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The development of efficient methods to facilitate N–C(O) bond activation in amides is an important 

objective in organic synthesis that permits for manipulation of the traditionally unreactive amide bonds. 

Herein, we report a comparative evaluation of a series of cyclic amides as activating groups in amide N–

C(O) bond cross-coupling. Evaluation of N-acyl-imides, N-acyl-lactams, and N-acyl-oxazolidinones 

bearing five- and six-membered rings using Pd(II)–NHC and Pd–phosphine systems reveals the relative 

reactivity order of N–activating groups in Suzuki–Miyaura cross-coupling. The reactivity of activated 

phenolic esters and thioesters is evaluated for comparison in O–C(O) and S–C(O) cross-coupling under 

the same reaction conditions. Most notably, the study reveals N-acyl-δ-valerolactams as a highly 

effective class of mono-N-acyl-activated amide precursors in cross-coupling. The x-ray structure of the 

model N-acyl-δ-valerolactam is characterized by the additive Winkler-Dunitz distortion parameter 

(+N) of 54.0°, placing this amide in a medium distortion range of twisted amides. Computational 

studies provide insight into structural and energetic parameters of the amide bond, including amidic 

resonance, N-/O-protonation aptitude and rotational barrier around the N–C(O) axis. This class of N-

acyl-lactams will be a valuable addition to the growing portfolio of amide electrophiles for cross-

coupling reactions by acyl-metal intermediates. 



1. Introduction 

Amides represent one of the most fundamental functional groups in organic chemistry and biology.1–3 

Although typical amides are planar and unreactive as a consequence of nN → *
C=O resonance rendering 

the N–C(O) bond approximately 40% double in character, recent years have witnessed significant 

advances in the development of an array of selective methods for N–C(O) bond activation by transition 

metal catalysis enabled by resonance tuning of the amide bond (Figure 1A).4 In this respect, early 

studies by Garg, Zou and our group established N-acyl-Boc-carbamates, N-acyl-Ts-sulfonamides and 

N-acyl-glutarimides as effective cross-coupling partners by N–C(O) bond activation.5–7 Although a 

number of another amide precursors have been developed, N-acyl-glutarimides represent the most 

reactive amide bond precursors for cross-coupling reactions developed to date (Figure 1B).8–10  

 

 

Figure 1. (a) Amide bond activation. (b) N-Acyl-glutarimides: twist enabled activation of amide bonds. 

 

Principally, the high reactivity of the amide bond in N-acyl-glutarimides stems from the combination 

of steric and electronic activation of the amide bond, which results in electronically-disconnected (RE, 

resonance energy, 0.5-2.4 kcal/mol), twisted amides (twist angle,  = 89.1°).11,12 Considering that N-



acyl-glutarimides constitute privileged amide derivatives that have enabled a range of previously 

unattainable cross-coupling reactions of amide bonds by C–C, C–N, C–B, C–Si, C–P, C–H bond 

forming events,4–10 while at the same time constitute bench- and air-stable stable amide based reagents 

despite considerable amide bond twist,13–16 expanding the portfolio of cyclic amides related to 

glutarimides as activating groups for N–C(O) bond cross-coupling is especially attractive. 

In continuation of our studies on amide N–C(O) bond activation4a,b,7 and geometric and electronic 

properties of non-planar amide bonds,11,12 herein we report a comparative evaluation of a series of cyclic 

amides as activating groups in amide bond N–C(O) cross-coupling. The study outlines the relative 

reactivity order of a series of N-acyl-imides, N-acyl-lactams, and N-acyl-oxazolidinones embedded in 

five- and six-membered rings as well as activated phenolic esters and thioesters by N–C(O), O–C(O) 

and S–C(O) cleavage using Pd(II)–NHC and Pd–phosphine systems. Most importantly, the study 

reveals N-acyl-δ-valerolactams as a highly effective class of mono-N-acyl-activated amide precursors in 

cross-coupling. Reactivity, structural and computational studies have been employed to gain insight into 

the high propensity of the amide bond in N-acyl-δ-valerolactams to undergo N–C(O) bond cross-

coupling. Collectively, this class of mono-N-acyl-lactams will be a valuable addition to the growing 

portfolio of amide bond electrophiles for cross-coupling reactions.  

In general, the development of amide bond cross-coupling reactions relies on the availability of new 

amide bond derivatives for cross-coupling.4–10 This is clearly demonstrated by N-acyl-glutarimides, 

introduced by our group in 2015.7,8 Now, N-acyl-glutarimides are the reagents of choice for the 

development of acyl and decarbonylative cross-coupling reactions of amides that have enabled the 

discovery of more than 10 distinct and previously unknown methods of reactivity of the amide bond. 

Furthermore, novel amide bond derivatives with distinct steric and electronic features enable reaction 

fine-tuning due to changes in resonance, sterics around the amide bond and leaving group capacity.4–12 

In this context, N-acyl-δ-valerolactams represent novel mono-acyl-activated equivalents of N-acyl-

glutarimides that differ in amidic resonance, sterics around the amide bond and pKa of the leaving 

group. The fact that there is no other amide derivative available that covers similar range of steric 



distortion and electronic delocalization4–12 means that these reagents should be routinely included in the 

development and optimization of amide bond cross-coupling reactions. 

 

2. Results and Discussion 

Considering that the high reactivity of N-acyl-glutarimides results from the presence of the doubly 

electronically-activated N-acyl glutarimide ring that additionally sterically-enforces the acyl amide bond 

from planarity by avoiding syn-pentane-type interactions between the exo- and endo-cyclic carbonyl 

groups,11,12 we selected a number of cyclic imide, lactam and oxazolidinone derivatives as activating 

groups for the study. The structures of the selected compounds are presented in Figure 2. In addition, we 

selected activated phenolic esters17 and thioesters18 to evaluate the capacity of X–C(O) bond in cross-

coupling under the same reaction conditions.  

 

Figure 2. Structures of amides and derivatives used in the present study. 

The selected compounds include the model N-benzoylglutarimide (1), N-benzoyl-δ-valerolactam (2a), 

N-benzoylsuccinimde (3), N-benzoylphthalimide (4), N-benzoyl-2-pyrrolidinone (5), N-benzoyl-2-

oxazolidinone (6), N-benzoyl-2-benzoxazolinone (7) as amide-based derivatives as well as 

pentafluorophenyl benzoate (8), phenyl benzoate (9) and S-phenyl benzothioate (10) as representative 

ester and thioester-based acyl electrophiles. In general, the selection was guided by evaluation of (1) 



mono- vs. double-electronic activation of the cyclic ring (1 vs. 2a, 3 vs. 5); (2) 5- vs. 6-membered ring 

size of the activating ring (1 vs. 3, 2a vs. 5); (3) effect of heteroatoms in the ring (3 vs. 6); (4) effect of 

aromatic substitution of the ring (3 vs. 4, 6 vs. 7); and (5) effect of N–C(O) vs. O–C(O) and S–C(O) 

activation (1-7 vs. 8-10). The Suzuki–Miyaura cross-coupling was selected as a test reaction due to the 

robustness of this coupling and the fact that several complementary catalytic systems have been 

developed for this reaction using amide-based electrophiles.4a,b Due to the high efficiency in the cross-

coupling, we selected Pd(II)–NHC systems, such as allyl-based [Pd(IPr)(cin)Cl]19 and heterocycle-based 

Pd–PEPPSI–IPr20 as well as [Pd(PCy3)2Cl2]
21 as a well-defined Pd(II)–phosphine system and the in situ 

formed Pd(OAc)2/PCy3 system. It should be noted that in general Pd–NHC catalysts outperform Pd–

phosphines in amide bond acyl cross-coupling.4a,b Furthermore, well-defined Pd(II)–phosphines are 

preferred over in situ formed Pd/phosphines,21,22 while IPr and PCy3 have been generally established as 

privileged NHC and phosphine ligands respectively in Pd-catalyzed amide Suzuki–Miyaura cross-

coupling.4a,b,6,7 The results of the comparative study are presented in Table 1.   

