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The Higgs field is an attractive candidate for the inflaton because it is an observationally confirmed 
fundamental scalar field. Importantly, it can be modeled by the most general renormalizable scalar 
potential. However, if the classical Higgs potential is used in models of inflation, it is ruled out by detailed 
observations of the cosmic microwave background. Here, a new application of non-adiabatic quantum 
dynamics to cosmological models is shown to lead to a multi-field Higgs-like potential, consistent with 
observations of a slightly red-tilted power spectrum and a small tensor-to-scalar ratio, without requiring 
non-standard ingredients. These methods naturally lead to novel effects in the beginning of inflation, 
circumventing common fine-tuning issues by an application of uncertainty relations to estimate the initial 
quantum fluctuations in the early universe. Moreover, inflation ends smoothly as a consequence of the 
derived multi-field interactions.

 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the most attractive features of cosmic inflation is that 
it may be able to explain how the observed large-scale structure 
of the universe, captured in the distributions of microwave back-
ground radiation or galaxies, could have evolved out of tiny initial 
quantum fluctuations [1,2]. It presents a stunning example of how 
the microscopic and macroscopic realms can be bridged, poten-
tially allowing cosmologists to test quantum mechanics through 
large-scale observations. However, traditional models of cosmic in-
flation require the presence of a certain scalar field in the early 
universe, the inflaton, with specific self-interactions that imply 
negative pressure pervading the entire early universe. Interactions 
that reliably imply this behavior often need to be finely tuned to 
achieve observationally viable models. Moreover, it is usually un-
clear whether ingredients required for fine-tuning can be derived 
from fundamental physics.

Here, we present further evidence for the general picture 
painted by cosmic inflation by introducing a new combination of 
cosmological equations with non-adiabatic methods for quantum 
dynamics. The novelty of this work is to capture non-trivial quan-
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tum effects in an initial phase of inflation which have generally 
been missed in previous studies that considered a single scalar 
field on an expanding background. We will show how a quantum 
state actively models the self-interactions of a multi-component 
inflaton field, and how this new potential can overcome several 
conceptual and phenomenological issues encountered when one 
tries to build inflation on properties of the Higgs field. The result-
ing scenario is consistent with current observations. With more 
precise future data, it may be used to deduce properties of the 
quantum state in the very early universe.

We begin with a Higgs-like field ψ with classical potential

V class(ψ) = M4

(

1− 2
ψ2

v2
+ ψ4

v4

)

(1)

where M and v are constants, assumed positive. When used in a 
quantum field theory, this potential is the most general one (up 
to adding a constant) that results in a renormalizable theory. It 
is therefore preferred in a model of the early universe because 
it implies physical effects independent of poorly understood high-
energy phenomena. This decoupling allows inflation to be applied 
as a low-energy effective theory, avoiding details of quantum grav-
ity. (Alternatively, one could consider only potentials restricted by 
a high-energy theory, for instance in terms of swampland conjec-
tures [3].) However, for ψ to play the role of a phenomenologically 
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viable inflaton [4], the potential must be extended in some way, 
for instance by including higher-order monomials in ψ or even 
non-polynomial functions as in Starobinsky-type inflation [5], or 
by introducing non-trivial interactions between ψ and space-time 
curvature [6,7].

Another possibility is to consider multi-field inflation, in which 
ψ is just one of several interacting scalar fields. Additional con-
stants then appear in potentials and interaction terms, and the 
system seems to become more ambiguous as well as more distant 
from fundamental physics. The new mechanism presented here, by 
contrast, will use basic properties of quantum mechanics to turn 
any single-field potential, such as (1), into an equivalent multi-

field system. All coupling constants between the fields can then 
be derived from v and M in (1) as well as fundamental constants 
such as h̄, but they will also depend on parameters that charac-
terize the quantum state of ψ , such as its fluctuations. The result-
ing multi-field inflation is therefore much more restricted than in 
usual cosmological model building, in which interaction terms are 
postulated so as to obey phenomenological constraints. As one of 
our main results, the new quantum-based multi-field scenario is 
nevertheless consistent with current observations, without exces-
sive fine-tuning.

