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ABSTRACT

Deep Learning techniques have been widely used in detecting anom-
alies from complex data. Most of these techniques are either unsu-
pervised or semi-supervised because of a lack of a large number
of labeled anomalies. However, they typically rely on a clean train-
ing data not polluted by anomalies to learn the distribution of the
normal data. Otherwise, the learned distribution tends to be dis-
torted and hence ineffective in distinguishing between normal and
abnormal data. To solve this problem, we propose a novel approach
called ELITE that uses a small number of labeled examples to infer
the anomalies hidden in the training samples. It then turns these
anomalies into useful signals that help to better detect anomalies
from user data. Unlike the classical semi-supervised classification
strategy which uses labeled examples as training data, ELITE uses
them as validation set. It leverages the gradient of the validation
loss to predict if one training sample is abnormal. The intuition is
that correctly identifying the hidden anomalies could produce a
better deep anomaly model with reduced validation loss. Our exper-
iments on public benchmark datasets show that ELITE achieves up
to 30% improvement in ROC AUC comparing to the state-of-the-art,
yet robust to polluted training data.
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1 INTRODUCTION

Motivation. Inrecent years deep neural networks have been widely
used to detect anomalies from complex data sources, such as im-
agery and time series. Because real applications typically do not
have a large number of labeled anomalies available beforehand,
most deep anomaly detection techniques are either unsupervised [11,
14, 20] that do not use any labels, or semi-supervised [11, 20, 31]
that uses a small set of normal or abnormal examples to improve
the accuracy of unsupervised deep anomaly techniques.

The Limitations of State-of-the-art. However, these deep anom-
aly methods, either unsupervised or semi-supervised, require that
the unlabeled training data be clean — not contaminated by any
anomalies, so that they can learn a data representation that captures
the distribution of the normal data. Were the training data to be
contaminated by anomalies, the representation learned by these
deep models could encode information about anomalous samples as
part of the distribution of normal data. In this case, there is no guar-
antee that these models can properly distinguish between normal
and anomalous samples. However, in real applications such a clean
training data set rarely exists. Although the semi-supervised deep
anomaly methods improve the quality of unsupervised anomaly
detection by leveraging the classical semi-supervised classification
strategy, they still suffer from the polluted training data. As shown
in our experiments (Sec. 5.2), their performance degrades quickly
when the number of the anomalies in the training data increases.
Proposed Approach. In this work, we propose an approach, called
ELITE that leverages the labeled examples to solve the problem
caused by polluted training data.

Unlike the semi-supervised classification strategy that uses la-
beled examples as training data, ELITE uses them as validation
data. The core methodology of ELITE is to infer the labels of the
polluted training data samples as normal or anomalous according
to their potential influence on the model’s validation loss. ELITE
is based on a basic hypothesis: the correct labels of the unlabeled
training samples should reduce the validation loss on the labeled
examples. Thus ELITE uses a strategy that continuously discovers
the anomalies in the polluted training data and learns a better deep
anomaly model based on the corrected labels.

Moreover, using a tailored loss function that copes with normal
and anomalous samples differently, ELITE trains the model to max-
imize the anomalous score for unlabeled samples that are likely
anomalies while minimizing this score for unlabeled samples that
are likely normal. In this way, ELITE not only uses the information
from labeled examples, but also effectively turns the anomalies in
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Figure 1: ELITE: Robust to Polluted Training Data. Leverag-
ing the labeled examples, ELITE turns the hidden anomalies
into useful signals that help to learn a better classification
boundary.

the training data into useful signals that help to produce a data
representation inherently anomaly-aware.

Clearly, the key of ELITE is how to efficiently identify the op-
timal labels for the unlabeled samples that minimize the model’s
validation loss. Finding optimal labels by repeatedly flipping the
label of each sample and re-training the model to compute the val-
idation loss will be too expensive. To solve this problem, ELITE
proposes an efficient label inference method, called ALICE. ALICE
introduces the concept of meta-gradient to directly estimate the
potential change of the validation loss caused by altering the label
of any training sample, without having to indeed re-train the model.
ELITE then fuses ALICE into every iteration during the training
process to dynamically adjust the labels of the training samples in a
way that is guaranteed to monotonically reduce the validation loss.

ELITE is general in that different categories of unsupervised
deep anomaly techniques can seamlessly plug their objective func-
tions into ELITE and benefit from the labeled examples, such as
Auto-Encoder-based methods [3, 6, 13, 22, 30] and Deep One Class
Classification-based methods [19, 23], as discussed in Sec. 4.4 and
confirmed by our experiments (Sec. 5).

