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More than one hundred years after the inception of relativistic physics, the concept of
time remains incompletely understood. Relativity provides means to perform calcula-
tions of geometrical properties of spacetime, such as distances or curvature, and to
interpret them in terms of physical observations, for instance as time dilation or grav-
itational effects. However, an intuitive understanding of spacetime is complicated, not so
much because it is four-dimensional (which, after all, can be evaded by visualizing two-
dimensional cross sections) but mainly because its geometry does not obey Euclid’s
axioms even in the absence of curvature.

Through a well defined and clever transformation (RBS: renormalized blended
spacetime), Venkatraman Gopalan (2021) has demonstrated how the hyperbolic
geometry in Minkowski spacetime can be mapped to a circular Euclidean geometry
(Fig. 1). In particular, Lorentzian boosts become Euclidean rotations which enables new
frontiers of exploration in color symmetry and magnetic crystals. His idea of general
relativistic spacetime crystals and how to obtain them is both powerful and broad,
although the notion of relativistic crystals and lattices in two dimensions has existed for a
while (Janner & Ascher, 1969a,b).

The breadth of this new work is underlined by the present opinion piece, written by
two co-authors with distinct yet connected areas of expertise.

1. Euclidean spacetime crystals

As we know well, there are space crystals but in recent years there has been significant
activity in exploring (quantum) time crystals since the suggestion of Wilczek (2012). Time
crystals refer to a system in which the lowest-energy states evolve periodically in time at a
frequency different from that of the driving impulse. If spatial periodicities also arise
simultaneously, these would be termed space-time crystals (note the hyphenation to
indicate that time is disconnected from space). Space-time crystals are now known to
exist in trapped ions, ultracold atoms and spin systems (Hannaford & Sacha, 2020).
Recently, micrometre-sized, magnon-based space-time crystals were created at room
temperature (Trdger et al., 2021).

Gopalan’s work is a natural generalization to relativistic spacetime crystals (note now
the lack of hyphenation between space and time, to indicate that they can mix), in which
both spatial and temporal periodicities coexist simultaneously. Beyond the spacetime
crystals, an important consequence of the RBS construction is that one can map the RBS
symmetries to those of Euclidean point and space groups including the magnetic (or
Shubnikov) or color groups (Shubnikov & Belov, 1954), which is both insightful and very
useful. The color in this context is a trait of whether an event is along time-like or space-
like directions from the origin. A new anti-symmetry has been introduced which swaps
time-like and space-like directions, thus reversing the color of this trait.

As far as color groups are concerned, in 1929 Heinrich Heesch introduced the anti-
identity operation, or the notion of anti-symmetry, to enumerate 122 magnetic point
groups associated with 22 magnetic Bravais lattices in three dimensions (Heesch, 1929).
There are 31 such magnetic point groups corresponding to 5 magnetic Bravais lattices in
two dimensions. Much later, Aleksei Shubnikov fully developed the concept of magnetic
symmetry (Shubnikov & Belov, 1954). Daniel Litvin has enumerated color or magnetic
groups as well as computerized the process of obtaining crystallographic properties
of such groups (Litvin, 2008). Many aspects of magnetic groups have already been

Acta Cryst. (2021). A77, 239-241

https://doi.org/10.1107/52053273321005234 239



scientific commentaries

ct
A

< Euclidean rotation

Hyberbolic rotation

Symmetries of Minkowski spacetime

Figure 1

Euclidean rotation

x|

Symmetries of Renormalized Blended Spacetime (RBS)

Conventional 3D Minkowski spacetime (two space axes, x, and y, and one time axis, ct, depicted in the left panel) is hyperbolic. Events in the past and
future at a fixed spacetime distance from the origin form two sheets of the hyperbola as shown. A new reformulation of special relativity by Gopalan,
called the renormalized blended spacetime (RBS), transforms the Minkowski hyperbolic sheets into a Euclidean sphere (right panel). This topological
transformation allows one to express the symmetries of the Minkowski spacetime, namely a combination of Euclidean and hyperbolic rotations, all as
pure Euclidean rotations. The relativistic physics content in both formulations is equivalent. (Figure courtesy of Hari Padmanabhan, The Pennsylvania

State University, USA.)

adapted by the Bilbao Crystallographic Server (https://www.
cryst.ehu.es). These listings of space groups could thus find
direct isomorphisms to RBS spacetime crystals.

