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We implement a dynamical resummation method (DRM) as an extension of the dynamical
renormalization group to study the time evolution of infrared dressing in nongauge theories. Super
renormalizable and renormalizable models feature infrared divergences similar to those of a theory at a
critical point, motivating a renormalization group improvement of the propagator that yields a power-law
decay of the survival probability o =2, The DRM confirms this decay, yields the dressed state, and
determines that the anomalous dimension A is completely determined by the slope of the spectral density at
threshold independent of the ultraviolet behavior, suggesting certain universality for infrared phenomena.
The dressed state is an entangled state of the charged and massless quanta. The entanglement entropy is
obtained by tracing over the unobserved massless quanta. Its time evolution is determined by the DRM, is
infrared finite, and describes the information flow from the initial single particle to the asymptotic
multiparticle dressed state. We show that effective field theories of massless axionlike particles coupled to
fermion fields do not feature infrared divergences and provide a criterion for infrared divergences in

effective field theories valid for nongauge theories up to one loop.
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I. INTRODUCTION

The infrared behavior of interacting quantum field
theories featuring massless fields has been of longstanding
interest within the context of scattering amplitudes and the
S matrix in gauge theories [1-8]. Infrared singularities
associated with the emission and/or absorption of soft
massless quanta by charged fields has continued to be
studied within the context of gauge theories in high-energy
physics [9-12], quantum coherence and infrared phenom-
ena [13-15], as well as precision calculation of physical
observables motivated by collider experiments [16-18],
and also of infrared aspects of gravity [19,20].

Our main interest in the subject is motivated by the
possibility that soft bremsstrahlung could yield an impor-
tant mechanism for production of ultralight dark matter
particles in an expanding cosmology. Motivated by this
possibility, in this article, we explore the consequences of
infrared divergences associated with emission and absorp-
tion of soft massless quanta directly in real time in
nongauge theories, thereby bypassing the subtle aspects
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associated with gauge invariance but addressing the main
physics of the infrared behavior and the dynamics of
dressing in real time. As, for example, in QED, the infrared
singularities associated with charged single-particle states
are a consequence of the single-particle mass shell coincid-
ing with the multiparticle threshold.

The focus of this article is restricted to the study of
infrared divergences associated with the dressing of
charged single-particle states arising from absorption and
emission of massless neutral quanta in nongauge theories,
not on the more overarching infrared aspects of the S-
matrix in gauge theories explored in Refs. [1-18].

Our main objective is to study the dynamics of dressing
in real time, namely, the time evolution of an initial state
and the nature of the asymptotic many-particle state that
emerges from the dressing of the charged single-particle
state by soft massless quanta of the neutral field in the
asymptotic long time limit.

While we are ultimately interested in the cosmological
applications, for which an S-matrix approach that relies on
the infinite time limit is not the most useful framework to
study time-dependent phenomena, initiating this study of
real time dressing dynamics in Minkowski spacetime may
prove relevant for further understanding of infrared phe-
nomena in gauge theories and gravity. Recently [21], a
reevaluation of the Lehmann, Symanzik, and Zimmermann
reduction formula for asymptotic states beginning with a
finite time analysis and proceeding to the infinite time limit
has exhibited the subtleties of this limit. The framework
introduced in this article may provide complementary
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further insight into asymptotic theory in cases in which
infrared divergences are present.

A. Brief summary of main results

In this article, we introduce a dynamical resummation
method (DRM) [22], based on a generalization of the
dynamical renormalization group [23-25] to study the time
evolution of initial states and the physics of soft dressing
directly in real time. In this article, we focus on various
nongauge theories that feature infrared singularities akin to
those found in QED; hence, it is possible that the results
found in this study may prove a useful guide in gauge
theories and, perhaps, in gravity [19,20]. Our main results
are listed in the following subsections.

B. Models with infrared divergences

We consider both a super-renormalizable model and a
renormalizable model of a charged field coupled to a
massless field, which, while featuring very different ultra-
violet behavior, exhibit the same infrared threshold singu-
larities. We establish a parallel between the infrared
singularities of these models and those associated with a
theory at a critical point [24,26]. We do so by mapping the
behavior of the single-particle propagator near threshold to
that of a critical Euclidean field theory at a fixed point. We
then implement a renormalization group (RG) resummation
of the infrared behavior that leads to scaling with anoma-
lous dimension. Performing a Fourier transform in time of
the RG resummed propagator reveals that the survival
probability of a single-particle state decays in time asymp-
totically as a power law with an anomalous dimension
o t~2. A DRM that provides a resummation of self-energy
corrections directly in real time is introduced [22]. This
method is manifestly unitary and directly related to the
dynamical renormalization group [23-25] but extends it in
significant ways: not only does it reproduce the power-law
decay in time with anomalous dimension A, which is
shown to be determined by the derivative of the spectral
density at threshold, but it also yields a physical description
of the dynamics of dressing of the charged particle by a soft
cloud of massless quanta.

C. Universality

We find that the infrared divergence is a consequence of
a linearly vanishing spectral density at threshold with a
finite slope A. Implementing the DRM leads to the survival
probability of the single-particle state decaying at asymp-
totically long time as o =2, reproducing the result from the
RG improved propagator. The anomalous dimension A is
completely determined by the slope of the spectral density
at threshold. Therefore, we interpret this behavior as a
manifestation of universality, in the sense that models that
feature very different ultraviolet behavior but similar infra-
red threshold behavior with spectral densities vanishing

linearly at threshold yield similar asymptotic dynamics.
Obviously, different models yield different values of the
anomalous dimension A; however, whatever the value of A,
all of these models feature an asymptotic survival proba-
bility o 2 with scaling behavior. This is similar to
universality in critical phenomena where scaling behavior
near a critical point is described in terms of critical
exponents which are insensitive to the ultraviolet behavior
of the theory.

D. Massless axionlike particles

Motivated by their possible relevance in cosmology, we
studied the case of effective field theories of a massless
axionlike pseudoscalar particle coupled to fermionic
degrees of freedom. We considered both pseudoscalar
and pseudovector couplings. In both cases, we find that
the emission and absorption of the massless quanta result in
spectral densities that vanish faster than linear at threshold,
thus preventing infrared divergences. These theories do not
feature decay with anomalous dimensions (A = 0). We
provide a criterion for the determination of infrared
divergences in general nongauge effective field theories
valid up to one-loop level.

E. Entangled dressing cloud and its entropy

The DRM describes unitary time evolution and yields the
asymptotic multiparticle state that results from the evolu-
tion of the initial single-particle state. We show explicitly
how unitarity is manifest in the asymptotic long time
limit when the initial state has completely decayed (with
a power law). This asymptotic pure state is an entangled
state between the charged particle and the soft cloud
with amplitudes that exhibit the infrared enhancement
and the anomalous dimension. If a detector only measures
the charge of the asymptotic state, but is insensitive to
the massless quanta, tracing the asymptotic state over the
unobserved degrees of freedom yields a mixed state. The
probabilities display the infrared enhancement, which is,
however, compensated by contributions vanishing with
the anomalous dimension. The entanglement entropy is
obtained directly in real time, its time evolution is com-
pletely determined by the DRM equations, it describes the
information flow from an initial single-particle state to the
asymptotic entangled multiparticle state, and it is infrared
finite as a consequence of the anomalous dimension.