Heuristically, quantum mechanics always implies that a single 
classical variable, such as the position x of a particle or our field 
ψ , is described by an infinite number of quantum degrees of free-
dom. For instance, an initial wave function �(x) can be chosen 
to be centered at any value x0 = 〈�|x̂|�〉, and independently have 
an arbitrary variance (�x)2 = 〈�|(x̂− x0)

2|�〉 around x0 . Similarly, 
higher moments �xn = 〈�|(x̂ − x0)

n|�〉 are independent, amount-

ing to infinitely many quantum degrees of freedom. There are fur-
ther moments involving the momentum p, or combinations of x
and p. In standard quantum mechanics, all these values are cap-
tured by a wavefunction or density matrix.

As time changes, the initial wave function evolves such that, 
generically, the moments depend on time. They form an infinite-
dimensional dynamical system with interacting degrees of freedom 
in addition to the classical x. It has been known for some time that 
there are equivalent classical-type systems that describe the same 
quantum dynamics, derived from multi-component effective po-
tentials. In particular a semiclassical approximation in which only 
moments of second order are considered — position and momen-

tum variances as well as their covariance — has been formulated 
several times independently [8–13]: With s = �x a single quantum 
degree of freedom to this order, the effective potential

Veff(x, s) = V (x) + U

2s2
+ 1

2
V ′′(x)s2 (2)

describes Hamiltonian dynamics equivalent to a first-order approx-
imation in h̄ of the expectation value x ≈ 〈x̂〉 and fluctuation s
derived from a solution of the Schrödinger equation with poten-
tial V (x̂). The constant U does not depend on time but only on 
the initial state. It obeys U ≥ h̄2/4 as a consequence of Heisen-
berg’s uncertainty relation. In our application to cosmology, s will 
be a multi-field partner to the Higgs-like ψ .

The presence of new quantum degrees of freedom in an effec-
tive potential may be unfamiliar to particle physicists and cosmol-

ogists, but it is a common implication of non-adiabatic dynamics. 
It is possible to derive an effective low-energy potential from (2)
by minimizing Veff(x, s) with respect to s, at fixed x. The result, 
V low−energy(x) = V (x) +

√
UV ′′(x), is a quantum-corrected poten-

tial which contains higher derivatives of V instead of additional 
degrees of freedom. Also in quantum field theory, the low-energy 
effective potential commonly used in high-energy physics and cos-
mology can be seen as a leading-order derivative expansion of a 
multi-field potential analogous to (2) [14]. (The field theory ver-
sion of 

√
UV ′′(x) quoted here is, for U = h̄2/4, equivalent to the 

Coleman–Weinberg potential [15] integrated over the time compo-

nent of the wave number. The applicability of these methods to 
the relation between quantum field theory and background quan-
tum mechanics has been demonstrated in [16].)

It is possible to extend the low-energy potential by assuming 
that s is not exactly at its minimum but stays close to it and os-
cillates slowly. Such an expansion, characterized by the slowness 
condition as an adiabatic one, is equivalent to the usual pertur-
bative methods used to derive effective potentials. A multi-field 
potential such as (2) completely forgoes the adiabatic or deriva-
tive expansion and instead describes the dynamics of a quantum 
degree of freedom, s. Independent quantum degrees of freedom 
such as s are therefore relevant whenever the dynamics is non-
adiabatic. Inflation is usually presented in a slow-roll regime, in 
which the inflaton changes slowly and its potential energy domi-

nates over its kinetic energy. The potential then acts as a medium 
with tension, implying negative pressure. Such a regime should be 
well-described by adiabatic dynamics, and low-energy effective po-
tentials should be sufficient, as often used in this context. However, 
as we will show in detail, a non-adiabatic precursor phase in a 
multi-field potential such as (2) is nevertheless important because 
it can help to set correct initial conditions for subsequent long-
term inflation without excessive fine-tuning. A final non-adiabatic 
phase then helps to end inflation.

