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Infrared dressing of bosonic or fermionic heavy particles by a cloud of massless particles to which they
couple is studied as a possible production mechanism of ultralight dark matter or dark radiation in a
radiation-dominated cosmology. We implement an adiabatic expansion valid for wavelengths much smaller
than the Hubble radius combined with a nonperturbative and manifestly unitary dynamical resummation
method to study the time evolution of an initial single heavy-particle state. We find a striking resemblance
to the process of particle decay: the initial amplitude of the single particle decays in time, not exponentially
but with a power law with anomalous dimension « #~2/2 featuring a crossover to t~ as the heavy particle
becomes nonrelativistic in both bosonic and fermionic cases suggesting certain universality. At long time
the asymptotic state is an entangled state of the heavy and massless particles. The entanglement entropy is
shown to grow under time evolution describing the flow of information from the initial single particle to the
final multiparticle state. The expectation value of the energy momentum tensor in the asymptotic state is
described by two independent fluids each obeying covariant conservation, one of heavy particles and the
other of relativistic (massless) particles (dark radiation). Both fluids share the same frozen distribution

function and entropy as a consequence of entanglement.
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L. INTRODUCTION

Light and ultralight particles in extensions beyond the
Standard Model, such as axions or axionlike particles,
“fuzzy” dark matter (FDM), light dark scalars [1-9] could
be suitable cold dark matter candidates, and dark vector
bosons may contribute to a dark radiation component. An
FDM particle with mass m ~ 10722 eV has the potential for
solving some small-scale aspects of galaxy formation
[10-15].

All of these candidates are characterized by very small
masses and couplings to Standard Model degrees of
freedom or beyond. Lyman-a [16,17] and pulsar timing
[18] provide constraints on the mass range of (ultra-) light
dark matter (ULDM). Light dark matter candidates are not
only probed by their gravitational properties [19] but there
are various proposals for direct detection, from high-
energy colliders [20] to “table-top” experiments [21-27].
Various possible mechanisms of production of light
or ultralight dark matter have been discussed in the
literature [1-9] including nonadiabatic gravitational pro-
duction [28].

In this article we explore the dynamics of infrared dressing
in nongauge theories as a possible nonthermal cosmological
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production mechanism of either ultralight dark matter or dark
radiation prior to recombination. Infrared dressing refers to
the cloud of nearly on-shell massless quanta that dresses the
charged particle to which these massless fields couple.
Infrared singularities associated with the emission and/or
absorption of soft massless quanta by charged fields
continues to be the subject of study within the context of
the $ matrix in gauge theories [29-37] and more generally of
infrared phenomena [38-42], including in gravity where the
emission and absorption of gravitons yields similar infrared
effects [43,44].

A. Motivations and objectives

Although the decay in time of the amplitude of the initial
state is not exponential but as a power law with an
anomalous dimension [45], the asymptotic quantum state
is, in fact, qualitatively similar: a quantum state in which
the daughter particles are kinematically entangled [46].
This similarity suggests that just as in particle decay,
infrared dressing is an effective production mechanism
of (nearly) massless particles.

Motivated by these results in Minkowski space-time, our
objectives in this study are twofold:

(i) to study the dynamics of infrared dressing as a
fundamental process in a radiation-dominated (RD)
cosmology, with direct relevance in gauge theories
and gravity.
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(i1) A “proof of principle” of infrared dressing as a
possible nonthermal production mechanism of ultra-
light dark matter or dark radiation prior to recombi-
nation.

Neither of these aspects of infrared phenomena has
been hitherto addressed in cosmology; thus, this study
represents a first step towards a more comprehensive
treatment of these phenomena in connection with
ultralight dark matter and/or dark radiation in exten-
sions beyond the Standard Model. Ultralight dark
matter or dark radiation with a nonthermal frozen
distribution may contribute to the effective number of
ultrarelativistic species prior to recombination, but
their contribution depends crucially on their non-
thermal distribution [47], which in turn depends on
the dynamics of the production mechanism. There-
fore, the study of infrared dressing in cosmology may
reveal a new a production mechanism leading to a
nonthermal frozen distribution that may evade current
cosmological bounds [48].

B. Brief summary of results

In this article we focus on the dynamics of infrared
dressing of a single heavy particle resulting from the
emission/absorption of soft quanta in a radiation-dominated
cosmology in nongauge theories, as a prelude towards a
study of an ensemble of heavy particles during this era.

We implement the dynamical resummation method
(DRM) introduced in Refs. [45,49] (and references therein)
combined with an adiabatic expansion valid for wave-
lengths much smaller than the particle horizon [49,50], to
study the infrared dressing of heavy particles by soft quanta
of a massless (or nearly massless) scalar field in a radiation-
dominated cosmology. While we focus on nongauge
theories, thereby bypassing the important and subtle issue
of gauge invariance, postponed to a future study, the nature
of the infrared divergences in the case of massless scalar
fields is akin to those in gauge theories [45].

Two models are considered: a heavy complex scalar
minimally coupled to gravity and coupled to a massless
scalar field and a heavy fermion Yukawa coupled to the
massless scalar field. The massless scalar field is taken to
possibly describe the ultralight dark matter or dark radi-
ation particle, which could be a (pseudo-) Goldstone boson
in a suitable extension beyond the Standard Model. We do
not specify nor address the nature or phenomenology of
this field since our main objective is to focus on the
fundamental aspects and a proof of principle of the
production mechanism.

Our study shows that infrared dressing is qualitatively
similar to particle decay in that the amplitude of the initial
single-particle state decays in time, not as an exponential
modified by the expansion [49] as in the case of particle
decay, but as a power law with an anomalous dimension
 [E.(t)f]™ with E,(¢) the local energy of the heavy

particle. Bosonic and fermionic heavy particles feature the
same long-time behavior with different anomalous dimen-
sions suggesting a universality for infrared phenomena in
cosmology. At long time the asymptotic state is an
entangled state of the heavy and massless particles with
the total probability of this entangled state saturating the
unitarity condition. Entanglement of the asymptotic state is
confirmed by obtaining the entanglement (von Neumann)
entropy, which describes the information flow from the
initial single particle to the asymptotic multiparticle state.
The entanglement entropy is shown to increase in time and
its time evolution is completely determined by the DRM
equations. The expectation value of the energy momentum
tensor in the asymptotic state describes two independent
fluids each satisfying covariant conservation, one associ-
ated with the heavy particle and another describing a
relativistic particle associated with either ultralight dark
matter or dark radiation. Entanglement in the asymptotic
state results in that both fluids share the same frozen
distribution function and entropy.

The article is organized as follows: In Sec. II we consider
a bosonic model of a heavy boson interacting with a
massless boson. We discuss its quantization aspects and
introduce the adiabatic expansion in detail explaining its
physical underpinning. In Sec. III we introduce the DRM
described in Ref. [45] extended to cosmology in conjunc-
tion with the adiabatic expansion and apply it to the bosonic
model. We show that an initial single heavy-particle state
decays in time as [Ey(t)t]™ with E(t) the local energy of
the heavy particle and A an anomalous dimension, dis-
playing a crossover from o £~2/2 early when it is relativistic
to o« r~* when it becomes nonrelativistic. We extract the
asymptotic state obtained from the relaxation of an initial
single heavy-particle state and show that it is an entangled
state of the heavy and the massless bosons with a frozen
nonthermal distribution function.

In Sec. IV we consider a heavy fermion Yukawa coupled
to a massless scalar, quantizing the theory, introducing the
adiabatic expansion and the dynamical resummation
method for fermions. We show that the amplitude of an
initial single-particle heavy fermion state decays in time in
a manner qualitatively similar to the bosonic case, indicat-
ing certain universality in the cosmological dynamics of
infrared dressing [45]. The asymptotic state is, again, an
entangled state of the heavy fermion and the massless
particle with a frozen nonthermal distribution.

In Sec. V we study the energy momentum tensor in the
asymptotic regime when the amplitude of initial states is
vanishingly small in both cases. Entanglement between the
heavy and massless degrees of freedom in the asymptotic
state is confirmed by obtaining the (entanglement) von
Neumann entropy by tracing either one of the degrees of
freedom. To leading order in the adiabatic expansion and
couplings, the energy momentum tensor describes two
independent fluids: one of massive particles and another of
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radiation; both are determined by the nonthermal frozen
distribution associated with the asymptotic entangled state,
and share the same distribution function and entropy as a
consequence of entanglement.

Section VI discusses various aspects and caveats of the
results; conclusions and further questions are summarized
in Sec. VIL

II. BOSONIC CASE: QUANTIZATION AND
ADIABATIC EXPANSION

We focus our study on the infrared dynamics in a
spatially flat Friedmann-Robertson-Walker (FRW) cosmo-
logy. In conformal time # with diy = dt/a(t), the metric is
given by

G = a*(n)diag(1,-1,-1,-1). (2.1)
In the standard cosmological picture most of the interesting
particle physics processes occur during the RD era and we

focus our attention on this epoch, during which the scale
factor in conformal time is given by

a(n) = Hgn; Hy = HO@: 107% GeV. (2.2)
In a radiation-dominated cosmology the Ricci scalar
vanishes; therefore, massless particles are conformally
coupled to gravity during this epoch.

During the RD stage the relation between conformal and
comoving time is given by

n= <£>é = a(r) = 2tHg],

P (2.3)
aresult that will prove useful in the study of the (comoving)
time dependence of amplitudes during this stage.

We begin by considering the simpler case of two
interacting scalar fields minimally coupled to gravity, a
massive complex (charged) field @ and a massless neutral
field z, with action given by

A= /d4x |g|{g’”’8ﬂdﬂ8D(D—M2d)T(D

+ %g‘”’@ﬂﬂ@yﬂ —1: 070 :zr}, (2.4)

where normal ordering is understood in the interaction
picture of free fields.

Expressing the action of Eq. (2.4) in terms of comoving
spatial coordinates and conformal time, and conformally
rescaling the fields as

(X,n) . x(X.n)

S

yields

do' d
A= /d3xd;1{i—(p—v¢f Vo - M)’ o
dn dn

(%) -y -sawigen). o)

where, as usual, we have neglected total surface
terms which do not contribute to the equations of
motion.