In addition to introducing the RBS coordinates, the work of
Gopalan provides a foundational framework for many further
generalizations. (i) Using the RBS symmetries, deriving quasi-
one dimensional (Q1D), Q2D and Q3D color groups will be a
natural extension and very useful. Some important examples
include color frieze groups, rod groups, diperiodic or layer
groups etc. (ii) Extension to 4D of the usual as well as the color
point and space groups would be a tour de force in crystal-
lography. (iii) A more challenging extension could be deriving
the usual and color quasicrystalline groups. A quasicrystal can
be viewed as a crystal in an appropriate higher dimension.
Thus, lower-dimensional color quasicrystals could be derived
from higher-dimensional color crystals with the newly found
procedure. (iv) A more ambitious extension would be to
derive symmetries in curved spacetime (e.g. in general rela-
tivity with Riemann geometry). These accomplishments will
further enrich the crystallographic databases such as the one
at Bilbao, Spain (https://www.cryst.chu.es).

Just like their spatial counterparts, the spacetime crystals
can also be quasiperiodic in time (Hannaford & Sacha, 2020).
In addition, akin to the higher spatial dimensions, one can
construct spacetime crystals with more than one time dimen-
sion depending on how the system is driven by more than one
periodic driving force. These possibilities could usher in an
entirely new class of metamaterials with exotic properties
otherwise not available in nature, besides understanding the
fundamental attributes of a number of dynamical systems.

An important application of color symmetry is in magnetic
phase transitions, wherein symmetry is intimately related to
the order parameter to construct the relevant free energy in

Landau theory, in particular for studying these transitions in a
variety of magnetic and multiferroic materials. The latter have
a coupling of magnetism to electric polarization or elastic
strain. Interestingly, elastic strain and gravity have analogies
through elastic compatibility condition and the Bianchi iden-
tity (Fortune & Vallee, 2001). Clearly, Gopalan’s seminal work
has opened a richness of possibilities.

2. Quantum spacetime: flipping the minus sign

A hallmark of important new results is their potential
applicability in various contexts, a distinguishing feature that
applies to Gopalan’s construction. The hyperbolic geometry
suitable for spacetime, introduced by Hermann Minkowski
(1908), may be viewed as a modification of Euclid’s geometry
in which the time direction contributes by a negative squared
term in the Pythagorean theorem, relating the side lengths of
right-angled triangles. Although a single minus sign might
seem innocuous, the counter-intuitive nature of this non-
Euclidean geometry is well documented by the existence of
several paradoxes in special relativity. While they can formally
be resolved by doing suitable calculations in Minkowski
geometry, they leave a nagging aftertaste of something not
being quite right.

The mathematical formalism, of course, always gives a
unique answer because special and general relativity are not
only completely consistent as theories, but they have also been
tested successfully by a good number of independent obser-
vations, most recently by the direct detection of gravitational
waves (LIGO Scientific Collaboration and Virgo Collabora-
tion, 2016). However, all these results and tests refer to rela-
tivity as a classical theory. The other fundamental theories
we know, describing the electro-weak forces and the strong
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nuclear force as well as the elementary particles that are
subject to these forces, are quantum theories. According to
general relativity, the geometry of spacetime depends, via
Einstein’s equation, on the energy density and pressure of all
the matter it contains. If matter is quantum and fluctuates and
jumps and gets entangled and what not, these effects should be
transferred to spacetime geometry by a complete, quantum
version of Einstein’s equation.

It is hard to imagine what a fluctuating and entangled
geometry, or a superposition of different geometries, might
look like, and all attempts made so far in the endeavor called
‘quantum gravity’ have led to mathematics of almost unma-
nageable complexity. (See for instance Oriti, 2009.) Moreover,
the more successful ones of various approaches to this
problem, given by string theory (Polchinski, 2005) and causal
dynamical triangulations (Ambjgrn et al., 2012), work only
because their math assumes that, for some reason, it should be
OK to flip the sign in Minkowski’s version of the Pythagorean
theorem back to the positive value it has in Euclid’s geometry.
More briefly, these theories describe quantum properties of
four-dimensional space, not of spacetime.

There are various reasons for enforcing this sign flip. For
one, the original negative sign implies instability because a
time component of momentum would imply a negative
contribution to the kinetic energy, which could then be mini-
mized all the way to negative infinity. Gravity is indeed
inherently unstable because it is always attractive and can
imply perpetual collapse. The negative sign is therefore
correct from a physical perspective, but the problem is that our
usual methods of quantum field theory have a hard time
dealing with it. If one flips the sign, these methods can at least
be used to explore possible implications of quantized grav-
itational dynamics, even if they do not model the correct
geometry.

The tacit assumption is that a quantum theory of four-
dimensional space is, in practice, close enough to a quantum

theory of spacetime. Unfortunately, so far it has not been
possible to justify this assumption, or to specify what ‘close
enough’ should mean in the preceding sentence. Here,
Gopalan’s Relativistic spacetime crystals is of considerable
interest because it introduces an elegant renormalization
procedure, RBS, that completes previous attempts of relating
the geometries of space and spacetime. An application to
quantum spacetime remains to be done, but by providing a
fresh starting point, the paper’s results promise further
progress in this direction.
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