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Abstract: In this contribution, we provide a comprehensive overview of acyclic twisted amides, 

covering the literature since 1993 (the year of the first recognized report on acyclic twisted amides) 

through June 2020. The review focuses on classes of acyclic twisted amides and their key structural 

properties, such as amide bond twist and nitrogen pyramidalization, which are primarily responsible for 

disrupting nN to *C=O conjugation. Through discussing acyclic twisted amides in comparison with the 

classic bridged lactams and conformationally-restricted cyclic fused amides, the Reader is provided with 

an overview of amidic distortion that results in novel conformational features of acyclic amides that can 

be exploited in various fields of chemistry ranging from organic synthesis and polymers to biochemistry 

and structural chemistry and the current position of acyclic twisted amides in modern chemistry.  
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1. Introduction 

The amide bond is a fundamental and arguably the most important functional group in chemistry and 

biology.1 It is well-accepted that the vast majority of amides are planar as a consequence of amidic 

resonance as vividly demonstrated by Pauling almost a century ago (nN to *C=O conjugation; amidic 

resonance of 15-20 kcal/mol in planar amides) (Scheme 1).2–5 However, distortions of the amide bond 

from planarity6–24 have profound consequences on all major chemical properties of amides, which 

include (i) barrier to cis–trans rotation; (ii) planarity of the six atoms comprising the amide bond; (iii) 

geometric changes, such as shortening of the N–C(O) bond and elongation of the C=O bond; (iv) 

change of the thermodynamic protonation site from oxygen to nitrogen; (v) increased propensity to 

hydrolysis and nucleophilic acyl substitution; (vi) cleavage of  N–C bonds; and more recently, (vii) 

oxidative addition of the N–C(O) bond to transition metals, among others.   

Scheme 1. Amide Bond Resonance 

 
 

The concept of amide bond distortion was first recognized in the 1930s.25 Following the studies by 

Pauling on amide bond planarity and the conclusion that typical amides are approximately 40% double 

bond in character,2–5 Lukeš proposed that restriction of the amide bond in a rigid bicyclic structure 

would have major implications on the properties of such twisted amides.26 The studies by Woodward 

and Robinson on the structure prediction of -lactam antibiotics in the 1940s represented another early 

example that amide bond strain could produce the key driving force for the reactivity of amides.27 In the 

following years, many research groups reported significant studies on the structure and properties of 

non-planar amides enclosed in rigid bridged scaffolds.28–35 One of the most elegant of those is the now 

classic synthesis of a perfectly perpendicular 2-quinuclidonium tetrafluoroborate (2.32, Figure 4) 

accomplished by the Stoltz group in 2006,36–38 while the studies by Kirby39–43 and Greenberg44–48 on 1-

aza-2-adamantanone (2.14, Figure 1) and 1-azabicyclo[3.3.1]nonan-2-one (such as 4.9, Figure 13), 



 

respectively, have enabled a greatly improved understanding of the properties of geometrically non-

planar amide bonds.  

In contrast to the conformationally-restricted bridged lactams,28–48 recent years have witnessed an 

explosion of interest in acyclic twisted amides. Amide bond distortion in acyclic amides leads to 

conformational and electronic modifications of the properties of acyclic amides that are commonly 

encountered in organic chemistry.49–56 Recognized as early as in 1993 by Yamada,57–62 this ground-state-

destabilization has recently resulted in the development of amide bond cross-coupling reactions, 

wherein the twisted amide N–C(O) bond undergoes oxidative addition to a low valent metal.63–78 

Moreover, studies demonstrate that acyclic twisted amides can be effectively utilized in direct 

nucleophilic addition reactions, a class of processes that has a major impact on polymer modification, 

synthesis of pharmaceuticals, and peptide cleavage.79–82 Furthermore, acyclic amide bond twisting has 

been exploited in structural chemistry, showing that geometric changes around the amide bond could be 

applied to effectively control the conformation of molecules.83–90 Moreover, amide bond distortion of 

acyclic amides has been studied in the context of peptide cis-trans isomerization and peptide 

cleavage,91–102 wherein two mechanisms have been proposed: (i) hydrolysis via ketene intermediates, 

(ii) steric repulsion of N-substituents, both exploiting ground-state-destabilization and amide bond 

twist.103–105 Perhaps most importantly, numerous examples in synthetic chemistry demonstrate that 

acyclic twisted amides behave as carboxylic acid derivatives characterized by properties vastly different 

from classical amides.106–115 Thus, taken together with the fact that selective activation of planar amides 

to achieve distortion in acyclic amides is feasible,49,50 twisting of acyclic amide bonds results in a 

broadly applicable amide bond activation concept in small molecule synthesis. 

Despite the fact that acyclic twisted amides represent a major class of amides in organic synthesis, 

structural chemistry and biochemistry and significant advances have been reported, a comprehensive 

review on acyclic twisted amides has not been published. In this manuscript, we provide a 

comprehensive overview of acyclic twisted amides, focusing on (i) classes of acyclic twisted amides, 

and (ii) their key structural properties, such as amide bond twist and nitrogen pyramidalization, which 

are primarily responsible for disrupting nN to *C=O conjugation. By discussing acyclic twisted amides 



 

in comparison with the classic bridged lactams and conformationally-restricted cyclic fused amides, 

such as -lactams, the reader will be provided with an overview of the area and the current position of 

acyclic twisted amides in modern chemistry. Twisted amides cover a broad range of amidic distortion 

that results in novel conformational features that can be exploited in various fields of chemistry ranging 

from organic synthesis and polymers to biochemistry and structural chemistry.  

Amide bond distortion is typically defined by the Winkler-Dunitz distortion parameters (Scheme 2).116 

Twist angle () describes the magnitude of rotation around the N–C(O) bond, while pyramidalization 

parameters (N) and (C) describe pyramidalization at nitrogen and pyramidalization at carbon, 

respectively. Twist is 0° for planar amide bonds and 90° for fully orthogonal bonds, while  parameters 

are 0° for planar bonds, and 60° for fully pyramidalized bonds. Since (C) parameter is typically 0° or 

close to 0° irrespective of the geometry of the amide bond, twist angle () and pyramidalization at 

nitrogen (N) are used as the primary descriptors of non-planar amide bond geometry. In addition to 

Winkler-Dunitz distortion parameters, the additive distortion parameter (+N) has been defined and it 

is particularly useful in comparing amide bond distortion within the same classes of non-planar 

amides.117,118 Furthermore, N–C(O) and C=O bond lengths, in particular, and to a lesser extent C–C(O) 

and C–NC(O) bond lengths typically give a very useful information about the structures and properties 

of acyclic non-planar amide bonds and should be considered when reporting new acyclic twisted amides 

and discussing their reactive properties.28–35 In terms of amidic resonance, resonance energies and 

barriers to rotation provide insight into the strength of the amide N–C(O) bond, and these values 

measured by spectroscopic or computational methods are available for numerous non-planar amides for 

comparison purposes.12,45,46,119–121 

Scheme 2. Winkler-Dunitz Distortion Parameters (, N, C) of Amide Bonds  



 

 

Scheme 3. Types of Amide Bond Distortion. Note that Steric Restriction Applies to Both Bridged 

and Fused Ring Systems.  

 

Scheme 4. Structures of Additional Amides Discussed in the Manuscript.  

 

Steric distortion by non-bonding interactions that is feasible in several classes of tertiary amides 

represents by far the most effective strategy for distortion of the amide bond planarity in acyclic amides 

(Scheme 3). While similar geometric alteration is not easily achievable in primary and secondary 

amides, from a synthetic standpoint, in many cases common primary and secondary amides can be 

readily and reversibly converted into sterically twisted tertiary amides,49,50 thus enabling the acyclic 

twisting concept to be applicable to all classes of amides.  

An additional point that should be discussed is the fact that in many cases steric distortion of the 

acyclic amide bond is associated with electronic activation through Nlp delocalization (lp = lone pair) on 

the substituents outside of the twisted N–C(O) bond. Depending on the class of amides, these effects 

may have a cooperative effect or be a consequence of one another. As such, in many instances acyclic 

twisted amides can also be considered as N-acyl, N-sulfonyl, N-carbamoyl or related derivatives. 

According to IUPAC (IUPAC = International Union of Pure and Applied Chemistry), amides are 

defined as carboxylic acid derivatives in which “acidic hydroxy group has been replaced by an amino or 



 

substituted amino group.” Thus, it is important to correctly assign the twisted N–C(O) amide bond when 

referring to non-planar amides and their derivatives. In this context, it is likely that more amides that 

have been synthesized over the years could be classified as twisted, but their twist remains unknown. In 

general, although DFT methods can be used to correctly predict amide bond distortion in bridged and 

related lactams,45,46,117,118 the accurate determination of the geometry of acyclic twisted amides is 

feasible only by x-ray crystallography, while DFT predictions in the absence of x-ray crystallographic 

analysis should be treated with caution.12,126,232 In general, DFT predictions of acyclic amides 

overestimate one or both distortion parameters (, N) depending on the level used. In addition, it should 

be noted that DFT is unable to accurately predict the carbonyl bending angle of bridged lactams.38 

With the aim of providing a comprehensive overview of acyclic twisted amides, we have conducted a 

comprehensive CCDC (Cambridge Structural Database) search of non-planar amides covering all years 

up to 2020. The analysis indicated >63,000 distinct tertiary amide and amide derivatives with reported 

structural parameters (63,071). For the purpose of the review, only amides without coordinated metal 

are included as it is well-established that metal-coordination to polar bonds changes their geometrical 

properties.122 These amides will be considered separately in the future studies. Similarly, polar 

derivatives of amides, such as ureas, carbamates and thiocarbamates as well as hydrazides and related 

compounds are not included.123–125 The polar derivatives will be the topic of our future studies. A 

summary of structurally-characterized amides as determined from the CCDC database is presented in 

Table 1.  