We begin with the quantization of free fields [51-60] as a
prelude to the interacting theory. The Heisenberg equations
of motion for the conformally rescaled fields ¢, y in
conformal time are

&L . R

d—;f"’(x’ n) — V(X n) + M*a*(n)p(x.n) =0, (2.7)
d2
d—nzx(x, n) — Vi (x.n) = (2.8)

It is convenient to quantize the fields in a comoving volume
V, in a plane-wave expansion in terms of comoving wave

vectors k and comoving coordinates X, namely,

o) = = S lagan(n)e™ < baile . (29)
k

£ = 2= S leche™ + e ™. (@.10)
k

where the mode functions g, (1); f«(17) are solutions of the
following equations:

2
[j_fﬁﬂi(n)] g(n)=0;  Qi(n)=k*+M>a*(n), (2.11)

2
[d_ﬂz + kz] fi() =0, (2.12)

and satisfy the Wronskian condition:
9(mgi(n) = g (n)ge(n) = ~i, (2.13)
T i) = 7 ) filn) = ~i, (2.14)

so that the annihilation and creation operators are time
independent and obey the canonical commutation relations

[a,?,a;,] =6p [c,—g,c;] = d;p etc. The vacuum state

|0?; 0¢) is defined such that
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a;|07;0%) = b;|07;0¢) = ¢7|07;0¢) = 0. (2.15)

The mode functions f(5) solutions of Eq. (2.12) obey-
ing (2.14) are given by

fn == 210
Introducing the dimensionless variables
2
x = \/2MH iy; az—m, (2.17)

in terms of which Eq. (2.11) is identified with Weber’s
equation [61-65],

L ow(x) + [Z - a] w(x) = 0. (2.18)

The general solutions are linear combinations of Weber’s
parabolic cylinder functions W|a; £x] [61-65]. These are
real solutions; hence, we seek a linear combination that can
be identified with particle states asymptotically at long time.

To understand the asymptotic behavior at long time we
will carry out a Wentzel-Kramers-Brillouin (WKB) analy-
sis for g,(n). Writing the solution of the mode equa-
tions (2.11) in the WKB form [54-59,66-68],

2o / !
=i ["Wi(n)d
e 'fn w01 )iy

gx(n) IW,

and inserting this ansatz into (2.11), it follows that W (1)
must be a solution of the equation [56]

- [W;zm) 3 (W;@)ﬂ o)

(2.19)

Wil =500 =3 [y, "2 Wi

This equation can be solved in an adiabatic expansion:
19Q{(n) @ (n))?
wa) =301 5+ 5 () -
‘ ‘ 20Q0(n) 4 \(n)

K> + M*a*(n).

Q(n) = (2.21)

We refer to terms that feature n-conformal time derivatives
of Q,(n) as of nth adiabatic order. The nature and reliability
of the adiabatic expansion is revealed by considering the
term of first adiabatic order, namely,

o)
Qi (n)

This is most easily recognized in comoving time f,
introducing the local energy E(tf) and Lorentz factor

Mzam)a'(:;) o)

[k2 +M2a2(i1 ]3/2'

71 (f) measured by a comoving observer in terms of the
physical momentum k,(t) = k/a(t):

Eu(r) = JI2(0) + M2 = % (2.23)

210)

rlt) ==~ (2.24)

and the Hubble expansion rate H(t) = (—3_ a'/a*. Tn
terms of these variables, the first-order adiabatic ratio

(2.22) becomes

Qn) _ H()
Qi) ri(E(1)
In similar fashion the higher-order terms in the adiabatic

expansion for an RD cosmology (vanishing Ricci scalar)
can be obtained,

(2.25)

%) 110 -]
Q) r()En) L 7()
Q) __ 3 H[ 1
o1 ] M
Consequently, (2.21) takes the form
- 1 H ) 5
WO = (O8O |1~y i |1~ 5) ]
(2.27)
From the above analysis it is clear that
H(z)
" OTAC <1 (2.28)

is the small, dimensionless adiabatic expansion parameter.
We will instead adopt a more stringent condition for
validity of the adiabatic approximation, namely

H(t)
E (1)

where we used the relation (2.3) in the second inequality.
The physical interpretation of the ratio H(7)/E(t) is
clear: typical particle physics degrees of freedom feature
either physical de Broglie or Compton wavelengths that are
much smaller than the (physical) particle horizon (or
Hubble radius) o 1/H(¢) at any given time during RD.
In a standard RD cosmology the particle horizon always
grows faster than a physical wavelength; therefore, the
reliability of the adiabatic expansion improves with the
cosmological expansion. The condition (2.29) is also
equivalent to a “long-time limit” in the sense that there

<l=E(nt>1, (2.29)
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are many oscillations of the microscopic degrees of free-
dom within a Hubble time ~1/H(t).

Therefore the validity of the adiabatic expansion hinges
on the separation of the two relevant timescales: the slow
timescale of cosmological expansion ~1/H(¢) and the
rapid timescale associated with the oscillations of the field
~1/E(t), with E (t)/H(t) > 1 [50].

In an RD cosmology with scale factor given by (2.2), it
follows that in the adiabatic regime

_an), _H(1)
= €k(’7)=m—

< 1,
Qi (mn

(2.30)

where we introduced the small dimensionless parameter
€x(n) that characterizes the adiabatic expansion. For the
purpose of analyzing contributions in the adiabatic expan-
sion, we will consider €,(57) and &.(r) to be of the same
order. Therefore the adiabatic expansion is an expansion in
the small dimensionless ratio € (17) which becomes smaller
upon cosmological expansion.

Since the adiabatic approximation improves with
cosmological expansion, either the short wavelength
or the long-time limits of the WKB solution (2.19) is
given by

o [t

9k(n) = — ===

2.31
20 (17) ( )

which is the zeroth-order approximation in the adiabatic
expansion. The lower limit #; corresponds to an initial time
at which the adiabatic approximation becomes reliable.

The phase of the mode function has an immediate
interpretation in terms of comoving time and the local
comoving energy (2.23), namely

. ’ / .1 / /
=i |7 Q d =i | Ei(t)dt
oy _ =i [l B

(2.32)
where we used the relations Qg (1) = a(n)E(1);
a(n)dn = dt. This is a natural and straightforward gener-
alization of the phase of positive-frequency particle boun-
dary conditions on the mode functions [69].

To understand better the nature of the zeroth
adiabatic order (2.31) let us consider a short-time
interval in the phase in (2.32). Writing E,(¢') ~ E,(¢t;) —
keon (1) B (1) H (1;) (' = 1;) + O((t - t;)*4--- the phase
becomes

[ Bt ar =B 1= 13 B0 H) 1)+

(2.33)

therefore, the phase coincides with that expected in
Minkowski space-time when (7 —1;) < 1/H(t;), namely
when the timescale involved is much smaller than the
Hubble time. This is the equivalence principle at work.
However, early during the RD era, and for processes that
occur over long periods of time during the expansion
history as could be the case for very weakly coupled
theories, the full time integral must be considered as it
includes memory of this history.

As an example to clarify the regime of validity of the
adiabatic approximation, let us consider processes occur-
ring early in the RD stage, for example at the grand
unification theory (GUT) scale ~10'3 GeV, assuming that
particles feature physical momenta at this scale ky,(17) =

k/a(n) = 10" GeV with k being the comoving momentum
and a mass ~100 GeV, hence a local Lorentz factor
¥ ~ 1013, If the environmental temperature of the plasma
is Te~Tgur~10" GeV and taking as an example
the Standard Model result gy~ 100, it follows
that H ~ 10'> GeV. Approximating Tgur = Temp/a(n;),
where Tcyp is the temperature of the cosmic microwave
background today, implies that the scale factor at the GUT
scale a(n;) 21072 and a comoving wave vector k=~
10713 GeV (the average momentum of a microwave photon
today). This situation yields e, = H/E, ~ 1073, which
becomes smaller with the cosmological expansion and
the adiabatic ratio €.(#) is even much smaller on account
of the Lorentz factor. It is the wide separation between the
slow Hubble timescale o 1/H(f) and the fast oscillation
timescale o 1/E;(¢) that warrants the adiabatic approxi-
mation implemented in our analysis below.

The exact solution of the mode equations (2.11) that
feature asymptotic positive-frequency particle boundary
conditions

—i | / /
o f“ Q(n')dn
-

9(1) = ———,

0.0 (2.34)

and satisfy the Wronskian condition (2.14) were found in
Ref. [69]; these are given by

1 1
gk(n) = W WW[

k=V1+ e 2l — o=l

It is shown in Ref. [69] that the asymptotic behavior
of gi(n) is indeed given by (2.34) both at long time
and also for large (comoving) wave vectors, or short
distance.

In the presence of interactions, obtaining transition
matrix elements with the exact mode functions (2.35) is
a daunting task. To make progress, we will restrict our
study by considering (comoving) wave vectors and mass

a; x| — iv/kW|a; —x] | ;

(2.35)

123552-5



BOYANOVSKY, RAI, and CHEN

PHYS. REV. D 104, 123552 (2021)

for the heavy degrees of freedom for which the adiabatic
expansion is reliable, namely for e;(n) = H(t)/E(t) =
1/((7)n) < 1 at all times, and keeping only the leading,
(zeroth) order in the adiabatic expansion. In this approxi-
mation the quantized fields are

—i ["Q,(ndy 7=
[a;e lfm' A(ﬂ)nelk.x

Lo I
(p(x’n)_\/v§\/m

bl SN it (2.36)

—zknezkx + C etkne—zk x] (237)

x(%,n) \/—Z\/—

and the vacuum state |07; %) is annihilated by az, bz, c;
per Eq. (2.15).

While the particle interpretation of the quanta of
the massless field y is clear from the expansion (2.37),
the particle identification in the massive case is
confirmed by considering the free-field Hamiltonian in
the adiabatic approximation [49]. The conformal time
free-field Hamiltonian for the massive field is
given by

Hy,(n) = / dEx{rn’zn+ Vo' -Vo+Ma*(n)e'e};

T=¢, (2.38)

with equal conformal time canonical commutation relation

[x(%. 1), (3. n)] = =is®) (X - §), (2.39)
and similar commutation relations for the neutral massless
field. Using the expansion (2.34) and carrying out the

spatial integration, we find
Hy, () Z{[a ap +bp bT g > + Q7 (n)lgil]

+ (a,; 2l + Qi) (9x)°] + He)}. (2:40)
Writing g, (77) in the WKB form (2.19) it is straightforward
to confirm that the terms a;b_; in (2.40) are of second and
higher adiabatic order [49,50]. Keeping the leading zeroth
adiabatic order, we find

Ho, () = ) _lagag + bbilQu(n),

k

(2.41)

with

[Hoy(n). Hoy(n')] = 0. (2.42)

Similarly, for the massless fields,
_ i
Hy, = chc,;k,
k

where we neglected a zero-point contribution. To leading
adiabatic order the total free-field Hamiltonian is Hy(n) =
H,,(n) + H, which depends explicitly on time through the
time-dependent frequencies €, (r) for the massive fields.
The vacuum state is defined by Eq. (2.15) and particle

states are, as usual, obtained by applying the creation

operators a%; b;{; c]fc to the vacuum state. These are

(2.43)

instantaneous eigenstates of the zeroth adiabatic order
Hamiltonian (2.42).