 

Table 1. Effect of Activating Group on Suzuki–Miyaura Cross-Coupling by N–C Bond Cleavagea 

 

entry amide A B C D 

1 

 

>98 >98 >98 >98 

2 
 

92 91 85 73 

3 

 

66 66 71 85 

4 

 

44 47 35 32 

5 
 

54 47 15 12 



6 
 

66 70 18 18 

7 

 

24 26 42 35 

entry ester A B C D 

8 
 

62 71 85 90 

9 
 

51 49 18 17 

10 
 

<5 <5 <5 <5 

aConditions: amide/ester (1.0 equiv), Ar-B(OH)2 (2.0 equiv), [Pd] (x mol%), base (y equiv), THF 

(0.25 M), T, 15 h. Conditions A: [Pd(IPr)(cin)Cl] (1.0 mol%), K2CO3 (3.0 equiv), 60 °C. Conditions B: 

[Pd–PEPPSI–IPr] (1.0 mol%), K2CO3 (3.0 equiv), 60 °C. Conditions C: [Pd(PCy3)2Cl2] (3.0 mol%), 

Na2CO3 (2.5 equiv), 120 °C. Conditions D: Pd(OAc)2 (3.0 mol%), PCy3HBF4 (12 mol%), Na2CO3 (2.5 

equiv), 120 °C. All results are average of at least three independent runs. 

 

As expected, N-acyl-glutarimide (1) showed excellent performance under all four conditions (>98% 

yield, Table 1, entry 1). Unexpectedly, mono-activated N-acyl-δ-valerolactam (2a) showed excellent 

conversion under Pd–NHC conditions (91-92%), while good yields were observed using Pd–Cy3 

systems (73-85%) (Table 1, entry 2). These results suggest that double-activation of amide bond by two 

exocyclic carbonyl groups is not required for the efficient coupling. Next, N-acyl-succinimide (3) 

showed considerably lower reactivity using Pd–NHCs (66%), while Pd–PCy3 systems were slightly 

more effective in this case (71-85%, Table 1, entry 3). Furthermore, conjugation with the fused-aromatic 

ring in N-acyl-phthalimide (4) significantly reduced the reactivity (44-47%, Pd–IPr; 32-35%, Pd–PCy3) 

(Table 1, entry 4). Interestingly, only a minor decrease in reactivity was observed in the five-membered 

mono-activated N-benzoyl-2-pyrrolidinone (5) using Pd–NHC systems (47-54%), while Pd–phosphine 

systems were less effective in this case (12-15%) (Table 1, entry 5). An even enhanced effect was found 

using N-acyl-2-oxazolidinone (6), which resulted in 66-70% yields using Pd–NHCs and lower yields 

using Pd–phosphine systems (18%) (Table 1, entry 2). The effects observed in mono-activated five-

membered derivatives (5-6 vs. 3) parallel the reactivity observed in mono-activated six-membered ring 

(1 vs. 2a) using Pd(II)–NHC systems, while six-membered rings are generally more reactive as the 



activating group due to lower steric hindrance for oxidative addition. Finally, conjugation with the 

aromatic ring in N-benzoyl-2-benzoxazolinone (7) decreased the reactivity (44-47%, Pd–NHCs; 32-

35%, Pd–phosphines) (Table 1, entry 7). This effect is analogous to that observed in succinimide vs. 

phthalimide derivatives (3 vs. 4, 6 vs. 7) and arises from -conjugation of the aromatic ring with the 

exocyclic carbonyl group. To gain further insight into the effect of acyl bond that undergoes cross-

coupling, we also evaluated the reactivity of pentafluorophenyl benzoate (8), phenyl benzoate (9) and S-

phenyl benzothioate (10) as model ester and thioester substrates for the coupling (Table 1, entries 8-10). 

Interestingly, pentafluorophenyl benzoate (8) showed excellent reactivity using Pd–PCy3 (85-90%) and 

slightly lower using Pd–NHCs (62-71%) (Table 1, entry 8), while less activated phenyl benzoate was 

moderately reactive using Pd–NHCs (49-51%) and much less reactive with Pd–Cy3 (17-18%) (Table 1, 

entry 9). Finally, S-phenyl benzothioate (10) was found to be completely unreactive under all conditions 

tested (<5% conversion, Table 1, entry 10). These results indicate that N–C(O) bond activation in the 

tested substrates is generally more effective than in O–C(O) and S–C(O) electrophiles. The general 

reactivity order of amide derivatives can be summarized as follows:  N-acyl-glutarimide (1) > N-acyl-δ-

valerolactam (2a) > N-acyl-succinimde (3) ≈ pentafluorophenyl benzoate (8) > N-acyl-2-oxazolidinone 

(6) > N-acyl-phthalimide (4) > N-acyl-2-pyrrolidinone (5) > N-acyl-2-benzoxazolinone (7) ≈ phenyl 

benzoate (9) > S-phenyl benzothioate (10). It is interesting to note that phosphine-type ligands show a 

different tendency in the coupling from those with NHC ligands. For the NHC system: 1 > 2a > 3 ≈ 8 > 

6 > 4 > 5 > 7 ≈ 9 > 10; for the phosphine system: 1 > 8 ≈ 2a ≈ 3 > 7 > 4 > 6 ≈ 9 > 5 > 10. In general, 

there are two major considerations, namely stability of the amide precursor to cross-coupling and 

reactivity of the catalyst system, with NHC being stronger -donors.19,20 In general, less stable amide 

precursors give inferior results using Pd–phosphines due to side reactions, while stronger -donation of 

Pd–NHCs suggests transmetallation as the rate determining step vs. oxidative addition.19b  

An interesting finding is that removal of the doubly-activating group to yield mono-activated N-acyl-

δ-valerolactam affords high reactivity in amide bond cross-coupling. Furthermore, all amide-based 

substrates examined showed reactivity across Pd–NHC and Pd–phosphine systems, and while in some 



cases the reactivity was low, it is worth noting that prior to 2015 this N–C(O) manifold had been 

considered beyond the scope of transition-metal-catalyzed cross-coupling reactions.4–7 

Having identified N-acyl-δ-valerolactams as highly effective amide based cross-coupling reagents, we 

next explored the scope of these reagents in acyl Suzuki–Miyaura cross-coupling (Schemes 1-2). For the 

study, we selected allyl-based Pd(II)–NHC precatalyst [Pd(IPr)(cin)Cl] developed by Nolan and co-

workers.4a,19 As shown, the evaluation of the cross-coupling of N-acyl-δ-valerolactams revealed that 

these reagents show broad scope in the cross-coupling (Scheme 1). As such, electronically-neutral 

(12a), electron-rich (12b-c), and electron-deficient (12d-e) N-benzoyl-δ-valerolactams coupled in high 

yields. Furthermore, sterically-hindered (12f), biaryl (12g) and heterocyclic (12h) N-benzoyl-δ-

valerolactams are well compatible with the coupling. Of note is the full selectivity for the amide bond 

coupling in the presence of alkyl ester moiety (12e). Furthermore, in all reactions full selectivity for the 

cleavage of the exocyclic N–C(O) bond was observed (vs. endocyclic N–C(O) bond). The scope of 

boronic acids is similarly broad and includes electron-neutral (12i), electron-rich (12j), electron-

deficient (12k-m), sterically-hindered (12n-o), polyaromatic (12p-q) and heterocyclic (12r) boronic 

acids (Scheme 2). The distortion of the amide bond is impacted by the steric effect from the substituent 

on the exocyclic carbonyl.11–13 Interestingly, amides on five-membered heterocycles, such as furamide 

derivative (2h), show similar distortion of the amide bond to benzamides.11c,d Important is full 

selectivity for the cross-coupling of amide N–C(O) bond in the presence of carbonyl groups (12l-m) and 

chemoselectivity for the cross-coupling of the exo- vs. endo-cyclic N–C(O) bond. Alkyl nucleophiles 

are not suitable coupling partners in the reaction. The development of Suzuki cross-coupling of amides 

with alkyl boronic acids is one of the major challenges in amide bond cross-coupling.4–10 Preliminary 

studies using Cy–C(O)--valerolactam (Cy = cyclohexyl) as a representative alkyloyl amide gave the 

product in 32% yield. The use of strongly electron-withdrawing groups, such as 4-CN-C6H4-B(OH)2 

and 4-NO2-C6H4-B(OH)2 gave the coupling product in modest yields, 29% and 12%.  In general, amide 

bond distortion in alkyloyl derivatives is influenced by the steric effect of the -carbon substituent with 

aryl substrates close to secondary alkyl in terms of sterics, while electronically, aryl substituents are 



more activated than their corresponding alkyl conterparts.11a,b As an important consideration, we have 

not observed any decomposition of N-acyl--lactams when storing on bench-top over 12 months. In 

general, the reactivity in amide bond cross-coupling is a balance between the amide bond stability and 

destabilization onto the adjacent C=O or related groups. In general, single activating exocyclic group 

provides optimum balance between stability and activation.4–10  

Scheme 1. Suzuki–Miyaura Coupling of N-Benzoyl--Valerolactams by N–C(O) Bond Cleavagea 

 
aConditions: amide (1.0 equiv), Ar-B(OH)2 (2.0 equiv), [Pd] (1.0 mol%), K2CO3 (3.0 equiv), THF 

(0.25 M), 60 °C, 15 h. 

