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More than one hundred years after the inception of relativistic physics, the concept of

time remains incompletely understood. Relativity provides means to perform calcula-

tions of geometrical properties of spacetime, such as distances or curvature, and to

interpret them in terms of physical observations, for instance as time dilation or grav-

itational effects. However, an intuitive understanding of spacetime is complicated, not so

much because it is four-dimensional (which, after all, can be evaded by visualizing two-

dimensional cross sections) but mainly because its geometry does not obey Euclid’s

axioms even in the absence of curvature.

Through a well defined and clever transformation (RBS: renormalized blended

spacetime), Venkatraman Gopalan (2021) has demonstrated how the hyperbolic

geometry in Minkowski spacetime can be mapped to a circular Euclidean geometry

(Fig. 1). In particular, Lorentzian boosts become Euclidean rotations which enables new

frontiers of exploration in color symmetry and magnetic crystals. His idea of general

relativistic spacetime crystals and how to obtain them is both powerful and broad,

although the notion of relativistic crystals and lattices in two dimensions has existed for a

while (Janner & Ascher, 1969a,b).

The breadth of this new work is underlined by the present opinion piece, written by

two co-authors with distinct yet connected areas of expertise.

1. Euclidean spacetime crystals

As we know well, there are space crystals but in recent years there has been significant

activity in exploring (quantum) time crystals since the suggestion of Wilczek (2012). Time

crystals refer to a system in which the lowest-energy states evolve periodically in time at a

frequency different from that of the driving impulse. If spatial periodicities also arise

simultaneously, these would be termed space-time crystals (note the hyphenation to

indicate that time is disconnected from space). Space-time crystals are now known to

exist in trapped ions, ultracold atoms and spin systems (Hannaford & Sacha, 2020).

Recently, micrometre-sized, magnon-based space-time crystals were created at room

temperature (Träger et al., 2021).

Gopalan’s work is a natural generalization to relativistic spacetime crystals (note now

the lack of hyphenation between space and time, to indicate that they can mix), in which

both spatial and temporal periodicities coexist simultaneously. Beyond the spacetime

crystals, an important consequence of the RBS construction is that one can map the RBS

symmetries to those of Euclidean point and space groups including the magnetic (or

Shubnikov) or color groups (Shubnikov & Belov, 1954), which is both insightful and very

useful. The color in this context is a trait of whether an event is along time-like or space-

like directions from the origin. A new anti-symmetry has been introduced which swaps

time-like and space-like directions, thus reversing the color of this trait.

As far as color groups are concerned, in 1929 Heinrich Heesch introduced the anti-

identity operation, or the notion of anti-symmetry, to enumerate 122 magnetic point

groups associated with 22 magnetic Bravais lattices in three dimensions (Heesch, 1929).

There are 31 such magnetic point groups corresponding to 5 magnetic Bravais lattices in

two dimensions. Much later, Aleksei Shubnikov fully developed the concept of magnetic

symmetry (Shubnikov & Belov, 1954). Daniel Litvin has enumerated color or magnetic

groups as well as computerized the process of obtaining crystallographic properties

of such groups (Litvin, 2008). Many aspects of magnetic groups have already been
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adapted by the Bilbao Crystallographic Server (https://www.

cryst.ehu.es). These listings of space groups could thus find

direct isomorphisms to RBS spacetime crystals.

In addition to introducing the RBS coordinates, the work of

Gopalan provides a foundational framework for many further

generalizations. (i) Using the RBS symmetries, deriving quasi-

one dimensional (Q1D), Q2D and Q3D color groups will be a

natural extension and very useful. Some important examples

include color frieze groups, rod groups, diperiodic or layer

groups etc. (ii) Extension to 4D of the usual as well as the color

point and space groups would be a tour de force in crystal-

lography. (iii) A more challenging extension could be deriving

the usual and color quasicrystalline groups. A quasicrystal can

be viewed as a crystal in an appropriate higher dimension.

Thus, lower-dimensional color quasicrystals could be derived

from higher-dimensional color crystals with the newly found

procedure. (iv) A more ambitious extension would be to

derive symmetries in curved spacetime (e.g. in general rela-

tivity with Riemann geometry). These accomplishments will

further enrich the crystallographic databases such as the one

at Bilbao, Spain (https://www.cryst.ehu.es).

Just like their spatial counterparts, the spacetime crystals

can also be quasiperiodic in time (Hannaford & Sacha, 2020).

In addition, akin to the higher spatial dimensions, one can

construct spacetime crystals with more than one time dimen-

sion depending on how the system is driven by more than one

periodic driving force. These possibilities could usher in an

entirely new class of metamaterials with exotic properties

otherwise not available in nature, besides understanding the

fundamental attributes of a number of dynamical systems.