A. Dark radiation vs ultralight dark matter

We consider the coupling of the massive to a massless
field. This massless field could be a Goldstone boson
associated with a broken symmetry beyond the Standard
Model and as such could be a candidate for ‘“dark
radiation.” However, an ultralight boson with mass
~1072% eV can be taken as massless during the radiation
era with a(n) < 1073. Consider for example a comoving
wave vector k ~ 107>* eV corresponding to a de Broglie
wavelength ~kpc; the physical wave vector ky,(17) =
k/a(n) is still much larger than the mass of the ultralight
scalar during radiation and the contribution of these wave
vectors to the energy momentum tensor are strongly sup-
pressed by the phase-space factor o k> (see Sec. V).
Therefore, by considering a massless boson coupled to
the heavy degrees of freedom we treat dark radiation and an
ultralight dark matter candidate on the same footing during
the radiation era.

III. DYNAMICAL RESUMMATION METHOD

In this section we adapt the dynamical resummation
method developed in Ref. [45] to the cosmological setting.
In the Schrddinger picture, quantum states obey

= H(n)[¥(n)), (3.1)

where the total Hamiltonian carries an explicit 7
dependence. The solution of (3.1) is given in terms of

the unitary time evolution operator U(n,n;), namely
[¥(n)) = U(n.n;)|¥(n;)), and U(n.n;) obeys

d
ld—nU(fv’ ni) =HmU@.n);  Ulgm) =1 (3.2)
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The initial value problem for the time evolution of states
will be initialized at a (conformal) time #;, with the main
assumption that Q(n;)n; > 1, to ensure the validity of
the adiabatic approximation. In the interacting theory
H(n) = Hy(y) + H;(n), where Hy(y) is the free-field
theory Hamiltonian, which to leading adiabatic order is
given by Hy, + Hy,, with H,,, given by (2.40) and H,(n)
the interaction Hamiltonian. In the absence of interactions
with H; = 0, the time evolution operator of the free-field
theory Uy (1,1,) obeys

d

ld—Uo(fl»’?i)=H0(’7)U0('7’7h)»

n

.d _
_ld_nUol(’?»ﬂi):Uol(ﬂ’ﬂi)Ho(ﬂ)’ Unin)=1. (3.3)

To leading order in the adiabatic approximation it is given by

. . H, Ndn'
Uolnins) = e=Holrn) g ¢~ o T 3 4
as a consequence of (2.42).

It is convenient to pass to the interaction picture, where
the operators evolve with the free-field Hamiltonian and the
states carry the time dependence from the interaction,

namely

¥, (1)) = UG" (0. n:) ¥ (). (3.5)
and their time evolution is given by
(¥ (n)) = Us(n.n) 1 (n:));
Uy(n.n;) = Ug' (n.n)U(n.my). (3.6)

The unitary time evolution operator in the interaction
picture U;(n,n;) obeys

d
i—U;(n.n;) =H(n)Ur(n.n;);

dn
i(mUo(m.ni);  Uy(nim) = 1.

(3.7)

H;(n)=Uy" (n.n;)H

For the conformal action (2.6) it follows that

H, () = da(n) / Py o EneEa).  (38)

where the fields are given by the free-field expansion
(2.36), (2.37) and time-independent creation and annihila-
tion operators for the respective fields.

We now extend the dynamical resummation method
implemented in Ref. [45], and based on the treatement in
Refs. [46,70] to the cosmological setting. As discussed in
these references, this method is manifestly unitary and
leads to a nonperturbative systematic description of

transition amplitudes and probabilities directly in real time;
as shown in Ref. [45] it is equivalent to the dynamical
renormalization group. Here we describe the main aspects
of its implementation within the cosmological setting.

Consider an interaction picture state |¥;(n)) =
>, C,(n)|n), expanded in the Fock states associated with
the annihilation and creation operators of the free-field
expansions (2.9), (2.10) for each field. To leading order in
the adiabatic approximation, these are instantaneous eigen-
states of Hy(#). Inserting this expansion into (3.7) yields an
exact set of coupled equations for the coefficients

d

oy Cnlt) = zm:an(ﬂ)<”|H1('7)|m>- (3.9)

In principle this is an infinite hierarchy of integro-
differential equations for the coefficients C,(n); progress
is made by truncating the hierarchy to states connected by
the interaction Hamiltonian to a given order in the inter-
action. Consider that at an initial (conformal) time #; the
state is |A) so that Cy(n;) = C/(;) and C.(n;) =0 for
|) # |A), and consider a first-order transition process
|A) — |«) to intermediate multiparticle states |k) with
transition matrix elements (x|H;(n)|A). Obviously the state
|x) will be connected via H,(#) to other multiparticle states
|} different from |A). Hence, for example up to second
order in the interaction, the state |A) <> |k) <> [).
Restricting the hierarchy to first-order transitions from
the initial state |A) <> |k) results in the following set of
coupled equations:

z—cA = DGl Al ()l Caln) = CY,
(3.10)
idif?c,((m=cA<n><K|H,<n>|A>; Culn) =0. (3.11)

These processes are shown in Fig. 1. The initial condition
in Eq. (3.10) allows for an arbitrary initial amplitude of the
state |A); the origin of the initial amplitude will be
discussed below [see discussion after Eq. (3.71)].
Equation (3.11) with C.(»;) = 0 is formally solved by

. ,1

Ce(n) = —1/ (k|H()|A)Ca(r')dr',  (3.12)
ni

and inserting this solution into Eq. (3.10) we find

7 AN

A A
4> /|/{> |H,>\ 4>

S e

FIG. 1. Transitions |[A) <> |«) in first order in H;.
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FIG. 2. One loop self-energy corresponding to the state |A).

dincm) _ / St )Calr). (3.13)

where we have introduced the self-energy

Zaln') = _(AH, (n)l) (k| (7)|A),

K

(3.14)

shown in Fig. 2. This integro-differential equation with
memory yields a nonperturbative solution for the time
evolution of the amplitudes and probabilities. In
Minkowski space-time and in frequency space, this is
recognized as a Dyson resummation of self-energy dia-
grams, which upon Fourier transforming back to real time,
yields the usual exponential decay law [46]. Introducing the
solution for C4 (1) back into (3.11) yields the amplitude of
the state |x).

Equation (3.13) is in general very difficult to solve
exactly, but a weak coupling assumption yields to a
systematic approximation, achieved by introducing

’7/
Ealn') = / Zu(n.n")dn", (3.15)
i
such that
d / /
d—n/SA(n,n) =Za(n.1), (3.16)
with the condition
5A('7’ '11‘) =0. (3-17)
Then (3.13) can be written as
d n d
—C = - dn — Es(n,n")Cx(1 3.18
o == ["ar e Gs)

which can be integrated by parts to yield

d _ " N e
€A = =ExtnnCatn) + [ arenon) 5 Cu),

(3.19)

Since £, & O(H?) the first term on the right-hand side
is of order H?, whereas the second is O(Hj) because
dC,(n)/dn < O(H?). Therefore to leading order in the
interaction (O(H?)), the evolution equation for the ampli-
tude becomes

d
d—nCA(’?) = =Ea(n,m)Cyx(n), (3.20)
with solution
n i
cutn=ewp(- ["estnar)el. e
ni

This expression highlights the nonperturbative nature of
the dynamical resummation method. The imaginary part of
the self-energy 2, yields a renormalization of the frequen-
cies which we will not pursue here [46,70], whereas the real
part gives the decay rate, with

— [T
(Calm)2 = & I T2 o,

rm =2 [ anRelZy ). (3:2)

;i

Finally, the time evolution of the amplitude of the state
|x) is obtained by inserting the amplitude (3.21) into (3.12),
yielding

Cola) = =it [ w0

X eXp (— ! SA(n”,n”)dn”> dy.  (3.23)
ni
The hermiticity of H; leads to the result
d 2 2
2 {/CatnP + dICmPr=0=
CanP + Y ICP =ICP. (3.24)

where we used the initial conditions C,(1;) = CX);
C.(n;) =0. This is the statement of unitarity: in the
interaction picture the time-evolved state is given by

[¥(n) = Us(n,m:)|¥;(n;)) = Ca(n)|A) + ZCK(’?)|K>§

(3.25)
therefore,
(%, )| () = (¥, (1)U} (1, 1)U, i) [ ()
= ICRF + 3 [CRunP
= (%, ()%, () = |2 (3.26)

In our study, for the bosonic case the state
|A)=a£|0"’;0’()5|1‘£;0’5> and the intermediate state
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k) = a;cg|0‘/’;0’f )=|[1%:1%); therefore, we identify
|Cc(n)]* as the production probability of the massless
particle. This interpretation will be confirmed by the
analysis of the expectation value of the energy momentum
tensor in this time-evolved state in Sec. V B. We notice that
the production probability of the massless particle is

proportional to |C£\’)|2 [see Eq. (3.23)] which can be
associated with the initial “population” of the single
massive particle state; however, we show in Sec. V B that
the expectation value of the energy momentum tensor does
not depend on this initial condition.

We first describe the dynamical resummation method for
the bosonic case, adapting it to the fermionic case in
Sec. IV. For the bosonic model (2.6), the matrix elements
that enter in the self-energy (3.14) are given by

Aa(n')
Vl/2

(15 VI ) = =75 0k (0) 93, ()£ 3(0)87. 5.,

(3.27)

Pp IR0~

(F1H, ()15 1) = Aa(n)

~yin glt(n/)gp(n,)ij(”/)5l?.ﬁ+q’

(3.28)
with

By () = Y2 H 1 V) (5 A ()] 19). - (3:29)

In these expressions we have displayed the general form
of the matrix elements in terms of the mode functions exact
solutions of the free-field equations of motion (2.11), (2.12)
to highlight the complexities of the self-energies in curved
space-time. Obviously the calculation of the self-energy in
the general case with the exact solutions of the mode
equations is a daunting task; instead, we rely on the
adiabatic approximation.

To leading (zeroth) order in the adiabatic approximation
with g,(n) given by (2.31) and f;(n) by (2.16), summing
over the intermediate states and taking the infinite volume
limit, we find

%) = gatnatr) [ ;

and the rate of decay of the initial probability is given by the
time integral (3.22). While the conformal time integral of
the frequencies can be obtained in closed form [49], neither
the momentum integral nor the final time integral leading to
the rate I'(17) can be done in closed form. A numerical study
is not feasible either because of the enormous range in
momenta and time. Instead, we will leverage the adiabatic
approximation to obtain I'(r).