 

In consideration of the high reactivity of N-acyl-δ-valerolactams, we conducted intermolecular 

competition experiments to gain insight into the selectivity of the cross-coupling (Schemes 3-4). Thus, 

intermolecular competition experiments with differently substituted amides revealed that electron-

deficient amides are inherently more reactive (4-CF3:4-MeO = 68:32) (Scheme 3A), while ortho-

unsubstituted amides are more reactive than sterically-hindered counterparts (H:2-Me = 93:7) (Scheme 



3B). Furthermore, competition experiments revealed that electron-rich boronic acids cross-coupling 

preferentially (4-MeO:4-CF3 = 76:24) (Scheme 4A), while sterically-hindered boronic acids are more 

reactive (2-Me:4-Me = 66:34) (Scheme 4B). Overall, these findings suggest that oxidative addition may 

be the rate limiting step in the reaction, however this is a complex scenario including both 

transmetallation and reductive elimination.19b,20 In general, the mechanism of amide bond cross-coupling 

using Pd(II)–NHC systems has been studied by DFT methods, where it was found that depending of the 

type of precatalyst, the catalyst activation or transmetallation might be kinetically relevant steps in the 

coupling.19b   

Scheme 2. Suzuki–Miyaura Coupling of N-Benzoyl--Valerolactams by N–C(O) Bond Cleavagea 

 
aConditions: amide (1.0 equiv), Ar-B(OH)2 (2.0 equiv), [Pd] (1.0 mol%), K2CO3 (3.0 equiv), THF 

(0.25 M), 60 °C, 15 h. 

Scheme 3. Competition Experiments Amides 



 

Scheme 4. Competition Experiments Boronic Acids 

 

 

Crystallographic studies. To gain insight into the structural properties of the amide bond in N-acyl-

δ-valerolactams, the x-ray structure of 2a was determined (Figure 3, CCDC = 2082397). X-ray quality 

crystals were obtained by slow evaporation method from CH2Cl2. Interestingly, the acyclic amide bond 



shows moderate distortion from planarity ( = 33.2°, N = 20.8°, C = 7.0°),11–16 which corresponds to 

additive Winkler-Dunitz distortion parameter (+N) of 54.0°,14d placing this amide in a medium 

distortion range of twisted amides. The Winkler-Dunitz parameters (, N, C) were calculated 

according to ref. 14e. Twist () quantifies the magnitude of rotation around the N–C(O) bond; 

pyramidalization at nitrogen (N) and at carbon (C) describe pyramidalization at nitrogen and 

pyramidalization at carbon, respectively. The exocyclic N–C(O) and C=O bond lengths are 1.408 Å and 

1.216 Å, while the C–C(Ar) bond length is 1.492 Å. The endocyclic N–C(O) bond is in the antiperiplanar 

conformation to the exocyclic C=O bond (O(exo)–C–N–C angle of 139.89°); the exocyclic N–C(O) bond 

is in the eclipsed conformation to the ring C=O bond (O(endo)–C–N–C angle of 1.26°). Interestingly, the 

endocyclic amide bond is not planar ( = 13.1°, N = 22.2°, C = 1.4°), additive Winkler-Dunitz 

distortion parameter (+N) of 35.2°, which corresponds to approximately 24% the maximum 

theoretical distortion of the amide bond. In this case, the major geometric factor contributing to the 

distortion is N-pyramidalization vs. twist along the N–C(O) axis. The amide bond lengths in the six-

membered ring are N–C(O) of 1.396 Å and C=O of 1.218 Å, respectively. Overall, these values indicate 

significant distortion of the exocyclic amide bond leading to the high selectivity in amide N–C(O) bond 

cleavage reactions. The cleavage of the alternative endocyclic N–C(O) bond is not observed due to 

insufficient alteration of nN→*
C=O conjugation. 

 



Figure 3. (a) Crystal structure of 2a. 50% ellipsoids. (b) Projection of the amide group: N–C(O) bond 

(PhCO–, top; lactam, bottom). Note that projections represent views along N–C bonds illustrating 

distortion of the respective C–N–C(O)–C and C–C–C(O)–O torsions from planarity. For planar amides 

the respective dihedral angles are 0°. The structure has been deposited with the Cambridge 

Crystallographic Data Center, CCDC, 2082397. Bond lengths (Å) and angles (deg): N1–C6, 1.408(1); 

C6–O2, 1.216(1); C7–C6, 1.492(2); N1–C1, 1.396(1); C1–O1, 1.218(1), C1–C2, 1.505(2); C7–C6–N1–

C5, 153.7(1); O2–C6–N1–C1, 139.9(1); O2–C6–N1–C5, –19.3(2); C7–C6–N1–C1, –47.1(1); C2–C1–

N1–C6, 177.3(1); O1–C1–N1–C5, 156.6(1); O1–C1–N1–C6, –1.3(2); C2–C1–N1–C5, –24.8(2). Note 

weaker N1–C6(O) than N1–C1(O) bond.  

 

Computational studies. Computational studies were conducted to probe the energetic properties of 

the amide bond in N-acyl-δ-valerolactams and determine the effect of mono-acyl amide activation 

(Scheme 5). We have employed the COSNAR method14a,b to determine resonance energies of the exo- 

and endocyclic amide bonds in N-benzoyl-δ-valerolactam (2a) according to eq 1.  

 

–RE = ET(amide) – [ET(amine) + ET(ketone) – ET(hydrocarbon)]   (eq. 1) 

 

B3LYP/6-311++G(d,p) level was selected to perform geometry optimization due to good 

reproducibility of literature data and method practicality. Extensive studies have demonstrated that this 

level is accurate in predicting structural and energetic properties of amides.11,12,16 The method was 

further verified by obtaining good correlation between the calculated structure and the X-ray structure in 

this series. Calculated distortion parameters for 2a are ( = 30.3°, N = 21.1°, C = 5.4°; (+N) of 

51.4°), which can be compared with the x-ray determined values of ( = 33.2°, N = 20.8°, C = 7.0°; 

(+N) of 54.0°). (1) Thus, resonance energy showed that amidic resonance of the exo-cyclic amide 

bond in 2a (RE = 5.6 kcal/mol) is significantly lower than in planar amides (18.3 kcal/mol for DMAc 

calculated at the same level),11b while resonance energy of the endo-cyclic amide bond in 2a (RE = 9.2 



kcal/mol) confirms the energetic preference and high chemoselectivity for cross-coupling of the twisted 

amide bond. (2) Determination of rotational profile of the exo-cyclic amide bond in 2a by systematic 

rotation along the O–C–N–C(Ar) dihedral angle identified the energy minimum at ca. 20° O–C–N–C 

angle ( = 32.58°; N = 20.08°) in the eclipsed conformation of the endocyclic amide bond (O(endo)–C–

N–C angle of 3.74°). The energy maximum is located at ca. 170° O–C– N–C dihedral angle ( = 6.11°; 

N = 10.51°, 9.15 kcal/mol) in a syn C=O/C=O conformation (26.56° O–C–N–C(Me) dihedral angle). (3) 