For comparison purposes, the total number of tertiary amides includes amides without coordinated 

metal (48,024) and amides with coordinated metal (15,047). Furthermore, the total number of 

structurally characterized tertiary amides includes ureas (8,953), carbamates (6,507) and thiocarbamates 

(266). It is further interesting to note that anilides (N–Ar) represent a major class of structurally-

characterized tertiary amides to date (11,419). These amides are well-known to be electronically-

activated due to nN → Ar conjugation with significantly reduced amidic resonance (RE, resonance 

energy, 13.5 kcal/mol of PhC(O)NPhMe, 1.1, Scheme 4).126 Furthermore, the total number includes 



 

hydrazides (3,988), N-acyl-hydroxylamines (803), and N-acyl-thiohydroxylamines (1,298). It should be 

noted that there is some overlap between the classes of amides in Table 1, entires 3-16.   

The total number of structurally-characterized tertiary amides (63,071) should be compared with the 

total number of structurally-characterized tertiary acyclic amides (16,505) with representative 

subclasses presented for comparison (anilides, 3,455; hydrazides, 1,749; N-acyl-hydroxylamines, 408; 

N-acyl-thiohydroxylamines, 585). It is worthwhile to note that there are only few structurally-

characterized acyclic amides in which the nitrogen atom is contained in a small ring, such as N-

azetidinyl amides (108), N-aziridinyl amides (53). These amides are well-established to contain 

pyramidalized nitrogen atom (e.g. N = 32.5°, 4-Tol-C(O)-azetidine, 1.2, Scheme 4; N = 54.9°, 

aziridinyl, 1,3-diadamantylaziridin-2-one, 1.3, Scheme 4). In this context, an important study on 

surveying crystallographically characterized amides by Chakrbarti and Dunitz should be noted.127 While 

the study by Dunitz focused on conformational preferences of planar amides with respect to bond 

lengths, C(O)–N–C–C(H) torsion and C(O)–N–C angles, the main conclusion of our study is that non-

planarity of amide bond is commonly found in N-activated tertiary amides achieved by several methods 

of activation (Sections 2-5).     

 

Table 1. Structurally Characterized Tertiary Amidesa 

entry type no. of amides and derivatives 

1 All amides 63,071 

2 Amides w/o metal 48,024 

3 Ureas 8,953 

4 Carbamates 6,507 

5 Thiocarbamates 266 

6 Anilides 11,419 

7 Hydrazides 3,988 

8 N-Acyl-hydroxylamines 803 

9 N-Acyl-thiohydroxylamines 1,298 

10 Acyclic amides 16,505 



 

11 Acyclic anilides 3,455 

12 Acyclic hydrazides 1,749 

13 Acyclic N-acyl-hydroxylamines 408 

14 Acyclic N-acyl-thiohydroxylamines 585 

15 Acyclic N-acyl-azetidines 108 

16 Acyclic N-acyl-aziridines 53 

aCCDC ConQuest analysis, 05/05/2020. Note that for compounds in which two or more structures have been characterized in 

a single unit cell, the number of amides is one. 

 

The evaluation of amide bond distortion distribution of structurally-characterized tertiary acyclic 

amides indicates a significant number of >200 amides with twist >40º, and >500 with pyramidalization 

>40º (Winkler-Dunitz distortion). Based on the experimental studies on twisted amides,28–35 the values 

of  = 40º and N = 40º are considered as threshold values that allow for unique reactivity of the amide 

bond that is distinct from typical planar amides. In many cases, these amides should be considered as 

“amino-ketones” or “activated amides” rather than classic amides, while the increasing continuum of 

changes in reactivity is enabled by steric and electronic activation.63–78,115 The Winkler-Dunitz 

parameters (, N, C) were calculated on the basis of the equation in Scheme 2.116 For classification 

purposes in the review, these values are given with the accuracy to two decimal places. In general, 

amide bond distortion parameters are given with the accuracy to three decimal places with respect to the 

bond lengths of the amide bond, while Winkler-Dunitz parameters are given with the accuracy to one or 

two decimal places. It should be noted that changes in the properties of the amide bond represent a 

continuum of change.   

It is also worth noting that the additive Winkler-Dunitz parameter (+N) represents a very accurate 

predictor of the twisted amide bond properties in conformationally-locked bridged lactams;117,118 

however, in contrast to bridged systems, in which correlation between twist and pyramidalization is 

typically linear within the same scaffold, geometric distortions of acyclic amide bonds can be separately 

achieved by twist, pyramidalization and/or combination of twist and pyramidalization (i.e. twisted, 

pyramidalized and twisted pyramidalized amides by Yamada’s classification).30,57 As a result, twist 



 

angle () and pyramidalization at nitrogen (N) parameters are considered separately for acyclic 

geometrically distorted amide bonds, while the effects of the second parameter are discussed where 

relevant.   

An additional parameter that should be discussed is the carbonyl bending angle ().33,128 It has been 

noted by Bürgi and co-workers that strained lactones and lactams exhibit a compression of the amide 

NCO bond angle.128 Subsequently, Stoltz and co-workers made the same observation in their synthesis 

of 7-hypoquinuclidonium systems.38 The carbonyl bending angle has been mathematically defined as  

() = ((360° – CCN)/2 – OCN) (Scheme 5).38 This value has been proposed to correlate with the relative 

activation of amides as a trapped intermediate of the intramolecular elimination of the amine to form an 

acylium ion. For the most twisted bridged lactam, 7-hypoquinuclidone BF3 complex (2.33, Figure 4),  

is 5.8°, which indicates early stage of acylium formation.38 For comparison, for the most twisted acyclic 

amides, such as N-benzoyl-glutarimide (3.100, Figure 9),  is 3.5°; for Yamada’s amide (3.56, Figure 

8),  is 3.3°; for 4-Me2N-C6H4-C(O)N-Boc2 (3.88, Figure 9),  is 4.4°; for the fully twisted Ph-C(O)-N-

Ts/Boc (3.139, Figure 11),  is 4.4°; and for benzoyl-2,5-dimethyl-pyrrole (3.107, Figure 10),  is 1.5°. 

Future studies on twisted amides should routinely report the carbonyl bending angle parameter (). 

 

Scheme 5. Carbonyl Bending Angle () of Amide Bonds  

 

 

 The reader should note that in order to allow for a broad overview and comparison of acyclic twisted 

amides with their more established bridged and cyclic counterparts, bridged lactams and cyclic amides 



 

are included in the review. As outlined in the section above, since it is well-established that twist and 

pyramidalization in acyclic twisted amides are typically independent of each other, these values are 

considered separately. As such, the review is arranged into the following sections: (i) cyclic amides with 

twist of 40° to 90°; (ii) acyclic amides with twist of 40° to 90°; (iii) cyclic amides with N-

pyramidalization of 40° to 90°; (iv) acyclic amides with N-pyramidalization of 40° to 90°. Relevant 

examples of amide bond properties, computational characterization and amide bond reactivity are 

included along with the discussion of the structural properties of structurally-distorted amides. We hope 

that this review will stimulate the additional use of amide bond distortion by a range of interested 

chemists and lead to further progress in this highly important area of amide bond chemistry.  

Note that detailed summary tables including Winkler-Dunitz distortion parameters are included in the 

Supporting Information (SI). 

 

2. Cyclic Amides: Twist 40-90° 

In this section, we present a comprehensive overview of structurally-characterized cyclic amides with 

twist values of 40° to 90°. In general, these amides can be divided into the following classes: (1) classic 

bridged lactams; (2) N-acyl-activated cyclic amides; (3) N-sulfonyl-activated cyclic amides; (4) N-

quaternized cyclic amides; (5) N-aziridinyl cyclic amides; and (6) miscellaneous examples.  

