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Abstract: Background independence is often emphasized as an important property of a quantum

theory of gravity that takes seriously the geometrical nature of general relativity. In a background-

independent formulation, quantum gravity should determine not only the dynamics of space–time

but also its geometry, which may have equally important implications for claims of potential physical

observations. One of the leading candidates for background-independent quantum gravity is loop

quantum gravity. By combining and interpreting several recent results, it is shown here how the

canonical nature of this theory makes it possible to perform a complete space–time analysis in

various models that have been proposed in this setting. In spite of the background-independent

starting point, all these models turned out to be non-geometrical and even inconsistent to varying

degrees, unless strong modifications of Riemannian geometry are taken into account. This outcome

leads to several implications for potential observations as well as lessons for other background-

independent approaches.
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1. Introduction

A key feature of general relativity is its ability to determine both the dynamics and
the structure of space–time. A complete quantum theory of gravity should therefore
refrain from presupposing space–time structure; only then can it be considered a proper
quantization of the theory. As a conclusion, space–time structure must be derived after
quantization for a subsequent physical analysis, and the result may be modified compared
with the familiar Riemannian structure. Depending on the quantization procedure, it may
even happen that no consistent space–time structure exists for its solutions. A detailed
analysis is then required to see whether the theory can be considered a valid candidate for
quantum gravity, even if it is formally consistent, judged by non-geometrical standards
such as conditions commonly imposed on quantizations of gauge theories. These questions
are highly non-trivial in any approach. A detailed analysis is now available in models of
loop quantum gravity, but it remains preliminary owing to the tentative nature of physical
models of space–time in this theory.

Loop quantum gravity is often advertised as a background-independent approach to
quantum gravity. This characterization suggests that the theory might indeed be free of
pre-supposed space–time structures. In practice, however, the rather involved nature of
methods suitable for derivations of space–time structures, combined with the canonical
treatment used in the more successful realizations of loop quantum gravity, has for some
time obscured the role and nature of space–time in this theory. In fact, several long-standing
doubts exist as to the possibility of covariance in models of loop quantum gravity. For
instance, the “bounce” idea, used in a majority of cosmological and black-hole models in
this setting, is largely based on calculations available for the dynamics in homogeneous
cosmological models, introducing formal properties of discreteness or boundedness seen
in the kinematics of the full theory of loop quantum gravity. Since it remains unknown
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whether there is space–time dynamics consistent with the kinematics of the full theory,
there is no guarantee that kinematical ingredients exported to homogeneous models of
quantum cosmology can give rise to a meaningful structure of space–time and some sense
of general covariance.

More specifically, kinematical features that apply spatial discreteness work as a cut-
off which, if it is a fixed scale, is hard to reconcile with the transformations required for
covariance. If one accepts the possibility that quantum gravity may well lead to non-
classical space–time structures that require a modified and perhaps weakened version
of general covariance, consistency requires a detailed demonstration of how one can
avoid various low-energy problems that may then trickle down from the Planck regime,
as pointed out in [1,2]. Moreover, in such a situation, it is important to determine how
a modified space–time structure can be described in meaningful terms, for instance by
addressing the question of whether such a theory can still be considered geometrical
and whether there is an extended range of parameters (such as h̄) in which effective line
elements may still be available.

A consideration of space–time structure in bounce models also raises the question
of how exactly singularity theorems are evaded. In models of loop quantum cosmology,
bounce solutions are obtained without modifying matter Hamiltonians. The standard en-
ergy conditions therefore remain satisfied, obscuring the possibility of avoided singularities
often claimed in this setting. Since singularity theorems make statements about boundaries
of space–time and use the general properties of Riemannian geometry such as the Ricci
curvature and the geodesic deviation equation, they depend on and require a consistent
form of space–time structure. Unfortunately, however, bounce models of loop quantum
gravity are often accompanied by poorly justified and contradictory statements about
space–time. For instance, standard line elements are commonly used to express modified
gravitational dynamics in tractable form, implicitly presupposing that space–time remains
Riemannian. However, then, singularity theorems should be applicable to the resulting
modified solutions since the behavior of matter energy is assumed to remain unchanged,
making it impossible to evade singularities by a bounce. (The behavior of singularities
may depend on a possibly modified relationship between stress–energy and Ricci curva-
ture even if one maintains positive-energy conditions. However, simple bounce models
based on modified Friedmann equations do not provide such a relationship because their
space–time structure remains unclear.) The fact that this contradiction has gone unnoticed
for several years in this field serves to highlight the challenging nature of questions about
space–time in loop quantum gravity.

Independently of bounce claims, results about space–time structure in models of loop
quantum gravity have been accumulating in recent years. This review presents a summary,
highlighting the similarities between different ways in which covariance can be and often
is violated. By now, all the high-profile claims made in the last decade in the context of loop
quantum gravity, including [3–6], have been shown to rest upon inconsistent assumptions
about space–time structure and covariance. It is therefore of interest to combine and
compare the various ways in which covariance can be violated in order to arrive at a
general perspective. (Some of these models have already been presented in an overview
form in [7]. The focus of this previous review was on implications for models of black
holes, while the present one emphasizes the role of these results for general aspects of
background independence and the viability of quantum gravity. Moreover, it presents
further comparisons between the different results).

A discrete fundamental theory is not expected to respect all the properties that we are
used to from classical space–time. Some violation of classical covariance may therefore be
allowed. Nevertheless, because covariance does not only describe a property of classical
space–time but also implies that all consistency conditions are met for gravity as a gauge
theory, the requirement of general covariance cannot just be abandoned without suitable
replacements. One task to be completed for a consistent theory of quantum gravity is
to find suitable middle ground between completely broken covariance and the strictly
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classical notion of general covariance. Considerations of covariance therefore remain
important even if one believes that quantum gravity may completely change the structure
of space–time in its fundamental formulation.

The examples of violations of covariance discussed here do not directly apply to
fundamental quantum gravity but rather to models used for phenomenological studies of
cosmology or black holes. In this context, the question of covariance is even more pressing
because a general (but often implicit) strategy in this context is to use well-understood
Riemannian geometry to analyze potential modifications in the dynamical equations of
quantum gravity. Since these modifications may easily affect space–time structure as well,
any implicit assumptions about space–time must be uncovered and analyzed before an
analysis can be considered meaningful. In this phenomenological context, the question of
space–time structure is not as challenging as it is at the fundamental level, but it is still
relevant. The task is to show that a certain geometrical structure applies to solutions of an
effective description of quantum gravity not only in the strict classical limit where h̄ = 0
but also within some finite range of the expansion parameter, given for instance by ρ/ρP in
a cosmological model with energy density ρ relative to the Planck density.