Contributions Our key technical contributions include:

« We propose ELITE, an approach that uses a small set of labeled
examples to solve the problem caused by polluted training data.

« Unlike existing semi-supervised classification techniques, ELITE
adopts a new optimization paradigm that uses the labeled examples
as validation set to infer the labels of the polluted training data.

« We propose ALICE that directly infers the labels of the training
data based on the gradient of the validation loss, without having to
re-training the deep learning model.

+ Our experimental study on several benchmark datasets con-
firms that ELITE consistently outperforms the state-of-the-art semi-
supervised deep anomaly methods and the unsupervised robust
deep anomaly methods by 30% in ROC AUC score. Further, it is
robust to polluted training data: the more anomalies in the data,
the more it outperforms the alternatives.

2 RELATED WORK

Unsupervised Deep Anomaly Detection. Unsupervised deep
anomaly techniques in general can be characterized into two
categories. The first category learns a representation that better
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distinguishes anomalies from normal data. Some of these tech-
niques [3, 6, 13, 22, 30] use the reconstruction errors of Auto-
Encoder as the anomalous score to directly detect anomalies, as-
suming that Auto-Encoders incur larger reconstruction errors on
anomalies than normal objects. Some other techniques use the
same principle, but apply different deep learning techniques to
learn the data representation, such as Generative Adversarial Net-
works [2, 17, 29], self-learning models [10] and Auto-regressive
models [1]. One-class classification-based methods [8, 19-21, 23]
instead learn a feature embedding that maps normal objects into a
minimal volume hyper-sphere; then the objects out of the hyper-
sphere are considered as anomalies. The second category of deep
anomaly techniques [24, 25, 27, 33] use learned deep embedding to
enhance the classical shallow anomaly detection methods. To learn
a representation that is effective in separating anomalies, most of
these methods require a clean training data set — a data set not
containing any anomalies. However, such clean training data rarely
exist in real applications.

Robust Deep Anomaly Detection. Robust deep anomaly detec-
tion [4, 5, 28, 32] targets this problem. Based on the assumption that
anomalies in the training samples tend to incur large training loss in
the training process, these techniques iteratively remove anomalies
from the training set in each training epoch. However, they suffer
from the chicken-egg problem. That is, identifying anomalies based
on the training loss requires an accurate model, while training an
accurate model needs a clean training set. Another strategy is to use
the deep learning techniques that are robust to anomalies [8, 16]
to learn the representation. However, to overcome the influence
of anomalies these techniques often assume the distribution of the
normal examples is known beforehand. This assumption usually
does not hold in practice.

Semi-supervised Deep Anomaly Detection Semi-supervised
deep anomaly detection [11, 14, 20] uses a small number of anomaly
examples to improve the accuracy of unsupervised deep anomaly
techniques. Similar to classical semi-supervised classification, their
key idea is to use these anomaly examples as labeled training data
that are modeled as labeled loss to supplement the loss function of
the unsupervised deep learning method. However, these techniques
still assume that the unlabeled training data is clean and essentially
treat them as labeled normal examples. Therefore, they suffer from
the performance degradation caused by the hidden anomalies in the
unlabeled training data. Our ELITE approach instead uses a small
set of anomaly examples as validation set. It effectively discovers
the anomalies hidden in the polluted training data and turns these
anomalies into useful signals that help to learn a data representation
that better distinguishes between normal and abnormal samples.

3 PRELIMINARIES
3.1 Problem Definition

Given a set of unlabeled training samples XU . {x;‘, o ,xK,}
that contains anomalies, and a small set of labeled samples X* :
{Ghyh), - (el yh)} € X X Y, where Y € {-1,1} with ¢ =1
denoting normal sample and yl = —1 denoting anomalies, the goal
is to train a neural network ¢(x; 6) that assigns small anomalous
scores to normal data and large anomalous scores to anomalies:
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Q) |y=—1 2 Q) |y=1+C (1)

In Eq. 1, Q(x) represents the anomalous score of x, while C is

a hyper-parameter that controls the margin of anomalous score
between normal data samples and anomalies.

3.2 Unsupervised and Semi-supervised Deep
Anomaly Detection

To better present our proposed approach in Sec. 4, in this section
we briefly introduce the key concepts of unsupervised and semi-
supervised deep anomaly detection, using one-class classification-
based methods [19, 23], deep Auto-Encoder-based methods [3, 6,
13, 22, 30], and semi-supervised DeepSAD [20] as examples.

3.2.1 Unsupervised Deep Anomaly Detection. Let ¢(x;0) be a neu-
ral network parameterized by 8, and Q(x) be the anomalous score
function for a data sample x. The goal of deep one-class classifica-
tion [19, 23] is to map the training samples into a compact hyper-
sphere in the learned latent space, where Q(x) = ||$(x, ) — ol|?
with o denoting the center of the learned hypersphere.

