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Decarbonylative Sulfide Synthesis from Carboxylic Acids and 
Thioesters via Cross-Over C–S Activation and Acyl Capture  
Chengwei Liua* and Michal Szostaka* 

A method for the synthesis of sulfides from carboxylic acids via thioester C–S activation and acyl capture has been 
accomplished, wherein thioesters serve as dual electrophilic activators to carboxylic acids as well as S-nucleophiles 
through the merger of decarbonylative palladium catalysis and sulfur coupling. This new concept engages readily available 
carboxylic acids as coupling partners to directly intercept sulfur reagents via redox-neutral thioester-enabled cross-over 
thioetherification. The scope of this platform is demonstrated in the highly selective decarbonylative thioetherification of a 
variety of carboxylic acids and thioesters, including late-stage derivatization of pharmaceuticals and natural products. This 
method operates under mild, external base-free, operationally-practical conditions, providing a powerful new framework 
to unlock aryl electrophiles from carboxylic acids and bolster the reactivity by employing common building blocks in 
organic synthesis. 

Introduction 

Sulfides represent one of the most fundamental moieties in 
all areas of chemistry and are of immense importance in 
pharmaceutical development (Figure 1).1 Thus, new methods 
for the synthesis of sulfides are receiving increasing attention. 
Typical methods are centered on the synthesis of sulfides by 
alkylation of thiols,2a addition of organometallics to 
disulfides,2b hydrothiolation reactions,2c and Pummerer 
rearrangements.2d With the advent of transition-metal-
catalyzed cross-coupling reactions, a variety of C–S coupling 
protocols for the synthesis of thioethers from aryl halides or 
pseudohalides have emerged as an increasingly powerful 
strategy for the synthesis of thioethers.3 Further recent 
progress in the synthesis of thioethers involves 
thioetherification of amides4,5 and esters6 by a decarbonylative 
pathway. However, thioether synthesis from amides or esters 
is challenging since reductants, such as magnesium or 
manganese, are required for these transformations. In this 
context, intramolecular C(O)–S decarbonylation of thioesters 
by CO de-insertion represents one of the most direct and 
useful fragment couplings for the synthesis of thioethers.7 

In this framework, thioesters have emerged as highly 
valuable building blocks in organic synthesis, while acetyl-CoA 
has long been established as the key acyl transfer reagent in 
enzymatic pathways.8–10 Considering their high air- and 
moisture-stability, thioesters are well-tolerant to the 
chromatographic purification and significantly easier to handle 
than the corresponding acyl halides, while maintaining high 
electrophilic character of the C(O)–S group.9 Thus, thioesters 

have been widely used in chemical synthesis. In this context, 
transition-metal-catalyzed cross-coupling of thioesters has 
been well-established, and this manifold typically operates via 
acyl-type coupling with the –SR moiety serving as a leaving 
group. Thus, substitution of the sulfur group with various 
nucleophiles has been widely studied, including Grignard 
reagents,11 organozinc reagents,12 boronic acids,13 alcohols,14 
amines,15 hydrides,16 silanes17 and alkynes.18 In sharp contrast 
to the use of thioesters as C(O)–S electrophiles, the function of 
thioesters as nucleophiles to react with electrophiles has been 
rarely developed (Figure 2A).19 

 
Figure 1. Commercial pharmaceuticals containing thioethers. 

Although transition-metal-catalyzed thiolation of halides 
and pseudohalides with thiols is a fundamental method for the 
synthesis of thioethers, these protocols are inherently limited 
due to the formation of RS–M–H intermediates from free 
thiols, thus requiring the use of a base and leading to the 
generation of reduction by-products (Figure 2B). Thus, the 
development of new “protonless” sulfur reagents is highly 
desirable. 
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Figure 2. Acyl capture catalysis for the synthesis of sulfides via decarbonylative cross-over C–S bond activation. 

