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Cooperation exists across all scales of biological organization, from genetic ele-
ments to complex human societies. Bacteria cooperate by secreting molecules
that benefit all individuals in the population (i.e., public goods). Genes associated
with cooperation can spread among strains through horizontal gene transfer
(HGT). We discuss recent findings on how HGT mediated by mobile genetic ele-
ments promotes bacterial cooperation, how cooperation in turn can facilitate
more frequent HGT, and how the act of HGT itself may be considered as a form
of cooperation. We propose that HGT is an important enforcement mechanism in
bacterial populations, thus creating a positive feedback loop that further maintains
cooperation. To enforce cooperation, HGT serves as a homogenizing force by
transferring the cooperative trait, effectively eliminating cheaters.

Evolution of cooperation

Cooperation has evolved many times across the Tree of Life and at all levels of biological organi-
zation, from genes forming genomes, to cells forming multicellular organisms, to eusocial insects
forming superorganisms, and even to different species forming communities [1-3]. However,
social adaptations such as cooperation are not always locally advantageous, making their
prevalence puzzling to researchers for decades [4-6]. Several explanations for this social evolu-
tionary paradox have since been developed; however, the same underlying concept holds:
prosocial behavior benefits the collective, whereas selfishness provides a local advantage to
individuals within collectives [5-7]. Charles Darwin described this notion in his observation that
morality gives little to no advantage to an individual over another of the same tribe, yet will give
an immense advantage to one tribe over another [4]. This multilevel selection framework requires
that the benefits of cooperation go mostly towards other cooperators than to their selfish coun-
terparts [5]. This can occur through sorting, kinship, conformance, or enforcement strategies
such as punishment, which all increase the likelihood that a cooperator is interacting with, and
thus benefiting, other cooperators [5,7]. We propose that the transfer of genes in bacteria is
unique in that it serves as driver, product, and form of cooperation.

In bacteria, cooperation is often in the form of public goods whereby their production benefits all
individuals [8,9]. These public goods are vulnerable to exploitation by individuals that benefit from
their production but do not share in the costs. Nonetheless, it is not clear under which conditions
bacterial cooperation is favored and whether it is an evolutionary stable strategy (i.e., a strategy
that when adopted by most individuals in a population cannot be invaded and replaced by a
deviating strategy) [10]. For example, Oliveira et al. found that stable cooperation through
reciprocal exchange was unlikely to emerge in evolving microbial communities; however, most
bacteria and archaea live under conditions of poor genetic mixing not explored in this study
[11]. In addition, cooperation in bacteria includes an interesting caveat, as many cooperative
genes are carried on mobile genetic elements. Here, cooperators benefit those around them,
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Cooperation is ubiquitous in bacterial
populations. Bacteria produce and
share public goods, providing indiscrimi-
nate benefits to their neighbors at cost to
themselves.

Bacteria often engage in horizontal gene
transfer (HGT) to rapidly disseminate
traits in a population. HGT provides an
important mechanism for cooperation
to spread, effectively acting as an
enforcement mechanism.

Public goods can also promote HGT,
potentially resulting in positive feedback
loops between the two.

HGT could itself be considered a public
good due to the costly benefits it pro-
vides a population.
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and at the same time, this transfer of genes also increases the likelihood that individuals receiving
the benefits become cooperators themselves.

Costs of public good genes

Public goods were conceptualized in economics as goods that are non-rivalrous and non-
excludable [12,13]. This means that using them does not detract from their consumption by
other individuals and that they are available for everyone to use [12]. In humans, examples of public
goods include national defense, sanitation, and street lighting. In other organisms, the concept of
public goods is sometimes relaxed to include common-pool resources with rivalrous consumption
[14]. Public goods in bacterial populations may include extracellular digestive enzymes,
siderophores for iron scavenging, antibiotics used in bacterial warfare, antibiotic-degrading
enzymes, surfactants for bacterial mobility, and molecules that function in virulence, quorum
sensing, biofim formation, and light production [2,8]. Proteins can provide a public service or
leaky functions even if the encoded protein itself is not secreted from the cell [15].