The analysis begins by establishing that the self-energy
kernel X.(n,7') is short ranged in the sense that it is
dominated by the region n ~#’. To see this clearly, let us
write

o I ctnan”

Z(n.n') = %G(W)a(”/)mlk(”vn/)’ (3.31)
with
[ &y S+ k=pllan
W = | G s ¢

Consider first the equal time limit # = 7/, for which

B d3p 1
Li(n.n) = / (27)* |k - P&, (n)

(3.33)

27)° g2 () 1), ()2, ()] 72

(3.30)

|

is ultraviolet linearly divergent. The kernel I;(n,7’) in
(3.31) can be calculated explicitly for M =0 (see
Ref. [70]), in which case one finds

1
Ii(n, 1) ,
k( ) ’7_77/

(3.34)

whose divergence as n — 5’ reflects the linear ultra-
violet divergence. This short-time divergence is indepen-
dent of the mass; therefore, the full kernel I;(n,#") for
M #0 is expected to feature this short-time behavior.
Motivated by this observation we seek an expansion
anchored in the adiabatic approximation; this is achieved
by writing

Q,(n') = [pz + M2 () + M2a2(n) K%n/y
(]

Introducing 7= Q,(n)(n—17') it follows that (3.35)
becomes

(3.35)
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1 1/2
Q, () = @,(n) [1 b (el e%m)ﬁ)]
)4

o8]

75(n)
where y,(n) = Q,(17)/Ma(n) is the local Lorentz factor,
ex(n) = 1/((n)n) < 1 is the dimensionless adiabatic
parameter introduced in Eq. (2.30), and only displayed
in the first-order term in the expansion in €;(n) in (3.36).
We confirm below self-consistently that for 7= 1/¢; (1)
when the higher-order adiabatic terms in (3.36) become of
the same order as the leading contribution, the kernel (3.32)
is suppressed by o €2(y), therefore confirming the
consistency of the leading-order terms in this expansion.
We now proceed to prove this important aspect self-
consistently.
Up to first order in €, () (3.32) becomes

&p ex(n)t
Ii(n.n') = / [1 +
(27)? 2y3(n)
=12, () F—E] =) (18,4 (n)ex ()]}
X — . (3.37)
|p — k|, (n)

(3.36)

where

_ Qp(’?) =
272(n)(Q,(n) + [p— k) 2

8y (1) (3.38)

Obviously even at this first order in €(y) the integral
cannot be done in closed form; however, it allows us to
understand the range of the kernel. First, since &, (17) <
1/2 at all times and for all values of p we approximate it as
8,4(n) = & < 1/2 for all momenta and time; similarly, we
replace y, () =7 > 1 for all values of momenta and time,
and finally we introduce T = (7 — #')[1 — de;(n)7]. With
these approximations,

€ T|=
Ii(n.n') = [1+ kz(;z) ]Ik(nw’);

) / &Pp e i@+
AL ) = SR -
' (22) |5 - k19, (1)

(3.39)

Introducing the spectral density

o d3p 5(k0—gp(’7)_|ﬁ_l_€|)
plkos k) = / (27)3 |p — /2|£2,,(f7)

which depends on 5 parametrically, we can write

. (3.40)

Tonn) = / " ks K)e- T dky.  (3.41)

(S

The spectral density (3.40) is the same as that found in the
study of infrared dynamics in Minkowski space-time in
Ref. [45], but depending parametrically on #, it is given by

plkos k) = plkos k)O (kg — (n));

1 [k3—Q2(n)
pkos k) = — |-5—22 ).
Plko: k) 4n2[k(2)—k2]

(3.42)
The T — 0 limit of (3.41) is determined by the large k,
behavior of the spectral density'; introducing a conver-
gence factor T — T —ie, ¢ — 0", we find

(T = 0) = 4;2’T e~IOT,

(3.43)

which reflects the short-time behavior (3.34). The asymp-
totic long-time limit 7 — oo can be obtained systematically
as follows: using the identity

—ikeT _ i d

o =ik T
¢ Tak )

(3.44)

integrate by parts (with the convergence factor). Because
the spectral density vanishes at threshold k, = €,,(17) this
procedure must be repeated for a second time, obtaining

e~ umT dp

I(T =
=) 7% dkoli,—a,m)

+O(1/T?). (3.45)

This result is important: in terms of 7 = Q,()(n —#) it
follows that

N 1) X
T = o) o e tyo? T =dexm)eP

Therefore, for ¢;7~1 when the higher adiabatic orders
become important, the kernel I(n,7') o €2(n), hence of
subleading adiabatic order.

The main conclusion of this analysis is that the self-
energy kernel is short ranged in time, and to leading
adiabatic order it is the region 5~y that is dominant.
At the timescale when the higher-order adiabatic terms
become comparable to the zeroth order the kernel is
suppressed by a high power of e. Therefore, terms with
powers of ey(n)r can be safely neglected to leading
adiabatic order, thereby validating keeping the zeroth
adiabatic order in the analysis below.

Armed with this result, we can now focus on the leading
contribution to the self-energy X, (17, 77') in (3.31). To leading
order the expansion (3.36) yields Q. (') = Q(n) + -+
furthermore, using the identity (valid during RD)

(3.46)

"This can be seen by rescaling ko7 = ¢ in the integral in
(3.41).
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ml=ex(m)zl=a(n)+

(3.47)

a(n')=a(n) [1 - <’7_T'7,)] _

and from Eq. (3.36) (1) = Qi(n) + - - - where the - --
stand for higher-order terms in the adiabatic expansion, we
finally find, to leading adiabatic order,

A2a*(n)

ko k) e~ ko= ) =) gk
8 (n) Ja,m) plko: e 0

Z(nn') =

(3.48)

where p(ko; k) is given by Eq. (3.42). The integral in #’ can
now be carried out.

The decay rate of the single ¢ particle of comoving
momentum k, given by Eq. (3.22) is

a(n) [« sin[(ko — (1)) (n—1,)]

T'v(n)= / plkosk 2 dkg.
(o) 4Q,(n) Ja, () (Koik) ko= (1) ’
(3.49)

Introducing the dimensionless variable

ko — L (n)

== 3.50
Q(n) ( )

which depends explicitly on # (we suppressed the argu-
ment), it follows that the spectral density (3.42) written in
terms of s, vanishes linearly in s and restoring its
dependence on 7 can be written as

dp(s;n)

plsin) = sDn)(1 + s6(s:1)); ds

D(n) =

s:O’
(3.51)

where &(0;7) is time dependent but finite. For p(kg, k)
given by (3.42) we find

~( ) 1 (’7) § (3 )
oSN ==\—4——<—>|- 52
72(77) § 32
k

The rate (3.49) can now be written as

122
4;;7 / (1+s6(s3m))
k(7

x Sln[sﬂk(n)(n —n;)]ds.

Tv(n) =

(3.53)

In Minkowski space-time the region s=~0 yields an
infrared divergence in the long-time limit [45]; this is also
the case in the RD cosmology as is made explicit by the
followmg analysis. Let us write [°(---)ds = [ (---)ds+
J72 (- - +)ds, yielding

L) =T ) + TP ) + T (), (3.54)
with
2 2
) = *—n’” [ sintsetn=notas. - (359)
2a2
) =52 [ a5 sinfsas ) = s

(3.56)

) <5 0 [P i ) -, (3:57)

Obviously the first integral (3.55) is straightforward.
Finally, from Eq. (3.22) to understand the time evolution
of the survival probability of the initial state, we need the
n-integral f "T' (' )dn. The contribution from F( )( ) is
shown below to be infrared divergent in the long-time
limit, whereas those from F§{2’3)(n) are infrared and ultra-
violet finite and feature a slow time evolution in the
long-time limit. Their contribution is analyzed in detail
in Appendix A.

Carrying out the s integration for the first contribution,
we find

/ﬂ Fg{l)(’?,)dﬂ/ — oA, /.'1 - Cos((gjlk(:Y/’;F)n/ — )] .

(3.58)

where we introduced the effective dimensionless coupling

1 \2
Ay=(——].
b <47L’M )

This integral cannot be done in closed form; however, it can
be obtained in an adiabatic expansion as follows: with the
definition

(3.59)

x=Q(n)(n" —mi) = —= = () [1 + &0n)x],  (3.60)

dx
dn’
where €, is given by Eq. (2.30) in terms of the adiabatic

ratio €. In the above expressions #’ is a function of x. In
terms of this variable and taking # > #; we find

Vel 1 —
/n Fﬁ”(n’)dn’ _oa, {/0 k(n cos(x) I
Mi

X

A
Ven) _ 1 —cos(x)
- AN
/0 (%) 1+ & (x)x *

~
B

(3.61)
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the (A) integral in the long-time limit 1/e,(n) = Q. (n)n —
co becomes

(A) - Infe (), (3.62)
whereas for the (B) term, the cosine term averages out.
Furthermore, note that at x = 1/¢(n) the ratio
&(n)/ex(n) =1/y3(n) < 1; therefore, (B)=~O(1) and
varies slowly in the long-time limit [keeping € ~

constant it follows that (B) <1In(2)]. In Appendix A we

show that the contributions from F,((M) are infrared and

ultraviolet finite and remain bound and slowly varying in
time, reaching a constant value at asymptotically long time.
Therefore, we find for Q;(n)n = E;(¢)/H(t) > 1

o

[ Tienar =28,

i

] +z2(1),  (3.63)

where z(f) is a slowly varying function of time that
approaches an infrared and ultraviolet finite constant in
the asymptotic long-time limit (see Appendix A).

During the RD era H(t) = 1/2t; therefore, in terms of
cosmic time, the contribution that grows in time on the
right-hand side of (3.63) is 2A,, In[2E,(7)1], which is very
similar to the result in Minkowski space-time [45].
However, in the expanding cosmology the local energy
depends on time as a consequence of the cosmological
redshift. With the scale factor given by (2.3) it is convenient
to introduce the timescale ¢, that determines when the
particle becomes nonrelativistic as

k2
tnr - A2 (364)
2M*Hpg
so that the local Lorentz factor
t Relativistic fort <t
yk(z)z,/1+£=>{ o " (3.65)
t Nonrelativistic for > 1,
Hence, we find asymptotically
n
/ () dn =28, In[2Mty, (1)] + z(1). (3.66)
i

In summary, the survival probability of a single ¢
particle state with momentum k in the long-time limit is

Ei (1)
H(t)

|c;f<r>|2=cz‘f<r,»>[ ]’“”zux Z(1)=e=0), (3.67)

or in terms of cosmic time, that

[CLOP = CR (1) Mty (1) 22 Z(1). (3.68)

The wave function renormalization Z(¢) is a slowly varying
function of time that remains bounded at long time. The
cosmological redshift responsible for the time dependence
of the local Lorentz factor entails a crossover of the
decaying term:

B

1<t
core{ Ly T

3.69
t> by, (3.69)

The anomalous dimension 2A;, is the same as in
Minkowski space-time and originates in the infrared
divergence [45].

