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ABSTRACT

Neural codes are lists of subsets of neurons that fire together. Of particular interest
are neurons called place cells, which fire when an animal is in specific, usually
convex regions in space. A fundamental question, therefore, is to determine which
neural codes arise from the regions of some collection of open convex sets or closed
convex sets in Euclidean space. This work focuses on how these two classes of
codes – open convex and closed convex codes – are related. As a starting point, open
convex codes have a desirable monotonicity property, namely, adding non-maximal
codewords preserves open convexity; but here we show that this property fails to
hold for closed convex codes. Additionally, while adding non-maximal codewords
can only increase the open embedding dimension by 1, here we demonstrate that
adding a single such codeword can increase the closed embedding dimension by an
arbitrarily large amount. Finally, we disprove a conjecture of Goldrup and Phillipson,
and also present an example of a code that is neither open convex nor closed convex.

Keywords Neural code · Place cell · Convex · Simplicial complex

1 Introduction

Place cells are neurons that fire (are active) when an animal is in specific locations [1]. The resulting
subsets of neurons that fire together, called a neural code, can be used by the brain to form a mental
map of an animal’s environment. Place cells were discovered by John O’Keefe in 1971, earning him
a joint (with May-Britt Moser and Edvard Moser) Nobel Prize in Physiology or Medicine in 2014.
The specific location where a place cell fires is called its place field, and this set is typically
modeled by a convex set. Thus, neural codes arising from place cells describe the regions cut out
by intersecting convex sets. This motivates the following question: Which neural codes arise from
open convex sets in some Euclidean space? (Each set is required to be open to account for the fact
that place fields are full-dimensional, i.e. they have nonempty interior.) Many investigations into
this question have been made in recent years (for instance, [2, 3, 4, 5, 6, 7, 8, 9, 10]). Recent work
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such as [11] shows that this question strictly generalizes the closely related topic of intersection
patterns of convex sets (see [12] for an overview).
In this work, we consider the above question, and also, following [2, 6], the analogous question for
closed convex sets. Additionally, we ask how these two classes of codes – open convex and closed
convex codes – are related. Which codes are open convex but not closed convex (or vice-versa)?
Which codes are neither open convex nor closed convex?
One starting point of our work is a recent “monotonicity” result of Cruz et al. [2]: If two codes C
and C , with C ⊂ C , generate the same simplicial complex, and C is open convex, then so is C  (see
Proposition 2.12). Hence, as open convexity is “inherited” from C to C , this result greatly simplifies
the analysis of open convex codes. However, Cruz et al. did not know whether the analogous
result holds for closed convexity [2], and here we show that, somewhat surprisingly, it does not
(Theorem 3.2).
The mononotonicity result of Cruz et al. mentioned above can be paraphrased as follows: adding
non-maximal codewords to an open convex code yields another open convex code. The open convex
realization of the larger code may need to be in a Euclidean space of a higher dimension – but this
dimension need only increase by 1, if at all [2]. In contrast, we show here that for closed convex
codes, this increase, even if finite, can be arbitrarily large (Theorem 3.7).
We also disprove a conjecture of Goldrup and Phillipson [6] concerning the relationship between
open convex and closed convex codes (Theorem 3.10). Finally, we give the first example of a code
on 8 neurons that has no “local obstructions” to (open or closed) convexity, but in fact is neither
open convex nor closed convex (Theorem 3.11).
The outline of our work is as follows. Section 2 provides relevant definitions and prior results. In
Section 3, we prove our main results, and then we end with a discussion in Section 4.

2 Background

In this section, we recall the definitions and prior results related to convexity of neural codes
(Section 2.1), simplicial complexes (Section 2.2), and sunflowers of convex sets (Section 2.3).

2.1 Neural codes and convexity

In what follows, we use the notation [n] := {1, 2, ..., n}.
Definition 2.1. A neural code on n neurons is a set C ⊂ 2[n]. Each σ ∈ C is a codeword, and σ is a
maximal codeword of C if it is a maximal element of C with respect to inclusion.

For example, the codeword σ = {1, 3, 4} indicates that neurons 1, 3, and 4 are active, while all other
neurons are silent. For brevity, we will write codewords without brackets or commas; for instance,
σ = 134. Also, when we list the codewords of a code, all maximal codewords will be in boldface.
Example 2.2. The following is a neural code on 6 neurons, with 12 codewords:

C = {123,124,135,236, 12, 13, 14, 23, 24, 1, 2, ∅} . (1)

The focus of this work is on open convex and closed convex codes (see Definition 2.4 below).
Recall that a set V ⊂ Rd is convex if the line segment joining any two points in V is contained
entirely within V . Also, given subsets U1, U2, . . . , Un of some Rd and a nonempty σ ⊂ [n], we use
the notation Uσ :=


i∈σ Ui.