The nature of public goods can lead to the free-rider problem, whereby some individuals capital-
ize on the public goods secreted by others (i.e., cheaters) [16,17]. These non-producers enjoy a
relative fitness advantage over producers as they reap the benefits of cooperation without sharing
in the costs. Over time, non-producers outcompete producers in the population, undermining
cooperation in the population [18,19]. Such scenarios exist in both unregulated economies
of human society [20,21] and bacterial populations. For instance, the opportunistic pathogen
Pseudomonas aeruginosa scavenges iron through siderophores, a secreted public good [22].
In long-term lung infections, some strains have been observed to mutationally lose their ability
to produce siderophores, giving rise to a cheater phenotype. This consequently leads to the
collapse of cooperative social behavior over time [22].

Some cellular functions incur high energetic or nutritional costs. The metabolic cost of gene product
synthesis can inhibit bacterial growth [23,24], with some biosynthetic genes more costly to keep
than others [25]. Strains that stop performing these costly functions and eventually lose the corre-
sponding genes have a local advantage [15]. While gene loss due to drift is known in bacteria, espe-
cially in host-restricted taxa [26,27], genome reduction also occurs in bacteria with very large
effective population sizes, such as the marine-dwelling Synechococcus and Roseobacter [28,29)].
Selective pressure to lose genes could be due to general genome streamlining caused by deletion
bias observed in bacterial genomes [30], a possible way to purge them of selfish genetic elements
[31]. Some public good genes may even result in host death when expressed. For example, the
anti-competitor toxin colicin is released through self-lysis in Escherichia coli [32] and Salmonellia
enterica [33]. Self-lysis also occurs in the release of anti-predator Shiga toxin in E. coli [34].

The Black Queen hypothesis has been proposed to explain how selection for reduced genomes
impacts the dynamics of public goods in bacteria. For functions that provide an indispensable
public good, a fraction of individuals retain the genes that encode these functions and thus support
the entire community through leakage [15]. Leaky public goods that become available to the rest of
the community will lead to functional dependencies [15,35]. Hence, while these functions are not
completely lost from the community, cooperation between producers and non-producers is main-
tained. The Black Queen hypothesis therefore predicts an overall trend towards ‘mutual cheating’
[35], highlighting the apparent paradox in the ubiquity of public good genes in bacteria [8]. Mutual
cheating may also explain the conservation of gene content and functions of microbial communi-
ties, despite taxonomic variability within communities [36,37]. However, division of labor may be
a more appropriate description, especially in those cases where a keystone strain or species is
no longer present in the population and all individuals in the population are dependent on some
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common good produced by others (i.e., strong Black Queen hypothesis [15,35]). The stable
coexistence of producers and consumers, including cheaters of cheaters, of leaky products
such as siderophores has been demonstrated in P. aeruginosa [38,39].

HGT introduces and maintains genes in a population

Bacteria are notable in their predilection towards HGT, the acquisition of genes between organisms
through mechanisms other than vertical descent from a common ancestor [40]. Horizontally trans-
ferred genes can impact the fithess of the recipient and allow it to enter new ecological niches
unavailable to it through mutation alone [41-43]. Conversely, genes with neutral or nearly neutral
effects may also be frequently transferred [44,45]. The probability of fixation or elimination of
these neutral acquisitions in the population will be determined by genetic drift [44,46], and in the
case of selfish genetic elements, on the frequency they are transferred within a population
[47,48]. Whether horizontally acquired genes are positively selected or neutral, they create a
remarkably diverse and constantly changing pool of novel genetic combinations for which selection
to act on [40,49].