II. SUPER-RENORMALIZABLE, AND
RENORMALIZABLE MODELS

We study the dynamics of infrared dressing in two
models that feature different ultraviolet behavior but share
similar infrared behavior near the multiparticle threshold
and effective field theory models of a charged fermion field
coupled to a massless axionlike particle.
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A. Super-renormalizable case

Let us consider the case of a massive complex, charged
scalar field ¢ coupled to a massless real scalar field y,

L=0'¢p"0,0—M¢'¢p+ %aﬂgaﬂx -ty (2.1)

Including the one-loop self-energy, the Dyson-

resummed ¢ propagator is
Gy(P) = oy (22)
? _P2_M2_Z(P2)’ .
where
22 2?
L(P?) =—-——=L+—5I1(P*/M?), 2.3

where in dimensional regularization in dimension
D=4-¢

~ 2 M2
A= el L= STvE + In(4z) — In [M—z] (2.4)

and
I(a) = /;1 In[x — ax(1 —x) — i€ldx; &—0". (2.5)

Subtracting the self-energy at P2 = M3, the renormalized
mass, at which the inverse propagator vanishes, namely,

x(P?) = Z(M%,) +2(P?), (2.6)
where
M3 = M? + 3(P* = M3), (2.7)
it follows that
G(P?) = S (2.8)
P? - M2 —E(P?)
with
_ 22 PE—M?2 [M2-P?2—j¢
S(P?) =R Pln|—2 2.9
) = [ e ] (29)

To leading order, we have replaced bare by renormalized
quantities in Z. Although the inverse propagator vanishes
at P? = M3, d%/dP* features an infrared singularity at
P? = M2, which is the beginning of the multiparticle cut
and the threshold for emission of soft quanta, since

- 2 P2 —M?
ImZ(P?) = —n@TP(B(PZ -M3).  (2.10)
Near P2 = M2, the propagator becomes
| Ix
G(P?) = D g= :
T ) M
(2.11)

where in the argument of the logarithm P> — P? + j&. This
behavior for P? ~ M2 is reminiscent of critical phenomena
[26], which suggests the implementation of a renormaliza-
tion group resummation, the details of which are presented
in the Appendix. The result is the renormalization group
improved propagator

1
(P = M3)|

GRG(P?) = (2.12)

M%—Pz] -7
M;

The forward time evolution is obtained from the inverse
Fourier transform in frequency

G(t) = / @e-iz’olGRG(#), (2.13)

2

and the long time limit is determined by the behavior of
GRG(P?) for P* ~ M3. Writing P> = (py — E,)(po + E,,)
with E3 = p?+ M3, and changing variables to
(po — E,) = x/t, the integral becomes (with x — x + i€)

- ‘ dxe ™ i 1
G(t) = —iE,t - ,
(1) = e 2r x 2Ep+§[_i(2E,,—+x/t)}—92
M\ M,
(2.14)
which in the long time limit becomes
~ e iEpt M, =27 )
t — E t|™9. 2.1
60 G ] AT )

Therefore, a renormalization group improvement of
the branch cut singularity beginning at P> = Mf, yields
long time power-law decay with anomalous dimension
¢* = (Ag/47M ). This asymptotic scaling behavior is a
consequence of the infrared singularity at threshold of the
propagator. The propagator (2.14) describes the asymptotic
time evolution of the amplitude; therefore, the survival
probability of the initial state is

G o« [E, 2. (2.16)
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For a typical decaying state, this survival probability would
be of the form e™'" with " being the total decay width.

B. Renormalizable case

As an example of a renormalizable case, we consider a
Dirac fermion Yukawa coupled to a massless real scalar
field @, namely,

1 _ _
L= 58;}1)8”(1) +W¥(id - M)¥ — YYOV. (2.17)
The fermion propagator is given by
i
SP)=———. 2.18
)= pi—xp) 219
The one-loop self-energy is given by
y? P 1
X(P)=- —+M|L- 1-
P =i { (G420 [P0
+ M]In[x — ax(1l — x) — ié]dx}, (2.19)

where in dimensional regularization with D =4 —¢

~ 2 M2
V2=Y>® L= {; —vg +In(4z) —In [7] };

P2

(2.20)

First, we renormalize the mass by requesting that the
inverse propagator vanishes at p = M, from which it
follows that

M,=M+2X(P=M,); (2.21)

secondly, we introduce the off-shell wave function renorm-
alization constant Z and renormalized coupling yy as

YL zy?
Z'=1- ; L=, 2.22
G G @B
yielding
iz
S(P)=————= > (2.23)
P - Mp - E(P)
where to leading order in the Yukawa coupling
Z(P) =z |P it NPV Gt [l —al;
=R 20° P\« ’
P2
=— +ié (2.24)
M;,

Near the mass shell P ~ M ,, we find the behavior

iZ(P+M,)
(P2 — M2) [1 — 42 [Mﬁ"ﬂ“ '

S(P) = (2.25)

2
MP

Up to the overall (ultraviolet divergent) constant Z, this
propagator features the same type of infrared singularity as
in the super-renormalizable case, and we invoke a similar
renormalization group resummation (see Appendix) lead-
ing to the renormalization group improved propagator

iZ(P+M,)

2 9y [M2—P2 —4y3’
(- [

SRG(P) = P> P2+ie. (2.26)

We note that the behavior near P> ~ M3 is very similar to
the super-renormalizable case, given by Eq. (2.12).

As in the super-renormalizable case, the forward time
evolution is obtained by the inverse Fourier transform, and
the long time limit is determined by the threshold region
P? ~ M3. Projecting onto a positive energy spinor (for
forward time evolution) and proceeding as in the previous
case, with py — E, = x/t, we find in the long time limit

- ) M 1-8%
$(1) o ZeiF [E} B0, (.27)
P

Again, the scaling behavior at long time is a manifestation
of the infrared singularity at threshold.

We note that in the form of the propagators (2.11) and
(2.25) the discontinuity of the propagator across the two-
particle cut vanishes linearly in py — E,; this feature will
prove to be important in the emergence of power-law decay
in time as explicitly shown by the dynamical resummation
method of the next section.

C. Massless axionlike particles

We consider massless axionlike particles as pseudo-
scalar real massless fields and two different couplings to a
fermion field: (i) pseudoscalar Yukawa coupling igp¥y> ¥
and (i) pseudovector coupling g8, Py*y>\P.

The pseudoscalar coupling (i) is also a renormalizable
case. The propagator is given by Eq. (2.19), and in this
case, it is straightforward to conclude that the self-energy
2(P) is obtained from that of the scalar case (2.17) by
simply replacing M — —M. Following the same renorm-
alization procedure as in the scalar case, after mass and (off-
shell) wave function renormalization, the propagator in
this, pseudoscalar (ps), case reads

iZ
= - 2.2
Sps(P) PoM,—5,.(P) (2.28)

with
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Zps(P) = g% [}” (a;;z 1) -M, (O‘T—lﬂ In[1 — af;

P2 92
a__+l€ g%:ZPsW

v (2.29)

In this case, we now find that near the mass shell at  ~ M »
the propagator is

Z (P+M
SpslP) = 2 _ a2 - (f(Pz—MZP)) ME—Pig (2.30)
(P _Mp)[l_gR Mf)p In| ng 1]

The logarithm associated with the two-particle cut yields a
contribution to the self-energy of the form

P2_M22 M2_P2_'~
5 (P?) o — ») ln[ e ’e], (2.31)
p p
yielding
P2 _M2 2
P

therefore, the pseudoscalar axion coupling does not lead to
infrared divergences.

The pseudovector coupling (ii) yields a nonrenormaliz-
able case with ¢ featuring mass dimension (—1) in four
spacetime dimensions. The one-loop self-energy is given
by (D=4-¢)

_ dPk ¥ (P + K+ MKy
(P) = —ig® / 207 (k- P = M) (2.33)
de K2} — MK*> + 2k - P — K*P
zgz/ ((k+ P): — M) , (2.34)
which can be written as
I(P) = PZy(P?) + MZg(P?). (2.35)
with
P2+ M2A, — (P?2 — M?)2B,(P?
Zy(P?) = ¢! ) 03222[,2 S Bo(P') (2.36)
» Ao
I(P?) = ¢° o (2.37)
and
M2 _ P2 M2 _ P2 _
Bo(P?) =2+ L + - ln[ 2 ’e}, (2.38)

where L is given by Eq. (2.20). Although the divergence
proportional to P cannot be renormalized, it is clear,

however, that near the mass-shell P? ~ Mf, the logarithm
describing the two-particle cut yields a term of the form

(P2 =M3)%In

M>% — P? — e
Zcut(P:Mp) & |:p—

" ] . (239)

yielding

ImZ. (P ~M,) x (P? = M3)°0(P* — M3);  (2.40)
therefore, also in this case, there is no infrared divergence at
the position of the mass shell. Perhaps in this case, this is an
expected consequence of the derivative coupling, which
brings two extra powers of momenta in the loop that
relieves the infrared divergence.