Definition 2.3. Let U = {U1, U2, . . . , Un} be a family of sets in a set X ⊂ Rd (we call X the
stimulus space). Then code(U , X) is the code on n neurons given by:

σ ∈ code(U , X) ⇐⇒ Uσ \

j /∈σ

Uj = ∅ ,

2
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where U∅ := X . A code C on n neurons is realized by a family of sets U = {U1, U2, . . . , Un} in a
stimulus space X ⊂ Rd if C = code(U , X). In this case, U is called a realization of C.
Definition 2.4. A code C on n neurons is open convex (respectively, closed convex) if there exists
a stimulus space X ⊂ Rd (for some d) and a family of open (respectively, closed) convex sets
U = {U1, U2, . . . , Un} such that (1) each Ui is a subset of X , and (2) C = code(U , X). The
minimum such value of d is the open embedding dimension (respectively, closed embedding
dimension) of C.
Remark 2.5. For the codes in this work, we always take the stimulus space X to be Rd (cf. [13,
Remark 2.19]).

1 2

14 24124

12

∅

123135 236
13 23

Figure 1: Open-convex realization of the code in Example 2.2.

Remark 2.6. The open embedding dimension is also called the “minimal embedding dimension” [3].
Example 2.7 (Example 2.2 continued). Consider again the code C in (1). First, C is open convex: an
open-convex realization is shown in Figure 1 (more precisely, each set Ui is the interior of the union
of all closures of regions labeled by some codeword containing i). Also, C is closed convex. Indeed,
by replacing each Ui in Figure 1 by its closure, we obtain a closed-convex realization of C.

We end this subsection with two more useful definitions.
Definition 2.8. A code C is max-intersection complete if every intersection of two or more maximal
codewords is in C. Otherwise, C is max-intersection incomplete.

If a code is max-intersection complete, then it is both open convex and closed convex [2]. The
converse, however, is not true. For instance, the code C in (1) is open convex and closed convex
(see Example 2.7), but not max-intersection complete (135 ∩ 236 = 3 is not in C).
Definition 2.9. Let C be a code on n neurons, and let τ ⊂ [n]. The code obtained from C by
restricting to τ is the neural code {σ ∩ τ | σ ∈ C}.

Restricting to a set of neurons may be interpreted geometrically: if U = {U1, U2, . . . , Un} is a
realization of a code C, then {Ui | i ∈ τ} is a realization of the code obtained from C by restricting
to τ .

2.2 Simplicial complexes and mandatory codewords

An (abstract) simplicial complex on [n] is a subset of 2[n] that is closed under taking subsets.
Definition 2.10. For a neural code C on n neurons, the simplicial complex of C is the smallest
simplicial complex containing C:

∆(C) := {σ ⊂ [n] : σ ⊂ α for some α ∈ C} .
Example 2.11 (Example 2.7 continued). The simplicial complex ∆(C) of the code C in (1) has
maximal faces 123, 124, 135, and 236. The geometric realization of ∆(C) is shown in Figure 2.

3
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Figure 2: The simplicial complex of the code in Example 2.2.

The following result, due to Cruz et al. [2], states that for codes having the same simplicial complex,
open-convexity is a monotone property with respect to inclusion:
Proposition 2.12 (Monotonicity property for open convex codes [2]). Let C and C  be codes with
C ⊂ C  and ∆(C) = ∆(C ). If C is open convex, then C  is also open convex and, additionally, the
open embedding dimension of C  is at most 1 more than that of C.
Definition 2.13. Let ∆ be a simplicial complex on [n] and let σ ∈ ∆. The link of σ in ∆ is:

Lkσ(∆) := {τ ⊂ [n]\σ : σ ∪ τ ∈ ∆}.

Recall that a contractible set, by definition, is homotopy-equivalent to a single point.
Definition 2.14. Let ∆ be a simplicial complex. A nonempty face σ ∈ ∆(C) is a mandatory
codeword of ∆ if (the geometric realization of) Lkσ(∆) is non-contractible. Otherwise, σ is
non-mandatory.