Further, determination of N-/O-protonation affinities (PA) in 2a indicated that the amide bond strongly 

favors protonation at the amide oxygen (PA = 12.0 kcal/mol, exocyclic amide bond), while 

protonation at the oxygen atom of the endocyclic amide bond is slightly favored over O-protonation of 

the exocyclic amide bond (PA = 13.5 kcal/mol, endocyclic amide bond).16c,23 N-/O-protonation 

affinities (PA) have been determined according to ref. 14a,b. Additional studies on N-/O-protonation 

affinities in non-planar amides have been published.14c,d,16c Thus, O-protonation of the lactam oxygen 

would facilitate activation of the exocyclic amide bond by enhanced nN → *
C=O resonance.24 Overall, 

the energetic parameters of the amide bond in 2a validate the high selectivity observed in the activation 

of the exocyclic N–C(O) bond and provide the basis for the use of N-acyl-δ-valerolactams as effective 

electrophiles in acyl and decarbonylative pathways by N–C(O) activation.4–10 

 

Scheme 5. A) Resonance Energies, B) Proton Affinities of Amide Bonds in 2a 

 

 

 



3. Conclusions 

In summary, we have reported a comparative evaluation of cyclic amides as activating groups in N–

C(O) cross-coupling. Most crucially, the study resulted in the determination of the relative reactivity 

order of N-acyl-imides, N-acyl-lactams, and N-acyl-oxazolidinones bearing five- and six-membered 

rings as activating groups for N–C(O) cross-coupling and the discovery of N-acyl-δ-valerolactams as a 

highly effective class of mono-N-acyl-activated amide precursors in cross-coupling. Furthermore, 

representative phenolic esters and thioesters have been evaluated in O–C(O) and S–C(O) cross-coupling 

under the same reaction conditions. The cross-coupling of N-acyl-δ-valerolactams proceeds with high 

selectivity for the exocyclic amide bond, including broad substrate scope. Determination of the x-ray 

structure of the parent N-benzoyl-δ-valerolactam demonstrated that the amide bond is characterized by 

the additive Winkler-Dunitz distortion parameter (+N) of 54.0°, which results in a medium distortion 

range of twisted amides. Computational studies provided insight into the energetic parameters of the 

amide bond in N-benzoyl-δ-valerolactam and verified significantly reduced amidic resonance in the 

exocyclic amide bond. The reactivity of N-acyl- δ-valerolactams will represent a valuable addition to 

the portfolio of electrophilic cross-coupling reagents by N–C(O) bond activation, while these reagents 

should be added to the routine toolbox of amide bond derivatives for new reaction screening and 

optimization. Mechanistic studies, including on the effect of the oxidative addition using different amide 

derivatives with metal–NHC systems, are ongoing. Further studies on amide bond activation are 

underway in our laboratories and will be reported in due course. 

 

Experimental Section 

General Methods. All compounds reported in the manuscript have been previously described in 

literature or prepared by the method reported previously unless stated otherwise. All boronic acids are 

commercially available and have been purchased from Oakwood Chemical. All experiments involving 

palladium were performed using standard Schlenk techniques under nitrogen or argon unless stated 

otherwise. All solvents were purchased at the highest commercial grade and used as received or after 
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purification by distillation from sodium/benzophenone under nitrogen. All solvents were deoxygenated 

prior to use. All other chemicals were purchased at the highest commercial grade and used as received. 

All other general methods have been published.7a 1H NMR and 13C NMR data are given for all 

compounds in the Supporting Experimental for characterization purposes. 1H NMR, 13C NMR and 

HRMS data are reported for all new compounds.  

General Procedure for the Synthesis of Amides. An oven-dried round-bottomed flask equipped 

with a stir bar was charged with an amine substrate (typically, 2.0-10.0 mmol, 1.0 equiv), 4-

(dimethylamino)pyridine (0.1 equiv), triethylamine (1.5 equiv), and dichloromethane (0.1 M). Benzoyl 

chloride (1.1 equiv) was added dropwise to the reaction mixture with vigorous stirring at 0 °C, and the 

reaction mixture was stirred for 15 h at room temperature. After the indicated time, the reaction mixture 

was quenched with aqueous HCl (1.0 N, 10 mL), extracted with dichloromethane (2 x 15 mL), the 

combined organic layers were dried and concentrated under reduced pressure. Purification by column 

chromatography on silica gel (hexanes/ethyl acetate = 4:1) afforded the title products. 

General Procedure for the Synthesis of Esters. A round-bottomed flask equipped with a stir bar 

was charged with a phenol substrate (10.0 mmol, 1.0 equiv) dissolved in water (1-2 mL), and benzoyl 

chloride (15.0 mmol 1.5 equiv) was added with vigorous stirring. Aqueous solution of NaOH (1.0 N, 10 

mL, 10.0 mmol) was added dropwise with vigorous stirring, and the reaction mixture was stirred for 15 

h at room temperature. After the indicated time, the reaction mixture was extracted with 

dichloromethane (2 x 20 mL). The combined organic layers were dried and concentrated under reduced 

pressure to afford the title products.  

General Procedure for Suzuki-Miyaura Cross-Coupling Catalyzed by [Pd(IPr)(cin)Cl]. An 

oven-dried reaction flask equipped with a stir bar was charged with an amide or ester substrate (0.10 

mmol, 1.0 equiv), boronic acid (0.20 mmol, 2.0 equiv), K2CO3 (0.30 mmol, 3.0 equiv) and 

[Pd(IPr)(cin)Cl] (1.0 mol%), placed under a positive pressure of argon, and subjected to three 

evacuation/backfilling cycles under high vacuum. THF (0.25 M) was added with vigorous stirring at 
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room temperature, the reaction mixture was placed in a preheated oil bath at 60 °C and stirred for the 15 

h. After the indicated time, the reaction mixture was cooled down to room temperature, diluted with 

CH2Cl2 (10 mL), filtered, and concentrated. A sample was analyzed by 1H NMR (CDCl3, 500 MHz) 

and/or GC-MS to obtain conversion, selectivity and yield using internal standard and comparison with 

authentic samples. Purification by chromatography on silica gel (hexanes/ethyl acetate = 10:1) afforded 

the title products.  

General Procedure for Suzuki-Miyaura Cross-Coupling Catalyzed by Pd-PEPPSI-IPr. An oven-

dried reaction flask equipped with a stir bar was charged with an amide or ester substrate (0.10 mmol, 

1.0 equiv), boronic acid (0.20 mmol, 2.0 equiv), K2CO3 (0.30 mmol, 3.0 equiv) and Pd-PEPPSI-IPr (1.0 

mol%), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles 

under high vacuum. THF (0.25 M) was added with vigorous stirring at room temperature, the reaction 

mixture was placed in a preheated oil bath at 60 °C and stirred for the 15 h. After the indicated time, the 

reaction mixture was cooled down to room temperature, diluted with CH2Cl2 (10 mL), filtered, and 

concentrated. A sample was analyzed by 1H NMR (CDCl3, 500 MHz) and/or GC-MS to obtain 

conversion, selectivity and yield using internal standard and comparison with authentic samples.  

General Procedure for Suzuki-Miyaura Cross-Coupling Catalyzed by [Pd(PCy3)2Cl2]. An oven-

dried vial equipped with a stir bar was charged with an amide or ester substrate (0.10 mmol, 1.0 equiv), 

boronic acid (0.20 mmol, 2.0 equiv), Na2CO3 (0.25 mmol, 2.5 equiv) and [Pd(PCy3)2Cl2] (3.0 mol%), 

placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under 

high vacuum. THF (0.25 M) was added with vigorous stirring at room temperature, the reaction mixture 

was placed in a preheated oil bath at 120 °C and stirred for the 15 h. After the indicated time, the 

reaction mixture was cooled down to room temperature, diluted with CH2Cl2 (10 mL), filtered, and 

concentrated. A sample was analyzed by 1H NMR (CDCl3, 500 MHz) and/or GC-MS to obtain 

conversion, selectivity and yield using internal standard and comparison with authentic samples.  
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General Procedure for Suzuki-Miyaura Cross-Coupling Catalyzed by Pd(OAc)2/PCy3. An oven-

dried vial equipped with a stir bar was charged with an amide or ester substrate (0.10 mmol, 1.0 equiv), 

boronic acid (0.20 mmol, 2.0 equiv), Na2CO3 (0.25 mmol, 2.5 equiv), Pd(OAc)2 (3.0 mol%) and 

PCy3HBF4 (12.0 mol%), placed under a positive pressure of argon, and subjected to three 

evacuation/backfilling cycles under high vacuum. THF (0.25 M) was added with vigorous stirring at 

room temperature, the reaction mixture was placed in a preheated oil bath at 120 °C and stirred for the 

15 h. After the indicated time, the reaction mixture was cooled down to room temperature, diluted with 

CH2Cl2 (10 mL), filtered, and concentrated. A sample was analyzed by 1H NMR (CDCl3, 500 MHz) 

and/or GC-MS to obtain conversion, selectivity and yield using internal standard and comparison with 

authentic samples. 

