)

(B2)
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If y3 i§ selected sufficiently large to satisfy y3 > sup;¢(o o) 16i(t)],
then Vj(t) is upper bounded by

Vi(t) < —Wi(t) + yaley(t)llvai(t) sin( oi(6))|

</ 2yaVi(8)lvai(t) sin( oi(t))],
where Wi(t) £ yiyaseq(t)tanh(ey(t)) + y2€pi(t) tanh(eyi(t)) € R
is a non-negative function. From (21), it can be found that 0 <
oi(t) < 1, wi(t) = —|vai(t)lwi(t), and |pi(t)] < wwi(t). Using
these facts and integrating |vg;(t) sin(,0;(t))], it can be concluded
that

f lva(e) sin(pi(x))lde
0

(B.4)

< / sl ol < 10 f loa(® () (B5)
0 0

< to/ —ai(t)dt < 19 (w(0) — @ (t)) < to.
0

Eq. (B.4) indicates that %
based on (B.5), it can be deduced that /Vi(t) € L, i.e., Vi(t) €
Loo. Furthermore, it can be inferred from (22), (B.1), and (B.2) that
exi(t), eyi(t), pi(t), vi(t), wi(t), exi(t), €yi(t), €pi(t) € Loo. Taking
the time derivative of Wj(t) and using the above boundedness
analysis, it can be derived that Wi(t) € L, which is a sufficient
condition for Wj(t) being uniformly continuous. Using (B.4), (B.5),
and Vi(t) € Lo, it can be concluded that fot Wi(t)dt € Lo
Based on fot Wi(t)dt € Lo and the uniform continuity of Wi(t),
Barbalat’s lemma (Khalil, 2002) can be exploited to obtain that
lim; oo Wi(t) = 0, ie., limg_, o ex(t), epi(t) = 0. With the aid
of the extended Barbalat’s lemma (Dixon et al., 2000), it can
be further deduced that lim;_. ey(t) = 0. According to (20)
and (21), it is clear that lim_, « exi(t), e,i(t), éi(t) = O implies
limy_, o exi(t), eyi(t), esi(t) = 0, which completes the proof. O

< \/sz |vi(t) sin(pi(6)], and then
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