We conclude that in both cases, either in the pseudo-
scalar or pseudovector axion coupling, there is no infrared
divergence associated with the beginning of the multi-
particle cut, at least up to one-loop order studied here.

III. DYNAMICAL RESUMMATION METHOD

We now introduce a method that implements a dynami-
cal resummation directly in time [22] that is intimately
related to the dynamical renormalization group [23-25].
We first describe the resummation method in generality,
relate it to the dynamical renormalization group, and apply
the results to the cases studied in the previous section.

Consider a system whose Hamiltonian H = Hy + H;
with H; a perturbation. The time evolution of states in the
interaction picture of H is given by

O1¥(2), (3.1)

d
lE|‘P1(f)> =H,

where the interaction Hamiltonian in the interaction
picture is

HI(I) = eiHolHle_iHot. (32)
This has the formal solution
W, (2)) = Ut 10)[¥; (1)), (3.3)

where the time evolution operator in the interaction picture
U(t,ty) obeys

i% U(t, ty) = H;(1)U(t, t). (3.4)
Now, we can expand
|¥;(1)) (3.5)

=S ¢, )ln),

where |n) are eigenstates of the unperturbed Hamiltonian,
Hyln) = E,|n), and form a complete set of orthonormal
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|4) |4)
k) k)
(k[Hp|A) (AlH )
FIG. 1. Transitions |A) <> |x) in first order in H;.

states. In the quantum field theory case, these are many-
particle Fock states. From Rq. (3.1), one finds the exact
equation of motion for the coefficients C,(¢), namely,

Calt) = =i _C(1)(nlH (1)|m). (3.6)

Although this equation is exact, it generates an infinite
hierarchy of simultaneous equations when the Hilbert space
of states spanned by {|n)} is infinite dimensional.
However, this hierarchy can be truncated by considering
the transition between states connected by the interaction
Hamiltonian at a given order in H;. Thus, consider the
situation depicted in Fig. 1 in which one state, |A), couples
to a set of states {|x)}, which couple back to |A) via H;.

Under these circumstances, we have

Calt) = =iy _(A[H, (1)) Ci(1)

K

(3.7)

Cel1) = —iCa (1) (k[H,(1)|A). (3.8)

where the sum over k is over all the intermediate states
coupled to |A) via H;.

Consider the initial value problem in which at time 7, =
0 the state of the system |¥(z = 0)) = |A), i.e.,

C,(0)=1,  C.(0)=0. (3.9)

We can solve Eq. (3.8) and then use the solution in Eq. (3.7)
to find

Cu(t) = —iAZ<K|H1(t’)|A>CA(t’)dt’ (3.10)

Calt) = — / ‘SO)Cu ), (3.1)

0

where
(e t) =Y (AH (1)) (x[H,(1)|A)

= Y e EED [ AH 0, (3.12)

where we used (3.2). It is convenient to write (¢, ) in a
spectral representation, namely,

2.) = [~ o) By, (.13
where we have introduced the spectral density
p(po) = Y [AIH,(0)x)P3(po — Eo).  (3.14)

The integrodifferential equation with memory (3.11)
yields a nonperturbative solution for the time evolution
of the amplitudes and probabilities. Inserting the solution
for C4(t) into Eq. (3.10), one obtains the time evolution
of amplitudes C.(7) from which we can compute the
time-dependent probability to populate the state |k),
namely, |C,.(1).

The Hermiticity of the interaction Hamiltonian H; and
Eqgs. (3.7) and (3.8) yield

Glewre Y] =0 @)

which, together with the initial conditions in Egs. (3.9),
yields the unitarity relation

Ca)2 + D)) =1, (3.16)

which is the statement that the time evolution operator
U(t,0) is unitary, namely,

(F(0¥(1) = Ca(0)2 + D _|Cl)?

= (P(0)UT(1.0)U(1.0)¥(0))

= (P(0)[¥(0)) = [CA(0)P =1. (3.17)

In general, it is quite difficult to solve Eq. (3.11) exactly,
so an approximation scheme must be invoked.

The time evolution of C4(¢) determined by Eq. (3.11) is
slow in the sense that the timescale is determined by a weak
coupling kernel ~ which is second order in the coupling.
This allows us to use an approximation in terms of a
consistent expansion in time derivatives of C4. Define

t/
Wolr 1) = / (t, ") de" (3.18)
0
Wo(f, O) =0.

(3.19)

Integrating by parts in Eq. (3.11), we obtain
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/tZ(t, 1) Cy(t)dr
0
— W1, 1)Ca (1) — /) tWO(t,t’)dii,CA(t’)dt’. (3.20)

The second term on the right-hand side is formally of fourth
order in Hj, suggesting how a systematic approximation
scheme can be developed. Setting

/ d
Wi (t, 1) =A Wo(t, t")dt", $7W1(t, )= Wy(t,1);

d
Wi(2,0)=0 (3.21)
and integrating by parts again, we find
t d .
/ Wo(t, t’)ECA(t’)dl" =Wi(t,1)Cy(t) +---,  (3.22)
0

leading to

A 'z(z, )YCA()dE = Wo(t,0)Ca (1) = Wi (2, 0)Ca(1) + - --

(3.23)

This process can be implemented systematically result-
ing in higher-order differential equations. Since W, ~ H?;
C, ~ H?, the second term in (3.23) is ~H?. We consistently
neglect this term because to this order the states |x) may
also have nonvanishing matrix elements with states |«’)
other than |A) and the hierarchy would have to include these
other states, therefore yielding contributions of O(H?).
Hence, up to leading order ~H?, the Eq. (3.11) becomes

Ca(t) = =W (t.)Ca(2), (3.24)
where
"0 — o~ i(po—Ex)t
Wo(t,1) :/_ p(Po) [li(peoTA)] dpo,  (3.25)
yielding
Cu(t) = e~ 5, (3.26)
where we used that C4(0) = 1, with
oe() = [ |1 - Sp e 020
and
r(1) = 2/_oo p(Po) L _C((;j(f;o_)f())tﬂ dpy. (3.28)

The survival probability of the initial state is given by

[(ANP(1)]* = [Ca()F = e (3.29)

In the long time limit,

SE(1) — SE., = /_:P%dm, (3.30)

t—>

where P stands for the principal part, yielding a renorm-
alization of the bare frequency of the state A, namely,
E, + 0E,, = E g, whereas the long time limit of y(r)
yields the decay law of the initial state.

The spectral density is only nonvanishing for p, > E7,
where E7 is the beginning of the multiparticle threshold.
The long time limit of (3.28) is dominated by the region of
the spectral density pg =~ E,; therefore, it depends on
whether E4 < Ey or E4 > E7.

i) E4 < E7: In this case, the oscillatory function aver-
ages out in the long time limit since the region p, ~ E, is
not within the region of support of the spectral density;
therefore,

©  p(po)
) ——— 74 = 2/ ————dpy, 3.31
y()t—>oo A £ (EA_pO)2 Po ( )
yielding
[Ca()Pr=— 24 = €7, (3.32)

t— o0

where Z, is the wave function renormalization. Since
p(po) = 0[see Eq. (3.14)], z4 > 0and Z, < 1 consistently
with the unitarity condition (3.16). This case describes a
stable particle, with its mass shell described by an isolated
pole below the multiparticle threshold.