The Auto-Encoder-based methods train a dimension reduction
model that reconstructs all training samples with small error. Natu-
rally, it uses the reconstruction error as the anomalous score func-
tion, i.e. Q(x) = ||¢(x; 0) —x||. The training objective is to minimize
the average anomalous score of the training samples as shown in
Eq. 2.

niSow @)
argmin — x
gmin ;

These unsupervised deep anomaly methods work well when the
training dataset contains no or only very few anomalies. However,
this assumption does not hold in many real applications. Mini-
mizing the anomalous score of all training samples thus causes
performance degradation as discussed in Sec. 1.

3.2.2  Semi-Supervised Deep Anomaly Detection. As a semi-
supervised deep anomaly method, DeepSAD [20] uses the training
loss incurred on the labeled anomaly samples to compensate the
loss function of the unsupervised Deep SVDD [19].

1
N+

1 M
N+M Z(Ilqﬁ(xj, ) —o|>)¥
j=1
®3)

In Eq. 3, o represents a vector in the deep feature embedding. N
and M are the size of the unlabeled and labeled set respectively. The
first part of Eq. 3 is identical to the loss function of the unsupervised
Deep SVDD [19]. We call it unsupervised loss. The second part
corresponds to the supervised loss. As a penalization function, it
pushes the labeled anomalies further away from the center.

N
I (xi 0) =olI* +

arg min
0

4 PROPOSED METHOD: ELITE
4.1 Overview of ELITE

Next, we introduce ELITE, a novel approach that effectively lever-
ages a small number of labeled examples to solve the pollution
problem of training samples. ELITE uses the labeled examples as
validation set to evaluate the model trained on the unlabeled train-
ing samples. The key idea of ELITE is to infer the labels of the
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Figure 2: Overview of ELITE

unlabeled training samples as normal or anomalous according to
the potential influence on model’s validation loss. It then learns
from the corrected labels a better deep anomaly model. In this way,
ELITE no longer relies on the availability of a clean training dataset.

Fig. 2 depicts the overall process of ELITE. Given a polluted
training set XU : {x{, -+, x5}, ELITE starts with assigning a pseudo
label to each sample in XV and trains a deep learning model on
these pseudo labels. Initially, we assume all samples are normal.
It then uses the labeled examples to validate the effectiveness of
the model. Next, ELITE uses a pseudo label inference method that
leverages the gradient of the validation loss to correct the pseudo
labels of the training samples in a way guaranteed to reduce the
validation loss. ELITE then updates the deep anomaly model based
on the corrected labels. It iterates the pseudo label inference and
model update steps until updating the labels of the training samples
no longer decreases the validation loss. ELITE deploys the final
deep anomaly model to detect anomalies from user data.

In the rest of this section, we first introduce ELITE’s objective
functions including the training loss and validation loss in Sec. 4.2.
Then in Sec. 4.3 we propose an effective strategy to update the
pseudo labels and analyze its time complexity and convergence.
Finally, we show how ELITE works seamlessly with the existing
unsupervised anomaly methods using Deep SVDD [19] as example.

4.2 Objective Functions

4.2.1 Training loss. The objective of ELITE is to train a deep learn-
ing model ¢(x;0) that assigns large anomalous score to anom-
alies and small anomalous score to normal data, e.g., Q(x)|y=—1
> Q(x)|y=1+C. To achieve this goal, we design a tailored hinge loss
function that copes with anomalous and normal samples differently.
More specifically, given the pseudo label y of the training sample x,
we define the loss function as:

Q(x), y=1
lxy) =
max{C — Q(x),0}, y=-1
In Eq. 4, Q(x) can be any anomalous score function used by ex-
isting unsupervised deep anomaly methods as discussed in Sec. 3.2.
Given the pseudo labels y and the loss function defined in Eq. 4,
ELITE learns the optimal parameters 0% (y) to minimize the average

©
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loss incurred by these pseudo labels. The objective function is
defined as follows.
Nu

PNLEAT

i=1

1
« .
0'(y) = argmin 5 5)

Given the pseudo labels g, it is straightforward to learn 0% (y),
using the existing training methods.

Note in Eq. 4 C is a hyper-parameters that controls the margin
of anomalous score between normal samples and anomalies. The
optimal parameters 6% (y) will concurrently minimize the anoma-
lous score of normal samples and grow the anomalous score of
anomalies to a value no smaller than C.