Genes are easily acquired and lost in microbes [50,51]. This interplay of gene loss and gain results
in a dynamic pan-genome, with individual strains carrying distinct sets of genes [52-54]. Inter-
strain variability in gene content can arise through rapid gene gain and loss in response to neutral
evolution or selection to survive in variable environments. A dynamic pan-genome enables
the rapid addition of potentially adaptive genes and replacement of unfavored ones in a local
environment at a rate that would not be possible without mobile elements [40,55]. This is notable
for cooperative genes whose fithess payoffs depend heavily on local environmental conditions,
such as population composition [56,57]. For example, Cry toxins are insecticidal proteins
produced as crystal inclusions during the sporulation phase of bacterial growth and are considered
as public goods with a high metabolic cost to produce [58]. Rapid gain and loss, mediated by
plasmids, have been observed in genes that encode the Cry toxins among Bacillus species [58].
HGT therefore favors cooperative genes to invade and persist in a population.

It has long been hypothesized that plasmids (extra-chromosomal replicons) are maintained in
populations due to their selective advantages. These might be due to locally adaptive genes
they carry or the increased mobility of conditionally adaptive traits [47,59]. However, plasmid
carriage often imposes a reduction in fithess to its bacterial host [47,60]. In response, conjugative
plasmids have devised unique ways to persist in their host cells, even when the two come into
conflict. These include self-mobilization, partition systems, multimer resolution systems, and
post-segregational killing of cells without plasmids [47,61]. To persist in the population, plasmids
must therefore depend on either or both fithess cost amelioration and HGT, with plasmids having
traits of both parasites and mutualists [62,63].

Plasmids can persist in the population even in the absence of selective pressures, as demon-
strated in an experimental assay of conjugation plasmids in E. coli [64]. While costly, plasmids
of different incompatibility groups are rapidly transferred, such that antibiotic resistance genes
carried by these plasmids persist even in the absence of antibiotics [64]. Similarly, HGT allows
antibiotic resistance genes to persist at low frequencies in the naturally competent gut microbe
Helicobacter pylori even in the absence of antibiotics [65]. A recent mathematical model has
also shown that genes with small fitness benefits that would otherwise be lost from the population
without HGT persist or are rescued, despite the costs incurred by selfish genetic elements [66].
However, such scenarios occur only in spatially structured environments (Box 1), such as biofilms
[66] (Box 2). The complexity of microbial communities might therefore promote plasmid persis-
tence because of multiple sources and sinks of plasmid transfer [59,67,68].

¢? CellPress

Trends in Ecology & Evolution, March 2022, Vol. 37, No. 3 225



CellPress logo

- ¢? CellP’ress Trends in Ecology & Evolution

Box 1. Dynamics of public good genes in structured populations

Since the inception of evolutionary game theory, stable cooperation has been associated with population structure [78,79].
Cooperators have to interact with other cooperators more often than they would by chance, avoiding the net fitness
penalty of cooperation [100]. This depends on selection at the level of groups of cooperating individuals, whereby genetic
relatedness may not necessarily be at play [101,102]. Both experimental systems and mathematical models have shown
that cooperative plasmids alone are not sufficient to maintain cooperation. Some degree of population structure is
therefore required [92,103].

Population structure need not be constant. Changes in population viscosity can allow for the evolution of different types of
cooperation [104]. The coevolution of population structure and cooperation has been proposed and subsequently
demonstrated in mathematical models of Snowdrift and Prisoner’s Dilemma games [105,106], with biofims being a
proposed example of this [107,108], as elaborated on in Box 3. HGT within groups can act as a mechanism to change
population structure by increasing similarity between individuals in a population, which in turn increases between-group
differences and accelerates group selection. A higher rate of HGT can thus be selected both to spread more public good
genes and to increase relatedness between bacteria [109]. Biased plasmid transfer increases inclusive fithess and can lead
to selection for higher rates of HGT. Biased transfer can be the result of population structure or recipient discrimination
[110], as in the case of kin-biased plasmid transfer in E. coli [111]. B. subtilis also possesses kin discrimination systems,
where many of the genes encoding antimicrobial compounds involved in discrimination are located on mobile genetic
elements [112]. These studies suggest that HGT influences the evolution of kin groups.