Representative Procedure for Suzuki-Miyaura Cross-Coupling. 1.0 mmol Scale. An oven-dried 

vial equipped with a stir bar was charged with 1-benzoylpiperidin-2-one (203 mg, 1.0 mmol, 1.0 equiv), 

4-tolyl-boronic acid (272 mg, 2.0 mmol, 2.0 equiv), K2CO3 (414 mg, 3.0 mmol, 3.0 equiv) and 

[Pd(IPr)(cin)Cl] (1.0 mol%), placed under a positive pressure of argon, and subjected to three 

evacuation/backfilling cycles under high vacuum. THF (4.0 mL, 0.25 M) was added with vigorous 

stirring at room temperature, the reaction mixture was placed in a preheated oil bath at 60 °C and stirred 

for 15 h. After the indicated time, the reaction mixture was cooled down to room temperature, diluted 

with CH2Cl2 (15 mL), filtered and concentrated. Purification by chromatography on silica gel 

(hexanes/ethyl acetate = 10:1) afforded the title product. Yield 94% (185 mg).  

Compounds 1,4a 2a,25 2d,25 3,4a 4,27 5,26 6,26 7,28 8,10o 929 and 1018 have been previously reported in the 

literature. Spectroscopic properties matched literature data. Amides 2b, 2c, 2e, 2f, 2g and 2h are new 

compounds. 

1-Benzoylpiperidine-2,6-dione (1). Yield 81% (1.76 g). White solid. 1H NMR (500 MHz, CDCl3) δ 

7.90 – 7.81 (m, 2H), 7.63 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 2.74 (t, J = 6.6 Hz, 4H), 2.10 
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(quint, J = 6.6 Hz, 2H). 13C{1H} NMR (125 MHz, CDCl3) δ 172.3, 171.1, 135.3, 132.0, 130.4, 129.4, 

32.6, 17.7. 

1-Benzoylpiperidin-2-one (2a). Yield 75% (1.52 g). White solid. 1H NMR (500 MHz, CDCl3) δ 

7.55 (d, J = 7.4 Hz, 2H), 7.47 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 3.80 (t, J = 5.7 Hz, 2H), 2.56 

(t, J = 6.5 Hz, 2H), 2.00 – 1.92 (m, 4H). 13C{1H} NMR (126 MHz, CDCl3) δ 175.0, 173.8, 136.5, 

131.8, 128.4, 128.2, 46.4, 35.0, 23.2, 21.8. 

1-(4-Methylbenzoyl)piperidin-2-one (2b). Yield 80% (0.87 g). White solid. Mp = 128 – 129 °C. 1H 

NMR (500 MHz, CDCl3) δ 7.47 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 3.78 (t, J = 5.7 Hz, 2H), 

2.56 (t, J = 6.4 Hz, 2H), 2.37 (s, 3H), 1.99 – 1.91 (m, 4H). 13C{1H} NMR (126 MHz, CDCl3) δ 176.0, 

173.8, 142.5, 133.5, 129.2, 128.5, 46.5, 34.9, 23.2, 21.9, 21.8. HRMS (ESI) m/z: [M + H]+ Calcd for 

C13H16NO2 218.1176; Found 218.1175. 

1-(4-Methoxybenzoyl)piperidin-2-one (2c). Yield 77% (0.89 g). White solid. Mp = 100 – 101 °C. 

1H NMR (500 MHz, CDCl3) δ 7.57 (d, J = 8.9 Hz, 2H), 6.87 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H), 3.75 (t, J 

= 5.7 Hz, 2H), 2.56 (t, J = 6.4 Hz, 2H), 1.98 – 1.91 (m, 4H). 13C{1H} NMR (126 MHz, CDCl3) δ 174.5, 

173.8, 163.0, 131.0, 128.3, 113.8, 55.7, 46.6, 34.9, 23.2, 21.8. HRMS (ESI) m/z: [M + H]+ Calcd for 

C13H16NO3 234.1125; Found 234.1124. 

1-(4-(Trifluoromethyl)benzoyl)piperidin-2-one (2d). Yield 74% (1.00 g). White solid. 1H NMR 

(500 MHz, CDCl3) δ 7.64 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 8.2 Hz, 2H), 3.82 (t, J = 5.8 Hz, 2H), 2.56 (t, 

J = 6.5 Hz, 2H), 2.02 – 1.90 (M, 4H). 13C{1H} NMR (126 MHz, CDCl3) δ 173.8, 173.6, 140.2, 132.9 

(q, JF = 32.7 Hz), 128.1, 125.5 (q, JF = 3.8 Hz), 124.0 (q, JF = 272.9 Hz), 46.4, 35.0, 23.0, 21.6. 19F 

NMR (471 MHz, CDCl3) δ -62.97 (s). 

Methyl 4-(2-oxopiperidine-1-carbonyl)benzoate (2e). Yield 70% (0.36 g). White solid.  Mp = 119 – 

120 °C. 1H NMR (500 MHz, CDCl3) δ 8.05 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 3.92 (s, 3H), 

3.82 (t, J = 5.8 Hz, 2H), 2.56 (t, J = 6.6 Hz, 2H), 2.01 – 1.92 (m, 4H). 13C{1H} NMR (126 MHz, 
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CDCl3) δ 174.0, 173.7, 166.6, 140.8, 132.5, 129.8, 127.7, 52.6, 46.3, 35.0, 23.1, 21.7. HRMS (ESI) 

m/z: [M + H]+ Calcd for C14H16NO4 262.1074; Found 262.1074. 

1-(2-Methylbenzoyl)piperidin-2-one (2f). Yield 73% (0.79 g). Colorless oil. 1H NMR (500 MHz, 

CDCl3) δ 7.17 – 7.12 (m, 1H), 7.07 (d, J = 7.8 Hz, 1H), 7.04 (d, J = 3.7 Hz, 2H), 3.70 (t, J = 6.0 Hz, 

2H), 2.33 (t, J = 6.7 Hz, 2H), 2.23 (s, 3H), 1.80 – 1.69 (m, 4H). 13C{1H} NMR (126 MHz, CDCl3) δ 

173.8, 172.7, 138.0, 134.5, 130.4, 129.3, 125.6, 125.4, 44.9, 34.5, 22.6, 20.9, 19.4. HRMS (ESI) m/z: 

[M + H]+ Calcd for C13H16NO2 218.1176; Found 218.1174. 

1-([1,1'-Biphenyl]-4-carbonyl)piperidin-2-one (2g). Yield 70% (0.39 g). White solid. Mp = 147 – 

148 °C. 1H NMR (500 MHz, CDCl3) δ 7.68 – 7.55 (m, 6H), 7.45 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.3 

Hz, 1H), 3.83 (t, J = 5.7 Hz, 2H), 2.60 (t, J = 6.5 Hz, 2H), 2.03 – 1.94 (m, 4H). 13C{1H} NMR (126 

MHz, CDCl3) δ 174.8, 173.9, 144.8, 140.6, 135.1, 129.2, 128.9, 128.2, 127.6, 127.2, 46.6, 35.0, 23.2, 

21.8. HRMS (ESI) m/z: [M + H]+ Calcd for C18H18NO2 280.1332; Found 280.1329. 

1-(Furan-2-carbonyl)piperidin-2-one (2h). Yield 72% (0.56 g). White solid. Mp = 58 – 59 °C. 1H 

NMR (500 MHz, CDCl3) δ 7.44 (d, J = 0.8 Hz, 1H), 7.10 (d, J = 3.5 Hz, 1H), 6.46 (dd, J = 3.5, 1.7 Hz, 

1H), 3.71 (t, J = 4.5 Hz, 2H), 2.57 (dd, J = 8.3, 4.9 Hz, 2H), 1.93 – 1.90 (m, 4H). 13C{1H} NMR (126 

MHz, CDCl3) δ 173.4, 163.8, 148.7, 145.3, 117.9, 112.2, 46.4, 34.8, 23.0, 21.9. HRMS (ESI) m/z: [M 

+ H]+ Calcd for C10H12NO3 194.0812; Found 194.0812. 