The initial stages of inflation are expected to be dominated by 
quantum phenomena. A leading-order semiclassical approximation 
as in (2) is then insufficient. The canonical formulation of second-
order moments has recently been extended to higher orders, with 
complete parameterizations up to fourth-order moments [17,18]. 
Each additional moment order implies new quantum degrees of 
freedom, given by three values ϕ1 , ϕ2 and ϕ3 at third order and 
five at fourth order. The variance is the sum of the squares of 
these variables, �ψ2 = ϕ2

1 + ϕ2
2 + ϕ2

3 + · · · , while third and fourth 
order moments of ψ are polynomials of degree three and four, re-
spectively. The higher-order extension of (2) is linear in �ψn with 
coefficients given by the Taylor expansion of the classical potential 
around the expectation value, just as seen in (2) at second order.

In order to obtain a manageable system, we will assume that 
one of the quantum variables, called ϕ , is most relevant and re-
places s in the mechanics example, such that �ψ2 = ϕ2 . For higher 
moments, �ψ3 = α3 and �ψ4 = α4ϕ

4 with parameters α3 and α4

that describe properties of the quantum state. For a Gaussian state, 
α3 = 0 and α4 = 3. The parameters α3 and δ = α4 − 3, which turn 
out to be crucial in our analysis, may therefore be considered non-
Gaussianities of the background state of ψ . They allow us to go 
beyond a Gaussian approximation of effective potentials. Our pa-
rameterization of moments is an example of a moment closure, a 
common technique for coupled or partial differential equations in 
fields where there is experimental input [19]. It allows us to visu-
alize the quantum dynamics through lower-dimensional potentials. 
Imposing the closure condition is an approximation, which may 
be tested with numerical means in a full setting of quantum mo-

ments. We expect that qualitative features as we will derive as a 
consequence of the presence of quantum degrees of freedom are 
described well by our approximation.

Moments enter an effective potential such as (2) by expanding 
the expectation value 〈V̂ class〉 of a potential operator in a state de-
scribed by these moments around the expectation value x = 〈x̂〉:

〈V (x̂)〉 = 〈V (x+(x̂−x))〉 = V (x)+ 1

2
V ′′(x)〈(x̂−x)2〉+· · · . (3)

Since our classical potential is quartic, only moments up to fourth 
order appear in this expansion. It turns out that there is a second 
contribution to effective potentials, given by the term U/(2s2) in 
(2), which comes from the expected kinetic energy: The canonical 
formulation of moments can be seen to imply �p2 = p2

s + U/s2

2



M. Bojowald, S. Brahma, S. Crowe et al. Physics Letters B 816 (2021) 136193

Fig. 1. Left: Build-up of a tachyonic potential for the Higgs-like field ψ . Pre-inflation stage is characterized by ϕ > ϕc , while ϕ < ϕc signals the start of the intermediate stage. 
Right: Dynamical restoration of symmetry for the fluctuation field ϕ . The potential Veff(ϕ) of early stages look similar to the intermediate stage.

where ps is the momentum of s. (See [18] for a systematic deriva-
tion.) The term p2

s provides the usual kinetic energy of the new 
quantum variable, s or ϕ , while U/s2 contributes to the potential.

Before we apply this method to cosmology, we have to make 
a small adjustment because the energy contributions of a scalar 
field depend on the scale factor a of expanding space. The kinetic 
energy of a free scalar field in an expanding universe decreases 
with a because of dilution, while potential energy, V (ψ)a3 , acts 
like a medium with tension and increases with a. The precise de-
pendence on a can be derived from the canonical formulation, 
and leads to an additional factor of a−6 in the U -term in an 
effective potential. It is accompanied by a parameter V0 which, 
by definition of a homogeneous model, determines the comoving 
scale over which inhomogeneities can be ignored [16]. The vol-
ume V0a

3 should be larger than the Planck scale in order to avoid 
the trans-Planckian problem [20–22]. With our ansatz for moments 
and defining ϕ2

c := 1
3
v2 , the effective potential is

Veff = M4

(

1+ 2

(

ϕ2 − ϕ2
c

ϕ2
c

)