The studies [3–6] of interest here implicitly assume that space–time structure remains
unmodified even in the presence of modified dynamics, and sometimes even all the way
to the Planck scale [3,6]. This strong assumption is implemented by inserting solutions of
modified equations in a standard line element, without checking whether the modified
solutions obey gauge transformations compatible with coordinate transformations such
that an invariant line element results. Such a line element is crucial in these studies
because it enables the formulation of new claims of potential physical effects that make
these studies interesting and publishable in high-profile journals. The same ingredient
makes these studies vulnerable to violations of covariance, as reviewed in detail in the
following sections.

The concluding section of this review points out general properties of covariance in
models of loop quantum gravity that may be useful for other approaches. It is generally
expected that quantum gravity leads to new geometrical features at large curvature that
can no longer be described by a classical form of space–time with its common sense of
covariance. Loop quantum gravity is only one approach in which a specific example
of discreteness or other non-classical geometrical effects is being explored. The general
question to be addressed is then whether quantum gravity at large curvature remains a
geometrical theory in the sense that its solutions can still be described in terms of space–
time with a certain generalized meaning compared with our classical notion.

2. Models of Loop Quantum Gravity

In order to set up our analysis, we should first introduce the general form of modi-
fications implemented in models of loop quantum gravity (see [8] for more details). It is
sufficient to illustrate these modifications by recalling the basics of loop quantum cosmol-
ogy for spatially flat, isotropic models.

2.1. Holonomy Modifications and Space–Time Structure

The classical dynamics of the scale factor a can be expressed by a canonical pair (q, p)
where q = ȧ (a proper-time derivative) and |p| = a2, subject to the Friedmann constraint:

− q2

|p| +
8πG

3
ρ = 0 (1)

with the energy density ρ. Kinematical aspects of loop quantization suggest the replace-
ment, or “holonomy modification”:

q2

|p| 7→
sin(ℓq/

√

|p|)2

ℓ2
(2)
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where ℓ is a suitable, possibly running length scale, such as the Planck length ℓP in
simple cases.

Taken in isolation, holonomy modifications imply non-singular behavior in isotropic
models with a modified Friedmann constraint:

sin(ℓq/
√

|p|)2

ℓ2
=

8πG

3
ρ (3)

because the energy density of any solution to this equation must be bounded (assuming
that ℓ is constant, as commonly done in this context). However, this equation includes only
one type of expected quantum corrections. In addition, a complete effective description
of some underlying dynamics of quantum gravity (of any kind) should also include the
remnants of higher-curvature terms in an isotropic model. Higher-curvature terms, just
like holonomy modifications, require a given length scale, which we may assume to equal ℓ
if holonomy modifications and higher-curvature terms are derived from a single quantum
theory of gravity. It is easy to see that higher-curvature terms are not described by (3)
because they generically imply higher time derivatives and therefore extend the phase
space by additional momenta.

The Equation (3) is therefore incomplete from the viewpoint of effective theory. Nev-
ertheless, it may be useful because it determines at least one type of quantum corrections.
However, knowing that there are additional terms not included in (3) that also depend on
ℓ, we cannot trust the full function sin2(ℓq/

√

|p|)/ℓ2 but should rather expand:

sin(ℓq/
√

|p|)2

ℓ2
∼ q2

|p|

(

1 − 1

3
ℓ

2 q2

|p| + · · ·
)

(4)

and only include leading-order terms. If ℓ ∼ ℓP, these leading corrections are of the order
ℓ2

Pq2/|p| ∼ ρ/ρP, which is the same as the order expected for higher-curvature terms. Even
the leading corrections in (3) should therefore not be considered to be definitely certain
and considered with caution. Interpreting the full series expansion or its sum to the sine
function as an indication of bounded densities is unjustified in the absence of information
about higher-curvature terms.

Higher-curvature terms are also of interest from the point of view of space–time
structure. We already used the fact that they generically include higher time derivatives, but
the specific appearance of such terms is not arbitrary and is instead guided by requirements
of general covariance. In loop quantum cosmology, the form of quantum corrections that
may appear in addition to holonomy modifications can therefore be determined only if
there is good control on space–time structure in this setting.

Isotropic and homogeneous models are not sufficient for an analysis of space–time
structure and covariance because these questions rely on how spatial and temporal depen-
dencies are related in differential equations and their solutions. At least one spatial direction
of inhomogeneity should then be included in suitable models, in addition to the non-trivial
time dependence already described by models such as (3). While such (midisuperspace)
models have been considered in loop quantum gravity for some time, their application to
the question of covariance is rather new and has led to several surprising results.

2.2. Three Examples and One Theorem

We will review three examples of the proposed methods to describe inhomogeneity in
models of loop quantum gravity and the reasons why they turn out to violate covariance
in ways that render them inconsistent. The first example, the dressed-metric approach
for cosmological inhomogeneity [9], has been used several times as a crucial ingredient
in cosmological model building, leading to claims of observational testability that, given
the underlying problems with space–time structure, turn out to be unfounded. (Similar
arguments regarding violations of covariance apply to the hybrid approach to inhomo-
geneity in loop quantum cosmology [10]). The remaining two examples, given by partial
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Abelianizations of constraints in spherically symmetric models [4] as well as a misleadingly
named “covariant polymerization” [11] in related studies apply to proposed scenarios for
quantum black holes. (The proposal of [11] was intended to justify modified equations
used for a study of critical collapse in [5]).

In addition, we will describe a detailed no-go theorem based on a minisuperspace
description of the static Schwarzschild exterior by a homogeneous time-like slicing, as
originally proposed for a different purpose in [6].

3. Dressed-Metric Approach

In classical gravity, as is well known, it is possible to describe cosmological inhomo-
geneity in the early universe as a coupled system of two independent sets of degrees of
freedom, given by inhomogeneous perturbations evolving on a homogeneous background
with THE choice of a time coordinate (such as proper time or conformal time). In a discus-
sion of possibly modified dynamics and space–time structure, it is important to remember
that these two ingredients, background and perturbations, have rather different properties
related to covariance.

3.1. Background and Perturbations

The dynamics of any homogeneous background can be modified without violating
covariance because there is a single constraint, (3), which is always consistent with itself
in any modified form: because {C, C} = 0 for any Poisson bracket, Hamilton’s equations
generated by a constraint C are guaranteed to preserve the constraint equation C = 0
imposed on initial values.

Applied to the Friedmann constraint C, we generate equations of motion:

d f

dt
= { f , NC} (5)

for any phase-space function f , with respect to a time coordinate t indirectly determined by
the lapse function N > 0. The generic time derivative, applied to solutions of the constraint
C = 0, can be rewritten as

1

N

d f

dt
= { f , C} =

d f

dτ
(6)

introducing proper time τ in the last step by the usual definition dτ = Ndt.
All allowed choices of time coordinates (monotonically related to τ) can therefore be

described by a single line element:

ds2 = −dτ2 + ã(τ)2dσ2 (7)

where ã(τ) denotes the scale factor subject to potentially modified dynamics, and dσ2 is
a standard isotropic spatial line element. Because the definition of τ implies that the line
element is correctly transformed to:

ds2 = −N2dt2 + ã(t)2dσ2 (8)

for any other time coordinate t, there is a suitable way to describe any modified homoge-
neous dynamics, subject to a single constraint, by a space–time geometry that is invariant
with respect to the full coordinate changes allowed by the symmetry, given by reparame-
terizations of time.