An appropriate hyper-parameter C is critical to the performance
of ELITE. A too large C tends to make the training process unstable,
while a small C fails to separate anomalies from normal samples. We
design an intuitive method to automatically determine C. Given an
unsupervised counterpart of ELITE denoted as ¢(x; 8°) where 6°
represents its initial parameters, we simply set the hyper-parameter
C as its training loss averaged on all samples. The intuition is that
because the training process targets minimizing the training loss on
the normal examples, the final model will produce a training loss
on each normal example that in average is guaranteed to be much
smaller than the initial average loss. Therefore, a hyper-parameter
C set in this way tends to be effective in separating anomalies from
normal samples.

4.2.2  Validation Loss. Given a set of labeled examples as validation
set, ELITE defines the validation loss L as follows.
p
L0 = 5 Zl 1, 45:0) ©)
=
In Eq. 6, N ! represents the number of labeled examples and
l (xﬁ., yﬁ.; 0) corresponds to the training loss function (Eq. 4).

ELITE aims to assign a pseudo label y to each unlabeled training
sample so that the validation loss of the trained model is minimized.

y* =argmin L°(6"(y)) ™)
y
Here 6*(y) corresponds to the optimal parameters learned from
the current pseudo labels as discussed in Sec. 4.2.1.

4.3 Pseudo Label Inference

The key of ELITE is to effectively identify the optimal pseudo labels
that minimize the model’s validation loss. Obviously, inferring
such optimal pseudo labels by recursively flipping the label of each
sample, re-training the deep anomaly model, and calculating the
validation loss will be too expensive.

To solve this problem, ELITE proposes an efficient pseudo label
inference method, called ALICE. The key idea is to use the gradient
of the current model’s validation loss to predict how altering the
label of one training sample will change the validation loss.

4.3.1 Meta-gradient-based Pseudo Label Inference

Assume we have already trained a model using all training sam-
ples XV and denote its learned parameters as 8*. Given a training
sample x; in xV , if we flip its label, we could learn a new model
parameterized by 0.
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Let L?(0) denote the validation loss of a model parameterized by
0, that is, the model’s loss on the validation set. If we are aware of
the difference between the validation loss of the original model 6*
and that of the new model 07, namely, L?(0*) — L?(0*), it will be
straightforward to decide if we should flip the label of x;. That is,
assume x; was normal. If L?(6*) — L?(6%) > 0, ELITE should flip
x; to be abnormal, and change its pseudo label as §j = —1, because
this will reduce the validation loss. Otherwise, x; remains normal.

Because we already have 0% of the original model, comput-
ing its validation loss L?(6*) is straightforward, that is, L?(6*) =
Al,l Zﬁ” l(xf, yf; 0%). The goal of ALICE is to estimate L? (0*)—L? (%)
without learning the new model 67.

By the objective function (Eq. 5), 6 is learned as: arg ming L(6)
where L(0) = ﬁ[Zfit I(x},y¥;0) + Q(x¢50)]. Here by the loss
function (Eq. 4), Q(x;; 6) represents the loss on x; if considering
x; as normal.

Without loss of generality, we assume C in the loss function
(Eq. 4) is large enough and therefore max{C — Q(x;0),0} = C —
Q(x; 0) that corresponds to the loss of an anomaly x. Now if we
change x; to anomaly, the new model 07 can be learned as follows:

0% = argmin{L(0) — EQ(x[;G)} 8)
0 N

This is because altering the label of x; from normal to abnormal
is equivalent to first removing Q(x;; 6) from L(0), and then adding
C — Q(x; 6%) back.

Next, we use € to represent - % that weights the training loss of
x¢.Now Eq. 8 changes to: 0* = argming{L(0)+€ Q(x;;6)}. Similar
to [7, 15, 18], we consider € as a variable [7]. Now 6" is a function
of €, denoted as 6(e). When N is sufficiently large, € approaches 0.

ALICE then uses the gradient of 0(€) at € = 0 to approximate
the change from L?(6*) to L?(6").

_ dL”(Q*(e))l
B de €=0

We call the gradient M = Wkﬂ) as meta-gradient.
Once getting the meta-gradient, applying the update rule defined
below is guaranteed to reduce the validation loss.

LP(6%) = L°(6%) )

Definition 1. Update Rule.

d

The reason is that a positive value of L?(8}) — L?(6*) means
treating the new training sample as an anomaly will lead to a smaller
validation loss than treating it as normal, and vice versa.

Note above we assume the training sample x; was originally
normal. However, the update rule equally works if x; was abnormal.

i = —sign(L°(0") — L°(6%)) = — sign( dL (06 (6))| (10)

e:O)

4.3.2 Meta-gradient Estimation

To compute meta-gradient, the only thing missing here is 6% (¢).
Similar to [18] ALICE approximates 6% (¢e) by taking one step of
gradient descent on the original model 6*.