The following definition, pertaining to codes without certain “local obstructions” to convexity, is
equivalent to the original definition [4].
Definition 2.15. A code C is locally good if it contains every mandatory codeword of ∆(C).

If a code is open convex or closed convex, then it is locally good [2, 5].

2.3 Sunflowers

A sunflower is a collection of sets whose pairwise intersections are all equal and nonempty. We will
be interested in sunflowers that consist of convex sets, as introduced in [14]. We define sunflowers
using codes as follows.
Definition 2.16. A collection U = {U1, U2, . . . , Un} of convex sets is a sunflower if code(U ,Rd)
contains the codeword [n], and all other codewords have size at most one. When U is a sunflower,
we refer to the Ui as petals.

A 3-petal sunflower is shown in Figure 3.

U1 U3

U2

Figure 3: A sunflower U = {U1, U2, U3}, with code(U ,R2) = {123, 1, 2, 3, ∅}.

For our work, we will require the following theorem which constrains how the sets in a sunflower
consisting of convex open sets may be arranged.
Theorem 2.17 (Sunflower Theorem [14]). Let U = {U1, U2, . . . , Un} be a sunflower of convex
open sets in Rd, and assume that n > d. Then every hyperplanein Rd that has nonempty intersection
with every Ui also has nonempty intersection with U[n].

4
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3 Results

Our main results are as follows. First, closed convex codes do not possess the same monotonicity
property that open convex codes have (Theorem 3.2). Next, adding non-maximal codewords can
increase the embedding dimension of closed convex codes by arbitrarily large, finite amounts
(Theorem 3.7). We also disprove a conjecture on the relationship between open convexity and
closed convexity (Theorem 3.10). Finally, we give an example of code on 8 neurons that is locally
good, but neither open convex nor closed convex (Theorem 3.11), and then conjecture that there are
no such codes on fewer neurons.

3.1 Closed convexity is non-monotone

Recall that open convex codes have a monontonicity property (Proposition 2.12). It is natural to ask
whether the same is true for closed convexity (indeed, Cruz et al. did not know the answer [2, §3]):
Question 3.1. Let C and C  be codes with C ⊂ C  and ∆(C) = ∆(C ).

(a) If C is closed convex, does it follow that C  is also closed convex?

(b) If C and C  are closed convex, does it follow that the closed embedding dimension of C  is at
most 1 more than that of C?

In a special case, Question 3.1(a) has an affirmative answer. Specifically, this is true for closed
convex codes that have a realization in which the region of each codeword is top-dimensional
(including max-intersection-complete codes); this result follows from results of Cruz et al. [2,
Theorem 1.3, Lemma 2.11, and Theorem 2.12]. In general, however, Question 3.1(a) and (b) have a
negative answer. We show this perhaps surprising result in the following theorem and Theorem 3.7.
Theorem 3.2 (Closed convexity is non-monotone). Consider the code

C = {12378,1457,2456,3468, 17, 38, 45, 46, 2, ∅}.
This code has a closed convex realization in R2, but C ∪ {278} is not closed convex (in any
dimension).

We first require a lemma regarding a closely related code, C0, which is (up to permutation of
neurons) the minimally non-open-convex code of [15, Theorem 5.10] (see also [14, Theorem 4.2]).
A convex set Y ⊂ Rd is full-dimensional if its affine hull is Rd. Note that for a convex set, being
full-dimensional is equivalent to being top-dimensional. Moreover, a convex set is full-dimensional
if and only if it has nonempty interior.
Lemma 3.3. The code C0 = {2456,123,145,346, 45, 46, 1, 2, 3, ∅} is closed convex in R2, and
every closed convex realization {V1, V2, . . . , V6} in R2 is such that V123 is not full-dimensional.

Proof. A closed convex realization of C0 in R2 is shown in Figure 4.

To prove the rest of the lemma, let {V1, V2, . . . , V6} be a closed convex realization of C0 in R2. By
intersecting each of the Vi’s by a single sufficiently large closed ball, we may assume that each Vi is
compact (cf. [13, Remark 2.19]). We will show that V123 is not full-dimensional. Below, we let Ui
denote the interior of Vi (for 1 ≤ i ≤ 6).
Suppose for contradiction that V123 is full-dimensional. Then V1, V2, and V3 are full-dimensional.
We claim that {U1, U2, U3} forms a sunflower. Indeed, 123 is the only codeword containing more
than one neuron from the set {1, 2, 3}, so Vi ∩ Vj = V123 = ∅ for 1 ≤ i < j ≤ 3. The same
relationship holds for {U1, U2, U3} because V123 is full-dimensional (and so has nonempty interior)
and the intersection of the interiors of two sets is the interior of their intersection.
Next, no codeword contains 1234, so V4 is disjoint from V123. It follows that there exists a line
L properly separating the two (compact and convex) sets. We now claim that L intersects Ui, for

5
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∅

145 45 2456 46 346

1 2 3

123

Figure 4: A closed convex realization of C0 in R2.