The amplitude of the multiparticle state |1§; 1%_77) is

A n

QX _ /

Cﬁ;]g(”)_ ZVI/Z/n. a(’/[)
: 7/ /" /! /" -

o I @ = N

R 1), (N~ )

Cyr)dy'. (3.70)

and the time-evolved state in the interaction picture is given
by

140m) = CLODNE0) + Y Chh I 1) (371)

Unitarity (3.24) implies that (¥;(n)|¥;(n)) = |C?(1;)]*.
The second term in (3.71) describes an entangled state of
the single ¢ particle and a single y particle; this cloud
of y particles “dresses” the ¢ particle. Since CY(n) — 0 as
n — oo only the second term survives in the asymptotic
long-time limit; hence, the sum rule (3.26) yields
> |C‘;)]§(11) 2= |CY(n;)* thus saturating the unitarity

constraint in the asymptotic long-time limit.

The initial amplitude C (;) must be determined from the
amplitude of the single-particle state at the time when the
adiabatic approximation begins to be valid. It is determined
by the processes that lead to the production of single ¢
particle states prior to the onset of the adiabatic era, such as
particle production during inflation or the postinflationary
era. However, we show in Sec. V that the expectation value
of the energy momentum tensor does not depend on this
initial condition.

IV. FERMIONIC CASE

A. Adiabatic approximation for fermions

We consider the massless scalar field z as the ultralight
degree of freedom Yukawa coupled to one Dirac fermion in
a spatially flat FRW cosmology.

In comoving coordinates, and for an RD cosmology
(with vanishing Ricci scalar) the action is given by
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S:/d3xdt gl {%g"”@ﬂﬁﬂ-l-@[iy”l)ﬂ -M— Yﬂ]‘P}.
(4.1)
Introducing the vierbein field €4 (x) defined as
9" (x) = ea(x)ep (x)n™.

where 7,,;, is the Minkowski space-time metric, the curved
space-time Dirac gamma matrices y#(x) are given by

{r'(x). r(x)} = 29" (%),

where the y“ are the Minkowski space-time Dirac matrices,
chosen to be in the standard Dirac representation, and the
fermionic covariant derivative D, is given in terms of the
spin connection [56,71-73] by

r(x) = yea(x), (4.2)

1
D, =0, +§ [re.79es (0 eq —Thpeq),  (4.3)

where Ffw are the usual Christoffel symbols.

With the metric in conformal time given by (2.1) the
vierbeins ¢} are given by (up to a local Lorentz trans-
formation)

eh =a'(n)dh; et

i = a(n)dg.

(4.4)

The fermionic part of the action in conformal coordinates
now becomes

5, = / Px dna* () ¥ . ,7)[ az) ( din +3;;((7’11))>
+ i%vi ~M- Yﬂ} W(E ). (4.5)

The Dirac Lagrangian density in conformal time and
with the conformal rescaling of the z field as in Eq. (2.5)
simplifies to

V=9¥(iy'D, —~ M ~ Y)¥

= (@) E n)[ip = Maln) = Y)l(@(n)¥(E. 7)),
(

where i@ = y?0, is the usual Dirac differential operator in
Minkowski space-time in terms of flat space-time y¢
matrices. Introducing the conformally rescaled fermionic
fields

@(nW(F 1) =

w(X.n), (4.7)

and neglecting surface terms, the action becomes

s= [ @ranitole + Lol + Lilgwl) (48)

with
Lole) = 57 = (V) 49)
Loly] = #lif ~ MOy, (4.10)
Lilew] = ~Yiry: @)

The effective time-dependent fermion mass is given by

M(n) = Ma(n). (4.12)
In the noninteracting case, ¥ = 0, the Heisenberg equa-

tions of motion for the spatial Fourier modes with comov-

ing wave vector k for the conformally rescaled scalar field
is given by Eq. (2.8).

The Heisenberg fields are quantized in a comoving
volume V, the real scalar field y is expanded as in
Eq. (2.37), and for Dirac fermions the field y(X,#) are
expanded as

w(En) = §jw Uk n)e®T 4 db v (k,m)e],

/1 1.2
(4.13)

where the spinor mode functions U, V obey the Dirac
equations [74-83]:

[0, =7 k= M(]U,(K.n) =0, (4.14)
[i°0, +7-k—Mn)V,(k.n) =0.  (4.15)

These equations become simpler by writing
Us(k.n) = [i7°0, =7 - K+ MO (U, (4.16)
(kn =[iy° 0, +7- k+M(77 JLACNZE (4.17)

with U;; V), being constant spinors [76,77] obeying

}/OZ/IA = Z/[,{, ]/01}]L = _V/1~ (418)
Inserting (4.16) and (4.17) into the Dirac equations (4.14)
and (4.15) and using (4.18), it follows that the mode
functions f(n); hi () obey the equations

dZ

d =+ Q) —iM' (n) | fi(n) =0, (4.19)
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d2
[d_”z +Qi(n) + iM’(n)] he(n) =0,  (4.20)

where

Q. (n) = /K> + M?(n). (4.21)
Multiplying the Dirac equations on the left by 7Y, it is

straightforward to confirm that

dinwz(q,n)w(q,n)) —o; dinwz(q,n)vm,n)) —0.

(4.22)

We choose the normalizations

Ui(a-mUy(g.n) = Vila.mVi(g.n) = &0 (4.23)
so that the operators b, b, d, dt obey the canonical
anticommutation relations. Furthermore, we will choose
particle-antiparticle boundary conditions so that h(n) =
fi(n). We note that for M = 0 the conformally rescaled
Fermi fields obey the same equations as in Minkowski
space-time but, in terms of conformal time, this is also the
case for massless scalar fields in an RD cosmology where
the Ricci scalar vanishes. The adiabatic expansion for
Fermi fields has been studied in Refs. [70,78-83], to which
we refer the reader for details. Here we summarize the
results up to leading (zeroth) adiabatic order. In particular
we recognize that

M) _ HO) el
Q) rE()  rl0)’
therefore, the purely imaginary term in the mode equa-

tions (4.19) and (4.20) are of first adiabatic order and will
be neglected to leading (zeroth) order.

(4.24)

> Uy (ko) (ko) = (AL (01.7)) o =
A=1.2

in particular for n =/

A () =K +M@): K, (n)=(Qu(n).~k). (4.32)

B. Dynamical resummation

We now have the main ingredients to implement the
dynamical resummation for this fermionic case, for which
the single-particle initial state is taken to be |A) = |1‘£a; o)

Wi(mWi(n')

Hence, to leading order we find
=i [ )

20 (17)

¢ (4.25)

To this order the Dirac spinor solutions in the standard
Dirac representation and with the normalization conditions
(4.23) are found to be

- e—i f”j Q(n)dn’ -
U,(k.n) = o0 U(k.n), (4.26)
k
. eif"z Qun)dn
Vilk,n) = WWU‘» n), (4.27)
where
- 1 W(n)é, ' (1. (0
Uslen) = mwn(a&l) &_<d> é_<J’
(4.28)
and
N 5.1?52'~:O‘~=_1
o=z (e 5= 2=0)
(4.29)
where we introduced
Wi(n) = i(n) +M(n) = a(m)[Ex(n) + M].  (4.30)

To leading adiabatic order the I/ spinors satisfy the
completeness relations:

! <wk<n>wk<n'>ﬂ -G /?wkm)) (431)

G- kW () —K21

|
and the intermediate state connected to |A) at first order in
the interaction is |k) = [1% ;;1%). Therefore, to lowest
adiabatic order the transition matrix elements are

Yo e gy

(U5 VI ()17 ) =307 504
ol VR T g 2, (24
XY Uipa (Ui (1), (4.33)
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i . ) eif””,_ ()=, ("l gy
- H sz v1/2% 5+q
(L JH I 5310 = 517200 514 [29,(1)22, (1)2¢] 2
xzukab Uy (): (4.34)
with
S S A
pq P

Taking the average over the initial polarizations and using
the projector (4.31) we find

f Qk 17// di]”
= —I
(4.36)
where
N o 1@ O+l
) = | G 5 Ry e, ol
|p — K[, (1), (1]
< [Ny (nn )N (' ). (4.37)

Obviously even to leading order in the adiabatic approxi-
mation the calculation of the self-energy is a daunting task
and no analytic closed expression is available. However, as
in the bosonic case of the previous section, the kernel
Zy(n,1") is localized in the region n ~ 7 as a consequence
of the momentum integral. Such temporal localization
allows us to leverage the adiabatic expansion to simplify
its expression to leading order.

To understand this aspect more clearly, we follow the
same steps as in the bosonic case. In terms of ¢,(n) [see
Eq. (2.30)] and 7 = Q,()(n — /'), the results (3.360) and
(3.47) lead to the expansion

ex(n)z
7p(n)

W, (') = Wy (n) [1 - +- ] (4.38)

where the dots stand for higher powers of ¢;7. This identity
leads to the expansion

™
—
~—
i

Af () = [P(n) + M(n)) + =~

where A (i) is of zeroth adiabatic order; therefore,

— K-+ M ()]
(4.40)

te[Ay (.7 )N (o)) = 4 (), (1)
+ O(e;7).

Neglecting the terms of O(e;7) the kernel can be written as

Tulnl) =4 [ " plho (e dk (441)
where T is the same as for Eq. (3.39) and
&p 8(ko—LQ,(n) = |-k
R
()| Pk
X [Qp(n)ﬂk(n) - k-p +M?(n)), (4.42)

which has been calculated in Ref. [45] and is given by
1 [kg—Qn) Q(n) = k
50k , k) = — 0 k k k 0 k2 _ k2
Pko. k) 87Z2|:k(2)—k2 :|{0|: k(z)_kz (0
FMP() + =+ 3020) [0k - ()

(4.43)

We have suppressed the argument # in p(kgy, k) which
depends parametrically on it. The short-time limit 7 — 5/ —
0 (T - 0) is dominated by the large k, behavior in (4.41),
since for large k it follows that p(kg, k) = koQy(17), then
asT—0

Zi(n.n') (4.44)

(n—n')*

The large-T behavior is obtained as for the bosonic case,
since the spectral density vanishes as ko — €, (17) following
the same steps as for the bosonic case, namely with the
identity (3.44) and the derivative expansion leading to
Eq. (3.45), we find the asymptotic long-time behavior:

IO
RUN (ex(m))*  [1 = der(n)t]?