Coordinate changes are more involved in the case of spatial inhomogeneity because
several independent coordinates may be related by transformations. In the canomical
language of constraints, the presence of a multitude of independent ones, one Hamiltonian
constraint per spatial point as well as diffeomorphism constraints, which implies that a
modification of one or more constraints no longer implies the consistency of their Hamilto-
nian flows with respect to the other constraints. Since the relevant constraints implement
space–time transformations, a dedicated space–time analysis then becomes important.
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For small, perturbative inhomogeneity, there is a standard way to describe curvature
perturbations in terms of combinations of metric and matter fields that are invariant with
respect to small coordinate changes [12]. However, compared with the reparameterizations
of time relevant for the background, it is much harder to derive a suitable invariant line
element extending (8) in a way that is consistent with Hamilton’s equations generated by
modified constraints for perturbative inhomogeneity. In fact, the standard derivations of
curvature perturbations [12,13] as well as the canonical version given in [14] assume that
space–time is of its classical form, for instance by directly working with the coordinate
substitutions in a line element. A modified or quantum treatment then cannot take it for
granted that the form of these curvature perturbations remains unchanged, because the
space–time structure itself may be modified in quantum gravity.

The dressed-metric approach proceeds by quantizing standard curvature perturba-
tions on a modified background, leading to wave equations for perturbations on a modified
background line element ds2 = g̃αβdxαdxβ of the form (8). The approach therefore im-
plicitly assumes that space–time structure remains classical even while the dynamics of at
least the background are modified. Upon closer inspection, this assumption turns out to
be unjustified.

3.2. The Metric’s New Clothes

As already pointed out in [15], Bardeen variables or curvature perturbations are
“gauge invariant” under small coordinate changes, but not necessarily under all coordinate
changes relevant for a given cosmological situation. In particular, in cosmological models of
perturbative inhomogeneity, we also need invariance under potentially large background
transformations of time, such as transforming from proper time to conformal time.

Small coordinate changes of perturbations and large reparameterizations of back-
ground time are not independent of each other. Algebraically, they form a semidirect
product rather than a direct one, as shown in [16]. The non-trivial interplay between these
transformations can be deduced from vector-field commutators such as:

[

f (t)
∂

∂t
, ξα ∂

∂xα

]

= f ξ̇α ∂

∂xα
− ḟ ξ0 ∂

∂t
(9)

which in general are not zero (in contrast to what a direct product would imply) but
rather form a small inhomogeneous transformation. This interplay is a general prop-
erty of perturbations in Riemannian geometry, as encoded in line elements suitable for
perturbative inhomogeneity.

The applicability of standard line elements requires the precise algebra of coordinate
transformations to be modeled by gauge transformations in a canonical formulation of any
gravity theory. However, while the dressed-metric approach assumes the availability of
standard line elements with the usual coordinate dependence (but possibly modified metric
coefficients), it violates the algebraic condition by its independent treatment of background
and perturbations: quantizing the background separately from the perturbations evolving
on it implicitly assumes a direct product of coordinate changes. Writing a line element
ds2 = g̃αβdxαdxβ based on modified metric components g̃αβ in a dressed-metric model is
therefore meaningless.

3.3. Effective Line Element

Because a line element ds2 = gαβdxαdxβ is defined as the square of an infinitesimal
distance, it can be meaningful as a description of geometry only if it is independent
of coordinate choices that affect dxα as well as gαβ. For ds2 to be invariant, the metric
coefficients gαβ must be subject to the standard tensor-transformation law:

gα′β′ =
∂xα

∂xα′
∂xβ

∂xβ′ gαβ (10)
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if coordinates xα are transformed to xα′ .
Canonical quantization in its usual form, as applied in models of loop quantum

gravity, does not modify space–time coordinates xα and their transformations, but it may
alter the equations of motion (with respect to these coordinates) for the spatial metric qij in
the generic canonical line element:

ds2 = −N2dt2 + qij(dxi + Midt)(dxj + Mjdt) . (11)

Modifications of the remaining components, the lapse function N and shift vector Mi,
are also determined by canonical equations, although more indirectly because N and Mi

do not have unconstrained momenta. In the presence of modifications, altered equations
for qij, N and Mi must remain consistent with coordinate transformations if an effective

line element ds2 is to be meaningful.
A crucial ingredient in a canonical analysis of covariance is therefore given by the

transformations of N and Mi, in addition to the more obvious transformations of qij. The
full set of canonical transformations makes use of the specific properties of the constraints
of the theory. At this point, the analysis of geometrical properties relevant for effective line
elements benefits from a discussion of hypersurface deformations in space–time, which are
generated from the constraints. While properties of hypersurface deformations constitute
some of the classic results in canonical general relativity [17–21], they do not appear to
be widely known. What follows is a construction of hypersurface deformations based on
elementary properties of special relativity.

3.3.1. Hypersurface Deformations

In special relativity, an observer moving at speed v assigns new coordinates to events
in space–time according to a Lorentz transformation:

x′ =
x − vt√
1 − v2

, t′ =
t − vx√
1 − v2

. (12)

Interpreting this transformation as a linear deformation of axes in a space–time di-
agram, as shown in Figure 1, the set of all Poincaré transformations can be geometri-
cally represented by linear hypersurface deformations with respect to lapse functions
N(x) = ∆t + v · x (deformations in the normal direction of a spatial slice) and shift vector
fields M(x) = ∆x + Rx (tangential deformations within a spatial slice). The parameters
in these expressions for linear lapse functions and shift vector fields determine a time
translation ∆t, a boost velocity v, a spatial shift ∆x and a spatial rotation matrix R.

Figure 1. A Lorentz transformation in Minkowski space–time, shown in the traditional way by means

of axes as well as in terms of linear normal deformations of a spatial slice. A slice t = const in the

original coordinate system was transformed to a new spatial slice t′ = const by a linear deformation

with position-dependent displacement N(x) = N0 + vx along the unit normal vector field n.