1-Benzoylpyrrolidine-2,5-dione (3). Yield 75% (1.52 g). White solid. 1H NMR (500 MHz, CDCl3) 

δ 7.84 (d, J = 7.3 Hz, 2H), 7.65 (t, J = 7.5 Hz, 1H), 7.49 (t, J = 7.9 Hz, 2H), 2.91 (s, 4H). 13C{1H} NMR 

(126 MHz, CDCl3) δ 175.0, 168.0, 135.4, 131.7, 130.8, 129.3, 29.4. 

2-Benzoylisoindoline-1,3-dione (4). Yield 80% (2.00 g). White solid. 1H NMR (500 MHz, CDCl3) δ 

8.03 – 7.95 (m, 2H), 7.91 – 7.83 (m, 4H), 7.66 (t, J = 7.5 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H). 13C{1H} 

NMR (126 MHz, CDCl3) δ 167.4, 165.9, 135.6, 134.8, 132.9, 131.8, 130.8, 129.0, 124.8. 
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1-Benzoylpyrrolidin-2-one (5). Yield 62% (0.59 g). White solid. 1H NMR (500 MHz, CDCl3) δ 

7.60 (d, J = 7.2 Hz, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.7 Hz, 2H), 3.95 (t, J = 7.1 Hz, 2H), 2.59 

(t, J = 8.0 Hz, 2H), 2.16 – 2.10 (m, 2H). 13C{1H} NMR (126 MHz, CDCl3) δ 174.8, 171.0, 134.7, 

132.2, 129.2, 128.1, 46.8, 33.6, 17.9. 

3-Benzoyloxazolidin-2-one (6). Yield 77% (0.74 g). White solid. 1H NMR (500 MHz, CDCl3) δ 

7.66 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.43 (t, J = 7.7 Hz, 2H), 4.47 (t, J = 7.8 Hz, 2H), 4.16 

(t, J = 7.8 Hz, 2H). 13C{1H} NMR (126 MHz, CDCl3) δ 170.1, 153.5, 132.9, 132.7, 129.4, 128.2, 62.6, 

44.0. 

3-Benzoylbenzo[d]oxazol-2(3H)-one (7). Yield 75% (0.90 g). White solid. 1H NMR (500 MHz, 

CDCl3) δ 7.88 – 7.84 (m, 1H), 7.84 – 7.77 (m, 2H), 7.65 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 

7.31 – 7.25 (m, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 168.1, 151.3, 143.1, 133.9, 132.4, 129.9, 

128.7, 128.7, 125.6, 125.1, 115.4, 110.5. 

Pentafluorophenyl benzoate (8). Yield 82% (1.18 g). White solid. 1H NMR (500 MHz, CDCl3) δ 

8.21 (d, J = 7.5 Hz, 2H), 7.71 (t, J = 7.4 Hz, 1H), 7.56 (t, J = 7.8 Hz, 2H). 13C{1H} NMR (126 MHz, 

CDCl3) δ 163.0, 142.9 – 142.3 (m), 141.3 – 140.6 (m), 139.5 – 139.2 (m), 139.2 – 138.7 (m), 137.6 – 

137.1 (m), 135.1, 131.1, 129.3, 127.3, 126.0 – 125.5 (m). 19F NMR (471 MHz, CDCl3) δ -152.47 – -

152.58 (m), -158.04 (t , JF = 21.7 Hz), -162.30 – -162.86 (m). 

Phenyl benzoate (9). Yield 85% (1.68 g). White solid. 1H NMR (500 MHz, CDCl3) δ 8.29 – 8.22 

(m, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.7 Hz, 2H), 7.49 – 7.44 (m, 2H), 7.34 – 7.29 (m, 1H), 

7.29 – 7.23 (m, 2H). 13C{1H} NMR (126 MHz, CDCl3) δ 165.4, 151.2, 133.8, 130.4, 129.9, 129.8, 

128.8, 126.2, 122.0. 

S-Phenyl benzothioate (10). Yield 83% (1.78 g). White solid. 1H NMR (500 MHz, CDCl3) δ 8.10 – 

8.02 (m, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.55 (dt, J = 5.3, 2.0 Hz, 2H), 7.53 – 7.46 (m, 5H). 13C{1H} 

NMR (126 MHz, CDCl3) δ 190.4, 136.9, 135.4, 134.0, 129.8, 129.5, 129.0, 127.8, 127.7.  
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All products reported in this manuscript have been previously reported: 12a,4a 12b,4a 12c,9h 12d,9h 

12e,9h 12f,9h 12g,30 12h,9h 12i,27 12j,27 12k,27 12l,27 12m,27 12n,27 12o,27 12p,4a 12q4a and 12r.29 

Spectroscopic data matched those reported in the literature. 

Phenyl(p-tolyl)methanone (12a). According to the general procedure, the reaction of 1-

benzoylpiperidin-2-one (20.3 mg, 0.10 mmol, 1.0 equiv) and p-tolylboronic acid (27.2 mg, 0.20 mmol, 

2.0 equiv) afforded the title compound after workup and chromatography. Yield 89% (17.4 mg). White 

solid. 1H NMR (500 MHz, CDCl3) δ 7.79 (d, J = 7.3 Hz, 2H), 7.73 (d, J = 8.1 Hz, 2H), 7.57 (t, J = 7.4 

Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.28 (d, J = 7.8 Hz, 2H), 2.44 (s, 3H). 13C{1H} NMR (126 MHz, 

CDCl3) δ 196.8, 143.5, 138.3, 135.2, 132.4, 130.6, 130.2, 129.3, 128.5, 21.9. 

Di-p-tolylmethanone (12b). According to the general procedure, the reaction of 1-(4-

methylbenzoyl)piperidin-2-one (21.7 mg, 0.10 mmol, 1.0 equiv) and p-tolylboronic acid  (27.2 mg, 0.20 

mmol, 2.0 equiv) afforded the title compound after workup and chromatography. Yield 95% (19.9 mg). 

White solid. 1H NMR (500 MHz, CDCl3) δ 7.73 (d, J = 8.1 Hz, 4H), 7.30 (d, J = 7.9 Hz, 4H), 2.46 (s, 

6H). 13C{1H} NMR (126 MHz, CDCl3) δ 196.5, 143.2, 135.5, 130.5, 129.2, 21.9. 

(4-Methoxyphenyl)(p-tolyl)methanone (12c). According to the general procedure, the reaction of 1-

(4-methoxybenzoyl)piperidin-2-one (23.3 mg, 0.10 mmol, 1.0 equiv) and p-tolylboronic acid  (27.2 mg, 

0.20 mmol, 2.0 equiv) afforded the title compound after workup and chromatography. Yield 96% (21.7). 