2.1. Bridged Cyclic Amides 

Conformational-restriction of the amide bond geometry in a bicyclic ring with the nitrogen atom at the 

bridgehead position represents the most classic and historically relevant method for freezing out non-

planar amide bond conformation (Figure 1). After the seminal proposal by Lukeš in 1938,26 many 

researchers became intrigued by the prospect of synthesizing these elusive amides, including very 

elegant studies by Yakhontov,129–132 Pracejus,133–135 Brown,136–138 and others,28–35 which after a clear 

misassignment by Yakhontov,129 culminated in the unambiguous synthesis of fully perpendicular 2-

quinuclidonium tetrafluoroborate and 1-aza-2-adamantanone by Stoltz36–38 and Kirby,39–43 as well as the 



 

establishment of 1-azabicyclo[3.3.1]nonan-2-one as a model medium bridged twisted lactam 

characterized by the N-/O-protonation switch cross-over geometry by Greenberg.44–47  

The most twisted of these bridged lactams show the reactive properties of “amino-ketones”, while 

additional unique reactivity can be achieved by differentiating distortion of planarity of the C–N–C–O 

bonds, such as  N–C bond cleavage, which served as the basis the discovery of novel reactivity of 

acyclic twisted amides.49–78  

In general, very few bridged lactams with twist values close to 90° have been reported. After early 

studies on increased rate of hydrolysis of bridged lactams by Pracejus and Brown,28–35 studies by 

Greenberg first quantified that the cross-over of the “amino-ketone” type reactivity can be expected with 

the  values close to 40°.45,46 Studies by Aubé demonstrated the increased reactivity of the unactivated  

N–C bond to hydrogenolysis conditions, which represented one of the first examples of N–C bond 

scission of unactivated amide bonds.32,139 The amide bond geometry required for this type of reactions 

has been demonstrated to be close to 40°. These studies culminated in the demonstration of an 

instantaneous hydrolysis of N–C(O) bond in the perpendicular 2-quinuclidonium tetrafluoroborate 

(2.32, Figure 4) and 1-aza-2-adamantanone (2.14, Figure 1) systems by Stoltz36 and Kirby.39 Since 

several reviews on the properties of the bridged lactams have been published,28–35 this section briefly 

summarizes the geometry of bicyclic scaffolds.  

 



 

           

 

Figure 1. Bicyclic Bridged Amides with Twist Values of 40° to 90°. (See SI for details and expanded 

tables). 

 

Examination of amides in Figure 1140–152 reveals that highly rigid adamantanone (2.14-2.15),39,43 

haemanthidine (2.10, 2.12)151 and tricyclic bridged stemona (2.7-2.9, 2.13)147,148 bicyclic frameworks 

are most effective for achieving high twist in bridged lactams. Note that the nomenclature that 

underlines the bridge with the C=O bond in bicyclic structures containing the lactam linkage is used. It 

is important to note that the position of the bridge determines the properties of amides in this class of 

lactams. It is interesting to note that related one-carbon bridged [6.3.1] (2.11)152 and [4.3.1] (2.3)142 

systems result in a comparably high twist of the amide bond. Other ring systems that lead to  > 40° 

include a [2.3.2] benzo-fused system (2.1),140 unique Tröger’s base bis-twisted amides (2.2, 2.5),144,145 a 

related [2.1.3] 1,5-diazabicyclo[3.2.1]octane system (2.4)143 and stemofoline alkaloid framework 

(2.6).146 Overall, it is rather surprising that more than 80 years after the original proposal by Lukeš only 

very few bridged lactams with appreciable twist have been structurally characterized.  

 

2.2. N-Acyl-Activated Cyclic Twisted Amides 



 

Activation of cyclic amides with N-acyl group represents another effective approach to achieve 

geometric distortion of the amide bond (Figure 2).153–162 Note that in contrast to acyclic amides and 

amide derivatives (Section 3), the twisted amide bond in examples in Figure 2 refers to the cyclic amide 

bond in lactams (cf. exo-cyclic amide bond). These examples also include related imidoyl-type 

activation as represented by 2.16.153 As shown in Figure 2, the activating group can be within the ring 

(endocyclic), such as amides 2.16,153 2.17,154 2.23,160 2.25162 or more commonly outside the lactam ring 

(exocyclic), such as 2.18,155 2.19,156 2.20,157 2.21,158 2.22.159 The twisted lactams feature 7-membered 

rings (2.16, 2.17, 2.19, 2.22, 2.23, 2.25), 8-membered rings (2.18, 2.20, 2.21) or macrocyclic rings 

(2.24).161 The latter compound is related to imide macrocycles (vide infra, Section 2.6.) The most 

recognized in this series is the eight-membered lactam 2.20, featuring a transoid amide bond, wherein 

the amide bond distortion arises from steric and electronic factors.157 The main distortion has been 

ascribed to the avoidance of allylic strain between the lactam N–C(O) bond and the N–acyl bond. 

Overall, N-acyl-activation appears as a highly effective way of distorting cyclic amide bonds, while the 

nN → *C=O conjugation is accomplished through the presence of another carbonyl group (exo- or 

endocyclic). 

 

 

Figure 2. N-Acyl-Activated Cyclic Amides with Twist Values of 40° to 90°.  



 

 

2.3. N-Sulfonyl-Activated Cyclic Twisted Amides 

N-sulfonyl activation represents a related method to N-acyl activation to twist cyclic amides bonds 

(Figure 3).163 The twist in the two lactams reported (2.26-2.27)164,165 results from a significant non-

bonding interaction between the N-sulfonyl group and the adjacent C-substituents on both sides on the 

amide bond. It is interesting to note that both types of lactams are readily available by 1,7-enyne 

bicyclizations164 and enolate cyclizations.165 

 

 

Figure 3. N-Sulfonyl-Activated Cyclic Amides with Twist Values of 40° to 90°. 

 

2.4. N-Quaternized Cyclic Twisted Amides 

Two classes of N-quaternized cyclic amides containing highly twisted amide bonds have been 

reported: (i) bridged lactams (Figure 4A); and (ii) cyclic non-bridged amides (Figure 4B).  

It is particularly interesting from the standpoint of novel reactivity of N–C(O) bonds that amides 2.28-

2.33 in Figure 4A have been prepared by the direct N-protonation of the corresponding bridged 

lactams.142,43,36,38 Note that this class also includes the incredibly strained bridged lactam 2.33 embedded 

in a one-carbon bridged [2.2.1] ring system with N-coordinated BF3 complex.38 The nitrogen atom in 

this particular lactam as well as in the archetypal 2-quinuclidonium tetrafluoroborate 2.32 featuring 

unsubstituted [2.2.2] system are protected in situ as quaternary salts after the ring forming 

intramolecular Schmidt reaction, which enables their facile isolation.36 In contrast, tricyclic lactam 

precursors to 2.28-2.30 are stable to the aqueous isolation conditions and undergo facile N-protonation 

by mild acids, such as p-TsOH.142 This class is also represented by the parent 1-aza-adamantanone 2.31 

crystallized as HBF4 salt.43 In general, quaternization of the nitrogen atom in bridged lactams results in a 

significant increase of amide bond twist.166  



 

 

 
 

Figure 4. N-Quaternized Cyclic Amides with Twist Values of 40° to 90°. 

 

N-Quaternized amides 2.34-2.35 feature close to perpendicular twist of the amide bond (Figure 

4B).167–171 These amides have been prepared by the reaction of aminocarbene complexes of chromium 

with alkynes and demetallation. Of interest is the facile N–C(O) ring opening upon exposure to Et3N, 

consistent with the high reactivity of N-alkylated non-planar amides.167  

Five-membered betaines, such as 2.36 has been isolated from the reaction of aryl isocyanate with an 

yne-hydrazines.168 Related compounds include pyrazolinium ylides 2.37 and 2.40 prepared from -

enaminoesters169 as well as 2-oxoindolinium enolate 2.38 from Wolff rearrangement/intramolecular 

nitrogen addition170 and pyrazolium betaines, such as 2.39 from the reaction of ketene ethylene acetals 

with N,N-dialkylhydrazines.171 Overall, these zwitterionic N-alkyl amides represent an attractive 

indirect way of accessing fully twisted ( > 82°) cyclic amide bonds. 

 

2.5. N-Aziridinyl-Fused Cyclic Twisted Amides 

Amides 2.41-2.42 featuring fused [4.1.0] and [3.1.0] ring systems with the bridgehead nitrogen in a 3-

membered ring contain significantly twisted amide bonds ( > 50°) (Figure 5).172,173 It should be noted 

that in these examples, amide bond twist is accompanied by full pyramidalization of the nitrogen atom 

geometrically enforced by the 3-membered ring (N = 68.1° and 61.9° for 2.40 and 2.41, respectively).17 



 

Amide 2.40 undergoes facile aziridine ring opening with MeOH to give the seven-membered lactam; 

the reaction is likely initiated by N-protonation of the amide bond nitrogen.172 

 
 

Figure 5. N-Aziridinyl Cyclic Amides with Twist Values of 40° to 90°. 

 

 
 

Figure 6. Miscellaneous Cyclic Amides with Twist Values of 40° to 90°. 

 

2.6. Miscellaneous Cyclic Twisted Amides 

Miscellaneous examples of cyclic amides with considerable twist of the amide bond include an 

intriguing BNC5 boracycle 2.43 reported by Martin (Figure 6A),174 imide macrocycles with 18-

membered (2.44-2.50) and 24-membered (2.51-2.59) ring systems (Figure 6B-C)175–179 and 



 

azafulleroids, such as 2.60 (Figure 6D).180 In particular, the x-ray structure of boracycle 2.43 indicates 

Nlp delocalization into the boron atom (short B–N bond of 1.417 Å and short C=O bond of 1.209 Å).174 

Resonance energies have not been reported. These intriguing compounds might find applications as 

boron Lewis acids in organic chemistry. Imide macrocycles 2.44-2.50 and 2.51-2.59 feature 3 and 4 sets 

of non-planar amide bonds, respectively, restricted by the imide-conformation.175–179 Azafulleroid 2.60 

contains one-carbon bridged [4.3.1] ring system (vide supra, Section 2.1.) and readily reacts with basic 

alumina or BnNH2 to give the corresponding azafullerenes.180 

 

3. Acyclic Amides: Twist 40-90° 

Activation of acyclic tertiary amides by intramolecular steric repulsion between amide bond 

substituents results in disruption of amidic resonance, N–C(O) bond rotation and overall deformation of 

the amide bond geometry.163 The first to recognize that such geometric repulsion can be used to 

effectively twist acyclic amide bonds was Yamada in 1993,57–62 which resulted in an elegant 

investigation of 3-pivaloyl-1,3-thiazolidine-2-thiones (such as 3.56, Figure 8) benefiting from the large 

radius of the thiocarbonyl group in a compact 1,3-thiazolidine scaffold with a very significant  of 

74.3°.57 It was also noted that since in these acyclic systems, twist is generally disconnected from amide 

bond pyramidalization. As such, these amides depict the most accurate representation of twisted amides.  