ii) E4 > E7: In this case, p(E,) # 0, and the long time
limit is dominated by the neighborhood of E,, subtracting
p(E,) from the spectral density, we find in the long time
limit

y(t)ml“At+zA+(’)(l/t)+---, (3.33)
where
© _ p(po)
I'y =2np(E,); =2 ————dp,,
A 7p(Ey) ZA /—ooP(EA _ P0)2 Po
(3.34)
yielding
ICA(DP —— Zpe;  Zy=e.  (3.35)

t—> o

Therefore, this case describes an unstable, decaying state,
namely, a resonance.
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iii) E4, = E7: In this case, the multiparticle threshold
coincides with the position of the mass, and the spectral
density vanishes at py = E,. The long time dynamics is
now determined by how the spectral density vanishes at
threshold. In the case in which the spectral density vanishes
linearly at threshold, the p, integral in y(¢) [Eq. (3.28)]
features a logarithmic divergence at long time. This is the
case for the super-renormalizable and renormalizable cases
[Egs. (2.11), (2.25), respectively] studied in the previous
section, where the discontinuity of the propagator across
the two-particle cut vanishes linearly at threshold in the
variably p, — Ep, namely,

A = [dp(po)/dpol p,—E, -

(3.36)

p(po) ——= A(po — E4):
Po = Ey

To understand this case more clearly, and to extract the
infrared divergence, it proves convenient to change vari-
ables to (py — E4) = sE, with p(py) = p(s) and T = E, 1,
yielding

0= ["p0 =50 0y

Ey
_ 2 l_s 1 — cos(s7) S
- EA 0 P S2
2 [ 1-
+= p(s)c—(;s(”)ds. (3.37)
EA 1 N

The first integral features an infrared divergence, whereas
the second is infrared finite, and the cosine term averages
out in the long time limit. With the threshold behavior
(3.36), let us write for the first integral

p(s) = AEss +p(s);

pls) —— s, n>2, (3.33)

s =0

leading to

y(1) :2AAII_C70S(ST)ds

s

+.7:(T)m2Aln[EAt] + 24, (3.39)

where the remaining function F (T)H—>oo]: « becomes a

constant in the asymptotic long time limit. This case leads
to the relaxation of the amplitude with an anomalous
dimension, namely,

|Ca(t) P ——= [EAf] 2 2y

Zy=e
t = oo A ’

(3.40)
in agreement with the results (2.15), (2.27) obtained by the
inverse Fourier transform of a renormalization group
improved propagator. Therefore, this dynamical resumma-
tion method provides a real time implementation of the

renormalization group. The wave function renormalization
constant Z, is infrared finite; however, it is ultraviolet
divergent in a renormalizable (or nonrenormalizable)
theory.

If A =0 and the spectral density vanishes faster than
linear near threshold, it follows from the above result that
y(f) = z, in the long time limit.

A. Equivalence with the dynamical
renormalization group

In the interaction picture, the time evolution of a state is
given by

(1)) = Ut 1)y (10)), (3.41)
where
Ult 1) = 1 — i / "H (1)t
- [ t / " H,(¢)H () dr de" + O(HY),
Ulty.10) = 1. (3.42)

If at 7, = O the initial state is |w(fy)) = C4(0)|A), the
survival amplitude at time ¢ is given by

Ca(t) = Ca(0)(A]U(2,0)]A) = CA(0) [1 — it(A|H;(0)|A)

t [ . ,
- [ [ S peterae-arar
0 Jo %

+ O(H%)] , (3.43)

where we have introduced Y, |x)(k| =1 in the second
order term and introduced the initial amplitude C,(0) to
clarify the nature of the dynamical renormalization group.
We will be mainly concerned with the examples discussed
in the previous sections, for which (A|H;(0)|A) = 0. In
terms of the spectral density (3.14), we find

Ca(r) = C4(0){1 + ST (1) + OH})}.  (3.44)
where
S@(1) = —it SE(1) - %y(t), (3.45)

where the superscript in S refers to the order in perturba-
tion theory and SE(t);y(¢) are given by Egs. (3.27) and
(3.28), respectively. From the results (3.30), (3.33), and
(3.39), it follows that S/(f)(t) features secular growth in
time; namely, it grows in time invalidating the reliability of
the perturbative expansion at long time. The dynamical
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renormalization group [23-25] provides a resummation
framework that improves the convergence at long time. It
begins by evolving in time up to a time 7 long enough to
establish the secular growth but short enough so that
perturbation theory is still reliable and absorbing the time
evolution into a renormalization of the amplitude. This
program is implemented as follows, writing

Ca(0) = Co(RA().  Rulz) =1+ 1Y (x) + O(H}).

(3.46)
where rf)(r) ~ O(H?), etc. Up to second order in the
interaction, we obtain

Ca() = Co@ 1+ (P @)+ ST () +--].  (3.47)

and the counterterm rf) (7) is chosen to cancel ng) (1) at the

renormalization timescale ¢ = z, namely,
2 2

rP(e) = -SP (). (3.48)

The time-dependent amplitude C4(#) does not depend on
the arbitrary renormalization scale 7, hence

d

—Caln =o. (3.49)

and this is the dynamical renormalization group equation.
Consistently keeping up to terms of O(H?), this equation
leads to

=~ (1) + O(H) + -

(3.50)

where the dots stand for d/dz. Using the renormalization
condition (3.48), the solution is given by

Cu(z) = CA(To)ewf)(f)—sf)(fo)); (3.51)
now, we can choose 7 = 1; 7o = 0 and C4(0) = 1 with the
result

Cy(t) = o—1E(1) e—%

(3.52)
which is precisely the result given by Eq. (3.26). This
solution provides a resummation of the perturbative series
up to second order in the coupling. In the case in which the
mass shell is embedded in the particle continuum, the long
time behavior of the amplitude is C, (1) = Z, e "AF=! g T1/2
yielding the usual exponential decay law in agreement with
Eq. (3.35). Therefore, the dynamical resummation method
described in the previous section is equivalent to the
dynamical renormalization group resummation of secular
terms. However, a bonus of the dynamical resummation

method is that it also yields the coefficients C,(¢) given
by Eq. (3.8) and a direct connection with unitarity
[see Eq. (3.16)].

Armed with these general results, we now address the
cases studied in the previous section.

B. Super-renormalizable case

The interaction Hamiltonian in the interaction picture for
the model described by Eq. (2.1) is

H,(f) =2 / Bt G OPE (1), (3.53)

where the time evolution is that of free fields. In this case,
the state |A) = |1"1§>, i.e., a single-particle state of the field

¢, and the states |x) = |1‘£; 1%), ie., a two-particle inter-

mediate state. We quantize the fields in a volume V with a
discrete momentum representation; eventually, V is taken
to infinity. The matrix element

AVS. -
(12|H,(0)[12; 1%) = BA+q ’
' k24t 2VE2VER2Ve,|'?

(3.54)

where E, = \/p* + M?*, w, = |§| are the energies of the
¢,y particle, respectively, and the total energy of this
intermediate state is E, = E; + w,. With 5 =355 -,
the spectral density (3.14) is given by

ﬁ/ d*k 8(po—E,—|p—K|)
8E,) (27 Elp-k

p(posp) = (3.55)

For py = E,, this is identified with the Lorentz-invariant
phase space for two-body decay, which must vanish by
kinematics because a massive particle cannot emit nor
absorb a massless particle on shell. Therefore, the spectral
density must vanish as py — E,,.

We find

2
p(Po: P) = = (p —E,»(ﬂ’i;)ewo _E,).