6(e) = 0" — ngeVp-Q(xs, 0%) (11)
ng represents leaning rate, a hyper-parameter of deep learning.

Given 6(¢), ALICE now is ready to apply the update rule to
approximate ¢J;. More specifically,
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dL®(d(e))

= sign (———|._y)
g1 M (12)

o 4 .14

= —sign (- Zl (e} 413 0(€))le=0)

Intuitive Interpretation of ALICE. First, we unroll Equation 12

with the chain rule. Given a training sample x;, we have 0(¢) = 0*

when € = 0. Then we have:

dL?(f(e))
de
L°(6(e))| d(0* -

)i = — sign ( )

F10€VoQ(xi; 6%))
do (e de €
ng dL°(0%)| dQ(xi; 0))

S T T P

Eq. 13 shows that §; corresponds to an inner product between
the gradient of the training loss of the given training sample and the
gradient of the validation loss. Given a training sample x; initialized
as normal, if its gradient is in the same direction to the gradient
of the validation loss, then x; will indeed be a normal object. This
is because in this case minimizing its training loss by gradient
descent - the typical practice of deep learning optimization, will also
minimize the validation loss. Otherwise, x; should be an anomaly.

(13)

= sign (

4.3.3 Learning at Scale

The Learning process. Next, we introduce how ELITE infers the
optimal pseudo labels for the entire unlabeled dataset. ELITE fuses
ALICE into every iteration during the training process of the deep
anomaly model and dynamically adjusts the labels of the training
samples. ELITE starts with assuming that all unlabeled training
samples are normal. Once one training iteration is done, ELITE
estimates the meta-gradient for each sample x; and applies the
update rule to update its pseudo label. Thereafter, ELITE updates
the parameters of the deep anomaly model using Eq. 14.

=0, -

Or41 (14)

N

9[% ; a;Vol(xi, §i; 0)]

InEq. 14, ;41 represents the new parameters, while 6; represents
the parameters produced in last iteration. g is the learning rate.
Same to the traditional gradient descent optimization, Eq. 14 uses
the gradient of the loss function Vgl(x;j, §;; 6) to update ;. But
ELITE weights the meta-gradient at each training sample x; with
ai = np - IMi|, where ||, M;|| represents the absolute value of the
meta-gradient, and ny is a hyper-parameter. The intuition is that,
if the meta-gradient of a training sample x; has a larger absolute
value, x; is more important. This is because by our ALICE method,
potentially x; will contribute more in reducing the validation loss.
Batch Optimization. Although ELITE effectively avoids recur-
sively re-training the deep learning model, it still tends to be expen-
sive when the unlabeled training dataset is large. Similar to [12, 18],
ELITE employs a mini-batch based optimization strategy to ad-
dress the efficiency concern. During each training iteration, ELITE
randomly divides the unlabeled training samples into many mini-
batches and then concurrently updates the labels with respect to
each mini-batch. Each mini-batch contains only n << N unlabeled
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objects. Therefore, it significantly speeds up the training process.
As a standard deep learning training process, ELITE can run on
any deep learning platform such as TensorFlow and Pytorch.
Time Complexity Analysis. Compared to unsupervised deep
anomaly methods, ELITE requires an extra forward and backward
pass to obtain the gradient of each training sample and an addi-
tional forward and backward pass to calculate ;. Thus, ELITE
is approximately 3x slower than the unsupervised deep anomaly
methods. We argue that the additional computing cost is worth-
while in practice because ELITE is robust to polluted training data
and significantly improves the accuracy of anomaly detection.
Convergence Analysis.

THEOREM 2. Suppose the validation loss L?(x;0) is Lipschitz
smooth with constant L, and the gradient of training data is bounded
by . Then as long as the learning rate nyng < the validation
loss decreases monotonically,

L%(0r+1) < L°(6r)

io
(15)

Proor. Without loss of generality, we assume C in the loss func-
tion (Eq. 4) is large enough and therefore max{C — Q(x;0),0} =
C — Q(x; 0) which corresponds to the loss of an anomaly x. Com-
bining Equation 14 and Equation 13, we have,

1 n
6101 = 0r = nyno{~ " [VoL?(6r)VoLi(6)IVoLi(6))  (16)
i=i

oL®(6,)
a0

where VgL?(0;) = 0 and VgL;(0;) = %@9’)) 0 . For
t t

simplicity of expression, we denote VoL?(6;) as VLY and VyL;(6;)
as VL;.