(4.45)

Therefore, for 7~ 1/¢, when the higher-order adiabatic
corrections become of the same order as the leading term,
the kernel Z, is of order e7. This analysis leads to
the conclusion that the self-energy kernel is localized in
the region 7 ~ %' and to leading adiabatic order we can set
n=n"in Q(n'), Q,(1'). Following the same steps as for

the bosonic case we find to leading (zeroth) adiabatic order

2 fo

ik(’%’?/) =353

o Q()'b(ko’k) e~ i ko= ) (n=1') g, (4.46)
e\

with
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plko. k) =

We now integrate 2, in 1’ to obtain the decay rate of a
single fermion with comoving momentum k given by
Eq. (3.22); it is given by

Y2 [
16” ()

sin[(kg — (1)) (n — n;)]

Filn) = ko — Q1)

p(ko; k) dky.

(4.48)
In terms of the variable s defined by Eq. (3.50) we note that

p(s) given by (4.47) vanishes linearly in s; therefore, we
write as for the bosonic case (3.51)

p(ssn) = sDp(n)[L + s, (s31)], (4.49)
where for the fermionic case
Dy(n) = 8 (n), (4.50)

and ~(s n) « s as s — 0. As in the bosonic case, we write
J&(--)ds = [L(---)ds + [{°(---)ds. For the first integral
we wr1te p(s) as in (4 49), y1e1d1ng

L) =T ) + T ) + T (), (451)
with
2
e ) [ slsuinm-nias. @)
2
) =4 [" a5 s = ) s,
(4.53)
2 foo b
) = s [P inls 0 a) ) s, (459
yielding
n n[l — Q. —n; ,
/m F,(cl)(”l,)d”l _ 2Af</m [ COS((n/k(_r];i()n n ))] d,
(4.55)
with
Ap= %. (4.56)

The integral for F (77) is the same as for the bosonic
case, Eq. (3.55); therefore the same analysis as that leading

S Sl

20 - -4 20) + - ) [ (44

|
to Eq. (3.61) applies also to (4.55). An analysis for the

contributions from T’ 22’3) (n) is given in Appendix B, these
yield terms that remain bounded in time at long time but
feature ultraviolet divergences. Gathering these terms we
find in this case

N Ex(1)
/m T, () dy _2Af1n[hf(t)] + z;(¢).

In the fermionic case, z;(7) is a slowly varying function of
that approaches an ultraviolet logarithmically divergent
constant in the long-time limit. This behavior is manifest in
the result given by (B3) in Appendix B at leading adiabatic
order in the long-time limit because the spectral density
p(s;1m) o s for large s. Therefore, for the fermionic case, the
survival probability of a single y particle state with

(4.57)

momentum  in the long-time limit is

a0 z0=e0

(4.58)

1, (0P =1C, (1P|

However, in this case the slowly varying wave function
renormalization Z(r) is ultraviolet logarithmically diver-
gent in the long-time limit, just as in Minkowski space-
time [45].

Finally, the amplitude of the state |1% g ) is

crr () =—i / (1 2 VEH )12 VCE (). (4.59)

where the matrix element is given by Eq. (4.33). Hence, the
time-evolved state in the interaction picture is

pﬂ; ZCW

¥, () = € ( 1Y 18),

(4.60)

and unitarity (3.24)
| Cg’a (n:)]-

implies that (¥;(n)|¥;(n)) =

V. CONSEQUENCES OF ENTANGLEMENT

A. Entanglement entropy: Information flow

In both the bosonic and fermionic cases the time-evolved
states |¥;(n)) (3.71) and (4.60) are entangled states of the
heavy and the light particle. The pure state density matrix
from |¥;(n)) is given by
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P, () (P ()|
(P, (¥ (n))

Entanglement is confirmed by obtaining the von Neumann
entanglement entropy from the reduced density matrix
which is obtained by tracing over one of the degrees of
freedom. For example, by tracing over the ultralight field y
for the bosonic case (3.71) we find

2(n) = Tr,0n) = ICLIRNLY(1Y)
)P (1),

o(n) = (5.1)

>
Q)

2;,: (5.2)
and tracing over the heavy field ¢ we find
&) =Tr,2(n)
=|CL(n)Pl0o7) 0%|+Z|C” (P11, (5.3)
with
Gt =g o = E(n(")) (54

It follows from the solutions (3.21) and (3.23) that the
normalized amplitudes CY(n); C‘%(ﬂ) are independent of

the initial amplitude C?(7;) and the unitarity condition
(3.24) yields

L)l + ZIC%(W ?= (5.5)
P
which implies that
Trof () = 1; Trgh(n) = 1 (5.6)

The reduced density matrices (5.2) and (5.3) are diagonal
in the basis of single-particle states of definite momentum.
The von Neumann entropy S,y(n) = =Tro,(n) In(0,(n))
for both cases is therefore given by

Sun) = {|c<”<n>|2mnc"’<n>|21

e CIEN ST | MCE)

This entanglement entropy grows during the time evolution
since S,y (17;) = 0 because C{(n;) = 1; C‘%(m) =0, and
at very long time when the amplitude of the initial state has
“decayed,” namely |C{(n)|*> = 0, it follows that S,y > 0
since |C“;%(71)|2 <1 as a consequence of the unitarity

condition (5.5) for |C{()|*> = 0. The time evolution of
S,n is completely determined by the DRM equations (3.10)

and (3.11) and describes the information flow from the
single-particle initial state to the entangled asymptotic final
state during the “dressing” process.

B. Energy momentum tensors

The main result of the previous sections is that the
amplitude of the initial state is

5] s 5]

" (5.8)

To estimate the magnitude of the decay of the amplitude of
the initial state between an early period in RD to near the
radiation to matter transition, let us consider as an example
that the mass of the heavy particle ~GeV and the comoving
momentum k ~ 1073 eV, corresponding to an average
photon in the cosmic microwave background today.
At the electroweak scale the physical momentum
corresponds to kp,(7)~100GeV; hence, at this scale
E(n)/H(n) ~ 10", whereas near the radiation to matter
transition ky;, (n) ~ feweV and E;(n)/H(n) ~ 107,

We now study the energy momentum tensor in the
asymptotic long-time limit for 7> ny such that the
amplitudes of the initial state C{(n;); C¥*(ns) ~0 and
all the probability in the initial state has flowed to the
aymptotic final state with the coefficients C‘%(nf);

C"’ﬁ’j’]-: (1) nearly constant in time and saturating the unitarity

relation. In this asymptotic long-time limit, the time-
evolved state is the entangled two-particle state |¥,(r,)) ~

> C‘” 215 15 ) with the coefficients C‘” “(n) being
nearly t1me 1ndependent satisfying the unltanty condition:

S )P =1,

p

(5.9)

for the bosonic case, with a similar consideration for the
fermionic case. We are interested in understanding the
expectation value of the energy momentum tensor asso-
ciated with this state in the asymptotic long-time limit
0>y with C‘g(nf) ~0; C"%’(nf) ~0, assuming that 7,
corresponds to a timescale well before recombination. Let
us first consider the bosonic case.

For minimally coupled fields the energy momentum
tensor during RD (with vanishing Ricci scalar) is [84]

T, (x)=0,070,®+ 0,70,®
- gﬂzx[gaﬂa (I)Ta/i(b - m2|(b|2]

+ 0,m0, 7w — == [g”ﬁﬁ mdsn| + A0 @z (5.10)

Covariant conservation can be explicitly confirmed by
using the equations of motion [84].
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Passing to conformal time and in terms of the conformally rescaled fields (2.5) we find

d'(n)
a(n)

A
'(n)
a(m”*

1) = s | (o -
s (-

Upon quantization the energy density becomes an operator
in the Heisenberg representation. The energy density of a
quantum state |¥) is

(PITH(X. 1) |¥)

I (5.12)

py(X.n) =

where the state |¥) does not evolve in time in the
Heisenberg  picture.  Since  T(X,n) = U~ (n,n;) x
(T3(%,1))sU(n,n;) where U(n,n;) is the time evolution
operator (3.2) and (TJ(X, 7)) is in the Schrédinger picture,
where its time dependence is explicit through the scale

factor, and writing as in Eq. (3.6) U(n,n;) = Uy(n,n;) X
U;(n,n;), it follows that
- () |[(TO(X. 7)) ¥i ()
PO = ) ()
= Tr{e(n)(TG(%. ), }. (5.13)

where (TQ(%,1)); = Ug" (n,n:)(TQ(X.1))sUo(n.m;) is in
the interaction picture, wherein the fields carry the free-
field time evolution (2.9) and (2.10). In this form we
can now obtain the energy density of the dressed state
|¥;(n)) given by (3.71) to leading adiabatic order. This is
achieved with the following steps: (i) Expand the fields in
creation and annihilation operators to leading adiabatic
order as in Egs. (2.36) and (2.37); (ii) neglect the terms with
a'/a, (a'/a)* in T because these are of first and second
adiabatic order, respectively; (iii) in the terms quadratic in
the fields in 79 neglect terms of the form a'b¥, ab, ¢, cc
because the asymptotic state |¥;) contains terms of the
form [17)|14), namely products of single-particle states
for each particle, hence expectation values of the form
(¥;|a’bT|¥;) = 0 and similarly with the other bilinears,
and (iv) the expectation value of the interaction term
(¥ |0  py|¥;) = 0, because y ~c + c', hence either de-
stroying or creating a single y particle from |¥;); therefore,
the expectation value of such operator vanishes. As a result
the expectation value of the energy momentum tensor
becomes a sum of the contribution from the heavy-field
@ and that of the ultralight-field y. For each of these, the
expectation value implies tracing over the other field (for
example, for the contribution of the ¢ field, it implies
tracing over the y field, and vice versa). Therefore we find
that asymptotically at long time, when the amplitude of the

) +Vy - Vy +da(n)e’ 40)(]

a'(n)

g co) + V' - Vo + M2a2(f1)|¢|2]

(5.11)

|
initial single-particle state has become negligible, and to

leading order in the coupling

pu ZQ

¥ T
TI‘{ (aﬁaﬁ + bﬁb;, + 1)}

{ ;7)<c c~+%)}, (5.14)

where V is the comoving volume, and 97 (17); 0% (n7) are the
reduced density matrices (5.2) and (5.3), respectively.
The terms (1, 1/2) inside the respective parentheses in
(5.14) yield the zero-point energy which as usual is sub-
tracted away with an appropriate renormalization scheme
(this is usually assumed in the literature), and we find

3
pelt) = i [ G E Iy
1 &
ot ) Gy N et
=pM(n) +p"(n). (5.15)

Asymptotically at long time when the single-particle
amplitude of the heavy field has “decayed,” C‘%(nfﬂz

becomes a nonthermal frozen distribution function ful-
filling the “sum rule” (5.9) from the unitarity condition in
the asymptotic long-time limit. The energy density (5.15)
describes two independent fluids: the first term, p* (1) is
identified with the energy density of a massive, frozen
species, and the second p®(y) with a massless, frozen
ultrarelativistic species, both independently obeying covar-
iant conservation, namely

—pM (1) + 3H(1)(p" (1) + P (1)) = 0

dt
3 2
P =5 [ GEATISICE R (616)
P
2R (1) + 4H ()R (1) = (5.17)

dt

The expression (5.14) for the expectation value of the
energy density involves the reduced density matrices 97 (17);
0%(n) obtained by tracing over the y, ¢ fields, respectively.
This suggests that the entropy associated with each fluid is
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precisely the entanglement entropy (5.7), because each
fluid component in the energy momentum tensor arises
from tracing over the complementary field yielding the
reduced density matrices (5.2) and (5.3), each of which
describes a mixed state associated with the entanglement
entropy (5.7). Entanglement in the final asymptotic state
entails that the fluids share the same entropy and the same
frozen distribution function.