B 3277,'2Ep p(z) -p
(3.56)

vanishing linearly as A(py — E,,) at threshold with A =
(A/4xM)?. Introducing the variables s = (po— E,)/E,.
T=E,t.R=M/E,, we find that the function y(z) in
Eq. (3.28) can be written as

r(1) = L(T) + I(T). (3.57)
with
1,(T)=AR? /) 1 [sz;siﬁ] [I_CT(ST)} ds (358
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o0 2+s 1 —cos(sT)
I,(T) = AR? ds.
2(T) ﬂ [R2+2s+s2][ s ] y

(3.59)

The integral /,(7T') features an infrared divergence at s = 0,
which can be isolated by subtracting the first bracket inside
the integral in (3.58) at s = 0, yielding

1,(T) = 2AAI [“%S(ST)} ds

1I[R2—4—2s
+ AA [m] (I —cos(sT))ds. (3.60)

In the long time limit, the cos(s7) terms in I, and the
second term in (3.60) average out, yielding

40) S 2A In[E 1] + z4, (3.61)
where
ITR?—4-2s
=A2 — |d
o {YE—F/O [R2+2s+s2] s
0 2+ ds
R? —_—| —p, 3.62
i [ [Rz—l—Zs—l—sz]s} (3.62)

with y the Euler-Mascheroni constant. Therefore, the long
time behavior of the survival probability is given by

|C¢(t)|2 = [Ept]_ZAZ(/,; Z¢ = e_z¢, (363)
displaying the power-law decay of the probability with
anomalous dimension 2A in complete agreement with the
result from the renormalization group improved propagator
Eq. (2.16). We note that the wave function renormalization
Z, is infrared finite and also ultraviolet finite as befits a
super-renormalizable theory.

C. Renormalizable case

For the renormalizable case described by the Lagrangian
density (2.17), the interaction Hamiltonian in the inter-
action picture of free fields is

Ht) =Y / PxPF )OFE )P(E 1),  (3.64)

with the state |A) = |1§’a> and the intermediate states
&) = |1‘£ﬁ; 1%’). The matrix elements are given by
Uz , Uz a,a
(Y 19 H(0)1Y ) = VY6 o tha PoS
kB d pa PRRVE,2VE2V|g|]Y
(3.65)

B ui)ﬁa,buﬁﬁ‘b
PRRVE,2VE2V|g|]'
(3.66)

(17 [H (0)1Y 19) = vys

With - =>7:>":> s and averaging over the initial
polarizations a, the spectral density (3.14) becomes

Y2 [ &k 5(py—Ex—|p— k)
p(p;p)=—/ — [k-p+M?],
0 4E, | (27)} E|p k|
(3.67)
which is found to be
Y2 Po + E
iP) =53 (Po—E 5
p(po; p) 727, (Po p)[p% _pz]
E —Po]
P 2 2 2
X3P po—p +M
{ O[p%—pz (P )
+ p?) -p*+ 3M2}®(p0 —-E,). (3.68)

We note that for py =~ Ep, p(pg, p) ~A(pg—E,) + -+,
where A = Y?/(4x%) and the dots stand for terms that
vanish as (po — E,,)", n > 2 near threshold. To separate the
infrared contribution, we change variables to p, — E, =
SE,; p(po) =p(s) and T = E,t and write

Y
p(s) = AE,s + p(s); A= ypl (3.69)
with p(s) —— o s; n > 2, yielding
s =0
y(1) = J\(T) + Jo(T) (3.70)
with
11 = cos(sT
J1(T) ZQA/ 1—cos(sT)
0 N
— 2A{[E, ] +yp - Ci[E, ]}, (3.71)
I 1—=cos(sT
Jo(T) =2/O p(s)%ds
o0 1 - T
+ 2/ ﬁ(s)wds. (3.72)
1 N

In J,(T), the cosine term averages out in the long time
limit, and this contribution approaches a time-independent
asymptotic value, which, however, is ultraviolet divergent
because p(s)~s as s — oco. Therefore, in the long time
limit, we find
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7(0) =2 A m[E, 1] + 2, (3.73)
yielding the survival probability
IC, (D> = Z,[E, {7, (3.74)

which agrees with the power-law decay of the amplitude
with anomalous dimension in Eq. (2.27). In this case, the
wave function renormalization Z,, is infrared finite but
ultraviolet divergent since this is a renormalizable theory.

D. Axion couplings

In the case of the pseudoscalar coupling ig¥y° W, the
matrix elements are given by

U ysuqaa
1 12 H,(0)1Y ) = igV 5.+, - kpal Ypa
Wi gt Ofpal =19V 5013 v avE VI
(3.75)
Z:l_’ab}’su”
1Y |H,0)1Y 19 = igVs. - . pabl Uipy
(Tl HiONI 1150 = i9V 055, RVE,2VE2V|q|]'
(3.76)

With - =>72>"2> s and averaging over the initial
polarizations «, the spectral density (3.14) now becomes

[k-p—M?.

2 3 =7
g d’k 8(po—Er—|p—k
p(po,p) / (O k | |)

C4E,) Cn} Elp-k
(3.77)

Following the same steps as in the scalar Yukawa coupling
case, we find

2

p0+E
iP) =255 (Po—Ep) | —5—= E
[)(PO ]7) 32”2Ep (]7() p) |:P(2)—p2:| {])0+ P
2 2 2
po—p-+M
_p0|: L 2 2 }G(pO_Ep)' (378)
Po—P

In this case, the (py—E,)? completely cancels the
denominator in y(z) in Eq. (3.28); therefore, there are no
infrared singularities, and the asymptotic long time limit
y(t) = z,,, which is ultraviolet divergent. The behavior
o (po — Ep)? near threshold is, as expected, in complete
agreement with the result (2.32) of the self-energy.

For the pseudovector coupling g@,,cﬁ‘i’y"y“l’, we now
find

p(pop) =L / &k 8(py— Ex— |p — k)
’ 4E, | (2n)? E/p - k|
<[k q)(p @) q"=(p-k:p-k),
(3.79)
with the result
2 2
g 3 (pO + Ep)
p)=——(py—E,)? |-——L"
p(po. p) 7 (po—E,) [ 72

M2
X |:1 +ﬁ:| @(pO—Ep). (3.80)
bo—p
The behavior ~(py — E p)3 near threshold is consistent with

the results (2.39), (2.40) and implies that in this case there is
no infrared singularity, and furthermore y () S with

z,, being ultraviolet divergent. Therefore, we conclude that
either pseudoscalar or pseudovector axion couplings do not
yield infrared divergences.

1. Criterion for infrared divergences

The study of the previous sections allows us to provide a
general criterion to determine which type of (nongauge)
interactions even from effective field theories yield infrared
divergences at one-loop level and which ones do not. The
typical form of the spectral density at one-loop level can be
written as

3 -Ei—w
plros [ S APTEZ) F e (k-3 (a- )

(3.81)

where F is a Lorentz-invariant function of the scalar pro-
ducts of the on-shell 4-vectors p* = (E,, p); k* = (E. E)
q" = (w;:p— k); w, =|p— k|. The most general form of
Fl(k-p);(k-q);(g- p)]is a combination of polynomials,
namely,

Flk-p);(k-q);(q-p)]
= apulk-p)"(k-q)"(g-p)’; (m,n,1)=0,1,2--,

m.n,l

(3.82)

with a,,,,; coefficients that depend on the particular effective

field theory interaction. As will become clear below, it

suffices to consider only monomials in these products.
The angular integration in (3.81) is performed yielding

-
Flk-p);(k-aq):(q- P)lw,—py-£,dEk:

P(Po) & m .

(3.83)
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where

(po £ p)* + M?

E. = = E, —E_
= 2(po £ p) -
p(po+E,)
= (po—Ep) —5——. (3.84)
Po—P

The vanishing of the integral as py — E, reflects the
vanishing of the phase space for on-shell emission of the
|

massless quanta. As discussed above, the infrared diver-
gence arises from the contribution to the spectral density
that vanishes linearly at threshold. Since E, — E_ vanishes
linearly as py— E,,, only terms in F[(k - p): (k- q): (g - p)]
that remain finite in this limit yield infrared divergences.
Therefore, it is now a matter of analyzing the behavior of
the various scalar products to reveal which contributions do
yield infrared divergences. We find [using the delta
function constraint in (3.83)]

1
p-k=2(po=E,)lpo+Ey, = 2E] + M*— M* = IRdiv (385)
2 po— E,
1 .
P-q==(po—E,)|-po+E,+2E]—— x(py— E,) = NOIRdiv (3.86)
2 po— E,
1 .
kg =5 (po = Epllpo+ Byl oompe & (po = Ey) = NOTRdiv. (3.87)

This analysis explains why the scalar Yukawa coupling
with F = p-k+ M? yields an infrared divergence
whereas the pseudoscalar axion Yukawa coupling with
F = p -k — M? does not. It also reveals that effective field
theories with derivative couplings that necessarily yield
F x p-q;k-q do not yield infrared divergences at one-
loop order. It is important to highlight that these arguments
are only valid at one-loop level in nongauge theories; we
were not able to extend them generically beyond this order
in perturbation theory.