Since the validation loss L?(6) is Lipschitz smooth with constant
L, from [9],

L%(O41) < L2(6;) + (VLO)T 00 +

L
EIIA@II2 (17)

Plugging in Equation 16,

LY%(0r41) < L°(6r) — L1 + I, (18)

where,

m
I =nyng  (VL°VL)?
i=1

(19)

and,

L nyne
I = —||T

m
S 1= D (VLo VL) VL[

K:N
CDN

||(VL”VL,)VL1||2

Mlh
3,

(20)
(VLYVL)?||VL]*

|

N

=
=t\3 g’“
N
DM Ik 1

=
@t

n

<
n2

0|

(VL®VL;)%6?
1

L

The first inequality comes from the triangle inequality, and the sec-
ond inequality holds since the gradient of training data is bounded
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by 0. If we denote a value 7 at iteration t, 7, = ¥ (VL°VL;)?,
then we have,

2
Mye Lnyngo
L¥(Ors1) < LO(0) - ==n (1= ——)  (21)
Note by definition 7; is non-negative and ry19 < % we have,
L?(0r+1) < L°(0r) (22)
Theorem 2 is proven. m

4.4 Example: Applying ELITE to Deep SVDD

In this section, we show that ELITE is able to easily adapt existing
unsupervised deep anomaly methods to benefit from the anomaly
examples at hand. More specially, to support one unsupervised
deep anomaly method, the only change we need to make is to plug
its anomalous score function w(x) into the loss function of ELITE
(Eq. 4 in Sec. 4.2). Next, we use Deep SVDD [19] as an example to
showcase this. Deep SVDD is briefly reviewed in Sec. 3.2.

Algorithm 1 ELITE on Deep SVDD

Input:
Unlabeled data: Xi; : {x1,...,xn}
Validation examples: Xy : ({(X1,91), ..., (Xp, Gm)}
Hyperparameters: nu1, g, Hypersphere center, o, Margin, C
Loss Function: Q(x,0) =||x —o||

1: Initialize:
Neural network weights:

2. for each epoch do

3 for each mini-batch do

4: Draw mini-batch By :{x1, ..., x,} from Xy
5 Draw mini-batch By {(%1,91), - . ., (Xm, Jm) } from Xy
6: Initialize:

7: gzi «— 0Vx; € By

8 0(9) — 0—nol% X1y 5iVoQux, 0)]

9: Update:
10: M — rlyaiyl% Z:rzll Lv(;cis e(g))lg)
11: 9; = —sign (M;)
12: ai =num - IMil
13: 0 —0-ngli T, aiVok(xi, ii;0)]
Output: Trained Model: ¢* (x, 6*)

As shown in Algorithm 1, ELITE starts with initializing the
neural network’s parameters 0 and the hypersphere center o exactly
as what Deep SVDD does. Then, in each epoch ELITE samples a
mini-batch of unlabeled samples By and uses the labeled samples as
validation set. Next, ELITE assigns an initial pseudo label g; to each
unlabeled sample in Byy. ELITE uses these pseudo labels to learn the
parameters 0 of the network. It then computes the validation loss
using the loss function in Eq. 4, alters the pseudo labels according
to the update rule in Def. 1, and updates the parameters by Eq. 14.
These steps iterate until the validation loss is minimized or reaching
the epoch limit.

5 EXPERIMENTS

We conduct an experimental study to evaluate the effectiveness of
ELITE. Specifically, we focus on the following four questions:
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1. Robustness to Polluted Training Data: How does ELITE
compare with existing deep anomaly techniques in term of the
robustness to the polluted training data?

2. Performance with different number of labels: How does
ELITE perform in contrast to the existing deep anomaly methods
when using different number of labels?

3. Sensitivity Analysis: Is ELITE sensitive to the selection of
its hyper-parameters?

4. Training Mechanism: How is our training mechanism dif-
ferent from the standard semi-supervised learning?

5.1 Experiment Setup and Methodology

Experimental Setup. All experiments are conducted on Google
Cloud with a virtual machine with 12 CPU cores and 4 P-100 GPUs.
All code is developed with Python 3 on Pytorch 1.5.0.

Datasets. We evaluate ELITE using three benchmark datasets
which are also frequently used in the experiments of the state-
of-the-art deep anomaly works we compare against [19, 20].

« MNIST: The MNIST dataset consists of 28 x 28 pixel grayscale
images of the handwritten digits 0-9. Each image contains only one
digit centered in the frame and is given a class label corresponding
to the digit it contains. Given the relatively simple and clear shape
of the digits and the consistent black background, we consider it as
the least complex dataset among the three datasets we use.