 Simultaneously, we recognized that carboxylic acids are 
fundamental building blocks in organic synthesis.20,21  
Transition-metal-catalyzed cross-coupling of carboxylic acids is 
highly attractive due to their pervasiveness as crystalline 
starting materials across various faces of chemical science.22–24 
Recently, compelling applications of cross-coupling of 
carboxylic acids by decarboxylative and decarbonylative 
mechanisms to form C–C and C–X bonds in a highly selective 
fashion have appeared.25–31 

Our interest in the cross-coupling chemistry of carboxylic 
acid functional groups led us to take advantage of the dual 
reactivity of thioesters as cross-over C(O)–S nucleophiles to 
achieve the synthesis of sulfides via versatile acyl capture 
catalysis platform (Figure 2C). Further, given the widespread 
availability and the tremendous potential of carboxylic acids as 
unconventional cross-coupling electrophiles, we envisioned 
the simultaneous activation of a carboxylic acid moiety to 
provide a new general approach to the synthesis of thioesters 
from carboxylic acids and thioesters by acyl capture. 

The proposed mechanism for this general strategy involves 
reversible carboxylic acid coupling with an acyl activator from 
thioester to form an active carboxylic acid (i.e. mixed 
anhydride) in situ by acyl capture exploiting the high reactivity 
of the C(O)–S carbonyl group, followed by oxidative addition of 
the C(acyl)–O bond to a transition-metal, decarbonylation, 
ligand exchange and reductive elimination, which results in 
engaging of carboxylic acids in a modular decarbonylative 
cross-coupling platform (Figure 2D). This strategy forges 
carbon–sulfur bonds via the classical oxidative addition 
mechanism operating under redox-neutral conditions in the 
absence of external bases and provides a general solution to 
the routine application of carboxylic acids for the synthesis of 

valuable sulfides with high chemoselectivity and excellent 
functional group tolerance. It should be noted that two 
pathways are possible in Figure 2D for the cleavage of the C–O 
bond in a mixed anhydride (path a and b). We hypothesized 
that given the thermodynamic nature of the process and the 
transient stability of acyl-metal complexes, one thioether 
product would be formed predominantly (path a) (vide infra). 
We further proposed that the mechanism for the formation of 
the mixed anhydride would involve metal-free acylation.  

The following features of our study are noteworthy: (1) the 
first palladium-catalyzed decarbonylative thioetherification of 
carboxylic acids and related derivatives; (2) acyl capture 
catalysis that in principle is broadly applicable to exploiting 
carboxylic acids in a wide array of transition-metal-catalyzed 
cross-coupling protocols; (3) the first cross-over S-transfer 
from thioesters to carboxylic acids; (4) the use of mild 
“protonless” S-nucleophiles; (5) external-base-free and 
reductant-free conditions; (6) broad scope and applications to 
late-stage functionalization exploiting the ubiquity of 
carboxylic acid functional group. 

Results and Discussion 
The proposed acyl capture catalysis was first investigated 

using 2-naphthoic acid (1a) and S-phenyl benzothioate (2a) 
(1a:2a, 1:1 ratio) as model substrates (see SI). To our delight, 
after extensive optimization we identified the catalyst system 
consisting of Pd(OAc)2 (5 mol%) and dppp (10 mol%) (dppp = 
1,3-bis(diphenylphosphino)propane) in toluene at 160 °C as 
the optimum combination to deliver the desired sulfide 
product (3a) in quantitative yield.   
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Figure 3. Acyl capture catalysis for the synthesis of sulfides via decarbonylative cross-over C–S bond activation. Conditions: 1 (1.0 
equiv), 2 (1.0 equiv), Pd(OAc)2 (5 mol%), dppp (10 mol%), toluene (0.25 M), 160 °C, 15 h. See SI for details.

A summary of key optimization results is presented in the SI. 
Several points are worth noting: (1) other phosphane ligands 
can be used, such as dppm (81%), dppe (82%), dppb (63%), 
dpppent (30%), dppf (73%), Xantphos (65%), however, 
bidentate phosphines are preferred cf. PCy3 (<2%), PPh3 (<2%); 
(2) the coupling ensues at temperatures as low as 120 °C, 
consistent with the efficient decarbonylation step (48% yield); 