White solid. 1H NMR (500 MHz, CDCl3) δ 7.83 (d, J = 8.9 Hz, 2H), 7.70 (d, J = 8.1 Hz, 2H), 7.29 (d, J 

= 8.0 Hz, 2H), 6.98 (d, J = 8.9 Hz, 2H), 3.90 (s, 3H), 2.46 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 

195.6, 163.4, 142.9, 135.8, 132.7, 130.8, 130.3, 129.2, 113.8, 55.8, 21.9. 

p-Tolyl(4-(trifluoromethyl)phenyl)methanone (12d). According to the general procedure, the 

reaction of 1-(4-(trifluoromethyl)benzoyl)piperidin-2-one (27.1 mg, 0.10 mmol, 1.0 equiv) and p-

tolylboronic acid  (27.2 mg, 0.20 mmol, 2.0 equiv) afforded the title compound after workup and 

chromatography. Yield 96% (25.3 mg). White solid. 1H NMR (500 MHz, CDCl3) δ 7.87 (d, J = 8.1 Hz, 
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2H), 7.73 (dd, J = 13.5, 8.1 Hz, 4H), 7.31 (d, J = 7.9 Hz, 2H), 2.46 (s, 3H). 13C{1H} NMR (126 MHz, 

CDCl3) δ 195.6, 144.4, 141.5, 134.4, 133.9 (q, JF = 32.7 Hz), 130.7, 130.4, 129.6, 125.6 (q, JF = 3.7 

Hz), 124.1 (q, JF = 273.1 Hz), 22.1. 19F NMR (471 MHz, CDCl3) δ -62.97 (s). 

Methyl 4-(4-methylbenzoyl)benzoate (12e). According to the general procedure, the reaction of 

methyl 4-(2-oxopiperidine-1-carbonyl)benzoate (26.1 mg, 0.10 mmol, 1.0 equiv) and p-tolylboronic 

acid  (27.2 mg, 0.20 mmol, 2.0 equiv) afforded the title compound after workup and chromatography. 

Yield 93% (23.6 mg). White solid. 1H NMR (500 MHz, CDCl3) δ 8.14 (d, J = 8.5 Hz, 2H), 7.81 (d, J = 

8.5 Hz, 2H), 7.71 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 3.96 (s, 3H), 2.45 (s, 3H). 13C{1H} NMR 

(126 MHz, CDCl3) δ 196.1, 166.7, 144.2, 142.1, 134.6, 133.4, 130.7, 130.0, 129.8, 129.5, 52.8, 22.0. 

o-Tolyl(p-tolyl)methanone (12f). According to the general procedure, the reaction of 1-(2-

methylbenzoyl)piperidin-2-one (20.3 mg, 0.10 mmol, 1.0 equiv) and p-tolylboronic acid  (27.2 mg, 0.20 

mmol, 2.0 equiv) afforded the title compound after workup and chromatography. Yield 94% (19.7 mg). 

White solid. 1H NMR (500 MHz, CDCl3) δ 7.74 (d, J = 8.2 Hz, 2H), 7.40 (td, J = 7.5, 1.4 Hz, 1H), 7.34 

– 7.24 (m, 5H), 2.45 (s, 3H), 2.35 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 198.7, 144.4, 139.3, 

136.8, 135.5, 131.2, 130.6, 130.3, 129.5, 128.6, 125.5, 22.0, 20.2. 

[1,1'-Biphenyl]-4-yl(p-tolyl)methanone (12g). According to the general procedure, the reaction of 1-

([1,1'-biphenyl]-4-carbonyl)piperidin-2-one (27.9 mg, 0.10 mmol, 1.0 equiv) and p-tolylboronic acid  

(27.2 mg, 0.20 mmol, 2.0 equiv) afforded the title compound after workup and chromatography. Yield 

92% (25.0 mg). White solid. 1H NMR (500 MHz, CDCl3) δ 7.88 (d, J = 8.2 Hz, 2H), 7.76 (d, J = 8.0 

Hz, 2H), 7.70 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 7.3 Hz, 2H), 7.49 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 7.4 Hz, 

1H), 7.31 (d, J = 7.9 Hz, 2H), 2.46 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 196.5, 145.3, 143.5, 

140.4, 136.9, 135.4, 130.9, 130.6, 129.3, 129.3, 128.5, 127.6, 127.3, 22.0. 

Furan-2-yl(p-tolyl)methanone (12h). According to the general procedure, the reaction of 1-(furan-2-

carbonyl)piperidin-2-one (19.3 mg, 0.10 mmol, 1.0 equiv) and p-tolylboronic acid  (27.2 mg, 0.20 
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mmol, 2.0 equiv) afforded the title compound after workup and chromatography. Yield 88% (16.4 mg). 

Colourless oil. 1H NMR (500 MHz, CDCl3) δ 7.89 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 0.9 Hz, 1H), 7.29 

(d, J = 7.9 Hz, 2H), 7.21 (dd, J = 3.5, 0.5 Hz, 1H), 6.57 (dd, J = 3.5, 1.7 Hz, 1H), 2.43 (s, 3H). 13C{1H} 

NMR (126 MHz, CDCl3) δ 182.6, 152.8, 147.1, 143.7, 134.9, 129.8, 129.4, 120.4, 112.4, 21.9. 

Benzophenone (12i). According to the general procedure, the reaction of 1-benzoylpiperidin-2-one 

(20.3 mg, 0.10 mmol, 1.0 equiv) and phenylboronic acid  (24.4 mg, 0.20 mmol, 2.0 equiv) afforded the 

title compound after workup and chromatography. Yield 91% (16.6 mg). White solid. 1H NMR (500 

MHz, CDCl3) δ 7.81 (d, J = 7.2 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H). 13C{1H} 

NMR (126 MHz, CDCl3) δ 197.1, 138.0, 132.8, 130.4, 128.6. 

(4-Methoxyphenyl)(phenyl)methanone (12j). According to the general procedure, the reaction of 1-

benzoylpiperidin-2-one (20.3 mg, 0.10 mmol, 1.0 equiv) and (4-methoxyphenyl)boronic acid  (30.4 mg, 

0.20 mmol, 2.0 equiv) afforded the title compound after workup and chromatography. Yield 97% (20.5 

mg). White solid. 1H NMR (500 MHz, CDCl3) δ 7.82 (d, J = 8.8 Hz, 2H), 7.75 (d, J = 7.1 Hz, 2H), 

7.55 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H). 13C{1H} NMR 

(126 MHz, CDCl3) δ 195.8, 163.5, 138.6, 132.8, 132.2, 130.4, 130.0, 128.5, 113.8, 55.7. 

Phenyl(4-(trifluoromethyl)phenyl)methanone (12k). According to the general procedure, the 

reaction of 1-benzoylpiperidin-2-one (20.3 mg, 0.10 mmol, 1.0 equiv) and (4-

(trifluoromethyl)phenyl)boronic acid  (38.0 mg, 0.20 mmol, 2.0 equiv) afforded the title compound after 

workup and chromatography. Yield 87% (21.7 mg). White solid. 1H NMR (500 MHz, CDCl3) δ 7.89 

(d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.1 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.51 (t, J 

= 7.7 Hz, 2H). 13C{1H} NMR (126 MHz, CDCl3) δ 195.8, 141.1, 137.1, 134.0 (q, JF = 32.7 Hz), 133.4, 

130.5, 130.4, 128.9, 125.7 (q, JF = 3.7 Hz), 124.0 (q, JF = 273.1 Hz). 19F NMR (471 MHz, CDCl3) δ -

63.00 (s). 
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1-(4-Benzoylphenyl)ethan-1-one (12l). According to the general procedure, the reaction of 1-

benzoylpiperidin-2-one (20.3 mg, 0.10 mmol, 1.0 equiv) and (4-acetylphenyl)boronic acid  (32.8 mg, 

0.20 mmol, 2.0 equiv) afforded the title compound after workup and chromatography. Yield 82% (18.4 

mg). White solid. 1H NMR (500 MHz, CDCl3) δ 8.05 (d, J = 8.4 Hz, 2H), 7.86 (d, J = 8.4 Hz, 2H), 

7.80 (d, J = 7.1 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 2.66 (s, 3H). 13C{1H} NMR 

(126 MHz, CDCl3) δ 197.8, 196.3, 141.7, 139.9, 137.2, 133.3, 130.4, 130.4, 128.8, 128.5, 27.2. 

Methyl 4-benzoylbenzoate (12m). According to the general procedure, the reaction of 1-

benzoylpiperidin-2-one (20.3 mg, 0.10 mmol, 1.0 equiv) and (4-(methoxycarbonyl)phenyl)boronic acid  

(36.0 mg, 0.20 mmol, 2.0 equiv) afforded the title compound after workup and chromatography. Yield 

82% (19.7 mg). White solid. 1H NMR (500 MHz, CDCl3) δ 8.15 (d, J = 8.5 Hz, 2H), 7.84 (d, J = 8.5 

Hz, 2H), 7.82 – 7.77 (m, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 3.96 (s, 3H). 13C{1H} 

NMR (126 MHz, CDCl3) δ 196.4, 166.7, 141.7, 137.3, 133.6, 133.3, 130.5, 130.1, 129.9, 128.8, 52.8. 