« FMNIST: The FMNIST or Fashion-MNIST dataset was created
to be a more complex replacement for MNIST. FMNIST consists of
28x28 pixel grayscale images for ten types of clothing articles such
as T-shirts, coats, and sneakers with corresponding labels.

« CIFAR-10: The CIFAR-10 dataset consists of 32x32 color im-

ages of ten distinct object classes. Four of the classes are types of
vehicles - airplane, automobile, ship, truck — with the remaining
six being varying types of animals. Images in this dataset were
originally drawn from internet search engines and converted to the
32x32 resolution.
Alternative Methods. We compare ELITE against the state-of-
the-art unsupervised (DeepSVDD [19]), semi-supervised (Deep-
SAD [20], SSAD [11], and robust (RSRAE [16]) deep anomaly meth-
ods. Moreover, to show ELITE is model agnostic, we implement
ELITE on top of two types of unsupervised deep anomaly mod-
els, namely the one-class classification-based DeepSVDD [19] and
Auto-Encoder.

« DeepSVDD [19] is the state-of-the-art unsupervised anomaly
method, which detects anomalies by mapping the training data into
a compact hyper-sphere, assuming the training data is clean.

» DeepSAD [20] extends Deep SVDD method to the semi-
supervised setting and uses the labeled examples as training data to
improve the accuracy of anomaly detection. We consider DeepSAD
as the most related work to ELITE.

« SSAD [11] is a popular shallow semi-supervised anomaly
method built on vanilla SVDD [26]. Similar to DeepSAD, it directly
uses the labeled examples as training data and encourages the model
to generate large anomalous score on the labeled anomalies.

+ RSRAE is the state-of-the-art robust deep anomaly method,
which combines a simple Auto-Encoder with robust deep learning
techniques, more specifically Robust Subspace Recovery (RSR) layer.
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The RSR layer is used to learn a subspace within the latent space
where normal and anomalous samples are well separated.

Methodology. Following the state-of-the-art [20], for each dataset
we select one class as normal and consider other classes as abnormal.
To ensure that results are not class dependent, we repeat each set of
experiments with a different class selected as the normal class until
all classes are exhausted. We then report the average of these results.
For each experiment, we randomly select 5,000 objects to create
a training dataset. This set contains samples from both normal
and anomalous classes, with the ratio of anomalies controlled by
the value rp. In general 1), is selected to be small such that the
majority of the training samples are drawn from the normal class,
while the few anomalies are drawn from the remaining classes.
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From each dataset, we randomly sample an equal number of normal
samples and anomalies to be used as the labeled training dataset and
consider the remaining samples to be unlabeled. We vary the ratio
of training points allocated to the labeled training set r; and the ratio
of pollution in the training dataset rp to analyze the performance
of ELITE in a wide variety of scenarios. Again, following [20], we
use the Area Under Curve (AUC) score of the Receiver Operating
Characteristic (ROC) curve as the metric to evaluate the accuracy
of each method.

5.2 Varying the Ratio of Anomalies

In this experiment, we investigate the robustness of different deep
anomaly detection methods to the increasing ratio of anomalies
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in the training set. To do this, we vary the ratio of anomalies in
training set from 0.1 to 0.5. We fix the ratio of labeled examples
r;, and repeat the experiments on all ten classes and report the
average results over all experiments on each dataset. For MNIST
and FMNIST we use 20 labeled examples, while for CIFAR-10 we
use 100 to account for its much higher complexity.

Figure 3 indicates that both of our ELITE-based methods, ELITE
_AE and ELITE _SVDD, outperform all other methods by up to 30%,
especially on the complex datasets such as CIFAR-10. Also, we find
that the performance of ELITE never degrades with the increasing
ratio of anomalies in training data. However, the performance of
the state-of-the-art methods, including the robust deep anomaly
method RSRAE, significantly decrease as the ratio of anomalies
in the training data increases. Furthermore, on the CIFAR-10 and
FMNIST dataset, ELITE achieves even higher performance when
the anomaly ratio is highest, i.e. r, = 0.5. This is because ELITE
not only identifies the anomalies in the training dataset, but also
effectively uses them to learn an anomaly-aware data representation
that improves the accuracy of anomaly detection. This confirms that
ELITE not only outperforms the other methods but also is much
more robust to anomalies in the training dataset. Furthermore,
we find that the shallow SSAD method even outperforms its deep
competitor, DeepSAD. We argue that this shows it is easier for deep
anomaly detection models to overfit the anomalies in the training
data due to their complex network structure using a large number
of parameters.