1 ≤ i ≤ 3. This claim follows from the fact that one side of L properly contains a point from V123
and the other side properly contains a point from the region corresponding to the codeword 145 (or,
respectively, 2456 or 346) which is contained in V4.

In summary, {U1, U2, U3} forms a sunflower of open, convex sets in R2; and the line L passes
through U1, U2, U3, but does not pass through their intersection (as this intersection is contained in
V123). These facts directly contradict Theorem 2.17, and so V123 is not full-dimensional.

Proof of Theorem 3.2. Notice that C is the same as C0 from Lemma 3.3, except that we have added
neurons 7 and 8 which duplicate neurons 1 and 3, respectively. Thus the realization of C0 given in
Figure 4 provides a closed realization of C in R2 by setting V7 = V1 and V8 = V3. Also, C0 is the
restriction of C to the neurons {1, 2, . . . , 6}.
Now suppose for contradiction that there is a closed convex realization {V1, V2, . . . , V8} of C∪{278}
in Rd. It is straightforward to check that d = 1 is impossible. So, assume that d ≥ 2.
Let p1 ∈ V1457, p2 ∈ V278 \ V12378, and p3 ∈ V3468 (so, pi ∈ Vi and the three points are distinct).
Let A be a 2-dimensional affine subspace of Rd containing p1, p2, and p3; and let Wi = Vi ∩ A.
We claim that {W1,W2, . . . ,W8} is a realization of C ∪ {278} in A (i.e. in R2), and moreover that
W123 is full-dimensional in this realization.
Clearly the code of {W1,W2, . . . ,W8} is contained in C ∪ {278} since the Vi’s realize that code.
So, we must show that every codeword from C ∪ {278} arises inside A. By choice of p1, p2, and p3,
A contains points that realize the codewords 1457, 3468, and 278.
Consider the line segment L1 from p2 to p3. This line segment is contained entirely in W8, and so
the codewords that appear along it must come from the set {278, 12378, 38, 3468}. In fact, each
of these codewords must appear, and in exactly this order, since the code along the line segment
must be a 1-dimensional code (see the arguments in [16]). A symmetric argument shows that
the line segment L2 from p2 to p1 has the codewords {278, 12378, 17, 1457} along it in that order.
Finally, a similar argument shows that the line segment L3 from p1 to p3 has along it the codewords
{1457, 45, 2456, 46, 3468} in that order.
Thus, only the codewords 2 and ∅ need to be shown to arise in A. The codeword 2 can be recovered
by examining a line segment from p2 to a point in W2456, and ∅ can be obtained by assuming that
the Wi are bounded (cf. [13, Remark 2.19]).
To see that W123 is full-dimensional in A, we again consider the line segments L1, L2, and L3. The
points p1, p2, and p3 must be in general position: the codeword 1457 that p1 gives rise to does not
appear on the line segment L1 between p2 and p3, the codeword 3468 corresponding to p3 does not
appear on L2, and the codeword 278 corresponding to p2 does not appear on L3. Thus p1, p2, p3
define a triangle in R2 with edges L1, L2, L3; see Figure 5.

6
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p3p1

p2

278

12378

38

3468

278

12378

17

1457

1457 45 2456 46 3468

L1L2

L3

q1 q2

T1 T3

Figure 5: The triangle with vertices p1, p2, and p3. Also depicted are the codewords appearing along
each edge. The points q1, q2 and triangles T1, T2 are as in the proof of Theorem 3.2.

Next, L1 and L2 both pass through W12378 and intersect only at p2, so we now choose distinct points
q1 and q2 in L1 ∩W12378 and L2 ∩W12378, respectively. Now consider the triangles T1 and T3 with
respective vertex sets {q1, q2, p1} and {q1, q2, p3} (see the figure). The vertices of T1 are contained
in W1, so T1 ⊂ W1. Similarly, T3 ⊂ W3. Hence, T1 ∩ T3 ⊂ W1 ∩W3. The intersection T1 ∩ T2 is
full-dimensional (the doubly shaded region in Figure 5), and therefore so is W1 ∩W3.
However, W1 ∩W3 = W123 = W12378 (because only the codeword 12378 contains both neurons 1
and 3). So, by deleting the setsW7 andW8, we obtain a closed convex realization {W1,W2, . . . ,W6}
of the code C0 in A ∼= R2 with W123 full-dimensional in A. This contradicts Lemma 3.3, and so the
proof is complete.