We extend these considerations to general relativity by replacing the restricted set of
translations, rotations and Lorentz boosts with arbitrary non-linear coordinate changes.
Correspondingly, hypersurfaces are subject to non-linear deformations [17]. Infinitesimal
hypersurface deformations in Riemannian space–time, split into “temporal” deformations
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T(N) in a normal direction and “spatial” deformations S(M) in tangential directions, can
be shown to obey the commutators:

[S(M1), S(M2)] = S((M1 · ∇)M2 − (M2 · ∇)M1) (13)

[T(N), S(M)] = −T(M · ∇N) (14)

[T(N1), T(N2)] = S(N1∇N2 − N2∇N1) (15)

when they are applied in two alternative orderings. A visualization is shown in Figure 2.
The brackets (13)–(15) represent general covariance in canonical form. While specific ex-
pressions for S and T can vary depending on the gravitational theory, such as different
higher-curvature actions [22], the brackets remain the same as long as the underlying
geometry of space–time is Riemannian. Conversely, deviations of the brackets from their
Riemannian form can be used to detect non-classical space–time structures in modified
canonical gravity. The algebraic nature of the brackets makes it possible to analyze gravi-
tational theories without presupposing specific geometrical formulations of space–time,
constituting a major strength of the canonical approach.

Figure 2. Two non-linear normal deformations, one with a lapse function N1 and one with a

lapse function N2, applied in two different orderings, show the commutator (15) given by a spatial

displacement M.

Figure 3 represents the commutator of an infinitesimal time translation and an infinites-
imal normal deformation. This picture can be interpreted as a version of the vector-field
commutator (9) of a background transformation and a small perturbative transformation.
The non-zero result of (9) corresponds to the presence of a spatial shift on the right-hand
side of Figure 3. Even though there is no immediate time dependence of the canonical
data on which a background vector field as in (9) would act, the semidirect product of
background and perturbative transformations is clear. In canonical language, the failure of
the dressed-metric approach to realize the correct semidirect product means that there is
no common T(N) for background and perturbations in this setting. The non-existence of
consistent temporal deformations signals the break-down of space–time and covariance.



Universe 2021, 7, 251 9 of 21

Figure 3. Semidirect product of time reparameterizations and inhomogeneous transformations as

in (9), represented in the picture of hypersurface deformations: The commutator of two such normal

deformations produces a non-zero spatial shift M.

3.3.2. Structure Functions

The brackets of hypersurface deformations have structure functions because the
gradient in (15) requires the use of the spatial metric, and therefore depend on the geometry
described by these brackets. A canonical realization of these brackets is given by the
Hamiltonian and diffeomorphism constraints, H[N] and D[Mi], of a given gravity theory.
Written in the form:

{D[Mi
1], D[M

j
2]} = D[[M1, M2]

i] (16)

{H[N], D[Mi]} = −H[Mi
1∇i N] (17)

{H[N1], H[N2]} = D[qij(N1∇jN2 − N2∇jN1)] , (18)

they make the appearance of structure functions explicit, depending on the inverse spatial
metric qij. Formally, we may write the constraint brackets as {CA, CB} = FD

ABCD with
indices A, B and D that combine spatial positions with the type of constraint (Hamiltonian
or a component of the diffeomorphism constraint). The coefficients FD

AB are not constants
but phase-space functions.

The presence of structure functions causes long-standing problems in the quantization
of canonical gravity [23,24]: upon quantization, qij as well as D and H are turned into
operators. Maintaining closed brackets therefore requires specific ordering, regularization,
or other choices. Even if the brackets can remain closed under certain conditions, quantized
structure functions may be quantum corrected. A question relevant for covariance is then
that of whether a meaningful interpretation of the generators as hypersurface deformations
in space–time still exists.

As shown in [25], a meaningful space–time interpretation does exist at least in some
cases of modified structure functions. To see this, it is necessary to construct a space–time
line element that is consistent with the modified gauge transformations generated by (18)
with the quantum-corrected structure functions. If these functions are modified, so are
the versions of hypersurface deformations they represent, and therefore the objects qij, N

and Mi in which the brackets are formulated, do not directly define the components of a
meaningful line element because this notion is based on classical space–time with standard
hypersurface deformations. However, in some cases, suitable redefinitions of the canonical
fields are available that can serve this purpose.

A derivation of proper effective line elements is based on the general property of
Hamiltonian and diffeomorphism constraints as generators of evolution equations, giving
the time derivative:

ḟ = Lt f = { f , H[N] + D[Mi]} (19)

of any phase-space function f with respect to the time-evolution vector field tα = Nnα + Mα.
(The space–time vector field Mα is the push-forward of the spatial vector field Mi by the
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embedding map of a spatial slice in space–time). In addition, the constraints generate
gauge transformations:

δǫ f = { f , H[ǫ] + D[ǫi]} (20)

which would correspond to coordinate changes generated by the vector field ξα = ǫnα + ǫα

if structure functions were unmodified.
In all cases—modified and unmodified structure functions—evolution equations and

gauge transformations must be consistent with each other: a gauge-transformed f must
evolve according to the general Equation (19) with the same generators H and D as the
original f , but possibly with a new time-evolution vector field. Since the direction of
the time-evolution vector field within a given theory is determined by lapse and shift,
this consistency condition can be used to derive gauge transformations for N and Mi.
Together with the gauge transformations of qij, directly determined by (20) because qij are
phase-space functions, all components of a candidate space–time line element can therefore
be unambiguously transformed.

For generic structure functions FD
AB, evolution and gauge transformations are consis-

tent with each other, provided the multipliers (NA) = (N, Mi) gauge transform according
to [26]:

δǫNA = ǫ̇A + NBǫCFA
BC . (21)

Unlike in the case of δǫqij = {qij, H[ǫ] + D[ǫi]}, the structure functions appear explic-
itly in (21). Structure functions, and their possible modifications, are therefore directly
relevant for space–time structure and the existence of meaningful effective line elements:

ds2 = −Ñ2dt2 + q̃ij(dxi + M̃idt)(dxj + M̃jdt) (22)

which may require field redefinitions of Ñ, M̃i as well as q̃ij if the structure functions FA
BC

are modified.

3.4. Lessons from Hypersurface Deformations

In canonical models of modified gravity, control on space–time structure requires full
expressions for the Hamiltonian constraint H[N] and the diffeomorphism constraint D[Mi]
with closed brackets. This condition is violated in the dressed-metric approach (as well
as in hybrid loop quantum cosmology) because the independent treatment of remnant
coordinate freedom in background and perturbations, the former through deparameteri-
zation and the latter by using curvature perturbations, precludes the construction of joint
constraints for both sets of degrees of freedom. The common assumption that space–time
in this setting can still be described by a line element, presupposing a Riemannian structure
of space–time, is therefore unjustified. Detailed discussions of the underlying modifications
of contributions to the Hamiltonian constraint from background and perturbations show
that the implicit assumption of unmodified brackets, and thus Riemannian structures, is
inconsistent [16].

For a consistent space–time structure, the gauge behavior of the classical theory must
remain intact, even while it may be modified and subject to quantum effects. In general,
this condition requires anomaly freedom, such that the same number of physical degrees of
freedom as in classical gravity is realized in a modified version. If this condition is violated,
the modified theory cannot have the correct classical limit owing to a discontinuity in the
number of degrees of freedom. An anomalous modification or quantization of gravity does
not permit a semiclassical or effective treatment by line elements in any form because it is
incompatible with the gauge structure of space–time.