(3) monitoring of the reaction indicates 75% conversion after 
60 min, consistent with facile coupling. It should be noted that 
the carboxylic acid is activated in the absence of external-
bases and additional external-activators, while the thioester 
provides an “internal” cross-over activator and offers 
nucleophilic sulfur to deliver the desired coupling product. 
Toluene is the preferred solvent for the reaction. Furthermore, 
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Figure 4. Acyl capture catalysis for the synthesis of sulfides via decarbonylative cross-over C–S bond activation. See SI for details.

dioxane is typically also a preferred solvent for decarbonylative 
couplings, while lower efficiency is observed in higher boiling 
solvents.  
 Considering that thioesters serve as the dual component in 
this transformation, we first explored the effect of thioester 
acyl and S-substitution on the reaction (Figure 3A-B). As shown, 
the acyl part accommodates benzoyl, alkyl-benzoyl, aryl-
benzoyl as well as vinyl substitution in good to excellent yields, 
while modest yield is obtained with methoxy and electron- 
withdrawing substitution (Figure 3A). Thus, S-phenyl 
benzothioate (2a) emerges as the most reactive among a 
range of acyl functionalized thioesters. Furthermore, the scope 

of the S-substitution was investigated (Figure 3B). As shown, 
electron-neutral (2a), electron-rich (2h), fluoro-containing (2i), 
sterically-hindered (2j) and even alkyl (2k) thioesters delivered 
to desired products in excellent yields. The electron-deficient 
thioester (2l) gave a promising but lower efficiency due to the 
electronic mismatch with the acyl capture and ligand exchange 
steps. We note that only one product was generally observed 
in the coupling, selectivity >90:10 in all cases examined. We 
believe that the selectivity in Figure 3A is connected to the 
acylation/decarbonylation selectivity, which results in the 
optimum performance of electronically-unbiased substrates, 
while in general electron-rich S-substituents are preferred over 
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electron-deficient S-substituents (Figure 3B). An alternative 
mechanism might involve dehydration to symmetrical 
anhydride. Homo anhydrides have not been observed under 
the reaction conditions.  

We next turned our attention to investigate the scope of the 
carboxylic acid component amenable to this transformation 
(Figure 3C). As shown, the method is compatible with a 
remarkably broad range of electronically- and sterically-
functionalized carboxylic acids, attesting to its generic format. 
As shown, various electron-neutral (3a, 3g, 3h, 3s), electron-
rich (3k) and electron-deficient (3i) carboxylic acids can be 
employed to deliver the desired products in good to excellent 
yields. We believe that in case of 3h the reaction follows the 
proposed mechanism since decarbonylation of 2 is slower than 
acylation to form a mixed anhydride. Importantly, medicinally-
privileged motifs, such as trifluoromethyl ethers (3j), as well as 
functional handles, such as tosyl (3l), nitrile (3m), esters (3n, 3t, 
3ad), ketones (3o, 3u), aldehydes (3p), halides (3q, 3r) are well 
compatible. It is noteworthy that steric hinderance (3v-x) can 
be readily employed. Pleasingly, heterocycles, such as 
quinoline and pyridine (3y-z) are well-tolerated. Furthermore, 
cinnamic acids (3aa-ac) are also compatible in this 
transformation, providing vinyl sulfides. Overall, these results 
highlight the broad scope of carboxylic acids that can be 
employed in this redox-neutral decarbonylative coupling. 

It is noteworthy that this protocol permits direct late-stage 
derivatization of pharmaceuticals, such as antihyperuricemics 
(Probenecid, 3ae), retinoids (Adapalene, 3af), antineoplastic 
agents (Bexarotene, 3ag) and natural products (Tocopherol, 
3ah). This late-stage cross-coupling is feasible due to the 
innate presence of the carboxylic acid moiety; thus, the cross-
coupling approach exploiting carboxylic acids as electrophiles 
through redox-neutral decarbonylation offers powerful 
alternative to the traditional cross-coupling of halides or 
pseudohalides and, as shown, may be readily applied to the 
late-stage thiolation. 