IV. UNITARITY AND DRESSING CLOUD

In the cases in which the infrared divergences at thresh-
old lead to the decay of the single-particle amplitude with a
power law with anomalous dimension, at long time, this
amplitude vanishes. Unitarity must be fulfilled by “pop-
ulating” the intermediate states with amplitudes C,(oo)
such that >, |C.(c0)> = 1. The fulfillment of unitarity
when the amplitude of the initial state vanishes altogether,
and the coefficients |C,|> being formally of O(A) imply
that the sum over the intermediate states must be propor-
tional to 1/A. This integral must be singular in the limit
A — 0 bringing about a nonperturbative cancellation of the
A from the coefficients. We now study how this result from
unitarity emerges in the long time limit.

From Eq. (3.10), we find

o
Cult) = —i(x|H,(0)[A) / S C\(V)dl Q= E, — Ey.
0

(4.1)

|
and

C(O)? = [(A|H,(0) )

t t . .
y / / e C (1)) Ch () dt . (4.2)
0 Jo

Inside the integrals, we replace the amplitudes C4(¢) by
Eq. (3.26). Since at early time the amplitude departs from
C4(0) =1 by a perturbatively small amount, we will
replace them by the long time limit (3.39)

Ca(t) = e @Este™Sy  y(1) = 2A In[Eqt] + 24, (4.3)
[see Eq. (3.40)] and absorb 6F, into a renormalization of
E, (mass renormalization). The integrand in the double
time integral in (4.2) is now given by (£, in & now stands
for the renormalized energy)

J(t), 1) = e =0) p=3(r(1)+7(12)) | (4.4)
writing the double time integral in (4.2) as
t t
I [ote)@ - )+ 000 = r)anar
t s i)
= 2/ dtye™2 / cos[Q(t; — ty)]e™ 2 dt, (4.5)
0 0

where in the term with ©(z, — ¢,) on the left-hand side of
(4.5) we relabeled t; <> t, and used that J(t,,t) =
J*(t1, 1) with y(¢) being real. Now, writing
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cos[Q(t; — )] = ditzG[tl;Q]; Gt 1) = Atz cos[Q(t; — 1)]dt’;  G[t;;0] =0, (4.6)

in the 7, integral in (4.5), integrating by parts using (4.6), and neglecting the term proportional to the time derivative of y(z,)
because it is of O(H?), hence consistently neglecting terms of O(H7) in (4.2), we find that the double integral in (4.2)
becomes

t ot ) 2Z t
/ / e~y (1) Ck (1) dty dty = EA/ sin[Qt|[Eqt| 7?2 dt,. (4.7)
o Jo 0

In the limit # — oo in (4.7), we can rescale Qt; = u, and using a representation of the gamma function, we find

Celoo) 2 = 22, ['<A|HI<O>IK>I2} [E —E,

(E—E? || Ey ]ZAF“ ~ 24]sin B“ -2A>]~ (4.8)

In terms of the spectral density (3.14) and introducing Z, = Z,I'[I — 2A]sin[5 (1 —2A)], we obtain

Slede)? =22, = [”O‘EA]“dpo, (49)

—w(Po—Es)* | Ea

This is the general result for the cases with infrared divergences at threshold. We now apply this result to the super-
renormalizable case as an example, of which the renormalizable case is a simple extension. In this case (see Sec. (Il B), the

state |[A) = |1§> and the states |x) = |1§; 15) with energy E, = Ex + @, § = p — k and p(po) are given by Eq. (3.56) and
A = (2/4zM)?. In terms of s = (po — E,)/E,:R = M/E,,, we find

o |R?+2s+s2

_ oo 2
> IC(0)? = AR?Z,, / [L] s28-14s; (4.10)

notice that naively setting A = 0 in s*2~! in the integrand in (4.10) leads to an infrared divergence. It is precisely this
anomalous dimension that renders the integral finite and o 1/A, thereby cancelling the A in the prefactor. This can be
understood as follows: writing [(°---ds = [ ---ds+ [°---ds and in the first integral replace

[ 2+s ] 2 s[R2—4—2s]’ (4.11)

R+ 25+ 5% :ﬁ—i_ﬁ RZ 425+ 52

the first term on the right-hand side of (4.11) when input in the first integral ( [ - - - ds) yields 1/(R*A), finally yielding

D 1C(e0) = Zy[1 + AZ[R; AJ], (4.12)
where
TIR;A]l = Al [H] s*Ads + R? KW [ﬁ] s?A-1ds. (4.13)
With T'[1 —2A]sin[Z (1 —2A)] = 1 + 2Ay; + O(A?) and D IC(0) =1+ 0(A? ~ H}), (4.14)
from Egs. (3.62) and (3.63), Z, = 1-2Ay; — AZ[R; 0] + x

O(A?), it follows that Z, = 1 — AZ[R; 0] + O(A?). Since  and therefore unitarity is fulfilled consistently up order
Z[R; Al is infrared finite, to lowest order, we can replace  (O(H?) that we have considered. It now becomes clear
T[R; A] ~Z[R;0] + O(A) inside the brackets in Eq. (4.12);  that the nonperturbative dynamical renormalization group
hence, neglecting consistently terms of O(A?) ~ H} and  resummation yielding the anomalous dimension is pre-
higher, we find cisely the mechanism by which unitarity is fulfilled.
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The extension to the renormalizable case with scalar
Yukawa coupling is straightforward with a similar result
up to order O(H7) that we considered.

A. No infrared divergences

In the cases where there are no infrared divergences, such
as that of axionlike particle couplings, the asymptotic long
time dynamics follows from Eq. (4.3) with A = 0, namely,

Cai(t) = 2\ @Ext;  Z, — =, (4.15)
with [see Eqgs. (3.31) and (3.32)],
©  p(po)
4 = 2/ ————dp 4.16
4 - (EA - p0)2 0 ( )

Inserting these expressions into Eq. (4.2), absorbing the
phase AE into a renormalization of the single-particle
frequencies, and carrying out the time integrals, we now
find

(COP = 2l O [ )

(EK - EA)Z
(4.17)
yielding
e
(4.18)

Since in the cases in which there are no infrared diver-
gences, as pg — Ey,

p(po) = (po—Ea)"s n22, (4.19)

the oscillatory contribution in (4.18) averages out in the
long time limit, yielding the asymptotic behavior as t — oo,

Z|CK(OO)|2 = ZZA/%CWO-

Po— Ea

(4.20)

The unitarity relation (3.16) at asymptotically long time
becomes

p(po) ]
z 1+2/—d =1, 421
A[ (pO_EA)2 Po ( )
with
Zyp=e Ul —z44 -
p(po) 4
=1-2 [ Y _gp. + O(H); 4.22
/ T dpy O (422)

it is clear that the unitarity relation (4.21) is fulfilled up to
O(H%), which is consistent with the order that we have
considered.