A formal statement of the condition that the gauge behavior remains intact is the exis-
tence of closed Poisson brackets of H[N] and D[Mi] for all relevant N and Mi, depending
on whether one considers the full theory or a restricted version such as a midisuperspace
model. This condition allows for possible quantum corrections in the structure functions
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of the gauge algebra, given in the case of gravity by the inverse spatial metric qij as it
appears in:

{H[N1], H[N2]} = D[β(q, p)qij(N1∇jN2 − N2∇jN1)] (23)

with a possible modification function β(q, p) on phase space. We have the classical space–
time structure if β = ±1, giving two possible choices of the signature of a classical four-
dimensional metric, where β = 1 for Lorentzian-signature space–time and β = −1 for 4-
dimensional Euclidean-signature space. (In each case, the name only refers to the signature
and does not imply flatness).

We have a consistent non-classical space–time structure if the brackets are closed
such that β 6= ±1. The modification function β determines the structure functions of
hypersurface-deformation brackets in the modified theory. Modified structure functions,
in turn, show via (21) how lapse and shift transform and whether it is possible to find
suitable field redefinitions of these fields that can be used in a proper effective line element
as discussed in detail in [25].

As we saw in the present section, suitable transformations of lapse and shift as
components of the space–time metric require knowledge of the structure functions of H[N]
and D[Mi]. If the brackets do not close, as in the dressed-metric approach, there are no
meaningful transformations of lapse and shift and it is impossible to construct a valid
structure of space–time. Such a structure exists only in anomaly-free modifications of the
constraints. However, the condition of anomaly-freedom is not sufficient if it does not
imply a clear modification of the structure function of hypersurface-deformation brackets,
for instance in cases in which the constrained system is reformulated before it is modified
or quantized. An example for such an approach is given by a partial Abelianization of the
constraints [4], to which we turn next.

4. Spherical Symmetry

An instructive set of examples is given by spherically symmetric space–time geome-
tries with the line element:

ds2 = −N2dt2 + L2(dx + Mdt)2 + S2(dϑ2 + sin2 ϑdϕ2) (24)

where N, L, M and S are functions of t and x. Together with the momenta pL and pS of
L and S, respectively, the components L and S of the spatial metric in classical general
relativity are subject to the Hamiltonian constraint:

H[N] =
∫

∞

−∞

N

(

− pL pS

S
+

Lp2
L

2S2
+

(S′)2

2L
+

SS′′

L
− SS′L′

L2
− L

4

)

dx (25)

and the diffeomorphism constraint:

D[ǫ] =
∫

∞

−∞

ǫ
(

pSS′ − Lp′L
)

dx . (26)

The relevant bracket with a stucture function is given by

{H[N1], H[N2]} = D[L−2(N1N′
2 − N2N′

1) . (27)

4.1. Reformulating the Constrained System

In [4], a reformulation of the constraints has been suggested that can remove the
structure function and even partially Abelianize the brackets. Instead of H[N], this refor-
mulation uses the linear combination:

H[2PS′/L] + D[2PpL/(SL)] =
∫

∞

−∞

P
d

dx

(

− p2
L

S
+

S(S′)2

L2
− S

)

dx (28)
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of Hamiltonian and diffeomorphism constraints. Specifically, the combination replaces
H[N] with a new constraint whose integrand (except for the multiplier P) is a complete
derivative. Imposing (28) as a constraint therefore requires that the parenthesis in this
expression equals a constant, C0. The same condition can be expressed by the alterna-
tive constraint:

C[Q] =
∫

∞

−∞

Q

(

− p2
L

S
+

S(S′)2

L2
− S − C0

)

dx . (29)

(The constant can be related to boundary values). Because C[Q] depends neither on
pS nor on spatial derivatives of L, it is easy to see that two such constraints always have a
vanishing Poisson bracket, unlike two Hamiltonian constraints. Together with the original
diffeomorphism constraint, we have the brackets:

{C[Q], D[ǫ]} = −C[(ǫQ)′] , {C[Q1], C[Q2]} = 0 (30)

free of structure functions. Therefore, it may be expected that using the reformulated con-
straints greatly simplifies the quantization procedure or the derivation of viable modifications.

However, the reformulation has made use of metric-dependent coefficients S′/L and
pL/(SL) in (28). In general, it is not clear whether these coefficients will be subject to
quantum corrections, in which case it may be difficult or impossible to reconstruct valid
hypersurface-deformation brackets with the correct classical limit from a quantization or
modification of the system (30). The non-trivial nature of this question has been shown
in [27] and the related [28], where examples were presented in which (30) can easily be
modified while no hypersurface-deformation brackets can be reconstructed at all or only in
modified form.

For instance, the modification:

C f [Q] =
∫

∞

−∞

Q

(

− f (pL)
2

S
+

S(S′)2

L2
− S − C0

)

dx (31)

with a free function f (pL), such as sin(ℓpL)/ℓ where ℓ is a suitable length scale analogous
to (3), and an unchanged D[ǫ] maintains the brackets (30) and is therefore anomaly-free in
the reformulated system. By reverting the steps undertaken in (28), it can be seen that (31)
corresponds to the modified Hamiltonian constraint:

H f [N] =
∫

∞

−∞

N

(

− pS

S

d f (pL)

dpL
+

L f (pL)

2S2
+

(S′)2

2L
+

SS′′

L
− SS′L′

L2
− L

4

)

dx . (32)

This modification of the Hamiltonian constraint, which has already been found in [29],
also turns out to be anomaly-free, but with a modified bracket:

{H f [N1], H f [N2]} = D[β(pL)L−2(N1N′
2 − N2N′

1)] (33)

where:

β(pL) =
1

2

d2 f

dp2
L

. (34)

The modified structure function is an example of signature change because β is
negative around any local maximum of f .

If spherically symmetric gravity is coupled to a scalar field, the partial Abelianization
of [4] is still available and can be modified as in (31). However, in this case, there is no
consistent set of hypersurface-deformation generators [27]. Therefore, the modified theory
is formally consistent but not geometrical: its solutions cannot be described by Riemannian
geometry or effective line elements, even after a field redefinition. This problem poses
a significant challenge to loop quantization because an application to vacuum models
would only be too restrictive. Moreover, the problem is broader because polarized Gowdy
models, which can also be partially Abelianized, do not admit a consistent set of modified
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hypersurface-deformation brackets [28]. To date, therefore, midisuperspace models with
local physical degrees of freedom cannot be geometrically described in the presence of
loop modifications.