Remark 3.4. Theorem 3.2 answered Question 3.1 in the negative using a code on 8 neurons and
codewords of size up to 5. We do not know whether such a result is possible using 7 or fewer
neurons and/or codewords of size at most 4.
Remark 3.5. Previous works such as [2, Lemma 2.9] and [6, Theorem 4.1] have used minimum-
distance arguments to prove that certain codes are not closed convex. Our proof of Theorem 3.2
took a different approach, effectively reducing the argument to the case of open sets. In the future,
we would like a general set of criteria that preclude closed convexity, and which prove, as special
cases, that the code C of Theorem 3.2 and the relevant codes in [2, 6] are not closed convex.

3.2 Arbitrarily large increases in closed embedding dimension

In Theorem 3.2, we saw that adding a non-maximal codeword to a closed convex code may yield
a non-closed-convex code. Nevertheless, when the resulting code is closed convex, one might
hope that its closed embedding dimension has not greatly increased, in line with the fact that
open embedding dimension increases by at most 1 when a non-maximal codeword is added (recall
Proposition 2.12).
However, this is not the case. In fact, adding a non-maximal codeword may increase the closed
embedding dimension by any amount, as we show in the next theorem.
Definition 3.6. For n ≥ 2, let An be the code whose neurons are {1, 2, . . . , n+1} and {1, 2, . . . , n}
and which consists of the following 2n+ 3 codewords:

(i) The following three codewords: {1, 2, . . . , n, 1, 2, . . . , n}, {n+ 1}, and the empty set,

7
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(ii) The codeword {i, i, n+ 1} for all i ∈ [n], and

(iii) The codeword {i, i} for all i ∈ [n].

For i ∈ [n], note that the neuron i appears in a codeword of An if and only if i appears. Thus the
receptive fields of neurons i and i will be identical in every realization of An (i.e., Ui = Ui).
Theorem 3.7 (Large increase in closed embedding dimension). For n ≥ 2, the code An has a
closed convex realization in R2, and the code An ∪ {{1, 2, . . . , n}} is closed convex with closed
embedding dimension equal to n.

To prove Theorem 3.7 we first require a lemma similar to Lemma 3.3.
Lemma 3.8. Assume n ≥ 2. Let Sn be the code obtained from An by restricting to the neurons
{1, 2, . . . , n+ 1}. Let {V1, V2, . . . , Vn+1} be a closed convex realization of Sn in Rd. If d < n, then
the region V[n] is not full-dimensional.

Proof. By intersecting each of the Vi’s by a single sufficiently large closed ball, we may assume that
each Vi is compact (cf. [13, Remark 2.19]). Suppose for contradiction that V[n] is full-dimensional.
Then the sets V1, V2, . . . , Vn are also full-dimensional.
Next, from Definition 3.6, we see that Sn = {[n], {1, n + 1}, {2, n + 1}, . . . , {n, n +
1}, {1}, {2}, . . . , {n + 1}, ∅}. So, {V1, V2, . . . , Vn} forms a sunflower, that is, Vi ∩ Vj = V[n] = ∅
for all 1 ≤ i < j ≤ n. We claim that the interiors {U1, U2, . . . , Un} of the Vi also form a sunflower.
Indeed, for all 1 ≤ i < j ≤ n, we see that Ui ∩ Uj is the interior of Vi ∩ Vj = V[n], which is
nonempty because V[n] is full-dimensional.

Next, observe that V[n] is disjoint from Vn+1, because [n+ 1] is not a codeword of Sn. As both V[n]
and Vn+1 are compact and convex, there exists a hyperplane H properly separating the two sets.
For all i ∈ [n], the set Vi intersects Vn+1 (because {i, n+ 1} ∈ Sn) and so each side of H properly
contains a point in Vi. Thus, H passes through the interior of Vi for all i ∈ [n], but does not pass
through their common intersection U[n]. When d < n, this contradicts Theorem 2.17.

We are now ready to prove the main result of this subsection.