Intrigued by the efficiency of this robust acyl capture 
catalysis, we sought to gain insight into the reaction 
mechanism of this process: 

(1) To gain insight into the acyl capture step of the activator, 
we conducted the model reaction in the absence of Pd-catalyst 
(Figure 4A). The reaction resulted in the exchanged thioester 
(2p) in 25% yield, recovered thioester (2a) in 72% yield and 
sulfide (3a) in less than 2% yield. This finding suggests that a 
mixed anhydride reacts with SPh anion to form 2p, which is 
the intermediate in this process. Typically, we did not observe 
homo anhydrides under these conditions.  

(2) To investigate different activators, various C–S reagents 
were prepared and subjected to the standard reaction 
conditions (Figure 4B). As such, both S-phenyl benzothioate 
(2a) and S-phenyl ethanethioate (2m) delivered the desired 
product, albeit the latter was less effective, affording the 
coupling product in 38% yield. In contrast, less electrophilic S-
thiocarbamate (2n) was unreactive under the reaction 
conditions, consistent with the relative nS → π *C=O 
delocalization in the C(acyl)-S group. 

(3) To evaluate the chemoselectivity of this activation 
method with respect to the classical electrophiles, we have 
applied a range of electrophiles to the standard reaction 
conditions (Figure 4C), such as aryl bromide (1af), aryl 
sulfonate (1ag) and aryl pivalate (1ah), which resulted in 
unproductive reactions and recovery of starting materials, 
highlighting the selectivity and unique complementarity of the 
method. 

(4) To gain insight into the observed selectivity, we 
performed a range of intermolecular competition experiments 
(Figure 4D-E). Thus, competition experiments between 
different carboxylic acids revealed that electron-deficient 
substrates are inherently more reactive that their electron-rich 
counterparts (4-CF3:4-MeO = 83:17), while sterically-hindered 
carboxylic acids showed similar reactivity to ortho-
unsubstituted acids (2-Me:2-H = 50:50) and polycyclic aromatic 
acids showed comparable reactivity to benzoic acid (2-Np:Ph = 
69:31) (Figure 4D). Interestingly, electron-deficient substrates 
are inherently more reactive than electron-rich counterparts, 
consistent with the ease of acyl capture and decarbonylation. 
Furthermore, S-aryl electron-deficient thioesters are 
inherently more reactive than their electron-rich counterparts 
(4-CF3:4-MeO = 89:11), while sterically-hindered thioesters are 
more reactive than their ortho-unsubstituted counterparts (2-
Me:H = 70:30) and aromatic thioesters are more reactive than 
alkyl substrates (Ph:n-C10H21 = 56:44) (Scheme 4E). At this 
stage, longer chain S-alky thiol has been used as representative 
to probe for b-hydride elimination/olefin migration (cf. Me, Et), 
which has not been detected under the reaction conditions. 
Overall, the observed effects give insight into the selectivity of 
the process and are a net result of acylation and 
decarbonylation steps.  

Finally, in order to further demonstrate the selectivity and 
synthetic utility of this novel reaction manifold, we performed 
a series of sequential transformations (Figure 4F-G). Thus, 
“traceless” toluene oxidation merged with acyl capture 
catalysis delivered a 4-biphenyl-thioether in excellent yield, 
illustrating the use of hydrocarbons as carboxylic acid 
precursors (Figure 4F). Furthermore, “classical” Ar–Br cross-
coupling merged with “decarbonylative” Ar–CO2H cross-
coupling furnished a 2-biphenyl thioether in high yield, 
emphasizing the synthetic utility of the complementary cross-
coupling manifolds (Figure 4G). 

Conclusions 
In conclusion, we have shown, for the first time, that acyl 

capture catalysis can be utilized for the direct decarbonylative 
base-free thioetherification of carboxylic acids using thioesters 
as thiolating reagents without external activators. Compared 
with the traditional pathway, thioesters serve as dual 
electrophilic activators to carboxylic acids as well as S-
nucleophiles through the merger of decarbonylative palladium 
catalysis and sulfur coupling. The protocol exemplifies the 
utility of cross-over redox-neutral decarbonylative catalysis to 
accomplish highly selective thioetherification of a variety of 
carboxylic acids and thioesters, which represent some of the 
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most pervasive building blocks in chemical science. We fully 
expect that activation of carboxylic acids with cross-over 
electrophiles will lead to new cross-coupling concepts in 
transition-metal-catalysis. 
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