4.2. Non-Bijective Canonical Transformation

To circumvent this problem, ref. [11] proposed a modification of spherically symmetric
gravity based on a non-bijective canonical transformation:

pL =
sin(ℓ p̃L)

ℓ
, L =

L̃

cos(ℓ p̃L)
. (35)

The transformation can be applied to the Abelianized constraint C[Q] or to the Hamil-
tonian constraint by inserting pL( p̃L) and L(L̃, p̃L) in their classical expressions. (The
diffeomorphism constraint is not modified by this transformation.) Terms depending on
pL in C[Q] are then modified as before in (31) with a specific version of f (pL), and there
are new modifications in the L-term. As postulated in [11], this procedure, based on a
canonical transformation, might be able to preserve the covariance of the classical theory
even in the presence of a scalar field, and yet allow room for new quantum effects because
of the non-bijective nature of the canonical transformation.

Unfortunately, this hope remains unfulfilled precisely because the transformation is
not bijective [30]. In particular, the bijective nature breaks down at hypersurfaces defined
by ℓpL = ±1 or ℓ p̃L = (n + 1/2)π, and pL as well as p̃L are spatial scalars but not space–
time scalars. Therefore, while the transformation preserves symmetries of the classical
theory when it can be restricted to regions of phase space in which it is bijective, these
regions themselves are defined in terms that are not space–time covariant. The resulting
theory is not covariant.

For the same reason, p̃L not being a space–time scalar, the variable L̃ introduced by the
canonical transformation does not have the same behavior as L = L̃/ cos(ℓ p̃L) under space–
time transformations. As a consequence, L̃ cannot be used in a space–time line element
based on L̃2dx2. A meaningful effective line element is obtained only after a suitable
field redefinition that leads to a function of L̃ with the correct transformation properties.
Since we already know that L̃ was derived from such a function, L, the field redefinition
simply sends us back from L̃ to L in regions in which the canonical transformation is
invertible, undoing the modification of the theory in such regions. (More systematically,
such a field redefinition can be derived using the methods introduced in [31].) In these
regions, exact classical solutions without any modifications are produced, but different
regions are connected along hypersurfaces (again, given by ℓpL = ±1 or ℓ p̃L = (n+ 1/2)π)
that are not covariantly defined. Since these hypersurfaces refer to fixed values of certain
components of extrinsic curvature, their positions in space–time depend on choices of
coordinates and spatial slicings.

In particular, slicings with large pL ∼ 1/ℓ exist even in flat space–time, and therefore
violations of covariance in this model cannot be considered a “large-curvature effect”.
These violations can occur at a low space–time curvature (in an invariant meaning), and
therefore the model cannot be considered a permissible model of quantum gravity that
would have non-standard geometrical features only at the Planck scale. The model could
be permissible only if it were combined with a mechanism that somehow prevents one
from choosing slicings that lead to large extrinsic curvature pL. However, preventing
such slicings (or any slicing) from being allowed requires violations of covariance that
are hard to reconcile with the application of line elements, even if they were only used in
low-curvature regions.

4.3. Bijective Canonical Transformation

As discussed in more detail in [30], the application of canonical transformations makes
an analysis of space–time structure rather non-trivial even if the transformation is bijective.
A bijective canonical transformation from (L, pL) to some (L̃, p̃L) may well be such that all
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possible values of pL are mapped to a finite range of p̃L. One could then conclude that the
transformed theory resolves singularities if p̃L, interpreted as some curvature expression
in the new theory, remains bounded. However, the new theory was obtained by applying a
bijective canonical transformation that cannot modify the physics of classical spherically
symmetric models.

The answer to this conundrum relies on effective line elements. For a transformation
with a significantly modified p̃L to be canonical, L̃ must also be modified compared with L.
Then, the structure function in (27) is modified when expressed in terms of L̃ instead of L,
and solutions of the transformed theory cannot be directly interpreted in terms of a line
element where L̃ directly takes the place of L. An effective line element, derived again as
in [31]), requires the undoing of the canonical transformation for a valid coefficient of dx2,
sending us back to the classical theory in its geometrical interpretation.

Models of loop quantum gravity are not obtained by bijective canonical transfor-
mations and could lead to new physics. However, the example of a bijective canonical
transformation demonstrates that predictions can only be reliable if a proper effective
line element is derived. Unfortunately, this task is rarely performed in phenomenological
studies of models of loop quantum gravity. In several proposals, as in the dressed-metric
approach, it is even impossible to construct an effective line element because they do not
amount to consistent modifications of the crucial bracket (27) that determines the structure
of space–time.

5. Homogeneity in Schwarzschild Space–Time

It is well known that a spatially homogeneous geometry of Kantowski–Sachs type [32],
with the line element:

ds2 = −N(t)2dt2 + a(t)2dx2 + b(t)2
(

dϑ2 + sin2 ϑdϕ2
)

(36)

is realized in the Schwarzschild interior—in the (almost) standard version:

ds2 = −(1 − 2M/r)dt̃2 +
dr2

2M/r − 1
+ r2

(

dϑ2 + sin2 ϑdϕ2
)

(37)

of the Schwarzschild line element, t̃ is a time coordinate only for r > 2M, outside of the
horizon. For r < 2M, the coordinate r may be used as time while t̃ contributes to a positive,
space-like part of the line element. Indicating the modified roles of the coordinates in the
notation, we define t = r and x = t̃ for r < 2M, such that the line element turns into:

ds2 = − dt2

2M/t − 1
+ (2M/t − 1)dx2 + t2

(

dϑ2 + sin2 ϑdϕ2
)

(38)

for t < 2M. A suitable identification of N(t), a(t) and b(t) shows that this line element is
of the general form (36).

The coordinates t and x determine a homogeneous space-like slicing in the interior of
Schwarzschild space–time. It is therefore possible to apply minisuperspace quantizations
to the interior region. However, such models do not show how a modified quantum
interior may be connected to an inhomogeneous exterior, and they do not reveal properties
of space–time structure (let alone physical processes such as occasionally hypothesized
explosions of black holes).

5.1. Time-Like Homogeneity of Exterior Static Solutions

A complex canonical transformation A = ia and pA = −ipa together with n = iN
in (36) implies a Kantowski–Sachs line element of the form:

ds2 = n(t)2dt2 − A(t)2dx2 + b(t)2
(

dϑ2 + sin2 ϑdϕ2
)

. (39)
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The complex transformation has the same effect as crossing the horizon in the Schwarzschild
geometry: it flips the roles of t and x as time and space coordinates. Defining X = t and
T = x, the transformed line element (40) takes the form:

ds2 = −A(X)2dT2 + n(X)2dX2 + b(X)2
(

dϑ2 + sin2 ϑdϕ2
)

. (40)

The exterior Schwarzschild line element:

ds2 = −(1 − 2M/X)dT2 +
dX2

1 − 2M/X
+ X2

(

dϑ2 + sin2 ϑdϕ2
)

(41)

with X > 2M is now of this general form. In particular, the coordinates T and X determines
a homogeneous time-like slicing in the exterior. Methods of minisuperspace quantiza-
tion can therefore be applied even to inhomogeneous geometries [6], possibly leading to
modified space–time structures.