Proof of Theorem 3.7. A closed convex realization {W1,W2, . . . ,Wn+1, W1,W2, . . . ,Wn, } of An

in R2 is shown in Figure 6: n line segments meet at a common point, and an additional line segment
crosses all the line segments away from the common point.

Wn+1

Wn = WnW1 = W1 W2 = W2 · · ·

Figure 6: A closed convex realization of An in R2.

Our next task is to construct a closed convex realization of Cn := An ∪ {{1, 2, . . . , n}} in Rn.
An informal description of this construction is as follows. Starting from the realization of An in
Figure 6, rotate each Wi = Wi so it lies along the i-th coordinate axis in Rn and then fatten it into
an n-dimensional rectangular prism, so that the common intersection is a unit n-cube at the origin.
Next, Wn+1 becomes a thickened hyperplane that meets each of the Wi = Wi’s. So far, we have a

8
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realization of An, and now we obtain the new codeword {1, 2, . . . , n} by “slicing off” a corner of
the n-cube from each of W1,W2, . . . ,Wn. This construction is shown for n = 2 in Figure 7.

Y3

Y1

Y2

12

1212
11

22

113

223

3

∅

Figure 7: A closed convex realization of C2 in R2. The receptive fields Y1, Y2, and Y3 are labeled;
and Y1 and Y2 are rectangles (as indicated by the codewords).

More precisely, the realization {Y1, Y2, . . . , Yn+1, Y1, Y2, . . . , Yn} of Cn in Rn is given by, for i ∈ [n],
Yi := {x ∈ Rn

≥0 | 0 ≤ xj ≤ 1 for all j = i} and Yi := Yi ∩ {x ∈ Rn | x1 + x2 + . . . xn ≥ 1};
and Yn+1 := {x ∈ Rn | 2n ≤ x1 + x2 + · · · + xn ≤ 2n + 1}. In this realization, the codeword
{1, 2, . . . , n} arises in the region of the unit n-cube where the sum of all coordinates is less than 1.
In the remainder of the realization, we see that i ∈ [n] appears if and only if i appears. Moreover, the
receptive fields Yi, for i ∈ [n], form a sunflower whose petals meet in the subset of the n-cube where
the sum of coordinates is greater than or equal to 1, and so the only codewords arising involving
i are {i, i}, {1, 2, . . . , n, 1, 2, . . . , n}, and the codeword {i, i, n + 1}, the latter arising where the
thickened hyperplane Yn+1 meets the receptive field of i. Finally, the codeword {n + 1} arises
anywhere in the thickened hyperplane Yn+1 where it does not meet any of the Yi’s, for example, at a
point where one of the coordinates is negative.

Now it remains only to show that there is no closed convex realization of Cn in Rn−1. Suppose for
contradiction that we have such a realization {V1, V2, . . . , Vn+1, V1, V2, . . . , Vn}. Choose a point
p∗ in the region that gives rise to the codeword {1, 2, . . . , n}, and for i ∈ [n] choose a point pi in
Vi ∩ Vn+1 (i.e., pi lies in the region that gives rise to the codeword {i, i, n+ 1}).
For i ∈ [n], let Li denote the line segment from p∗ to pi. Observe that the containment Li ⊂ Vi holds
(as both endpoints of L are in Vi). Also, the codewords {1, 2, . . . , n}, {1, 2, . . . , n, 1, 2, . . . , n},
{i, i}, and {i, i, n+ 1} appear along Li in precisely that order. Also, the codeword {n+ 1} must
arise along any line segment between distinct pi. Thus, all codewords of Cn arise inside the affine
hull of {p∗, p1, . . . , pn}. We denote this affine hull by A.
It follows that by replacing our receptive fields {V1, V2, . . . , Vn+1, V1, V2, . . . , Vn} by their intersec-
tions with A, we obtain a closed convex realization of Cn inside A ∼= Rd, for some d ≤ n− 1, such
that the convex hull of the points {p∗, p1, p2, . . . , pn} is full-dimensional in A (by construction).
Observe that d ≥ 2, as Cn is not convex in R1; one reason for this is that ∆(Cn) has a 1-dimensional
hole.