In general, acyclic twisted amides can be categorized into the following classes depending on the type 

of N-activating moiety: (1) N-mono-acyl-activated twisted amides; (2) N-di-acyl-activated twisted 

amides; (3) N-sulfonyl-activated twisted amides; (4) N-heterocycle-activated twisted amides; and (5) 

miscellaneous examples. 

 

3.1. N-Acyl-Activated Acyclic Twisted Amides 

At present, N-acyl-activation represents by far the most common method to achieve distortion of 

acyclic twisted amides with numerous examples of various amides, scaffolds and N-acyl activating 



 

groups approaching  values of 80-90°. For clarity, N-acyl-activated amides have been divided into N-

mono-acyl and N,N-di-acyl-activated twisted amides (sections 3.1.1. and 3.1.2.).  

It should be noted that depending on the bond or substitution that are discussed, these amides can also 

be referred to as imides or derivatives. In these systems, steric distortion is closely related to the 

electronic activation of the amide bond owing to the presence of another carbonyl group that can 

participate in nN → *C=O conjugation.49–78 In many cases, these amides represent extremely reactive 

twisted amides with “resonance-disconnected” N–C(O) bond conjugation. Importantly, these acyclic 

twisted are significantly more stable to storage and hydrolysis conditions than most of the highly twisted 

bridged lactams,28–35 which enables their application as acyl transfer reagents or, more recently, as 

resonance and geometry-tunable electrophilic cross-coupling reagents by N–C(O) oxidative addition to 

low valent metals. 

 

3.1.1. N-Mono-Acyl-Activated Acyclic Twisted Amides 

N-Mono-acyl-activated twisted amides with  values of 40-90° are presented in Figures 7-8.57,60,181-230 

Three points of amide bond geometry should be considered when discussing structures of acyclic 

twisted amides: (1) N-acyl-activating substituent; (2) the other N-substituent; (3) substitution at the -

carbon. It is important to note that when both of the N–C(O) groups are acyclic, geometric distortion of 

the more twisted bond represents a balance between the optimum geometry for the two acyl bonds, 

which often leads to the flattening of the other N-acyl bond.196 

Examination of the examples in Figures 7-857,60,181-230 shows that N-acyl-substituents that result in a 

substantial twist of the amide bond include acyclic C(O)R, such as aromatic (aryl: 3.1, 3.21; 

anthracenyl: 3.6, 3.13), vinyl (3.9, 3.39, 3.59), heterocyclic (3.5, 3.15), 1° aliphatic (3.14, 3.17, 3.23, 

3.44, 3.55, 3.60-3.61, 3.64), 2° aliphatic (3.34, 3.41-3.42, 3.45) and CF3 (3.51-3.52). Furthermore, the 

activating acyclic acyl group can be C(S)R (such as 3.7, 3.11, 3.16, 3.24, 3.38), CO2R (such as 3.10, 

3.35, 3.48, 3.50, 3.54, 3.57-3.58, 3.62), C(S)OR (such as 3.25) or CONR2 (such as 3.29). Cyclic acyl 

groups include acyl heterocycles, such as imidazolidin-4-ones (3.2), 1,3-oxazinan-4-ones (3.3-3.4, 3.18, 



 

3.27, 3.37), indolin-2-ones (3.8), thiazolidin-2-imines (3.12), imidazolidine-2-thiones (3.19-3.20, 3.36, 

3.43, 3.47), 3,4-dihydroquinazolin-2(1H)-ones (3.22, 3.26, 3.28, 3.31, 3.33, 3.40), tetrahydropyrimidine- 

 
 



 

Figure 7. N-Mono-Acyl-Activated Acyclic Amides with Twist Values of 40° to 65°. 

 

 
 

Figure 8. N-Mono-Acyl-Activated Acyclic Amides with Twist Values of 65° to 90°. 

 

2(1H)-thiones (3.30, 3.53), tetrahydropyrimidin-2(1H)-ones (3.32), thiazolidine-2-thiones (3.46, 3.49, 

3.56), 1,9-dihydro-6H-purin-6-ones (3.63), and 2H-benzo[b][1,4]oxazine-3(4H)-thiones (3.65).  

There is also a significant variation in terms of the other N-substituent, which includes N-aryl (3.9-

3.11, 3.17, 3.25, 3.29, 3.35, 3.38, 3.48, 3.54, 3.58, 3.60-3.62), N-heteroaryl (3.1, 3.5, 3.21), 1° alkyl 

(3.15, 3.50), 2° alkyl (3.6-3.7, 3.13, 3.14, 3.16, 3.23-3.24, 3.34, 3.41-3.42, 3.45, 3.55, 3.57) and 3° alkyl 

(3.39, 3.44, 3.51-3.52, 3.59, 3.64). 

Similarly, the -carbon substitution can be 1° alkyl (3.19, 3.36, 3.65), 2° alkyl (3.3-3.4, 3.10, 3.16, 

3.18, 3.27, 3.35, 3.48-3.50, 3.54-3.55, 3.57-3.58, 3.60-3.62), aryl (3.2, 3.6, 3.11, 3.13-3.14, 3.17, 3.20-

3.23, 3.26, 3.28, 3.30-3.33, 3.39, 3.41-3.42, 3.45, 3.51-3.53, 3.63), heteroaryl (3.5, 3.12, 3.15, 3.34, 

3.44, 3.59, 3.64), vinyl (3.7, 3.24, 3.29, 3.38), and 3° alkyl (3.1, 3.8, 3.25, 3.37, 3.40, 3.43, 3.46-3.47, 

3.56).  



 

It has been recognized quite early on that increased steric substitution at the -position leads to an 

increase in steric repulsion with the N-activating substituents, resulting in a general order of twist 

correlating with the increase of steric Charton and Taft parameters.57,60 In contrast, the substitution at 

the nitrogen atom typically represents a balance between the steric demand of the N-moieties, with the 

highest twist obtained with a large difference in steric hindrance between the substituents.  

Several examples summarized in Figures 7-8 deserve additional discussion. Mono-twisted N-acetyl 

amides, such as 3.17, undergo selective N–C(O) scission of the more twisted ArC(O)–N amide bond ( 

= 43.0° cf. N–Ac,  = 5.1°) under Pd and Ni catalysis to give ketones and biaryls.196 These “mono-

twisted” acyclic amides are readily synthesized from the corresponding 2° benzamides. Twisted amides 

embedded in 2,5-dithioglyucoluril scaffold, such as 3.19-3.20, 3.36 and 3.47 have been studied by 

Harrison and co-workers.198,199,213,219 These amides feature one of the exocyclic amide bonds 

significantly more twisted than the other exocyclic bond for small -carbon substituents (e.g., R = Me, 

3.36,  = 55.0° vs.  = 2.6°), and undergo further twisting with the increase of steric hindrance at the -

carbon (e.g., R = t-Bu, 3.47,  = 66.4° vs.  = 54.3°).213,219 N-Acyl-1,3-thiazolidine-2-thiones, such as 

3.46, 3.49 and 3.56 have been pioneered by Yamada as the first models of the acyclic twisted 

amides.57,60 The most twisted in the series is N-pivaloyl derivative 3.56 ( = 74.3°). These amides 

undergo selective hydrolysis with the rate correlated to the amide bond twist.59 Recent studies by Weng 

introduced N-trifluoroacetyl amides, such as 3.51-3.52.223 Facile synthesis from the corresponding 

nitrones and very high twist ( = 72.9-73.6°) in the presence of electronically-activating trifluoroacetyl 

group are noteworthy. These amides are formally analogous to N-triflyl amides.231 Finally, amide 3.65 

featuring a benzofused morpholine-3-thione system reported by Yamada represents one of the rare 

examples of exceptionally twisted amides ( = 89.0°) with sterically unbiased 1° alkyl substituent at the 

-carbon.230 The authors proposed that the steric interactions between the thiocarbonyl group and the 

alkyl substituent contribute to the high twist of the amide bond. 

 

3.1.2. N,N-Di-Acyl-Activated Acyclic Twisted Amides 



 

N,N-Di-acyl activation represents one of the most effective methods for twisting amide bonds (Figure 

9).232–266 In this class of amides, nN to *C=O conjugation is satisfied by delocalization onto two exo-

cyclic carbonyl groups (cf. single C=O, section 3.1.1.), which leads to enhanced geometric distortion 

dependent primarily on steric and to a lesser extent on electronic properties of the activating group (cf. 

balanced effect of steric hindrance of all substituents comprising the amide bond, section 3.1.1.).  