Symmetries of individual space–time solutions such as homogeneity, as opposed to
general covariance which relates different solutions of the underlying partial differential
equations, are built into the setup of the model. Therefore, they are preserved by min-
isuperspace quantization. Time-like homogeneity then remains intact for any modified
dynamics in this setting. As shown in Figure 4, time-like homogeneity with the given num-
ber of degrees of freedom, in turn, implies the existence of a static spherically symmetric
configuration if the resulting theory is covariant and slicing-independent (described by a
meaningful line element). Since the black-hole analysis of [6] is based on line elements and
refers to notions of Riemannian geometry, such as horizons, curvature scalars or Penrose
diagrams, slicing independence is one of the ingredients of the construction and does
not need to be assumed independently. It must therefore be possible to formulate the
same physics claimed in [6] for a homogeneous time-like slicing also within a covariant
spherically symmetric theory, restricted to static solutions.

Figure 4. A homogeneous time-like slicing with coordinates (t, x) and an inhomogeneous space-like

slicing with coordinates (T, X), both in the same static spherically symmetric space–time.

Covariant versions of spherically symmetric gravity models and their static solutions are
under good control, thanks to work on dilaton gravity [33,34] and its generalizations [35,36].
It is therefore possible to check whether a proposed modification of the homogeneous
time-like slicing has a chance of corresponding to a covariant theory.
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5.2. Line Elements

Time-like homogeneity with modified dynamics leads to a formal line element:

ds2 = ñ(t)2dt2 − Ã(t)2dx2 + b̃(t)2
(

dϑ2 + sin2 ϑdϕ2
)

(42)

if solutions ñ, Ã and b̃ are simply inserted in the classical line element. Since properties
of space–time transformations have not been checked at this point, there is no guarantee
that (42) presents a proper effective line element.

Assuming that the Kantowski–Sachs-like (42) is a proper line element that describes a
slicing-independent theory, it is equivalent to the Schwarzschild-like:

ds2 = −K(X)2dT2 + L(X)2dX2 + S(X)2
(

dϑ2 + sin2 ϑdϕ2
)

(43)

where X = t, T = x and:
Ã = K , b̃ = S , ñ = L . (44)

By construction, the coefficients in (43) depend on X but not on T. The line element
therefore presents a static solution in a spherically symmetric model, subject to some
modified dynamics because K, L and S are only Schwarzschild-like but not exactly of
Schwarzschild form if the dynamics of the underlying homogeneous model is modified.

If the assumption of covariance, made implicitly in [6] is justified, (43) must be a solu-
tion of a 1 + 1-dimensional gravity model in terms of time and space coordinates (T, X).
Such theories are under strong control: all local covariant theories of this midisuperspace
form are known as generalized dilaton gravity models [35]. (Their equivalence to Horn-
deski theories in 1 + 1 dimensions has been shown in [36]). While several-free functions
exist in this general setting to specify the dynamics, for instance through an action, as
they can only depend on the variable analogous to our field S. Loop quantum cosmology
applied to the homogeneous time-like slicing, however, implies modifications that do not
fulfill this condition: such minisuperspace modifications depend non-linearly on momenta
pÃ and pb̃, which are linear combinations of dÃ/dt and db̃/dt that, according to (44),
are translated to ∂K/∂X and ∂S/∂X in the spherically symmetric slicing. Therefore, no
holonomy modified dynamics of Kantowski–Sachs-style models can be part of a covariant
space–time theory [37].

6. Conclusions

We discussed the main constructions that were supposed to circumvent difficulties
in earlier applications of loop quantization to inhomogeneous models. Instead of solving
older problems, however, these constructions led to no-go results for covariance in models
of loop quantum gravity. A complete understanding of covariance in any given model is
important not only to demonstrate its consistency, but also to evaluate possible observa-
tional implications of the underlying theory. For instance, if one neglects the identification
of suitable space–time structures for a model of modified or quantum gravity, one could be
led to posing initial conditions at an inadmissible place where there is, in fact, no mean-
ingful version of time. A detailed space–time analysis may well show other regions in
which initial values could reliably be posed, however, the altered location, perhaps at a
different range of curvature values, would affect implied phenomenological effects. Ad-
dressing such questions requires an understanding of different ways in which covariance
can be violated, which we compare in the next subsection. The final two subsections will
discuss general implications for loop quantum gravity and a brief outlook on covariance in
other approaches.

6.1. Comparison of Different Violations of Covariance

The examples reviewed in the preceding sections show different ways in which covari-
ance can be violated in models of loop quantum gravity. The dressed-metric approach, just
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as hybrid loop quantum cosmology, is based on the incorrect assumption that background
and perturbations can be quantized or modified independently in an inhomogeneous
model. This assumption ignores a crucial feature of space–time and covariance, according
to which background and perturbative transformations form a semidirect product but not
a direct one as an independent treatment would require. The fundamental nature of this
property implies that covariance is completely broken in these models, which are therefore
inconsistent as a description of (quantum) space–time.

As usual, one may expect that space–time is non-classical at large curvature and may
exhibit properties different from classical space–time. However, this expectation does not
redeem quantum models that violate covariance unless they can demonstrate that the
classical properties are recovered in a suitable classical limit. Moreover, the dressed-metric
and the hybrid approach both refer to features of classical space–time, such as line elements
or curvature perturbations, even close to the Planck curvature.

The inconsistency of these approaches is rooted not so much in possible modifications
of classical space–time properties near the Planck curvature, but rather in the unquestioned
(and often implicit) application of classical space–time ingredients for an analysis in this
regime. For a model to be consistent, such an assumption must be justified, but this
crucial step has not been attempted in the dressed-metric and hybrid approaches. There is
therefore reason to doubt the validity of these constructions and their implications.

The technical observation that a key property of classical space–time is violated, given
by the semidirect-product nature of transformation, serves as a concrete property that turns
this doubt into a proof that the models are inconsistent, not only in the Planck regime but
to any order in a semiclassical expansion by h̄ or ℓP. Consistency is recovered only in the
strict limit of h̄ → 0, just because we happen to know that the classical theory is covariant
and has solutions that can be described by line elements. In such modifications, there is
a strong discontinuity at h̄ = 0 in geometrical structures, seen as an h̄-dependent family
of modifications. In practice, this discontinuity translates into low-curvature physical
problems, as discovered in the case of black-hole models of loop quantum gravity in [38,39].

Similarly, the original attempt in [6] to describe the inhomogeneous Schwarzschild
exterior by homogeneous models, using time-like slicings in a static geometry, was based
on an untested assumption that is true in classical space–time but may be violated in
the presence of quantum modifications. The description of inhomogeneity in this case
is different from the preceding example because it is non-perturbative in a space-like
slicing. Here, homogeneous and inhomogeneous configurations do not appear as back-
ground and perturbations, but rather as models of a single space–time geometry using two
different slicings.