9
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The code Cn is invariant under permutations of [n] provided we also apply the permutation to
{1, 2, . . . , n}, and so we may assume without loss of generality that {p∗, p1, p2, . . . , pd} form the
vertices of a d-simplex ∆ in A.
For i ∈ [d], each Li is a distinct edge of ∆, and we let qi be a point on Li where the codeword
{1, 2, . . . , n, 1, 2, . . . , n} arises. In particular, pi = qi ∈ V[n]. Since the qi lie on distinct edges of
∆, the affine hull H of {q1, q2, . . . , qd} has dimension d − 1 and so is a hyperplane H ⊂ A. We
orient H so that its negative side contains p∗ and hence its positive side contains {p1, p2, . . . , pd}.
For i ∈ [d], let ∆i be the d-simplex with vertices {q1, q2, . . . , qd, pi}, and observe that ∆i ⊂ Vi.
Since all ∆i lie on the nonnegative side of H and share the common face whose vertices are
{q1, q2, . . . , qd}, we may choose a point q∗ that lies in the interior of all ∆i, and hence in V[d]. Since
d ≥ 2 and {V1, V2, . . . , Vn} is a sunflower, we have V[d] = V[n]. Thus, q∗ lies in V[n]. The point q∗

lies strictly on the positive side of H , and so the convex hull of {q∗, q1, q2, . . . , qd} is a d-simplex
contained in V[n]. Therefore, V[n] is full-dimensional in A. Since d < n, this contradicts Lemma
3.8.

3.3 A counterexample to a conjecture of Goldrup and Phillipson

Recall that Theorem 3.2 contrasts open convex codes with closed convex codes by showing that
the latter does not possess the same monotonicity property as the former. In the same spirit, there
is much interest in comparing and relating open convexity to closed convexity. In particular, we
would like to know properties that cause codes to be solely open convex or solely closed convex. In
an attempt to distinguish codes that are open convex but not closed convex, Goldrup and Phillipson
posed the following conjecture [6, Conjecture 4.3].
Conjecture 3.9. Let C be a max-intersection incomplete open convex code, where ∆(C) has at least
two non-mandatory codewords not contained in C. Suppose C has at least three maximal codewords
M1,M2,M3, and there is σ ⊂M1 with σ ∈ C such that σ ∩M2 ∈ C. Then C is not closed convex.

We disprove Conjecture 3.9 through a counterexample, namely, the code from Example 2.2.
Theorem 3.10. The neural code C = {123,124,135,236, 12, 13, 14, 23, 24, 1, 2, ∅} fulfills the
hypotheses of Conjecture 3.9 and is closed convex.

Proof. We begin by checking that C satisfies the hypotheses of Conjecture 3.1. First, we saw that
C is open convex (Example 2.2). Next, C is max-intersection incomplete, as the intersection of
maximal codewords 135 ∩ 236 = 3 is not in C.
We must also show that ∆(C) has at least two non-mandatory codewords that are not in C. It is
straightforward to check that the links Lk{3}(∆(C)) and Lk{4}(∆(C)) are the following contractible
simplicial complexes (respectively):

5 1 2 6 1 2

Therefore, 3 and 4 are non-mandatory codewords. Also, neither 3 nor 4 is in C.
Next, we must show that C has three maximal codewords M1,M2,M3 and a codeword σ ∈ C such
that σ ⊂ M1 and σ ∩M2 /∈ C. Let M1 = 123,M2 = 236,M3 = 124, and let σ = 13 ∈ C. Then
13 = σ ⊂M1 = 123. Also, 13 ∩ 236 = σ ∩M2 = 3 /∈ C.
Finally, we already saw (in Example 2.2) that C is closed convex.

Although Conjecture 3.9 is false, we nevertheless still wish to discover conditions guaranteeing that
a code is open convex but not closed convex – or vice-versa.
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3.4 A locally good code that is neither open convex nor closed convex

Next, we consider codes that are neither open convex nor closed convex. Based on the examples in
this work and in other articles, one might wonder whether every locally good codes is open convex
or closed convex. However, here we present a code on 8 neurons that, despite being locally good, is
neither open convex nor closed convex (Theorem 3.11). As seen in the proof, this code is built by
combining two locally good codes, one that is not closed convex and the other not open convex.
Theorem 3.11. The following code is locally good, but neither open convex nor closed convex:
C = {2345,123,124,145, 12, 14, 23, 24, 45, 2, 4, ∅} ∪ {237,238,367,678, 26, 37, 67, 6, 8} .

Proof. By [4, Theorem 1.3 and Lemma 1.4], being locally good is equivalent to the following: If
∅ = σ /∈ C and σ is the intersection of two or more maximal codewords of C, then Lkσ(∆(C))
is contractible. It is straightforward to check that only 1, 3, and 7 are nonempty intersections of
maximal codewords and not in C. Their links in ∆(C), respectively, are shown below:

3 2 4 5 6 7 2

81

4

5 2 3 6 8

Each link is contractible, and so C is locally good.
Next, we show that C is neither open convex nor closed convex. Let U = {U1, U2, . . . , U8} be a
realization of C in some Rd. We must show that some Ui is not open, and some Uj is not closed.