In particular, N,N-di-acyl-activation is notable for providing amide-based electrophilic reagents with 

reactivity exceeding acyl halides that have been exploited both in transition-metal-catalyzed cross-

coupling chemistry and as acyl transfer reagents in transition-metal-free reactions.49–78 Computational 

studies on N,N-di-acyl-activated amides have been published, demonstrating that in many cases amidic 

resonance of the twisted amide bond is very low or virtually non-existent (e.g., N-acyl-glutarimides, RE 

< 2.4 kcal/mol depending on the R substituent at the -position of the amide bond, 3.100, Figure 

9).232,240,244 Furthermore, it is worth noting that in contrast to the typically less twisted N-mono-acylated 

amides which are generally synthesized from the corresponding acyl halides or other activated 

carboxylic acid derivatives, the direct N,N-di-acylation of fully planar 1° amide bonds is possible,49,50 

which enables for twisting of otherwise planar bonds.  

In general, N,N-di-acyl activation can be accomplished using N-acyclic activating groups,232–266  such 

as C(O)R where R is an aromatic or heteroaromatic ring (3.67, 3.70) or CO2R where R is t-Bu group 

(3.78, 3.80); however, more common is the use of cyclic N-activating groups, including heterocycles 

such as succinimide (3.66, 3.69, 3.77), hydantoin (3.68, 3.71-3.72, 3.74, 3.76), 2,4-thiazolidinedione 

(3.73), phthalimide (3.75, 3.91), 1,3,5-triazinane-2,4-dione (3.79), uracil (3.81-3.83, 3.85-3.87, 3.89-

3.90, 3.94-3.96, 3.99, 3.101-3.103), 1,8-naphthalimide (3.84), thioquinazoline-2,4-dione (3.92), 1,3,5-

triazinane-2,4,6-trione (3.93), 3-azabicyclo[3.2.1]octane-2,4-dione (3.97), 1,2,4-triazine-3,5-dione 

(3.98), glutarimide (3.100) and isoquinoline-1,3-dione (3.104). 

The -carbon substitution can be 1° alkyl (3.79, 3.103), 3° alkyl (3.91, 3.93), alkenyl (3.66, 3.84, 

3.97) or most commonly aryl (3.67-3.70, 3.72-3.78, 3.80-3.83, 3.86-3.90, 3.92, 3.94-3.96, 3.98-3.102, 

3.104) or heteroaryl (3.71, 3.85). In general, an increase of amide bond twist is observed with more 



 

sterically-demanding -carbon substituents. Furthermore, six-membered N-acyl-activating groups result 

in a higher twist than their five-membered counterparts. A study of the series of glutarimides, 

succinimides and phthalimides demonstrated the following order of amide bond distortion (3° alkyl >  

 

 

Figure 9. N,N-Diacyl-Activated Acyclic Amides with Twist Values of 40° to 90°. 

 

aryl > 2° alkyl > 1° alkyl; glutarimide > succinimide > phthalimide).237 It is further interesting to note 

that heteroatom substitution of the activating ring has a noticeable but not a significant difference in 

amide bond twist (e.g., succinimides, 3.69 vs. hydantoins, 3.74).239,240  



 

Several amides in this series deserve an additional comment. First, N-acyl-glutarimides and N-acyl-

succinimides, such as 3.69 and 3.100, have emerged as highly reactive yet stable acyl- and aryl-

electrophiles by metal-catalyzed N–C(O) bond oxidative addition.237 In many cases, the more twisted N-

acyl-glutarimides are significantly more reactive than N-acyl-succinimides (3.100,  = 88.6° vs. 3.69,  

= 46.1°); however, it should be noted that the use of both classes of these acyclic twisted amides is 

highly advantageous in metal-catalysis due to higher stability than that of the corresponding acyl halides 

and anhydrides.49–78  Second, twisted amides activated by exo-cyclic Boc groups, such as 3.88 ( = 

82.9°) permit for rapid synthesis from 1° benzamides.244 These amides have also been utilized in cross-

coupling chemistry by acyl and decarbonylative mechanisms. Interestingly, while the amidic resonance 

is significantly reduced (RE = 6.3 kcal), steric distortion closely depends on the t-Bu groups.244 Third, 

many of the amides in this class based on the uracil and thymine frameworks have been synthesized 

with the goal of medicinal chemistry applications (e.g., 3.98, 3.101-3.103),261,263–265 and it is likely that 

amide bond twist plays a role in the biological activity of these compounds. Finally, the N-pivaloyl 

phthalimide derivative 3.91 synthesized by Yamada represents one of the classic examples of acyclic 

twisted amides, wherein the amide bond is almost fully perpendicular by the virtue of N-activating 

group and -carbon substituent ( = 83.2° vs. 3.75,  = 55.0°).254 

 

3.2. N-Heterocycle-Activated Acyclic Twisted Amides 

N-Heterocyclic activation (i.e., activation by connecting the amide nitrogen atom to a heterocyclic 

system) represents another highly effective method of twisting amide bonds (Figure 10).267–288 In this 

method, heterocycles are either aromatic resulting in Nlp delocalization onto the aromatic ring system 

with a subsequent twisting of the amide bond, or non-aromatic, which leads to amide bond twisting due 

to steric repulsion in the absence of additional Nlp delocalization.  

The most recognized amides in this class are N-benzoylpyrroles, such as 3.107, studied by Brown and 

co-workers.269 More recently, Miller and co-workers reported the synthesis and structural 

characterization of related imidazole analogues, such as 3.118, 3.126 and 3.133.278 In general, these N-



 

acyl-azolides are well-established to undergo hydrolysis with the enhanced rate depending on the 

heterocycle and twist of the amide bond.289–292  

The heterocyclic N-acyl twisted amides are of interest in medicinal chemistry as heterocyclic building 

blocks and target active compounds.293,294 Furthermore, cross-coupling of N-acyl-azolides by N–C(O) 

oxidative insertion has been reported.289,290 It should be noted that twisting in this class of amides is 

closely dependent on the steric impact of the heterocyclic ring system, which in all cases requires at 

least a single substitution at the adjacent C2-position to the amide nitrogen atom to achieve appreciable 

amide bond twist (Figure 10).267–288 As a consequence, the synthesis of these twisted amides is often is 

more challenging than N,N-di-acyl or N-mono-acyl-derivatives discussed in sections 3.1.1. and 3.1.2. 

Moreover, N-heterocyclic activated twisted amides are typically less hydrolytically stable than N-acyl 

or N,N-di-acyl counterparts since they cannot benefit from the nN to *C=O delocalization on the 

adjacent carbonyl group.289–292  

In general, twisting of the amide bond in this class of amides (Figure 10) 267–288 can be achieved by 

using aromatic N-heterocycles, such as pyrroles (3.105, 3.107, 3.111, 3.117), pyrazoles (3.108, 3.125), 

indoles (3.112, 3.114, 3.122, 3.124, 3.129-3.132), imidazoles (3.113, 3.118, 3.126, 3.133), 

benzimidazoles (3.115, 3.120), pyridazin-4(1H)-ones (3.119) and pyrrolo[3,2-d]pyrimidines (3.121, 

3.128) or saturated N-heterocycles, such as oxazolidin-5-ones (3.106, 3.110, 3.116), 1,2-

dihydropyridines (3.109), octahydrocyclopenta[b]pyrroles (3.123) and 1,2,3,6-tetrahydropyridazines 

(3.127). An important difference is that in N-aromatic heterocycles the amide bond twisting has its 

origin in electronic delocalization of the lone pair at nitrogen on the aromatic ring269,289 in conjunction 

with steric hindrance at the ortho positions to the amide nitrogen. These N-acyl-azolides have been 

shown to have significantly reduced amidic resonance (e.g., N-benzoyl-pyrrole: RE = 9.3 kcal/mol, 1.4, 

Scheme 1; N-benzoyl-pyrazole: RE = 7.8 kcal/mol, 1.5, Scheme 1; N-benzoyl-imidazole: RE = 7.8 

kcal/mol, 1.6, Scheme 1).289 As expected, the resonance is further decreased with steric substitution and 

the subsequent N–C(O) twisting (e.g., benzoyl-2,5-dimethyl-pyrrole, RE = 2.8 kcal/mol, such as 3.107, 

Figure 10).  



 

In contrast, in non-aromatic N-heterocycles (Figure 10),267–288 the amide bond is twisted primarily due 

to steric repulsion with the adjacent substituents in the absence of additional Nlp delocalization. The -

carbon substitution can be 1° alkyl (3.105, 3.111, 3.113, 3.117), 2° alkyl (3.115, 3.123), 3° alkyl (3.114, 

3.122, 3.129, 3.131-3.132), aryl (3.106-3.110, 3.112, 3.116, 3.118-3.121, 3.126-3.128, 3.133), 

heteroaryl (3.125) or carbaboranyl (3.124, 3.130). As expected, there is a good correlation between the  

 
 

Figure 10. N-Heterocycle-Activated Acyclic Amides with Twist Values of 40° to 90°. 

 

amide bond twist and -carbon substitution in the following order: 1° < 2° < aryl < 3°. Furthermore, 

there is the following order of N-heterocycles in amide bond twisting: pyrrole < pyrazole < indole < 

imidazole; however, specific ring substitution can often alter this trend.  