The ability to maintain genes in a population might be especially useful for traits that are difficult to
re-evolve via mutation once they are lost. This applies to some cooperative traits, as in the case of
P. aeruginosa, where the loss of the siderophore pyoverdine was not recovered, even with
increased spatial structure and reduced cost of public good production [69]. HGT may also act
in concert with the physical arrangement of genes in the genome to prevent gene loss. The selfish
operon hypothesis posits that genes coding for weakly selected functions physically cluster
together due to HGT, so they can be donated [70,71]. Selfish operon theory can explain horizon-
tally transferred gene clusters, such as genomic islands found in a variety of species [71-73],
although its relative importance is a point of debate [74,75]. Widespread HGT can thus prevent
the loss of a trait or reintroduce it if lost.

Mobile genetic elements as an enforcement mechanism
Cooperation requires enforcement to evolve and thrive. Although enforcement strategies may vary,
enforcement ensures that the self-serving behavior of some members of the group is reduced

Box 2. Public goods and HGT in biofims

The population structure described in Box 1 often manifests itself in physically distinct populations. Most bacterial and
archaeal cells live in biofilms or small aggregates [113]. They are therefore more likely to be physically adjacent to cells with
whom they share recent ancestry and more likely to have the same genotype with respect to leaky functions. These
neighborhood relations are expected to increase frequency-dependent selection on genes encoding these functions.
Drescher et al. [114] showed that chitinase-secreting Vibrio cholerae can avoid the public goods dilemma by strengthening
relationships between cells of the same genotype through creation of a thick biofilm, leading to larger benefits to the
producers when the overall concentration of the public good decreases. While the cheater strain has a fitness advantage
over the cooperators at low frequencies, it has a fitness disadvantage at high frequencies. This shows that genes encoding
common goods can be under frequency-dependent selection, which could lead to local feedback loops that promote the
coexistence of different cheaters.

Biofilms are also hotspots for HGT events facilitated by a variety of transfer mechanisms, including conjugation, nanotubes,
natural transformation, phages, and membrane vesicles [115-117]. Biofilms also provide physical means to structure
bacterial communities and therefore set physical boundaries for HGT [118,119]. Conjugative plasmids can directly induce
biofilm formation in bacteria, first demonstrated in an E. coli laboratory strain [120]. Non-conjugative plasmids have also
been shown to affect biofilm formation [121]. In turn, biofilm growth can result in a greater copy number of plasmids
[122] and more persistent plasmids [117,123], raising the possibility of positive feedback loops formed by this interaction
[124]. Biofilms can therefore lead to enhanced cooperation. In E. coli, more cooperative resistance from a plasmid-
encoded {3-lactamase has been reported in biofilms compared to liquid cultures [125]. Mobile elements can therefore
promote cooperation not just by carrying public good genes, but by inducing environmental conditions favorable for
cooperation, such as biofilms [119].
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[76,77]. Through his inclusive fitness theory, Hamilton first proposed that relatedness between
interacting organisms can favor cooperation even when costly to the individual [78,79]. Inclusive fit-
ness theory has since been expanded to include general models taking individual genes into account
[80,81]. Spatial structure of a population can also allow cooperation to evolve [56,57], even without
considering relatedness [7,80]. Spatial self-organization of the population can also sustain coopera-
tion through repeated colonization, even when the costs for cooperation are high [82,83]. Enforce-
ment can also take the form of policing [84,85] or the repression of competition within groups
[86,87]. Other enforcement mechanisms in bacteria include quorum sensing and antagonistic
pleiotropy [9].

We propose that HGT is also an important enforcement mechanism in bacterial populations.
Figure 1 shows HGT impeding the invasion of a cheater in a cooperating bacterial population.
A mutant cheater strain arises in a cooperating population (Panel A) through a random loss-of-
function mutation (Panel B). In the absence of HGT as an enforcement mechanism, the cheater
can invade the population (Panel C) and undermine public good production, resulting in the
fitness loss of the overall population (Panel D). With HGT, the mutant cheater is converted into
a cooperator by reintroducing the functional allele (Panel E), thus rescuing cooperation (Panel F).