First, {U1, U2, U3, U4, U5} is a realization of the restriction of C to the neurons {1, 2, 3, 4, 5},
which is the code called “C4” in [6, Table 1] and is non-open-convex [9]. Thus, at least one
of U1, U2, U3, U4, U5 is not open.
Similarly, {U2, U3, U6, U7, U8} realizes C restricted to {2, 3, 6, 7, 8}. After relabeling neurons
2, 3, 6, 7, 8 by 1, 3, 2, 4, 5, respectively, this restricted code is the code “C10” in [6, Table 1], which
is non-closed-convex [6, Theorem 4.1]. Hence, at least one of U2, U3, U6, U7, U8 is not closed.

Remark 3.12. Another locally good code on 8 neurons that is neither open convex nor closed
convex, is the code C ∪ {278} from Theorem 3.2. Non-closed-convexity is shown in that theorem.
As non-open-convexity, restricting the code to {1, 2, 3, 4, 5, 6} yields (up to permuting neurons)
the minimally non-open-convex code in [15, Theorem 5.10] (this is the code in Lemma 3.3), and
restriction preserves convexity.

The code in Theorem 3.11 is on 8 neurons. We want to know whether there is a code with the same
properties but on fewer neurons. (For instance, to our knowledge, the codes that Jeffs and Novik
show are locally good – in fact, “locally perfect” – but neither open convex nor closed convex,
require at least 8 neurons [17, §9].)
Conjecture 3.13. Every locally good code on at most 7 neurons is open convex or closed convex.

For codes on up to 4 neurons, Conjecture 3.13 is true, as such locally good codes are open convex [4].
For codes on 5 neurons, most of the work toward resolving the conjecture was done by Goldrup and
Phillipson [6]. The only codes left to analyze are those with the same simplicial complex as the
code in [9, Theorem 3.1] (this is the code “C4” in the proof of Theorem 3.11).
Another approach to resolving Conjecture 3.13 comes from the fact that the set of all neural codes
forms a partially ordered set (poset), which arises from surjective morphisms as defined in [15]. In
this poset, the open convex codes form a down-set, that is, all codes lying below an open convex
code are also open convex. Also forming down-sets are closed-convex codes [11, Proposition 9.3]
and locally good codes [18, Corollary 4.2]. Therefore, it would be interesting to check whether any
codes lying below the 8-neuron code in Theorem 3.11 are neither open convex nor closed convex
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(i.e., whether or not this code is minimal among codes that are neither open nor closed convex). If
trying this approach, however, one should beware that it is possible for the number of neurons in a
code to increase while moving downwards in this poset.

4 Discussion

Open convex and closed convex codes share several important properties. For instance, both classes
of codes are locally good (and, in fact, “locally perfect” [19]). Also, max-intersection complete
codes are both open convex and closed convex [2]. However, while open convex codes possess a
monotonicity property, which greatly simplifies the analysis of all codes with a given simplicial
complex, here we showed that this property fails for closed convex codes (Theorem 3.2). Also, even
when monotonicity holds, the embedding dimension can greatly increase (Theorem 3.7).
Additional results in our work also address fundamental questions pertaining to open convex and
closed convex codes. For instance, there is a locally good code on 8 neurons that is neither open
convex nor closed convex (Theorem 3.11).
Our results lead to several open questions. First, is there an instance of non-monotonicity in codes
on up to 7 neurons and/or codewords with size up to 5 (Remark 3.4)? Next, is there a locally good
code on 7 neurons that is neither open convex nor closed convex (Conjecture 3.13)? Also, are there
general criteria (beyond local obstructions) for ruling out closed convexity (Remark 3.5)? This is
an important future direction, as existing approaches are somewhat ad-hoc, and progress here will
therefore aid in classifying closed convex codes.
Answers to these questions, together with the results we already have on convex codes, will clarify
the theories of open convex and closed convex codes. Specifically, we will better understand when
the convexity properties are the same (for instance, for nondegenerate codes [2]) and when they
differ (as seen in this work). In turn, this knowledge contributes to answering the questions from
neuroscience that originally motivated our work. Specifically, we will better understand what types
of neural codes allow the brain to represent structured environments.
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