B. Entangled dressing cloud

Focusing on the super-renormalizable case, with an
obvious extension to the renormalizable case, the states
|A) = |1§> and |k) = |1(]_€; 12) with E, = Ej + q. Denoting
the coefficients C,(1) = C,(1); C(t) = C,—g@.(t), the time
evolved state (in the interaction picture) is

P(1)) = C,(O1%) + Zcm(t)ug; 1), (423)
G.k
where
C,(1) = eI [E, 722}, (4.24)

and the coefficients C,;ﬁ(t) obtained from Eq. (3.10). The
asymptotic state after the probability to remain in the initial
state has vanished is given by (in the interaction picture)

W(eo) = Y Crglolls T ). (425)
k.q

with [see Eq. (4.8)]

|Cp.(0)]> =22 [|<1§|H1(0)|1§; 1)?;'”2] [Ek +q- Ep] 24
& ? (E,+q-E,)

xF[l—2A]sin[g(l —2A)]; Gi=p-k
(4.26)

where the corresponding matrix elements are given by
Eq. (3.54) and from Eq. (4.14)

Z|Czﬁ(oo)|2 = 1+0HY). (4.27)
k.q

It is important to compare the time evolved state (4.23)
with previous studies. In Ref. [17], the state dressed by soft
massless quanta was obtained up to first order in time-
ordered perturbation theory (see Eq. (5) in Ref. [17]),
whereas the state |¥(¢)) (4.23) describes a nonperturbative
resummation of the perturbative series, as is evident in the
anomalous dimension.

Furthermore, the dressed states considered in
Refs. [3,5,8,14,15] are built from a coherent state of
photons, which are very different from the state |¥(z))
which in the long time limit is a superposition of single
charged and a single massless particle state, and the
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probabilities include wave function renormalization
constants.

This is an entangled state of the charged particle ¢ and
the cloud of massless quanta y. At asymptotically long
time, the probability of finding a ¢y, x5 pair is [Cy ( )?
and by unitarity Zg} |C 13_(7(00) |> = 1 as explicitly shown in

Eq. (4.14). The density matrix

= [¥(00))(¥(c0)]

describes a pure state with Trp = 1.

However, consider that this asymptotic state is measured
by a detector that is only sensitive to the charge of the ¢
field but insensitive to the charge neutral massless quanta of
the y field. Such measurement amounts to tracing the
density matrix over the unobserved y field yielding the
mixed state described by the reduced density matrix

T = ZICa

(4.28)

|1¢ <1¢| (4.29)

(c00)]* as the distribution

function of the charged fields in the asymptotic state.

Although this discussion has focused on the asymptotic
state, it can be extended to include the full time evolution of
the state |¥(¢)). Tracing over the unobserved y states, the
reduced density matrix at any given time is

from which we interpret |C; 7

Tr, (1) = [C, (O P15)(1%] +Z|c (PRS2,
(4.30)
This mixed state features a von Neumann entropy,
Sp(t) = =IC, (1) In(|C, (1)]?)
—Zlc (NP In(|C5z(n)),  (4.31)

andsince C,(0) = 1; Cﬁ;,—g(O) = 0,itfollows that S,(0) = 0.
The time evolution of the entropy is completely determined
by the DRM equations (3.10) and (3.11) and in the cases with
infrared divergences C,(c0) = 0; G 7(00) # 0, asymptoti-

cally at long time
2G5

with the probabilities | C;

(4.27). Unitary time evolutlon entails a flow of information
from the initial single-particle state to the asymptotic
entangled two-particle state with a concomitant growth of
the entanglement entropy whose time evolution is com-
pletely determined by the DRM equations (3.10) and (3.11).

S,(00) = )2 In(|C;7(c0)[2) > 0. (4.32)

(00)|? obey the unitarity condition

The entanglement entropy resulting from the correlations
between hard charged particles and soft photons in QED
was studied in Ref. [15] within the context of the coherent
dressed states proposed in Ref. [8]. As mentioned above,
these states are very different from the dressed state
obtained from the unitary time evolution of the initial
single-particle state by the DRM, thus preventing a mean-
ingful comparison.

The entanglement entropy (4.32) is infrared finite,
although the coefficients |Cﬁ;,;(oo)|2 feature the infrared

enhancement near threshold E; + g — E, exhibited by their
denominators in (4.26), it is compensated by the power law
with anomalous dimension in the numerator. An integral
within a small region in which the denominator vanishes is
rendered finite by the anomalous dimension. Indeed, as
discussed in the previous section, it is the numerator with the
anomalous dimension in the coefficients (4.8) that ultimately
leads to an infrared finite integral of |Cﬁ;,;(oo)|2 and the

fulfillment of unitarity, Eq. (4.14).

The calculation of the entanglement entropy, either
(4.31) or its asymptotic form (4.32), is complicated by
the logarithms and does not seem a priori to yield a useful
quantity since it depends not only on the anomalous
dimension but also on the couplings, the volume,l and
the ultraviolet aspects of the theory through the wave
function renormalization constant Z. While the growth of
entropy and information flow from the initial state to the
asymptotic multiparticle state as a consequence of unitary
time evolution and its dependence on the anomalous
dimension are interesting conceptually, it remains to be
understood if it provides any observational consequence.

V. DISCUSSION

A. Scaling behavior and renormalization
group invariance

In the cases in which there is an infrared divergence at
threshold, the survival probability at long time is given by

[CA(OP = Za[Ear] 2. (5.1)

This scaling behavior can be written in a manifestly
renormalization group—invariant form as

E —2A
ZA |: A:|
U

so that |C,(7)] is independent of the renormalization scale
u, namely,

|Ca(0)]> = Za[p][ur] 2

ZA[,”] = (5-2)

'A similar volume dependence has been discussed in Ref. [15].
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aT[ﬂ]zzA, ZA[EA] :ZA'

(5.3)

The renormalization group invariance of the above
result can also be made explicit by noting that we can
also write the integral in the first term in 7,(7) (3.60) as

o+ fsl(, with 5o = u/E,, and pu an arbitrary renormaliza-

tion scale. Obviously, the result is independent of the scale

u, and the long time limit (3.61) would become

}’(l‘) S o 2A ln[,ut] + Z¢[,M]. (54)

Since y(t) is independent of the arbitrary scale y, it obeys
the renormalization group equation

dr(t)

the solution (3.63) corresponds to u = E,,.

B. Exponential vs power-law decay

Instead of the model described by the Lagrangian density
(2.1) with two fields, let us consider, for example, the case
of three fields ¢, ¢»,, ¥ with y a massless field and both
¢1., ¢, being charged and massive with M| > M, and a
cubic interaction among all fields, £ = /lc/ﬂrqbz)( +H.c..In
this case, the heavier field ¢; can decay into the ¢,,y;
hence, the ¢, single-particle pole is now embedded in
the two-particle continuum with threshold at M, < M.
The survival probability for a single ¢; particle state of
momentum p decays in time in the long time limit as e~»’
with T, = 2zp(py = EY). As My — M| from below, the
decay rate I',, — 0 as now the threshold coincides with the
position of the mass shell of ¢; and the spectral density
vanishes at threshold by kinematics. This is the case in
which infrared singularities emerge when the spectral
density vanishes linearly at threshold. In this case, the
asymptotic long time limit is determined by the subleading
secular terms that do not grow linearly in time, but as
described above, only logarithmically, and as M, becomes
larger than M the single-particle ¢; pole moves below the
multiparticle threshold, it is now an isolated pole below the
continuum describing a stable particle.

C. Infrared dressing and the S-matrix

In this article, we focused on studying the dynamics of
dressing by soft quanta directly in real time in model
quantum field theories that feature infrared divergences
akin to those in gauge theories. This is undoubtedly only a
first step, and of much more limited scope than addressing
infrared aspects in S-matrix elements between asymptotic
states in gauge theories. While a direct extrapolation of our
results to the understanding or resolution of these diver-
gences in S-matrix elements must await a deeper study, we

can comment on some possible implications. To begin
with, the S-matrix considers the time evolution of states
prepared in the infinite past toward the infinite future;
hence, it is an infinite time limit of the finite time analysis
presented here. As we have shown, the amplitude of the
single-particle state vanishes as a power law with anoma-
lous dimension in this limit; this is in agreement with the
vanishing of the on-shell wave function renormalization
as a consequence of infrared divergences, namely, the
vanishing of the amplitude of the single-particle “pole.”
Therefore, even when an initial single-particle state is
“prepared” in the infinite past, it dresses itself with soft
quanta becoming the asymptotic entangled state given, for
example, by (4.25) with the coefficients obeying the
unitarity condition (4.27) a result of unitary time evolution
as expressed by the sum rule (3.17). It is then this
entangled, multiparticle state that should be considered
as the “in” state and also describes the asymptotic “out”
states in the S-matrix calculation of a cross section or
transition rate. Therefore, an assessment of the infrared
finiteness of S-matrix elements between asymptotic states
entails a calculation of the scattering processes not in terms
of single particles but in terms of the entangled multi-
particle states of the form (4.25). An analysis along these
lines was originally presented in Refs. [3,5] but with
dressed states as coherent states, which are very different
from the states (4.25) as discussed above. Scattering of
“Kulish-Faddeev” [8] dressed states has been considered in
Ref. [19]; again, such states are strikingly different from the
multiparticle state (4.25), which has been obtained directly
from the real time evolution and whose amplitude satisfies
the sum rule (4.27), a direct consequence of unitary time
evolution. A challenging open question is how to incor-
porate the nonperturbative resummation that evolves the
single-particle state into the dressed entangled state (4.25)
consistently with Feynman calculus ubiquitous in S-matrix
calculations.