The concept of HGT as an enforcement mechanism was first hypothesized in the context of acute
infection within and between hosts described using a differential equation model [88]. In this
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Figure 1. Cooperative bacterial population invaded by a cheater, with and without horizontal gene transfer.
(A) Bacteria secrete extracellular proteins (orange dots), a public good, to protect themselves from an antimicrobial agent
(red triangle). (B) A non-producing cheater (blue cell) arises in the population as a result of a loss-of-function mutation.
(C) Due to its fitness advantage, the cheater strain invades the population. The presence of the public good produced by
the remaining cooperators enables the survival of the cheaters. (D) In the absence of cooperators to produce enough of
the public good, the cheaters are killed by the antimicrobial agent. The size of the population is significantly reduced as a
result. (E) In the presence of horizontal gene transfer, cooperator strains can transfer a functional allele into the cheater
strain. The loss-of-function mutation is rescued as a result. (F) In the absence of cheaters, the population remains immune
to the antimicrobial agent.
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model, selection for infectious transmission favored pathogens that can force cheater strains
to produce the virulence factor (i.e., public good secreted extracellularly) via HGT [88]. These
findings were supported by investigations in a variety of bacterial species that made use of geno-
mic data [89,90], simulations [89,91], and experimental work [69,92]. Other cooperative traits
such as virulence factors, toxins, and detoxification proteins are also frequently found on mobile
elements [93], and may facilitate evolutionary rescue of some genes [94]. More recently, a larger
survey of 5397 bacterial genomes across several taxa confirmed the overrepresentation of genes
coding for secreted proteins on plasmids [90]. However, we note that leaky functions do not
necessarily require the protein catalyzing this function to be secreted (see section on Costs of
public good genes).

The role of plasmid-mediated HGT in the context of bacterial cooperation remains unsettled.
Two recent preprint studies describe other factors that influence the presence and mobility
of plasmids, such as virulence traits. A genomic analysis of 51 bacterial species reported
that HGT might help cooperation to initially invade a population but does not help in maintaining
cooperation in the long term [95]. An experimental study of a master regulator of virulence
inserted into a conjugative plasmid demonstrated the emergence of cooperative virulence,
but its stability depended on transmission dynamics [96]. The role of population structure
and time scales being studied may explain these discrepancies. HGT might cause cooperation
to appear short-term in local populations, without necessarily maintaining it across a species.
Future work is needed to explore patterns of transfer of other mobile genetic elements, such as
chromosomal cassettes, transposons, integrons, and phages. Since interactions between
different mobile elements can facilitate their transfer, broader sampling may present a clearer
picture of HGT [97,98].

Many extracellular toxins that function as public goods are also associated with mobile elements.
In E. coli, colicin is a plasmid-encoded toxin used in bacterial warfare, where it causes lysis in both
cells expressing it and neighboring cells exposed to it [32]. Since colicin results in a loss of repro-
ductive potential, it is rarely expressed. Cells thus bet-hedge, with colicin silenced within most of
them [99]. In S. enterica serovar Typhimurium, colicin is phage-encoded and also causes self-
lysis [33]. Phage-mediated bet-hedging has been observed, with HGT hypothesized as maintain-
ing the evolutionary stability of colicin production [33]. HGT can therefore cause phenotypic
heterogeneity associated with bet-hedging due to the frequent gain and loss of traits. Another
example is the Shiga toxin in E. coli, a phage-encoded anti-predator molecule. It is also secreted
and causes self-lysis when expressed [34], thereby functioning as a public good. Due to the
mobility of the phages encoding Shiga toxin, susceptible non-cooperating bacteria can be
induced to produce it, enforcing cooperation in the population [34]. These examples demonstrate
how the transfer of mobile elements coding for public goods can enforce their expression in
phage-susceptible cells, and thus the cooperation among members of the population (Box 3).