It is important to highlight that we have studied the time
evolution of an initial single-particle state; as a result the
energy density and pressure are both proportional to 1/V
since the matrix elements yielding the coefficients C o 1/V
[see for example Eq. (3.27)]. Therefore, at long time the
unitarity condition (5.9) yields

d3p e _1
/m| (ﬂf)| v

This is the statement that there is one ¢ and also one y
particle in the volume V in the final state. We discuss this
aspect in Sec. VL.

For the case of fermionic fields Yukawa coupled to the
ultralight scalar field, using the field equations for the
Dirac field [56], the energy momentum tensor is given by
[59,80-83]

(5.18)

i 1
T = — (‘Py”D”‘P) +u < v+ 0ndn — —g"”g"/’a mopm.

l\)

(5.19)

In terms of conformal time and the conformally rescaled
fields (4.7) and using again the field equations for the Dirac
field [56] to restore the Yukawa interaction term, the energy
density T is given by

- 1
Tg(X, 7’]) = a4

{wz, n)(=id -V + P*Ma())w(E.n)

a'(n)
a(n)

n)

+5 7 -

21
)() +§V;(-V)(+ YI/IT)(I//}.
(5.20)

As in the bosonic case, we pass to the interaction picture
and obtain the energy density corresponding to the time-
evolved state |¥;(17)) now given by Eq. (4.60) as in
Eq. (5.13) and follow the same steps as in the bosonic
case. Again, considering a long-time 7, after which the
amplitude of the initial single fermion state has decayed,

the time-evolved state is given by - 4 C‘”; 2(n7)] lp/,; ->;

hence, to leading order in the coupling the expectation
value of the Yukawa interaction term in this asymptotic
state vanishes because in the interaction picture the field
x =~ c+ c’, whose expectation value vanishes in this state.
The fermion fields in the interaction picture are expanded

as in Eq. (4.13) where the spinors are the solutions of the
Dirac equations (4.14) and (4.15) with normalization given
by Eq. (4.23). To leading adiabatic order they are given by

(4.28) and (4.29) and obey 8,U,(k,n) = Q(n)U,(k, n);

BWV/I(I?, n) = —Qk(n)Vl(%, n). Since the expectation value
of the Yukawa interaction in the interaction picture vanishes
in the asymptotic state, to leading order in Yukawa
coupling and adiabatic expansion the energy density
associated with this asymptotic state is a sum of the free
fermion and free bosonic fields energy densities. In turn
these contributions are determined by the corresponding
reduced density matrices. For the fermionic term we need
the reduced density matrix ¢¥ (17) = Tr,d(n) obtained by
tracing the y degrees of freedom, whereas the bosonic one
inputs the reduced density matrix ¢} (n) = Tr,0(n)
obtained by tracing over the fermionic degree of freedom.
We finally find that the energy density associated with the
asymptotic state is given by

ZQ n)Tr{o¥ (b
WZI(ﬂTr{éﬂ (n) (CI;C;?%) }

Just as in the bosonic case, the terms (1,1/2) inside
the parentheses yield the zero-point energy which is
subtracted away with an appropriate renormalization
scheme yielding

bya+dsds,+1)}

(5.21)

pelt) = i [ SEEIC )P

1 d*q ~
/=1 crx 2
+ a4(l’l> / (2”3) |q|| k—q;k(nf)l

=p" () + p"(n). (5.22)
Asymptotically at long time the single-particle amplitude of
the heavy field has decayed, and |C'” (ns)|* becomes a

nonthermal frozen distribution functzon The energy den-
sity (5.22) again describes two independent fluids: p¥ () is
identified with the energy density of a massive, fermionic
nonthermal frozen species, and the second p®(5) with a
massless, ultrarelativistic nonthermal frozen species, both
obeying covariant conservation, as in the bosonic case
(5.16) and (5.17) but with |C§ij;z(nf)|2 - |C;{ij;]z(nf)|2.

Both fluids share the same frozen distribution function
|Cl£f(zj-l?(’7f)|2 and entanglement entropy,

i) = ={ SIezzop Pz} (529

p
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since as in the bosonic case, each component in the energy
momentum tensor emerges from tracing the complemen-
tary field.

It is noteworthy that the entanglement entropy of the
asymptotic state from infrared dressing is very different
from that of cosmological particle production, which leads
to a squeezed state [85,86].

VI. DISCUSSION

A. Gravitational particle production

Gravitational particle production is negligible in the
cases that we have considered in this study for the
following reasons. The adiabatic approximation relies on
the mass of the heavy field being much larger than the
Hubble expansion rate; the terms in the (time-dependent)
Hamiltonian that would yield gravitational production are
of second or higher order in the adiabatic expansion,
therefore subleading. This is explicit in the terms with

a%b_,—é; bi;“;{ in the Hamiltonian for the bosonic case,
Eq. (2.40). These terms would lead to particle production
but they are multiplied by a function which is of second or
higher adiabatic order [49,50] which can be neglected to
the leading adiabatic order implemented in this study.
Furthermore, we considered the light scalar field to be
(nearly) massless, and a massless scalar field is conformally
coupled to gravity in a radiation-dominated cosmology
because the Ricci scalar vanishes. Therefore, there is not
gravitational production of the light scalar field either

during the radiation era.

B. Dressing vs decay

Consider the case of two massive fields ¢('?) with
masses M| > M, and a massless field y with a coupling
292y and the decay process qb(%l) - ¢§32) + x5- Attime
much longer than the lifetime of ¢(!) the asymptotic final
state is given by ). C?i,;llg-a; 12); this is kinematically
entangled two-particle state and unitarity leads to
> |C5_,;|2 = |CL(t;)]* where Ci(t;) is the amplitude of
the single-particle initial state [46]. This state is qualita-
tively similar to (3.71) asymptotically when C¥ (17) ~ 0. The
only differences are (a) in particle decay the amplitude of
the single-particle state decays exponentially but with a
decay law modified by the cosmological expansion [49],
whereas for infrared dressing it decays with a power law
with anomalous dimension, and (b) in the case of decay, the
final two-particle state does not contain the initial particle,
whereas in the case of infrared dressing, the initial massive
particle is part of the entangled final state. These
differences notwithstanding, particle decay leads to the
production of daughter particles in a kinematically
entangled final state. The expectation value of the energy
momentum tensor in the asymptotic final state will feature

independent contributions from the daughter particles with
negligible contribution from the interaction term because
the final state does not contain the particle in the initial
state. Again, final-state entanglement implies that both
contributions have the same frozen distribution function.
Hence, the analogy with the final asymptotic state from
infrared dressing is compelling and indicates that this latter
mechanism also leads to the production of the massless
particle in the final state. This interpretation is confirmed by
the expectation value of the energy momentum tensor in
the asymptotic state obtained in the previous section.
The important aspect is that in both cases the amplitude
of the initial state vanishes at long time and by unitarity, the
total probability flows entirely from the initial state to the
final entangled state. Furthermore, in both cases, entangle-
ment in the asymptotic state implies that the daughter
particles share the frozen distribution and entanglement
entropy.

C. Dressing of entangled pairs

In this article we focused on studying the time evolution
of an initial single-particle state and obtained the time-
evolved state to leading order in the adiabatic and weak
coupling approximations. However, we did not specify
the mechanism by which the initial state has been prepared.
Heavy massive particles can be produced gravitationally
prior to the radiation era; however, these are described
by an entangled squeezed state (see for example
Refs. [69,85,86] and references therein) not as independent,
single-particle states. Squeezed states are highly correlated,
and it is an open question, relegated to future study,
whether pair correlations modify the dynamics of infrared
dressing, and if so how the pair correlations in the initial
state are manifest in the asymptotic entangled state.

D. Single particle vs density matrix

We have focused on studying the dynamics of infrared
dressing for a single heavy particle. As a result the
distribution function for the asymptotic state is given by
Eq. (5.18), namely o 1/V, indicating that in the final state
there is only one massless and one massive particle.
Therefore, although the fundamental study of infrared
dressing in the single-particle case provides a “proof of
principle” of a mechanism of production of ultralight dark
matter or dark radiation, obviously it is not very cosmo-
logically relevant yet because a cosmologically relevant
dark matter or radiation candidate requires a finite density
in the infinite volume limit. The next step is to consider an
ensemble of heavy particles described by a density matrix
in terms of a distribution function for the heavy degrees of
freedom. The time evolution of such density matrix would
be determined by a Boltzmann-like equation that should
follow from the dynamical resummation method imple-
mented in this study. This next step in the program will be
the focus of forthcoming studies.
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E. Distribution function of ULDM

In Minkowski space-time the results of Ref. [45] showed
that the pair probability or distribution function for the
bosonic case of the asymptotic entangled state is
|C’£‘;f (00)]*  [Ex + g — E,]**72, with a similar result for

the fermionic case. Although we did not calculate it
explicitly in the cosmological case, based on the similarities
between the cosmological result and that in Minkowski
space-time at leading adiabatic order, we expect a similar
result for the distribution to leading adiabatic order with the
energies replaced by the local energies depending on the
scale factor at a timescale when the amplitude of the initial
state becomes negligible. Although this expectation is
motivated by the results obtained in the previous sections
and the similarity with Minkowski space-time at leading
adiabatic order, it must be confirmed by a detailed analysis.
Such calculation is technically involved and neither very
illuminating nor relevant for the question of dark matter
because it is associated with an initial single-particle state;
hence, its contribution to the energy momentum tensor is
« 1/V [see Eq. (5.18)] and hence negligible in the infinite
volume limit, and not relevant to dark matter. Our goal with
this study is to provide a proof of principle of infrared
dressing as a possible production mechanism and to pave
the way towards a future study of an initial state described
by a finite-density ensemble of heavy fields described by an
appropriate density matrix. Undoubtedly the asymptotic
distribution function obtained from the time evolution of
this density matrix will reflect the finite-density aspects of
the initial distribution yielding a finite contribution to the
energy momentum tensor in the infinite volume limit. This
will be the subject of a forthcoming study, which is now
motivated by this proof of principle.