Classically, any slicing gives an equivalent description of the full geometry, but this
does not need to be the case once equations have been modified, in contrast to what has
implicitly been assumed in [6]. The good control on covariant local theories for spherically
symmetric dynamics makes it possible to test and invalidate this assumption. Again, it is
the application of line elements in [6] even in the presence of quantum modifications that
makes it possible to demonstrate inconsistency. It is not necessary to assume additional
classical features in the inconsistency proof, beyond properties that have already been used
in [6], explicitly or implicitly.

Models that work directly with spherically symmetric inhomogeneity usually tread
more carefully because the appearance of first-class constraints is explicit. A consistent
quantization or modification then requires that the first-class nature be preserved, i.e.,
that there are no anomalies, in order to prevent spurious degrees of freedom or over-
constraining the theory. However, even in an anomaly-free modification, the structure
of space–time and geometry may remain unclear without further analysis. Here, our
remaining two examples are relevant, given by different modifications implemented for
reformulated, partially Abelianized constraints and modification through a non-bijective
canonical transformation, respectively. These modifications are anomaly-free and therefore
consistent in a formal sense used for general constrained systems. Nevertheless, they turn
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out to violate covariance in different ways, even though the papers in which they have
been proposed go on and analyze their solutions by standard line elements.

6.2. Covariance Crisis of Loop Quantum Gravity

As we just saw, a crucial ingredient of proofs of inconsistency and non-covariance in
models of loop quantum gravity focuses on the application of line elements used routinely
to evaluate solutions of modified equations in canonical gravity. Since modifications
of canonical equations need not preserve covariance, even if they may remain formally
consistent and anomaly-free, line elements are rendered meaningless. It might therefore be
possible to evade some of the no-go results by foregoing line elements or related and more
advanced methods, such as Penrose diagrams. In principle, a physical analysis would
still be possible, at least in the anomaly-free case, by expressing solutions of anomaly-free
modified equations in terms of suitable canonical observables.

However, this option is rarely exercised in interesting models because of the com-
plicated nature of deriving strict observables, compared with the simple procedure of
modifying coefficients in a formal line element. Furthermore, if such an analysis could be
performed, it would not be clear in which sense solutions of the modified theory could
still be considered geometrical, even when quantum modifications are very small, or more
practically, how one would define the horizon of a black hole or curvature perturbations for
cosmology in the absence of geometry. The important covariant form of general relativity
and its geometrical nature would be a mere accident of the classical theory, rather than a
fundamental property of gravity that could be extended to even the tiniest of corrections.
While requiring a geometrical nature for quantum gravity may be largely a matter of taste,
it also has practical implications because most of the gravitational methods and definitions
that we know and understand are based on geometry.

A few additional ways might remain to solve these deep problems. First, in the
context of Section 5, non-local effects might help because they would evade the strong
control on possible covariant theories with spherical symmetry. However, the underlying
analysis of minisuperspace dynamics in [6] implicitly assumes locality because there is
a single momentum for each classical metric or triad component. If one were to try non-
locality in order to solve the covariance problem in models of loop quantum gravity,
the entire formalism used until now would have to change, even in minisuperspace
models. Moreover, non-locality is often pathological and there is no indication that loop
quantization could lead to more controlled situations.

Secondly, one may try to understand non-Riemannian space–time structures as they
would be implied by modified hypersurface-deformation brackets (β 6= ±1). In some
(but not all) cases, these modified geometries can be described by an effective Riemannian
line element after suitable field redefinitions. At present, such models, recently analyzed
in [25,40–42], are the only well-defined descriptions of geometries that may incorporate
quantum modifications. If suitable field redefinitions exist, strict effective line elements are
available, but in the presence of holonomy modifications they generically imply a signature
change at high curvature.

There has been progress in constructing anomaly-free versions of the Hamiltonian
constraint directly at the operator level in various versions of loop quantum gravity [43–48].
These constructions do not directly refer to symmetry-reduced models but, for now, im-
plement restrictions of general ingredients such as the spatial dimension, the local gauge
group, or the signature of gravity. In this approach, progress is usually made by reformu-
lating the constraints, simplifying their brackets in a way that is conceptually similar to
partial Abelianizations discussed in Section 4. As in this case, the successful construction of
anomaly-free reformulated constraints does not immediately reveal whether they describe
a consistent structure of space–time or covariance.
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6.3. Lessons for Other Approaches

Background independence implies that space–time structure must be derived in some
way and cannot be presupposed. We should not simply assume that inserting modified
solutions in classical-type line elements is consistent. As a consequence, quantum gravity
may not be “geometrical” as we understand it from general relativity. In the main body of
this paper, we discussed how the canonical nature of loop quantum gravity gives access to
powerful space–time methods, based on algebra, that can be used to rule out many models
that might otherwise look reasonable.

It is not easy to see whether there may be possible analogs of our results in alternative
approaches to quantum gravity if they are not canonical. Nevertheless, we are able to
draw several lessons of general form. First, non-canonical theories do not directly aim
to quantize generators of hypersurface deformations, but it should still be of interest to
construct them and consider their properties in order to facilitate a space–time analysis.
Instead of using these generators, covariance is often expressed in terms of coordinate
choices or embeddings of discrete structures, but these ingredients do not directly refer to
the actual degrees of freedom of gravity. Moreover, the explicit application of these space–
time ingredients reduces the freedom in formulating suitable modifications of space–time
structures if they are called for by modified dynamics.

Secondly, the no-go results we encountered are very general. In particular, they do not
require a specific form of modifications but only qualitative features related to discreteness,
such as bounded modification functions with local maxima. They should therefore be
expected to be largely independent of the specific approach. Even though they were
derived for canonical quantum gravity, the no-go results can be applied to any modified
cosmological dynamics that can be presented in canonical form, even if it has been derived
from a non-canonical approach. It would be interesting to see how other approaches might
be able to circumvent our no-go theorems, for instance by requiring new quantum degrees
of freedom or specific non-local behaviors. (For an example of non-local effects derived for
effective actions, see [49]).

Finally, hypersurface-deformation generators make it possible to analyze different
space–time structures because they express geometrical properties through algebra. It
is easier to control possible modifications or deformations of algebras (or algebroids),
compared with geometrical structures. The strong algebraic background of canonical
gravity is therefore the main reason why it is possible to analyze space–time structures in
detail with canonical methods. Non-canonical approaches are often viewed as preferable
because they can provide a direct four-dimensional space–time picture, at least heuristically.
However, this proximity to the standard four-dimensional formulation of classical gravity
also implies that hidden assumptions about the underlying geometry may easily and
unwittingly be incorporated in a specific approach. As shown in the present paper, even
canonical approaches are not immune to such hidden assumptions, but they also provide
strong methods to spot and test unjustified assumptions.
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