Concluding remarks

Evidence exists for a positive relationship between gene mobility and cooperation, although
primarily focused on plasmids. Direct investigations of genetic recombination and of other mobile
genetic elements are lacking. Given how the prevalence of HGT itself is evolvable, such as
through the construction of structured microbial communities, conceptualizing HGT as a dynamic
parameter in the evolution of cooperation is warranted. The relationship between bacterial
cooperation and HGT could lead to a positive feedback loop, whereby HGT and cooperation
maintain each other in the population. Finally, the study of HGT as an act of cooperation in itself
seems appealing, but the fithess costs of HGT itself should be investigated. The availability of
whole-genome sequence data will lead to more comprehensive surveys of mobile genetic
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Outstanding questions

Are the differences in the frequency of
HGT and accessory gene content
among bacterial taxa and among
strains due to differences in their pro-
pensity for cooperation?

What are the fitness costs associated
with HGT? Are these costs primarily
due to the carriage of potentially
harmful genes, or are they due to the
act of transfer itself?

Cooperative traits increase the fitness
of a group, allowing for increased
population density. Does this increased
fitness always translate to more
frequent HGT?

To what extent do other types of
mobile genetic elements, such as
phages, transposons, gene cassette,
and integrons, facilitate cooperation in
bacterial populations?

How do different mechanisms of transfer
(conjugation, transformation, transduc-
tion, homologous recombination, and
illegitimate recombination) influence the
cooperative behaviors between strains?

To what extent do biases in HGT
partners (due to phylogenetic, geo-
graphical, or ecological proximity)
enhance or hinder cooperation in a
population?

Are there differences in the distribution
of public goods and cooperative
behaviors  during asymptomatic
carriage and disease?
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Box 3. Horizontal gene transfer as second-order cooperation

The free-rider problem, by which a population loses a cooperative function due to individuals having no incentive to maintain it
[18,19], can be remedied in populations by enforcing cooperation [77]. This makes enforcement itself an act of cooperation
and the enforcement system a public good [126]. Individuals may opt to punish non-cooperators even when doing so incurs
a cost, leading to ‘altruistic punishment’ [127,128]. However, the fitness cost may lead to the second-order free-rider
problem, whereby individuals who do not punish non-cooperators outcompete punishers. How these enforcement systems
evolve is an exciting new field of study [127-129].

The production of cooperative offspring can be a form of second-order cooperation, with the comparative rates of production
of cooperators and non-cooperators being an evolvable trait [130]. In cooperating populations of bacteria, population struc-
tures with high levels of relatedness select against hypermutators, favoring the continued transmission of the cooperative
phenotype [131,132]. The same principles that apply to the vertical inheritance of cooperative traits should also therefore
apply to HGT, with HGT acting against mutation in cooperative populations.

Mobile genetic elements, such as plasmids, often have fitness costs to their hosts. This can be due to cargo genes not
being adaptive or conflicts between these elements and the hosts [133,134]. The costs may also vary depending on
the mobile elements, the host, and their interactions [134,135]. The fitness changes associated with random horizontally
transferred DNA fragments may range from maladaptive to neutral to adaptive [51,60,68]. The act of conjugation itself
may also carry fitness costs [136]. Horizontally transferred genes can also either cooperate with or antagonize their host
genomes [137]. While maintaining HGT may thus be a costly public good in some cases, such as in the case of conjugative
plasmids that have evolved persistence mechanisms in opposition to their hosts, the costs may be reduced when mobile
elements and their host genomes coevolve towards stable mutualism [47,68,137]. Future work is needed to better
understand the second-order free-rider problem in the context of maintaining HGT.

elements and public good genes across various microbial taxa. These phenomena are mechanis-
tically distinct yet dynamically intertwined, feeding into each other to produce the rich tapestry of
bacterial sociobiology (see Outstanding questions).
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