An important application of color symmetry is in magnetic

phase transitions, wherein symmetry is intimately related to

the order parameter to construct the relevant free energy in

Landau theory, in particular for studying these transitions in a

variety of magnetic and multiferroic materials. The latter have

a coupling of magnetism to electric polarization or elastic

strain. Interestingly, elastic strain and gravity have analogies

through elastic compatibility condition and the Bianchi iden-

tity (Fortune & Vallee, 2001). Clearly, Gopalan’s seminal work

has opened a richness of possibilities.

2. Quantum spacetime: flipping the minus sign

A hallmark of important new results is their potential

applicability in various contexts, a distinguishing feature that

applies to Gopalan’s construction. The hyperbolic geometry

suitable for spacetime, introduced by Hermann Minkowski

(1908), may be viewed as a modification of Euclid’s geometry

in which the time direction contributes by a negative squared

term in the Pythagorean theorem, relating the side lengths of

right-angled triangles. Although a single minus sign might

seem innocuous, the counter-intuitive nature of this non-

Euclidean geometry is well documented by the existence of

several paradoxes in special relativity. While they can formally

be resolved by doing suitable calculations in Minkowski

geometry, they leave a nagging aftertaste of something not

being quite right.

The mathematical formalism, of course, always gives a

unique answer because special and general relativity are not

only completely consistent as theories, but they have also been

tested successfully by a good number of independent obser-

vations, most recently by the direct detection of gravitational

waves (LIGO Scientific Collaboration and Virgo Collabora-

tion, 2016). However, all these results and tests refer to rela-

tivity as a classical theory. The other fundamental theories

we know, describing the electro-weak forces and the strong
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Figure 1
Conventional 3D Minkowski spacetime (two space axes, x, and y, and one time axis, ct, depicted in the left panel) is hyperbolic. Events in the past and
future at a fixed spacetime distance from the origin form two sheets of the hyperbola as shown. A new reformulation of special relativity by Gopalan,
called the renormalized blended spacetime (RBS), transforms the Minkowski hyperbolic sheets into a Euclidean sphere (right panel). This topological
transformation allows one to express the symmetries of the Minkowski spacetime, namely a combination of Euclidean and hyperbolic rotations, all as
pure Euclidean rotations. The relativistic physics content in both formulations is equivalent. (Figure courtesy of Hari Padmanabhan, The Pennsylvania
State University, USA.)



nuclear force as well as the elementary particles that are

subject to these forces, are quantum theories. According to

general relativity, the geometry of spacetime depends, via

Einstein’s equation, on the energy density and pressure of all

the matter it contains. If matter is quantum and fluctuates and

jumps and gets entangled and what not, these effects should be

transferred to spacetime geometry by a complete, quantum

version of Einstein’s equation.

It is hard to imagine what a fluctuating and entangled

geometry, or a superposition of different geometries, might

look like, and all attempts made so far in the endeavor called

‘quantum gravity’ have led to mathematics of almost unma-

nageable complexity. (See for instance Oriti, 2009.) Moreover,

the more successful ones of various approaches to this

problem, given by string theory (Polchinski, 2005) and causal

dynamical triangulations (Ambjørn et al., 2012), work only

because their math assumes that, for some reason, it should be

OK to flip the sign in Minkowski’s version of the Pythagorean

theorem back to the positive value it has in Euclid’s geometry.

More briefly, these theories describe quantum properties of

four-dimensional space, not of spacetime.

There are various reasons for enforcing this sign flip. For

one, the original negative sign implies instability because a

time component of momentum would imply a negative

contribution to the kinetic energy, which could then be mini-

mized all the way to negative infinity. Gravity is indeed

inherently unstable because it is always attractive and can

imply perpetual collapse. The negative sign is therefore

correct from a physical perspective, but the problem is that our

usual methods of quantum field theory have a hard time

dealing with it. If one flips the sign, these methods can at least

be used to explore possible implications of quantized grav-

itational dynamics, even if they do not model the correct

geometry.

The tacit assumption is that a quantum theory of four-

dimensional space is, in practice, close enough to a quantum

theory of spacetime. Unfortunately, so far it has not been

possible to justify this assumption, or to specify what ‘close

enough’ should mean in the preceding sentence. Here,

Gopalan’s Relativistic spacetime crystals is of considerable

interest because it introduces an elegant renormalization

procedure, RBS, that completes previous attempts of relating

the geometries of space and spacetime. An application to

quantum spacetime remains to be done, but by providing a

fresh starting point, the paper’s results promise further

progress in this direction.
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Träger, N. et al. (2021). Phys. Rev. Lett. 126, 057201.

Wilczek, F. (2012). Phys. Rev. Lett. 109, 160401.

scientific commentaries

Acta Cryst. (2021). A77, 239–241 Bojowald and Saxena � Color symmetry to quantum spacetime 241