Phenyl(o-tolyl)methanone (12n). According to the general procedure, the reaction of 1-

benzoylpiperidin-2-one (20.3 mg, 0.10 mmol, 1.0 equiv) and o-tolylboronic acid  (27.2 mg, 0.20 mmol, 

2.0 equiv) afforded the title compound after workup and chromatography. Yield 90% (17.7 mg). 

Colourless oil. 1H NMR (500 MHz, CDCl3) δ 7.84 – 7.77 (m, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 

7.7 Hz, 2H), 7.39 (td, J = 7.6, 1.1 Hz, 1H), 7.31 (dd, J = 11.7, 7.6 Hz, 2H), 7.25 (t, J = 7.25 Hz, 1H), 

2.34 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 198.9, 138.9, 138.1, 137.0, 133.4, 131.3, 130.5, 

130.4, 128.8, 128.8, 125.5, 20.3. 

(2-Methoxyphenyl)(phenyl)methanone (12o). According to the general procedure, the reaction of 1-

benzoylpiperidin-2-one (20.3 mg, 0.10 mmol, 1.0 equiv) and (2-methoxyphenyl)boronic acid  (30.4 mg, 

0.20 mmol, 2.0 equiv) afforded the title compound after workup and chromatography. Yield 85% (18.0 

mg). White solid. 1H NMR (500 MHz, CDCl3) δ 7.82 (d, J = 7.1 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.49 

– 7.40 (m, 3H), 7.36 (dd, J = 7.5, 1.6 Hz, 1H), 7.04 (td, J = 7.4, 0.6 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 
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3.71 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 196.7, 157.6, 138.1, 133.2, 132.2, 130.1, 129.8, 

129.2, 128.5, 120.8, 111.8, 55.9. 

Naphthalen-1-yl(phenyl)methanone (12p). According to the general procedure, the reaction of 1-

benzoylpiperidin-2-one (20.3 mg, 0.10 mmol, 1.0 equiv) and naphthalen-1-ylboronic acid  (34.4 mg, 

0.20 mmol, 2.0 equiv) afforded the title compound after workup and chromatography. Yield 83% (19.3 

mg). Colourless oil. 1H NMR (500 MHz, CDCl3) δ 8.10 (d, J = 8.2 Hz, 1H), 8.01 (d, J = 8.2 Hz, 1H), 

7.93 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 7.1 Hz, 2H), 7.62 – 7.57 (m, 2H), 7.56 – 7.49 (m, 3H), 7.46 (t, J = 

7.8 Hz, 2H). 13C{1H} NMR (126 MHz, CDCl3) δ 198.3, 138.6, 136.7, 134.0, 133.5, 131.6, 131.3, 

130.7, 128.7, 128.7, 128.1, 127.6, 126.8, 126.0, 124.6. 

Naphthalen-2-yl(phenyl)methanone (12q). According to the general procedure, the reaction of 1-

benzoylpiperidin-2-one (20.3 mg, 0.10 mmol, 1.0 equiv) and naphthalen-2-ylboronic acid (34.4 mg, 

0.20 mmol, 2.0 equiv) afforded the title compound after workup and chromatography. Yield 85% (19.7 

mg). White solid. 1H NMR (500 MHz, CDCl3) δ 8.27 (s, 1H), 7.95 (d, J = 0.8 Hz, 2H), 7.92 (dd, J = 

8.1, 3.0 Hz, 2H), 7.87 (d, J = 7.1 Hz, 2H), 7.65 – 7.60 (m, 2H), 7.55 (dt, J = 15.3, 4.2 Hz, 3H). 13C{1H} 

NMR (126 MHz, CDCl3) δ 197.1, 138.2, 135.6, 135.1, 132.7, 132.6, 132.2, 130.4, 129.7, 128.7, 128.6, 

128.6, 128.1, 127.1, 126.1. 

Furan-2-yl(phenyl)methanone (12r). According to the general procedure, the reaction of 1-

benzoylpiperidin-2-one (20.3 mg, 0.10 mmol, 1.0 equiv) and furan-2-ylboronic acid  (22.4 mg, 0.20 

mmol, 2.0 equiv) afforded the title compound after workup and chromatography. Yield 81% (13.9 mg). 

Colourless oil. 1H NMR (500 MHz, CDCl3) δ 7.96 (d, J = 7.1 Hz, 2H), 7.70 (d, J = 0.9 Hz, 1H), 7.58 

(t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.22 (d, J = 3.6 Hz, 1H), 6.58 (dd, J = 3.5, 1.6 Hz, 1H). 

13C{1H} NMR (126 MHz, CDCl3) δ 182.9, 152.6, 147.4, 137.6, 132.9, 129.6, 128.7, 120.9, 112.5. 

Selectivity Studies Amides. General Procedure. An oven-dried vial equipped with a stir bar was 

charged with two amide substrates (0.10 mmol, each), potassium carbonate (0.30 mmol), boronic acid 
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(0.05 mmol), [Pd(IPr)(cin)Cl] (1.0 mol%), placed under a positive pressure of argon, and subjected to 

three evacuation/backfilling cycles under high vacuum. THF (0.25 M) was added with vigorous stirring 

at room temperature, the reaction mixture was placed in a preheated oil bath at 60 °C and stirred for the 

15 h. After the indicated time, the reaction mixture was cooled down to room temperature, diluted with 

CH2Cl2 (10 mL), filtered, and concentrated. A sample was analyzed by 1H NMR (CDCl3, 500 MHz) 

and/or GC-MS to obtain conversion, selectivity and yield using internal standard and comparison with 

authentic samples. 

Selectivity Studies Boronic Acids. General Procedure. An oven-dried vial equipped with a stir bar 

was charged with an amide substrate (0.05 mmol), potassium carbonate (0.30 mmol), two boronic acid 

substrates (0.20 mmol, each), [Pd(IPr)(cin)Cl] (1.0 mol%), placed under a positive pressure of argon, 

and subjected to three evacuation/backfilling cycles under high vacuum. THF (0.25 M) was added with 

vigorous stirring at room temperature, the reaction mixture was placed in a preheated oil bath at 60 °C 

and stirred for the 15 h. After the indicated time, the reaction mixture was cooled down to room 

temperature, diluted with CH2Cl2 (10 mL), filtered, and concentrated. A sample was analyzed by 1H 

NMR (CDCl3, 500 MHz) and/or GC-MS to obtain conversion, selectivity and yield using internal 

standard and comparison with authentic samples. 

Details of Crystal Structure Analysis. Crystallographic information is given in Table S1 in the 

Supporting Information. The compound was colorless single crystal. Full data sets were collected using 

graphite-monochromated CuKα radiation (λ = 1.54178 Å) on a Bruker SMART APEX2 single crystal 

diffractometer. X-rays were provided by a fine-focus sealed X-ray tube operated at 48kV and 30mA. 

Lattice constants were all determined using the Bruker SAINT software package using all available 

reflections. All data were corrected for absorption by measuring the faces of each crystal and doing a 

numerical absorption correction. The Bruker software package SHELXTL-2014 was used to solve all of 

the structures using the direct methods technique and difference electron density maps. All stages of 

weighted full-matrix least-squares refinement were conducted using Fo
2 data with the same software 
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package. The final structural model for each compound was refined using anisotropic thermal 

parameters for all non-hydrogen atoms; all of the H atoms were located in difference maps, but were 

placed in geometrically idealized positions and allowed to “ride” on their parent C, O or N atoms, with 

bond lengths of 0.95, 1.00, 0.99, 0.98, and 0.84 Å for aromatic, methine, methylene, methyl, and 

hydroxyl, respectively. The isotropic thermal parameters for these H atoms were fixed to be 1.2 times 

the Uiso for C or N and 1.5 times the Uiso for O.   

 

Supporting Information. Cartesian coordinates and energies. Detailed description of computational 

methods used. CIF files for amide 2a. This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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