ψ2

v2
+ 4α3 ψ

v4
+ ψ4

v4

−2

3

ϕ2

ϕ2
c

+ α4
ϕ4

v4

)

+ U

2a6V 2
0ϕ

2
. (4)

After a few e-folds of inflation, the last term can be ignored 
since a grows quickly. It is nevertheless important because it im-

plies a repulsive potential for ϕ , necessitating ϕ to start out at 
large values. This alleviates the need to fine-tune the usual ini-
tial condition ϕ > ϕc [23]. Because ϕ is initially large, the quartic 
ϕ-term in (4) dominates at early times, along with the U -term. 

Their sum has a local minimum at ϕ = 6
√

U v4/(4a6V 2
0M

4α4). Us-

ing the Planckian lower bound for V0a
3 , we obtain an upper bound 

ϕini < ℓ−1
P

6√

U v4/(4α4M4) on the initial fluctuation variable. If we 
assume v ∼ O(MPl) and M4 ≪ MPl as in the detailed analysis to 
follow, this upper bound is well beyond ϕc . (We are using units 
such that MPl = h̄ = c = 1, turning M into an energy scale.)

Our potential (4), combining the dynamics of the classical field 
and its fluctuation, is of the hybrid-inflation type. These models 
typically produce a blue-shifted tilt when one starts with a large 
ϕ and small ψ , relying on a constant vacuum energy of ψ [23]. 
However, if instead a waterfall regime is responsible for a signifi-

Fig. 2. The squared values of exact solutions ϕ(Ne), ψ(Ne) and ϕ∗(Ne) are plotted 
using v = 3, α3 = 0.05, δ = 0.1. The field ϕ follows its minimum closely throughout 
the majority of inflation, while the field ψ rolls down to its new potential minimum 
ψ2

min = v2 in the end (see also Fig. 1). Non-adiabatic evolution is apparent during 
the start and end of inflation.

cant number of e-folds, where ϕ stays close to a local minimum, 
one may obtain a red tilt for a wide range of parameters [24,25]. 
In our case, as opposed to the traditional hybrid model, the inclu-
sion of non-adiabatic dynamics implies two phase transitions and 
the majority of e-folds are created in between. Other variations 
of hybrid models [26] which produce a red tilt require additional 
mechanisms for stability against quantum corrections [27], making 
them much less natural by introducing further tunings. Our model 
is stable because it describes a quantization of the generic renor-
malizable potential (1).

As in the original hybrid model, we start with some ϕ > ϕc , in 
accordance with our analysis of the last term in (4). By construc-
tion, ϕ describes quantum fluctuations of ψ . It should indeed be 
large for a highly quantum initial state, even while the expectation 
value ψ remains small at the local minimum of its early-time po-
tential Fig. 1. For such a large value of ϕ , its early-time potential, 
is steep. The field quickly approaches one of its minima driven by 
the ϕ4-term in (4).

Once ϕ crosses ϕc , the potential of ψ , Fig. 1, changes to its 
tachyonic intermediate-stage form with true minima located at 
non-zero ψ . In (4), reflection symmetry of ψ is broken for any 
non-zero α3 . As the tachyonic contribution builds up, the field 
starts slowly rolling away from the origin, acting as the instabil-
ity required to kick-start the waterfall regime. This slow change, 

3
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Fig. 3. Left: Number of e-folds, Ne , as a function of the spectral index ns , using the approximation (8) with various v . Right: Number of e-folds, Ne , as a function of the 
non-Gaussianity parameter α3 , using (8) and assuming ns ≈ 0.96. Non-Gaussianity speeds up the departure from adiabatic evolution, ending inflation earlier. Here, δ = 0.1. 
For smaller non-Gaussianity parameters δ, Ne increases because ns , a function of the ratio δ/α4 ≈ δ/3 is then closer to one.

now in an adiabatic phase, enables ϕ to follow its vacuum expec-
tation value, ϕ∗ . Eventually, ϕ∗ → 0, as indicated by the late-time 
potential, Fig. 1. This second phase transition restores reflection 
symmetry for ϕ . In summary, ϕ causes the traditional phase tran-
sition when it crosses ϕc , and the subsequent slow roll of ψ down 
its tachyonic hilltop eventually triggers a second phase transition. 
The adiabatic phase of slow-roll inflation takes place between the 
phase transitions.