There are several notable amides in this series that deserve additional discussion. Amide 3.107 was 

prepared by Brown and co-workers in a study of altered amidic resonance in acyclic and cyclic 



 

amides.269 The authors found that while the twist considerably increased in 3.107 in comparison with N-

benzoyl-pyrrole ( = 7.9° to 42.0°), the N–C(O) and C=O bond lengths have remained practically 

unchanged (1.409Å to 1.416 Å and 1.211 Å to 1.208 Å), indicative of significant Nlp to Ar 

delocalization. Twisted amides such as 3.111 and 3.117 are readily accessible by Pd(II)-catalyzed C–H 

annulation of enamides with alkynes, which in principle enables to activate otherwise unsubstituted 1° 

amides.273 Amide bonds in N-acyl-indoles undergo twisting due to steric repulsion with a C2-

substituents (e.g., 3.112).274 In this respect, the direct oxidative C2-imidation of unsubstituted indoles 

such as 3.114 leads to moderate twist ( = 47.5°),276 while the benzylic imidation, such as in 3.132, 

affords practically perpendicular amide bonds ( = 88.5°).288 N-Acyl-imidazoles, such as 3.118 and 

3.133 have been studied by Miller and co-workers.278 In this case, a significant increase of twist is 

observed by introducing 2,5-diphenyl substitution on the imidazole ring ( = 52.4° to  = 88.5°). Finally, 

N-acyl-imidazoles, such as 3.120 are potent bacterial FabH inhibitors,280 while 3.123 is a 

hydroxymethyl aminomethane salt of ramipril, an antihypertensive drug.283 Of medicinal interest are 

also twisted amide carbaboranes derivatives (3.124, 3.130) of indomethacin, a nonsteroidal anti-

inflammatory drug.284 The use of large carbaboranyl substituents instead of 4-chlorophenyl contributes 

to the high amide bond twist in these compounds. In this case, both the steric and the electronic effect of 

the carbaboranyl substituent should be considered; electronically, such an electropositive group on the 

amide bond would be expected to enhance amidic resonance.  

 

3.3. N-Sulfonyl-Activated and N,N-Di-Sulfonyl-Activated Twisted Amides 

Several examples of N-sulfonyl-activated twisted amides have been reported (Figure 11).295–298 With 

the exception of the moderately twisted -diazo-substituted amide 3.134 ( = 43.5°),295 which is derived 

from Oppolzer’s sultam, amides in this class feature two activating substituents at the nitrogen atom. 

There are two types of activation: (1) bis-sulfonyl, such as in 3.135-3.136 and 3.138;296,297 and (2) 

combination of N-sulfonyl with N-acyl, such as in 3.137 and 3.139.298 The use of more sterically-

hindered N-Ts substitution leads to a larger geometrical distortion than with N-Ms (Ms: 3.135,  = 



 

63.2°; Ts: 3.138,  = 81.0°).296 Furthermore, it is noteworthy that N-Ts activation is more effective than 

the related N-Boc activation (Figure 9, 3.80,  = 72.5°),244 which leads to practically perpendicular 

amide bonds (3.139,  = 87.2°). These N-bis-sulfonyl-amides, such as N-Ms2 (3.135) and N-Ts2 (3.138) 

as well as N-Ts/Ac (3.137) and N-Ts/Boc amides (3.139) undergo Pd-catalyzed cross-coupling by 

oxidative addition of the N–C(O) bond.296,298 

 

 
 

Figure 11. N-Sulfonyl-Activated Acyclic Amides with Twist Values of 40° to 90°. 

 

3.4. Miscellaneous Acyclic Twisted Amides 

Amide 3.140 features N-Ph/N-1,3,5-triazin-2-yl substitution, which leads to moderate twist ( = 44.4°) 

(Figure 12).299 It is interesting to note that this amide is significantly more twisted than the related N,N-

diphenylbenzamide (PhCONPh2,  = 11.2°). In contrast, amide 3.141 is a quaternary acyclic N-acyl 

ammonium salt ( = 85.1°)300 that is related to the cyclic counterparts (section 2.4., 2.34);167 however, 

the lack of cyclic structure leads to low hydrolytic stability of this class of N-acyl quaternary ammonium 

salts. 

 

 

Figure 12. Miscellaneous Acyclic Amides with Twist Values of 40° to 90°. 

 

4. Cyclic Amides: N-Pyramidalization 40-60° 

In addition to twisting, amide bond geometric distortion can be achieved by pyramidalization of the 

nitrogen atom.28–35 In the extreme cases, these pyramidalized amides feature sp3 hybridization that is 



 

more characteristic to amines rather than amides.12,17 The most well-known examples of such 

pyramidalized amides include confining the amide bond nitrogen in a cyclic ring system, such as 

azetidine or aziridine, however in these moieties the inherent ring strain of the small-ring heterocycle 

contributes to the reactivity of these amides.301 Recent elegant studies by Ohwada and co-workers 

identified 7-azabicyclo[2.2.1]heptane amides (such as 5.7, Figure 21) as another class of fully 

pyramidalized amides.302-314  

It should be noted that with the exception of these inherently restricted ring systems,302-314 at present, 

it is not clear if N-pyramidalization alone is sufficient to engender new reactivity of amide bonds.28–35 In 

this respect, the case of bridged lactams is instructive; it has been shown in several studies that 

properties of twisted bridged lactams can be correlated with both twist and nitrogen pyramidalization 

when (1) comparing amide distortion within the same classes of N-alkyl non-planar bridged amides, and 

(2) the amide bond is sufficiently geometrically altered to promote N-amino-ketone type 

reactivity.45,46,117,118,315 By contrast, electronic activation by N-acyl or related substitution leads to 

redistribution of the nitrogen lone pair into the activating substituent,49–78 which in turn disconnects the 

amide bond conjugation within the N–C(O) moiety and results in Nlp being engaged in another nN to 

*X=O delocalization. 

Although thus far, with the exceptions noted above, clear correlations between N-pyramidalization 

and amide bond reactivity have not been found, these pyramidalized amides are fundamentally 

important as geometric probes for amide bond resonance,12 amide pyramidalization302 and cis/trans 

amide bond rotation.305 Applications of pyramidalized amides as peptidomimetics have been 

reported.308,310–314 Furthermore, N-pyramidalization is the key feature in the mechanism of action of -

lactam antibiotics.316–318 

 

4.1. Bridged and Related Amides 

Due to the geometric confinement of the amide bond in a rigid bicyclic ring structure, bridged amides 

are unique in the class of distorted amides in that typically twist and nitrogen pyramidalization are 

correlated with each other, 45,46,117,118,315 while one effect follows the other depending on the ring size, 



 

type of the ring and peripheral substitution.28–35 This correlation is expressed by the additive distortion 

parameter (+N) introduced recently using one-carbon bridged lactams,117,118 while earlier studies, in 

particular, by Greenberg and co-workers,45,46,48 demonstrated similar correlations in larger ring systems.  

Since in this class of amides twist () and nitrogen pyramidalization (N) are connected to each other, 

the reader is encouraged to consider this section together with section 2.1.140–152, 36,38,43 Representative 

examples of bridged amides together with related amides featuring significant N values of >40° are 

presented in Figure 13.319–336 Detailed summary of distortion parameters is presented in the Supporting 

Information. This section focuses on highlighting examples of bridged lactams that feature high N in 

the absence of considerable twist, a property that is closely related to the specific ring system and can be 

potentially utilized to separate N from twist in studying the properties of non-planar amide bonds.47,166  

In this respect, amides 4.1 (N = 41.4°,  = 5.4°),319 4.2 (N = 43.4°,  = 1.2°),320 4.7 (N = 46.6°,  = 

7.5°),325 4.8 (N = 47.7°,  = 16.7°),326 4.9 (N = 48.8°,  = 20.7°),327 4.10 (N = 49.0°,  = 21.9°),328 

4.11 (N = 49.2°,  = 16.3°),329 4.13 (N = 50.5°,  = 23.5°),330 4.14 (N = 51.4°,  = 28.1°),331 4.16 (N = 

52.7°,  = 30.8°),332 4.17 (N = 52.8°,  = 23.4°),328 4.18 (N = 54.9°,  = 30.2°),331 4.19 (N = 54.9°,  = 

16.7°),333 4.20 (N = 55.9°,  = 29.8°),331 4.22 (N = 57.1°,  = 35.3°),334 4.23 (N = 57.2°,  = 35.6°),335 

4.24 (N = 57.5°,  = 34.4°)336 and 4.26 (N = 58.6°,  = 39.1°)144,315 feature significantly larger N 

values than  and may be considered as bridged amide models for probing the effect of nitrogen 

pyramidalization on the properties of these amides under the proviso that in these systems both 

properties are still connected with each other.  

In general, these amides include (1) constrained amides with additional bridging, such as 4.1, 4.2; (2) 

amides in [4.3.1] bridged systems, such as 4.7, and [3.3.1] bridged systems, such as 4.8-4.11, 4.13, 4.16-

4.17, 4.19; (3) Tröger’s base twisted amides, such as 4.14, 4.18, 4.20, 4.24, 4.26; (4) azetidinyl bridged 

amide 4.22 in a [4.1.1] system; (5) amide 4.23 in a [2.2.3] ring system. In addition, amides 4.3 (N = 

43.5°,  = 9.7°)321 and 4.4 (N = 43.7°,  = 10.2°)322 feature tetracyclic spirolactam scaffold that is 

structurally related to bridged lactams by an additional C–C bond connectivity.  