F. On axions

The study of Ref. [45] in Minkowski space-time revealed
that in the case of fermions coupled to pseudoscalar fields,
such as the axion, the spectral density vanishes faster than
linear at threshold. As a result these types of couplings do
not yield infrared divergences in Minkowski space-time. In
this case the amplitude of the initial single-particle case
does not vanish asymptotically and the unitarity condition
is satisfied at long time, with the amplitude of the initial
state being nearly the same as that at the initial time with a
perturbatively small probability for axion production from
infrared dressing.

This result discouraged a similar study in cosmology
suggesting that infrared dressing may not be an important
mechanism of production of axions during the radiation
era. Nevertheless a derivative-type coupling such as
90" A(x) ¥ (x)y* (x)y % (x), with A(x) the pseudoscalar
field, may lead to some interesting phenomena which,
however we postpone to further study.

G. Radiative corrections to ultralight mass

Masses of scalar or pseudoscalar fields are in general
subject to large radiative corrections unless there are
symmetries that lead to their cancellations. Otherwise the
small values are the result of some fine-tuning. Ultralight
scalar particles as originally envisaged in the form of fuzzy
dark matter [10-13] would be subject to (divergent)
radiative corrections if not protected by a symmetry as
for example (pseudo-) Goldstone bosons. Therefore, the
question of radiative corrections in principle apply to
generic fuzzy dark matter models. In our study, focused
on the fundamental aspects of infrared dynamics, we have
simply assumed that the (nearly) massless scalar degree of
freedom remains (nearly) massless after radiative correc-
tions. Therefore, the application of our results to any
phenomenological extension beyond the Standard Model
must assess whether the (near) masslessness of this ultra-
light dark matter or dark radiation candidate remains robust
under radiative corrections.

H. Caveats: Very weak couplings

There is an important caveat in the results obtained in the
previous section; namely, we assumed that the amplitude of
the initial state becomes negligible during RD (or the early
stages in the matter-dominated era). However, unlike
particle decay where the amplitude of the initial state
decays (nearly) exponentially [49], infrared dressing yields
to a power-law decay, which is much slower. The anoma-
lous dimension A in the decay law (3.67) is proportional to
the square of the coupling, hence very small for very weak
coupling. Therefore, it is possible that for very weak
couplings, the amplitude of the initial state remains sub-
stantial near the end of the RD era and the contribution of
the initial state dominates the energy momentum tensor,
and only later during the matter era the ultralight or dark
radiation component begins to contribute appreciably to the
relativistic component of the energy momentum tensor. If
the heavy bosonic or fermionic species are suitable dark
matter candidates, this scenario introduces the possibility of
a dark radiation component to be produced during the
matter era. Clearly these possibilities must be studied in
detail within a phenomenologically viable model, which
goes well beyond the scope of this initial study.

VII. CONCLUSIONS AND FURTHER QUESTIONS

The main objectives of this article are to study the
fundamental aspects of infrared phenomena in a radiation-
dominated cosmology, and to provide a proof of principle
of infrared dressing as a hitherto unexplored possible
production mechanism of ultralight dark matter or dark
radiation. Infrared dressing describes the cloud of massless
quanta that dresses the heavy particle as a consequence of
emission and absorption of nearly on-shell massless quanta.
Infrared aspects of these processes are ubiquitous in gauge
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theories and in gravity arising from the emission and
absorption of massless gauge bosons or gravitons.

We focused on a bosonic and a fermionic theory of heavy
fields coupled to a nearly massless scalar field as prototypes
of nongauge quantum-field theories featuring infrared
divergences.

We combined an adiabatic approximation valid for
wavelengths much smaller than the Hubble radius with a
nonperturbative dynamical resummation method to study
the time evolution of an initial single-particle state. This
method is manifestly unitary and consistently describes the
time-evolved state.

The massless (or nearly-) massless scalar field may be
associated with an ultralight dark matter or dark radiation
candidate in extensions beyond the Standard Model.
However, we are neither proposing nor endorsing par-
ticular phenomenological extensions beyond the Standard
Model, focusing solely on the fundamental aspects of
infrared dynamics and their possible cosmological
consequences.

We showed that as a result of infrared divergences the
amplitude of the initial single-particle state decays in time
with a power law o [E(1)1]72, with E; () being the local
energy depending on the scale factor as a consequence of
the cosmological redshift, entailing a crossover from #~2/2
during the relativistic regime to ™ upon becoming
nonrelativistic. This decay law is common to bosonic
or fermionic degrees of freedom suggesting certain
universality for infrared phenomena in cosmology. The
anomalous dimension A is determined by the behavior of
the spectral density near threshold. The quantum state that
emerges in the asymptotic long-time limit after the initial
state has decayed is an entangled state of the heavy boson
or fermion and the massless scalar, with amplitudes that
are completely determined by unitary time evolution and
yield the frozen distribution function of the final state.

Quantum entanglement is confirmed by obtaining the
von Neumann entanglement entropy by tracing either
degree of freedom. The time evolution of the entangle-
ment entropy is completely determined by the dynamical
resummation equations; it increases during time evolution
and describes the flow of information from the initial
single particle to the asymptotic entangled many particle
states.

We argued that infrared dressing as a production mecha-
nism is qualitatively similar to that of particle decay in that
the amplitude of the initial state vanishes at long time and
the asymptotic state is an entangled state of the daughter
particles. The mayor difference is that in the decay process
the initial amplitude vanishes exponentially (or nearly
exponentially in an expanding cosmology [49]) rather than
with a power law with anomalous dimension as is the case
of infrared dressing.

To leading order in the adiabatic expansion and in weak
coupling, the expectation value of the energy momentum

tensor in the asymptotic state describes two independent
fluids, one associated with the heavy boson or fermion and
another associated with a relativistic degree of freedom,
namely either the ultralight dark matter or dark radiation.
Both fluids fulfill the covariant conservation equation
independently. An important consequence of entanglement
in the asymptotic state is that both fluids share the same
nonthermal frozen distribution function and entropy.

Gathering these results together this study suggests that
infrared dressing is a possible production mechanism of
ultralight dark matter and or dark radiation with basic
features that are qualitatively similar to production via
particle decay. Because we have considered a simple
initial state and the study provides a proof of principle of
the fundamental and ubiquitous phenomenon of infrared
dressing as a viable production mechanism, many ques-
tions remain that merit further and deeper study. Among
them is the extrapolation of the single-particle case to that
of an ensemble of heavy degrees of freedom coupled to
(nearly-) massless scalars and, in particular if this ensem-
ble is a result of gravitational production of the heavy
degrees of freedom with a particular distribution function.
We also recognized important caveats in the case of very
weak couplings. Furthermore, while discouraged by the
results in Minkowski space-time [45], whether a pseudo-
vector coupling in a cosmological setting yields to
interesting infrared phenomena remains an open question.
This study also paves the way towards understanding of
infrared phenomena associated with massless gauge
bosons or gravitons. However, the issue of gauge invari-
ance and concomitant fulfillment of Ward identities
during the dynamical evolution remains to be understood
for a consistent treatment. The possibility that this
mechanism may contribute to the understanding of dark
matter or dark radiation production thus motivates further
studies along these avenues.
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APPENDIX A: CONTRIBUTIONS FROM I'*¥ (3)
FOR THE BOSONIC CASE

With the definition (3.59), the change of variables (3.60)
and taking n > 7; the contribution from I" ,(62) yields

N2) N, /l/ek(m /1 -, ssin[sx]
I dn' =2A dx | dso(s;n)———,
=2, | e

(A1)
where #' depends implicitly on x via (3.60). Writing

sin[sx] = —1dcos[sx]/dx and integrating by parts in x,
the integral in (A1) becomes
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[ as{atsin) - conls et

1+7§(l1

~~
A

—l—j)l/ek('ﬂ dxAIdS%{%}COS[SXL (A2)

n'g

B

=

In the first term (A) the cosine term averages out in the
long-time limit € () — 0. Using the following identities:

déy(n') _de(n)dy' _ d (Q(n') 1
dx dy dx dy

df \Q(n')) Q. (") (1 +&(r)x)’
(A3)

L d () QL) ()2
) drf (%(n'))‘ o 2(9%(#))’ (A4)

this latter term being second-order adiabatic, and

d 1 d 1 1
P (m) =ar <7%(71’)> ot amy Y
along with the identity
1 d /1 _ 2¢ (1) _
u ) <7i(n/)) 207) [ yzw]’ (A6)

using all these identities, we find that the contribution (B) is
infrared and ultraviolet finite and at least of first adiabatic
order (O(e)); hence, it can be safely neglected to leading
adiabatic order. Therefore, to leading adiabatic order we find

7 ‘1
/ "TO ) = 24, [) s(s.n)ds. (A7)
ni

Following the same steps for the third contribution, we find
A% [V/en)
/'7 rOedn =5 [ dx
n; 4 0
§ /oo g5 PO 200 sinfsa]
I s Q) (1 +&(n)x)
(A8)

Implementing the same steps for the integrals as for the
second contribution yields the following result for the
integrals in (AS8):

© a*(n; a? €
[ a2 s ol

Q3 (n;) Q) Nt S
A
1/ex(n) 0 - N 42 ()
+/ . dx/ dj d{ 2p(/S,i7)a~(’1>/ }cos[sx].
0 st dx [ Q) (1+&(n')x)
B

(A9)

The oscillatory cosine term in (A) averages out in the long-
time limit, and implementing the same steps and definitions
as for the second contribution, the (B) term is found to be
both infrared and ultraviolet finite and of (at least) first
adiabatic order, hence subleading and averaging out in the
long-time limit. Therefore, we find in the long-time limit
Qi (n)n > 1 (1> n;) and to leading adiabatic order

(3 A, © 245 ds
/ o )dnf = 7 ‘)/ SRRy R
i Y\ 1 72(’7:’) S s S

(A10)

which is an infrared and ultraviolet finite constant.

APPENDIX B: CONTRIBUTIONS FROM I'*¥ (5)
FOR THE FERMIONIC CASE

For the fermionic case F,(CM) are given, respectively, by

Egs. (4.53) and (4.54). With the definition (4.56) and the
change of variables (3.60) we find

a1 s
/"r,f)(q')dn/:mf/) - dx/) dsi (sof)->Smlsx].

0 1+&(x)x
(B1)
Implementing the same steps as for the bosonic case in the

previous section, we find to leading adiabatic order and at
long time

1
[T =28 [*asmyas. s2)
VA
which is infrared and ultraviolet finite and
"3) Af/""ﬁ(s;m)ds
r dn = —L —, B3
/h g U )dn 4 )i Q(m) s? (B3)

which however diverges logarithmically because p(s;7) «
s as s — oo, reflecting the renormalizability of the Yukawa
coupling to a scalar field.
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