Therefore, the infrared finiteness of the S-matrix based
on the dressed states (4.25) whose spectral properties
feature the anomalous dimensions associated with the
nonperturbative resummation of infrared emission and
absorption, remains an open question which undoubtedly
merits further and deeper study well beyond the limited
scope of this article.

D. Loop corrections to the mass of the light field

In this article, we focused on the infrared aspects
associated with the emission and absorption of a massless
scalar particle which are akin to those in gauge theories.
One of our motivations is to learn how to describe these
processes in real time with a view toward a cosmological
setting as a potential mechanism of production of ultralight
dark matter. In a nongauge theory, the masslessness of the
scalar field must be protected by some symmetry; for
example, the scalar field in our examples could be a
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Goldstone boson associated with a spontaneously broken
symmetry beyond the standard model or an axionlike
scalar pseudo-Goldstone boson. In the absence of protect-
ing symmetries, radiative corrections may induce a non-
vanishing (and perhaps large) mass and such symmetry
should be responsible for the near masslessness of such an
ultralight dark matter candidate. While our results describe
the dynamics of dressing and is of fundamental character,
their applicability must be carefully considered in particular
cases by assessing whether radiative corrections (higher-
order loop corrections) induce a large mass invalidating the
results based on the masslessness of the scalar particle.

VI. CONCLUSIONS

In this article, we studied the infrared aspects of the
dressing dynamics of charged states by the emission and
absorption of massless neutral quanta directly in time,
specifically in nongauge theories. While motivated by
possible cosmological implications for production of ultra-
light axionlike particles, and focused on the time evolution
of initial single-particle states, our study provides a
complementary exploration of infrared phenomena ubiqui-
tous in the S-matrix formulation of gauge theories, and
possibly of infrared phenomena in gravity. We have
considered super-renormalizable and renormalizable theo-
ries that, while featuring very different ultraviolet behavior,
nonetheless share similar infrared behavior. Infrared sin-
gularities in these theories arise as a consequence of the
charged particle mass shell merging with the beginning of a
multiparticle branch cut in the charged particle self-energy
and are, therefore, akin to infrared divergences in gauge
theories. We map this infrared divergence into similar
divergences of an Euclidean critical theory and implement
a renormalization group resummation of the propagator
yielding scaling behavior near threshold. This translates
into a survival probability of the charged single-particle
state that decays as a power law in time with an anomalous
dimension, namely, 2. We introduced a dynamical
resummation method that extends the dynamical renorm-
alization group and obtain the time-dependent amplitudes
of the single charged particle state and the excited multi-
particle states. This method is manifestly unitary and yields
the survival probability directly in time. It clearly reveals
that infrared dynamics arises when the spectral density
vanishes linearly at threshold and yields the power-law
decay of the survival probability =2 explicitly relating the
anomalous dimension A to the slope of the spectral density
at threshold. This behavior points to a certain universality
in the sense that theories with very different ultraviolet
behavior but with similar behavior of the spectral density
near threshold feature similar power-law decay with
anomalous dimensions.

The dynamical resummation method yields the unitary
time evolution of the single charged particle state and

explicitly shows that the dressed state is an entangled state
of the charged field and massless quanta.

Tracing over the massless neutral quanta yields a reduced
density matrix from which we extract the entanglement
entropy at all time. Unitary time evolution entails an
information flow from the initial single-particle state with
vanishing entropy to the asymptotic dressed state with an
infrared finite entropy as a consequence of the anomalous
dimension.

We find that effective field theories of massless axionlike
particles coupled to charged fermions do not feature
infrared divergences and provide a criterion generally valid
for nongauge theories up to one loop to determine if and
when infrared divergences arise.

These results lead to several questions that merit fur-
ther study:

(i) How does one extend the DRM to gauge theories

consistently with gauge invariance?

(ii) How does one combine the DRM that describes the
time evolution of initial states with the S-matrix,
which describes transition amplitudes from in states
prepared in the infinite past, to out states in the
infinite future?

(iii) Several aspects of coherence of dressed states have
been addressed recently in Refs. [13—15], the DRM
yields the dressed state as a function of time, it is
very different from that in these references. While
the entanglement entropy is infrared finite, it de-
pends not only on the anomalous dimension A but
also on the ultraviolet behavior of the theory with no
a priori direct relationship to observables.

Perhaps the results of our study could lead to further
understanding of infrared effects in gauge theories and
gravity and may provide a useful framework to study
similar phenomena directly in time in cosmology.
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APPENDIX: RENORMALIZATION GROUP
IMPROVED PROPAGATOR

In this Appendix, we argue that the infrared divergence
and the emergence of anomalous dimensions can be
understood by establishing a parallel with szatic critical
phenomena in Euclidean spacetime for P? ~ M3. We will
focus the discussion on the super-renormalizable example
of Sec. I A, but it will be clear that the same analysis holds
for the renormalizable case (2.25), and indeed for any other
case in which the infrared divergence is manifest as a
logarithmic multiparticle branch cut that originates at the
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position of the mass shell. First, let us analytically continue
to Euclidean momenta

P2 > —P% (A1)
and introduce the dimensionless variable
_ P2
PP=—-£ 11, (A2)
M;

which maps the threshold region P? ~ M%, into the region
P2 ~ 0. Near P> ~ M2, the Euclidean irreducible two-point

vertex function in the super-renormalizable theory given by
(2.11) becomes

p— )‘ .
B 47[MR ’
(A3)

Tp(P?) ==G~'(P}) = My P*[1 - n[P?]]; g

the threshold infrared divergence is now cast as an infrared
divergence in a critical (massless) theory [26] as P? — 0.
Let us introduce a wave function renormalization constant

Z() =1+ ¢ In(@) +---, (A4)
where i is a (dimensionless) renormalization scale, and the
renormalized vertex function

TR(P* i) = Z(@)Tg(P?), (AS)
with the condition
Tr(P% ) [pooe = MR, (A6)

The bare vertex function (A3) is independent of the
renormalization scale ji, which leads to the renormalization
group equation

_ om[z)(n)

_ 2
o) Y

0 -
i— —n|Te(P%a?) =0; A7
7 g = | TP ) (A7)
By dimensional analysis, the renormalized vertex can now
be written as

il (A8)

, _, [P
Tp(P% i) = M};PZCD[—]

Using the renormalization group equation (A7) and the
boundary condition (A6), we find that the dimensionless
scaling function ® obeys

lolf

with the solution
O —-| = |= ,
J J

yielding the renormalization group improved Euclidean
propagator

(A10)

1

Gr(P?) = ———5—, (A1)
MyP (]

which upon analytic continuation back to Minkowski
spacetime yields (2.12) when taking the arbitrary (dimen-
sionless) renormalization scale i = 1.

In this analysis, the coupling has been considered as
constant, namely, a “fixed point” (not running with the
renormalization group scale) because the infrared limit
P — 0 actually corresponds to the momenta approaching
the threshold value P2 — M2, not an asymptotically large
or small value as is envisaged in the usual running of the
coupling under the usual renormalization group.
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