 

In contrast, bridged lactams, such as tricyclic bridged 4.12 (N = 49.8°,  = 72.3°) and their N-

protonated analogues, such as 4.15 (N = 52.0°,  = 81.9°),142,149 1-aza-2-adamantanone derivatives, 

such as 4.27 (N = 61.7°,  = 90.0°)39,43 and 2-quinuclidone derivatives, such as 4.29 (N = 69.8°,  = 

90.0°)36,38 feature high pyramidalization and high twist. In particular, the reactivity of N-pyramidalized 

bridged amides in a [3.3.1] ring system has been studied, showing increased rates of hydrolysis,327,329 It 

is worth noting that the high rigidity of structures 4.25 and 4.29 means that little change in distortion is 

observed in going from the unprotonated lactam structure to the N-protonated salts.  

 
 

Figure 13. Bridged and Related Amides with Nitrogen Pyramidalization Values of 40° to 70°. 

 



 

protonation at the nitrogen atom47 and  N–C bond cleavage.166 While it may be assumed that nitrogen 

pyramidalization is the predominant amide bond distortion mechanism in these cases, further studies are 

needed to separate the effect of pyramidalization from twist in bridged bicyclic amides. 

 

4.2. Fused Amides 

In addition to bridged amides, significant nitrogen pyramidalization can also be achieved in fused ring 

systems. In general, these structurally-characterized amides can be categorized based on the ring system 

featuring the amide bond into the following classes: (1) four-membered ring twisted/pyramidalized 

amides; (2) five-membered ring twisted/pyramidalized amides; (3) six-membered ring 

twisted/pyramidalized amides; and (4) miscellaneous examples. 

 

4.2.1. Four-Membered Ring N-Pyramidalized Amides 

Constraining the amide bond in a -lactam ring represents a classic example of enhancing the 

reactivity of the amide bond by ring strain.27 This increased amide bond distortion is critical for the 

mechanism of action of -lactam antibiotics. Since comprehensive monographs on -lactams337–339 and 

-lactams316–318 antibiotics have been published, this section presents a summary of structurally-

characterized pyramidalized amides embedded in a four-membered ring (Figures 14-15).  

In general, the amide bond geometry of structurally-characterized -lactams presented in Figures 14-

15340–416 can be characterized as N-pyramidalized (average N of 54.4°), while twist is less significant 

(average  of 19.2°), as expected from the geometry of the fused four-membered ring system. There is 

only a very scattered correlation between N-pyramidalization and twist of the amide bond, with the 

general trend of higher twist with increased nitrogen pyramidalization (R2 = 0.30).  

The most common are [2.4.0] and [2.3.0] ring systems with the six-membered ring such as 1,3-

oxazinane (e.g., 4.30),340 and more common five-membered ring, such as thiazolidine 1,1-dioxide (e.g., 

4.32),342 thiazolidine 1-oxide (e.g., 4.33),343 thiazolidine (e.g., 4.34),344 1,3-selenazolidine (e.g., 4.36),346 

pyrrolidine (e.g., 4.81),383 imidazolidine (e.g., 4.94),395 or oxazolidine (e.g., 4.101).401 In general, more 



 

dense substitution of the fused ring, in particular at the -positions to the nitrogen atom and the 

carbonyl group and ring unsaturation result in higher N-pyramidalization.340–416 These N-pyramidalized 

amides are well known to be highly reactive as acylating reagents and are important pharmacophores in 

medicinal chemistry research. 

 



 

 

Figure 14. Amides in Four-Membered Rings with Nitrogen Pyramidalization Values of 40° to 53°. 



 

 

Figure 15. Amides in Four-Membered Rings with Nitrogen Pyramidalization Values of 53° to 69°. 



 

4.2.2. Five-Membered Ring N-Pyramidalized Amides 

In contrast to the well-known -lactams, it is much less recognized that constraining the amide bond 

in a five-membered fused ring system also leads to significant pyramidalization of the amide bond. This 

class of five-membered ring fused lactams plays a prominent role in heterocyclic chemistry293 and 

natural product synthesis417 en route to indolizidine, pyrrolizidine and related alkaloids.418–421 In these 

systems, it has been acknowledged that the reduction of lactam carbonyl groups often proceeds under 

mild reaction conditions, clearly a consequence of amide bond pyramidalization that weakens nN → 

*C=O resonance.417–421   

Similar to -lactams, the amide bond geometry of structurally-characterized amides embedded in a 

fused five-membered ring system (Figures 16-18)422–522 can be characterized as N-pyramidalized 

(average N of 45.9°) with minimal twist (average  of 11.7°). As expected, the average values of N-

pyramidalization and twist are slightly lower as compared to -lactams by N: 8.5° and : 7.5°, 

respectively,340–416 which is a consequence of less strained five-membered fused ring system. Similarly, 

the highest reported N value for a five-membered fused lactam is lower than that of the most N-

pyramidalized -lactam (4.248: 55.6°;522 4.119: 69.4°,416 respectively); however, it clearly indicates a 

predominant sp3 character of the amide bond nitrogen atom in this ring system. Finally, there is no 

correlation between N-pyramidalization and amide bond twist in structurally-characterized amides 

constrained in fused five-membered ring systems.  

Most common in this class (Figures 16-18)422–522 is ring fusion to six-membered rings in [3.4.0] 

scaffold, including piperazine, such as 4.120,422 and hexahydropyrimidine, such as 4.121,423 and much 

more common [3.3.0] ring system with the ring fusion to five-membered rings, including pyrrolidine, 

such as 4.122,424 thiazolidine, such as 4.123,425 imidazolidine, such as 4.124,426 and oxazolidine, such as 

4.125,427 as the most common ring scaffolds. This class also includes benzo-fused lactams, such as 

4.140,442 4.146434 and 4.173,470 and tricyclic fused ring systems, such as 4.138,440 4.171,468 4.172469 and 

4.181.474 In general, increased substitution at the -position to the nitrogen atom and additional 

constraints of the five-membered ring, such as unsaturation, conformationally rigid ring systems and  



 

 
 

Figure 16. Amides in Five-Membered Rings with Nitrogen Pyramidalization Values of 40° to 44°. 



 

 
 

Figure 17. Amides in Five-Membered Rings with Nitrogen Pyramidalization Values of 44° to 50°. 

 



 

 
 

Figure 18. Amides in Five-Membered Rings with Nitrogen Pyramidalization Values of 50° to 60°. 

 

steric effects lead to higher N-pyramidalization.422–522 The high N-pyramidalization in five-membered 

fused lactams should be taken into account when studying the carbonyl addition reactions to amide 

bonds in this class of amides.  

 

4.2.3. Six-Membered Ring N-Pyramidalized Amides 

In addition to -lactams and five-membered rings (sections 4.2.1. and 4.2.2.), amide bond 

pyramidalization can also be achieved in fused six-membered rings (Figure 19).422,523–531 As expected, 

comparatively fewer examples of structurally-characterized N-pyramidalized amides embedded in six-

membered rings have been reported; however, these amides feature significant N-pyramidalization 

(average N of 46.1°), while twist is much lower (average  of 11.2°). These values compare well with 

the five-membered fused ring lactams (N: 45.9° and : 11.7°),422–522 suggesting similar geometrical 



 

effects on the amide bond in these systems. Likewise, there is no correlation between N-

pyramidalization and amide bond twist in six-membered fused amides.  

In general, structurally-characterized six-membered fused amides that show significant 

pyramidalization of the amide bond422,523–531 feature [3.3.0] or [3.2.0] ring systems, wherein the six-

membered ring is typically fused to piperidine, such as 4.249,523 pyrrolidine, such as 4.250,524 or 

imidazolidine, such as 4.257.422 Six-membered fused amides are important precursors in the syntheses 

of quinolizidine, indolizidine and 2,5-diketopiperazine alkaloids.532–534 Similar to the fused five-

membered lactams, N-pyramidalization disrupts amidic resonance, which results in more facile 

electrophilic addition to the amide carbonyl group in these systems.418–421,532–534 

 
 

Figure 19. Amides in Six-Membered Rings with Nitrogen Pyramidalization Values of 40° to 60°. 

 

4.3. Miscellaneous 

Significant N-pyramidalization has been observed in saccharin-based imidoiodane 4.260 (N = 40.1°) 

(Figure 20).535 This compound is synthesized from the direct reaction between saccharin and iodine 

acetate and serves as an aminating reagent using silyl enol ethers as nucleophiles. 

 
 

Figure 20. Miscellaneous Amides with Nitrogen Pyramidalization Values of 40° to 60°. 

 



 

5. Acyclic Amides: N-Pyramidalization 40-60° 

Nitrogen pyramidalization in acyclic amides leads to reduction of rotational barriers of the amide 

bond.12,28–35 The major methods to generate N-pyramidalization in acyclic amides are as follows: (1) N-

heterocycle-activation; (2) N-sulfonyl-activation; (3) N-pyramidalization in aliphatic amides. 