For quantitative predictions, we solve the full equations

ψ̈ + 3Hψ̇ = M4

(

−4ψ

v2

(

ϕ2 − ϕ2
c

ϕ2
c

+ ψ2

v2

)

− 4α3

v4

)

(5)

ϕ̈ + 3Hϕ̇ = M4

(

4ϕ

3ϕ2
c

(

1− 3ψ2

v2

)

− 4α4ϕ
3

v4

)

(6)

6H2 = ψ̇2 + ϕ̇2 + 2Veff(ψ,ϕ) (7)

using numerics. (A dot represents a derivative by proper time.) 
In Fig. 2, we show ϕ and ψ as functions of the number of 
e-folds, Ne ≡ ln(a(t)/a(0)). Non-adiabatic dynamics is visible in 
both the beginning and end stages of inflation, caused by the 
large departure of the fluctuation field ϕ from its minima, ϕ∗ ≡
±v

√

α−1
4 (1 − 3ψ2/v2) (early stage) or ϕ∗ = 0 (late stage). Note 

that ϕ2
∗ ≈ ϕ2

c + O(ψ2/v2, δ). This value is large (Planckian), but 
it determines the local minimum of the potential where its value, 
of the order M4 , is sub-Planckian. The dynamics is therefore not 
affected by quantum gravity.

It is possible to derive analytical expressions for observ-

ables using a slow-roll approximation combined with small non-
Gaussianity, δ and α3 . Since the initial ψ is small near its min-

imum, we may ignore the ψ3-term in (5) to obtain the spectral 
index ns at Hubble exit. Since inflation ends shortly after ψ2 grows 
to ψ2 = v2/3, we have ϕ∗ = 0. Assuming ϕ2 ≈ ϕ2

∗ and small non-
Gaussianity,

ns ≈ 1− 12
δ

α4v2
, Ne ≈ f (1− ns, v,α3)

1− ns
(8)

with a specific but lengthy function f . (For details, see [28].) In 
non-minimal Higgs inflation, f (1 − ns, v, α3) ≈ 2 is constant [6]
while here it increases logarithmically with growing 1 − ns and 
typically ranges from 1 � f (1 −ns, v, α3) � 5. The second equation 
in (8) is plotted in Fig. 3 for α3 = 0.05.

Aside from the parameter v that appears in common Higgs-like 
or hybrid models, our observables depend on two new parame-

ters, α3 and δ, related to the quantum state. They describe non-
Gaussianity of the background field (as opposed to perturbations) 
and effectively control the amount of non-adiabatic evolution due 
to its modulation of the shifted local ϕ-minima at ϕ∗ . Using mo-

ments of a state is a standard way to parametrize non-Gaussianity 

in quantum information theory [29]. The dependence of the total 
number of e-folds on α3 is shown in Fig. 3, using the analytical 
solutions. Observational requirements are consistent with a nearly 
Gaussian state. The different parameter values reveal that the hi-
erarchy in our set of parameters is much more rigid than in tra-
ditional hybrid model, leaving less room for tuning and ambiguity 
and making our results more robust. In the traditional case there 
are three independent parameters, while we have only two, inher-
ited from a single-field model accentuated by its quantum fluctu-
ations. Importantly, having a true single-field model masquerading 
as a two-field one allows us to avoid fine-tuning issues known for 
small-field hilltop models and yet have a small tensor-to-scalar ra-
tio r well-within observable bounds. As revealed by numerics, the 
small r is implied by a small slow-roll parameter ǫ of the adiabatic 
field (a combination of both ψ and ϕ responsible for the curvature 
perturbation).
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