5.3 Varying the Ratio of Labeled Examples

In this scenario, we compare the performance of different semi-
supervised deep anomaly methods given a different number of
labeled examples. For this experiment, we evaluate our method
on both lightly polluted training data where r, = 0.1, and heavily
polluted training data where r,, = 0.5. For FMNIST and MNIST we
vary the number of labeled samples from 20 to 100 in steps of 10
(r; = 0.004 — 0.02), while for CIFAR-10 we test 100 to 500 labeled
samples with intervals of 50 (r; = 0.02—0.1). Again, we exhaustively
use every class in each dataset as normal samples and report each
dataset’s average result.

Figure 4 and Figure 5 show the result on lightly polluted (r, =
0.1) and heavily polluted datasets (r, = 0.5) respectively. Both of
our methods significantly outperform the other methods on all
heavily polluted datasets by up to 25%. This again shows ELITE is
significantly more robust to anomalies in the training data, because
ELITE effectively leverages the labeled examples. Moreover, ELITE
reaches very high accuracy with very few labeled examples. This is
because ELITE uses the labeled examples as validation data, and it
requires much fewer labels to evaluate the model performance than
training the model. Therefore, although increasing the number of
labels improves the performance of DeepSAD, it is consistently less
accurate than our ELITE-based methods. Note that even when the
dataset is lightly polluted, DeepSAD still requires 2 - 3 times more
labeled examples to achieve comparable performance to ELITE on
complex datasets like CIFAR-10 and Fashion-MNIST.
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5.4 Sensitivity Analysis

Here we investigate how sensitive ELITE is to the value of hyper-
parameter 17 which controls the factor that the validation loss
plays in the learning process. We report the results on our ELITE
_SVDD method, although ELITE _AE shows the similar trend. We
set rp to 0.1 and we use 20 labeled examples for both MNIST and
FMNIST and 100 labeled examples for CIFAR-10. We vary ny from
1 to 100, while keeping all other hyper-parameters fixed. Figure 6
show that the performance of ELITE is stable. This confirms that
ELITE is not sensitive to the hyper-parameter 7y, and thus partially
mitigates the hyper-parameter tuning problem. We also observe
that FMNIST and MNIST prefer small 1) as the performance de-
creases with the increase of nj;. However, on CIFAR-10 ELITE
achieves slightly better performance as s increases. Therefore,
based on these results, we recommend to set a large 7,s on complex
datasets and set a small value if the data set is relatively simple.

5.5 Evaluating the Training Mechanism

5.5.1 Training Process. To better understand the training mecha-
nism of ELITE, we compare ELITE with the semi-supervised Deep-
SAD which is based on the classical semi-supervised classification
mechanism. To ensure a fair comparison, we apply the same loss
function (Eq. 4) to both ELITE and DeepSAD. We report the re-
sults on the FMNIST dataset. Figure 7(a) and Figure 7(b) depict how
ROCAUC score and labeled loss change over the training process.
In DeepSAD, the loss on labeled examples quickly decreases to 0,
while it reduces slowly in ELITE. Meanwhile, the ROCAUC score
of DeepSAD decreases after reaching the peak, potentially because
the deep neural network starts overfitting the labeled examples. In
contrast, the ROCAUC score of ELITE increases stably.

5.5.2 Distribution of Anomalous Scores. As discussed in Sec. 4.3,
ALICE, ELITE’s label inference method, uses meta-gradient to de-
termine the anomalous score of the training data, because the meta-
gradient of anomalies tends to show distinct patterns from that
of normal samples. Here we verify its effectiveness by measur-
ing the distribution of ¢ - || M|| which represents the anomalous
score of each training sample. In this experiment, we run ELITE
on MNIST with r, = 0.5 and r; = 0.004. We separately report
the § - || M|| of normal and anomalous samples averaged over the
first 500 iterations. Figure 7(c) shows that the anomalous score
effectively separates anomalous samples from normal ones. That
is, ELITE assigns small scores (negative) to anomalous samples,
while large scores (positive) to normal samples. Although ELITE
still erroneously assigns negative score to some normal samples,
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their scores still tend to be larger than those of the real anomalies.
This confirms the effectiveness of our ALICE method.

6 CONCLUSION

In this work, we propose ELITE that addresses a fundamental prob-
lem in semi-supervised and unsupervised deep anomaly detection,
namely requiring a clean training data not polluted by anomalies.
ELITE solves above problems by proposing a novel optimization
methodology. Unlike the classical semi-supervised classification
methodology, ELITE uses labeled examples as validation set and
continuously discovers the anomalies in the polluted training data
and learns a better deep anomaly model based on the cleaned train-
ing data. Our experiments in rich variety of scenarios confirm
ELITE’s superiority to the state-of-the-art and its robustness to
polluted training data.
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