 

5.1. N-Heterocycle-Activated N-Pyramidalized Amides 

Structurally-characterized N-pyramidalized N-heterocycle-activated amides with N values >40° are 

summarized in Figure 21.268,302,305,306,536–547 In general, these amides can be divided into the following 

classes of amides: (1) conformationally-constricted N-acyl-7-azabicyclo[2.2.1]heptanes (5.4, 5.5, 5.7, 

5.9-5.20)302,305,306 and related derivatives, such as N-acyl-8-azabicyclo[3.2.1]octanes (5.2)537 and N-

acyl-2-azabicyclo[2.1.1]hexanes (5.8);540 (2) N-acyl-pyrrolidines (5.1, 5.3);536,538 and (3) N-acyl-

oxazolidin-5-ones (5.6, 5.21).539,268 N-acyl-azetidines and N-acyl-azridines are not included since the 

ring strain of the small ring significantly contributes to the properties of these amides.17,301  

It is interesting to note that N-acyl-7-azabicyclo[2.2.1]heptanes (Figure 21) can be classified as 

pyramidalized amides (average N of 52.0°; average  of 16.6°). The origin of nitrogen pyramidalization 

in N-acyl-7-azabicyclo[2.2.1]heptanes has been proposed to be due to small C–N–C angle and allylic 

strain between the amide substituents and the bridgehead hydrogen atoms.302–314 In agreement with this 

hypothesis, increased substitution of 7-azabicyclo[2.2.1]heptane results in an increase in nitrogen 

pyramidalization (e.g. 5.20, N of 64.5°).547 Rotational barriers of 7-azabicyclo[2.2.1]heptane amides 

have been measured and are comparable to N-acyl-azetidines (5.12, 15.0 kcal/mol; N-4-toluoyl-

azetidine, 15.7 kcal/mol).302 The intrinsic nitrogen pyramidalization in N-acyl 7-

azabicyclo[2.2.1]heptanes provides an attractive scaffold for controlling cis/trans amide rotation.305,312  

Similar to 7-azabicyclo[2.2.1]heptane amides, N-acyl-pyrrolidines 5.1 and 5.3 contain predominantly 

N-pyramidalized amide bonds cf. twist (5.1: N = 40.2°,  = 13.2°; 5.3: N = 43.7°,  = 13.2°),536,538 

which originates from the steric interactions between amide bond substituents and pyrrolidine ring. The  



 

 
 

Figure 21. N-Heterocycle-Activated Acyclic Twisted Amides with Nitrogen Pyramidalization 

Values of 40° to 65°. 

 

nitrogen pyramidalization leads to an increased electron density at the nitrogen and more electrophilic 

carbonyl groups in these amides.  

In contrast, N-acyl-oxazolidin-5-ones 5.6 and 5.21 feature both N-pyramidalized and twisted amide 

bonds (5.6: N = 44.4°,  = 43.2°; 5.21: N = 65.3°,  = 40.6°).539,268 These amides represent very rare 

examples of twisted pyramidalized N-acyclic amides that do not require additional electronic activation 

to achieve high geometric distortion (cf. section 3.2.). 

 

5.2. N-Sulfonyl-Activated N-Pyramidalized Amides 

In addition to using heterocyclic ring systems (section 5.1.), N-pyramidalization of the amide bond 

can be achieved using N-sulfonyl activation (Figure 22).242,295,548–562 These N-acyl sulfonamides are 

derived from camphorsultam (Oppolzer’s sultam) and feature predominantly pyramidalized amide 

bonds cf. twist (average N of 45.3°; average  of 24.4°). Substitution at the -carbon can be aliphatic 

(e.g., 5.23),549 alkenyl (e.g., 5.22),548 aromatic (e.g., 5.29)554 or heterocyclic (e.g., 5.24).550 In general, 



 

increased N-pyramidalization is observed with higher substitution at the -carbon (e.g., 5.37: N = 

49.0°,  = 22.4°),560 while the last three compounds in the series 5.38-5.40 feature both high 

pyramidalization and higher twist (5.38: N = 49.3°,  = 35.2°; 5.39: N = 50.2°,  = 43.5°; 5.40: N = 

51.6°,  = 39.1°).561,295,562 These N-sulfonyl-activated N-pyramidalized amides are expected to undergo 

N–C(O) bond cleavage under mild conditions owing to the higher electron density at the nitrogen atom 

and nN to *S=O conjugation with the sulfonyl group (cf. section 3.3.). 

 
 

Figure 22. N-Sulfonyl-Activated Acyclic Twisted Amides with Nitrogen Pyramidalization Values 

of 40° to 60°. 

 

5.3. N-Aliphatic N-Pyramidalized Amides 

Amide 5.41 features pyramidalized amide bond (N = 46.7°,  = 16.7°) (Figure 23).563 The 

pyramidalization originates from steric syn-pentane-type interactions between N-ethyl group and iso-

butyl substituent at the -carbon. Furthermore, acyclic quaternary N-acyl ammonium salts, such as 5.42, 

contain fully pyramidalized amide bonds (N = 63.5°,  = 85.1°) (cf. section 3.4.).300 



 

 
 

Figure 23. N-Aliphatic Acyclic Twisted Amides with Nitrogen Pyramidalization Values of 40° to 

65°. 

 

6. Application of Acyclic Twisted Amides in Bond Cleavage Reactions 

An important point that should be addressed is synthetic application of acyclic twisted amides.63–82 In 

principle, N-activation of tertiary amides leads to geometric and electronic alteration of the amide bond, 

which disrupts amidic resonance through (1) twisting and N-pyramidalization; (2) channeling of the nN 

to *C=O conjugation onto the external N-substituent of the amide bond. This permits for utilization of 

acyclic amides through selective bond cleavage processes that are beyond the scope of reactivity of 

classical amides. To date, the following classes of reactions of twisted amides have been developed: (1) 

N–C(O) acyl cleavage; (2) C–NCO decarbonylative cleavage; (3) NCO–C cleavage; (4) acyl 

nucleophilic addition; (5) generation of acyl radicals. These processes have been reviewed.63–82  

An additional point that should be addressed in this context is the synthesis of acyclic twisted amides. 

In general, there are two main pathways for the synthesis of non-planar acyclic amides and derivatives, 

namely (1) amine acylation with carboxylic acids or derivatives; (2) N-acylation of 1° or 2° amides and 

related processes. For the major classes of acyclic twisted amides discussed, the synthetic pathways 

have now been well established, and these amides are readily available on preparative scale.63–82 From 

the standpoint of medicinal chemistry and late-stage derivatization, N-acylation of 1° or 2° amides has 

an advantage over amine acylation in that it permits to directly utilize planar amides as precursors to 

acyclic twisted amides. Since the synthesis of acyclic twisted amides directly affects their application, 

attention should be given to versatile, high yielding and practical methods of synthesis.   

 

7. Conclusions and Outlook 



 

In conclusion, amide bond planarity manifesting in the placement of all six atoms comprising the 

amide bond in a single plane is a fundamental and widely accepted property of amide bonds. Amide 

bond planarity has a major impact on application of amide bonds in chemical fields ranging from 

organic synthesis to polymers, medicinal chemistry, structural chemistry and biochemistry. Although 

classical studies on geometric constraint of amide bonds with the resulting decrease of amidic resonance 

and amino-ketone properties of amides have been focused on cyclic lactams, recent years have seen 

rapid developments of acyclic twisted amides.  

In this review, we have presented a comprehensive overview of amide bond distortion in acyclic 

amides. Steric distortion in acyclic amides can be achieved by twist, nitrogen pyramidalization or a 

combination of both. Importantly, there are many different and complementary methods that result in 

high geometric distortion of acyclic amides. These methods include electronic activation, such as N-

acylation, N-sulfonylation, or activation by aromatic N-heterocycles which leads to Nlp conjugation onto 

an exocyclic group as well as steric activation and N-pyramidalization in acyclic scaffolds. Remarkably, 

as demonstrated in this review, there are many examples of structurally-characterized acyclic amides 

that feature twist and N-pyramidalization values close to full twist ( = 90°) and full pyramidalization 

(N = 60°). Furthermore, comparison with the classic bridged lactams and conformationally-restricted 

cyclic fused lactams demonstrates many effective methods to achieve geometric alteration of the amide 

bond in acyclic amides.  

Despite the undeniable progress in the last years, there are a number of challenges that need to be 

addressed, including: (1) development of rational models correlating amide bond distortion with the 

observed reactivity; (2) development of a better understanding of the properties of non-planar amide 

bonds, in  particular, focused on the different impact of twist and pyramidalization; (3) development of 

considerably twisted acyclic amides that feature non-electronically-activated amide bonds; (4) 

development of new activation methods of acyclic amide bonds that cover broad scope and diverse 

structural variation of acyclic amides, including peripheral activation564 and mechanical twisting;565 and 

(5) expansion of the scope of activating groups used for twisting of acyclic amide bonds. Furthermore, 



 

there is clearly a need for studies merging the properties of classic cyclic twisted amides with their 

acyclic counterparts, including structure and reactivity.  

We believe that the importance of amide bonds in various facets of chemistry and the inspiring 

journey of non-planar amide bonds since the seminal studies by Pauling will lead to the discovery of 

new and highly valuable twisted amides. 
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