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Kummerts Approach to
Realization on the Bidisk

GREG KNESE

ABSTRACT. We give a simplified exposition of Kummert's approach
to proving that every matrix-valued rational inner function in two
variables has a minimal unitary transfer function realization. A slight
modification of the approach extends to rational functions which are
isometric on the two-torus, and we use this to give a largely elemen-
tary new proof of the existence of Agler decompositions for every
matrix-valued Schur function in two variables. We use a recent result
of Dritschel to prove that two variable matrix-valued rational Schur
functions always have finite-dimensional contractive transfer func-
tion realizations. Finally, we prove that two variable matrix-valued
polynomial inner functions have transfer function realizations built
out of special nilpotent linear combinations.
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1. INTRODUCTION

The goal of this paper is to give a simple proof and several applications of the
following theorem.

Theorem 1.1 (Main Theorem). Assume S : D? — CM*N s yational with no
poles in D? and satisfies S*S = Iy on T? away from the zero set of the denominator
of S.

Then, there exist an integer v and an (M + v) X (N + v) isometric matrix
U= (ég) such that

(1.1 S(z) = A+ BA(z)(I-DA(z))"'C

where A(z1,23) = z1P1 + z2P and P, P, are orthogonal projections with Py + P =
L.

Above D? = {z = (z1,z2) € C? : |z1l,|z2] < 1} is the unit bidisk, and
T2 = {(z1,22) € C?: |z1| = |z3| = 1} is the two-torus (or bitorus). We shall call
functions that satisfy the hypotheses of this theorem rational iso-inner functions.
Formulas in the conclusion of this theorem (such as (1.1)), which are built out
of block operators, will be called transfer function realizations (or TFRs). If the
operator is a finite matrix we will call it a finite TFR, and if we have extra infor-
mation about the operator involved, we will incorporate it into the terminology.
For example, the above theorem asserts the existence of a “finite isometric TFR”
for two variable rational iso-inner functions.

This theorem is due to Kummert in the square case M = N [33]. Kummert’s
theorem was ahead of its time and its proof was both ingenious and largely ele-
mentary. At the same time, Kummerts argument seezs complicated and the engi-
neering terminology may obscure the underlying concepts for some, so one of our
main goals is to give a simplified, conceptual, and entirely mathematical account
of Kummert’s approach. We also give an algorithm for constructing the matrix U.
Motivation for doing so comes from recent interest in the wavelet community in
transfer function formulas in one and several variables [14]. We have presented
generalizations of our simplified argument in a couple of papers [21, 32], but the
generalizations can also potentially obscure the underlying concepts. A minor ad-
justment allows us to treat the non-square case M # N, which in turn allows us
to give possibly the most elementary and direct proof of the following seminal
theorem of Agler.

Theorem 1.2 (Agler [1,2]). Let f:D? — CM*N be holomorphic, and ||f (2)|| <1
for all z € D?. Then, f has a contractive TER: there exists a contractive operator T

on some Hilbert space with block decomposition T = (é‘ 5 ) such that

f(z) =A+BA(z)I-DA(z))"!'C

where A(z) = z\Py + zoP; and Py, Py are pairwise orthogonal projections which sum
to the identity on the domain of D.
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Perhaps the most important application of this theorem is a Pick interpolation
theorem for holomorphic functions on the bidisk. For this and other applications,
we refer the reader to the book [4] and the papers [3, 5,6, 10].

Dritschel has recently proven a strong Fejér-Riesz type of result in two vari-
ables (Theorem 6.7) which makes it possible to prove that every two-variable ratio-
nal function bounded by one in norm on D? (with no assumptions on boundary
behavior) has a finite contractive TFR.

Theorem 1.3. Let S : D* — CM*N be rational with no poles in D* and assume

1S(2)Il <1 for all z € D2. Then, there exists a contractive matrix T = (é‘ g) such
that
S(z) = A+ BA(z)(I - DA(z))"'C

where A(z1,2,) = z1P1 + 22Pa, Py, P, are orthogonal projections with Py + Py = 1.

A very important bonus of Kummert’s approach is that it constructs the ma-
trix U in Theorem 1.1 with the minimal possible dimensions in a strong way.
For a rational iso-inner function § : D? — CM*N we can always make sense of
z1 — S(z1,z) for each fixed z, € T, and this is a one variable rational iso-inner
function (Lemma 4.3). If we have a formula as in Theorem 1.1 where the ranks of
P, P, are 71,73, then we can construct a transfer function realization for S(-, z,)
with size 71 and a transfer function realization for S(z;, -) with size ;. In the
square case M = N, this can be done optimally.

Theorem 1.4 (Kummert’s minimality theorem). Suppose S : D* — CN*N s
rational and inner. Then, one can choose U in Theorem 1.1 so that the ranks 1,7
of P\, Py are simultaneously minimal: v is the maximum of the minimal size of a
unitary TER for zy — S(z1,z2) where z; varies over T and v, is the maximum of
the minimal size of a unitary TER for zo — S(z1,z2) where zy varies over T.

In particular, among all possible unitary TFRs for S, neither 71 nor 7, can be
smaller than those in Kummert’s construction. We will give a conceptual proof
of Kummert’s minimality theorem, and clarify why this is the best possible result.
Before the mathematical community knew of Kummert’s results, this result was
reproven in the scalar case using the framework of Geronimo-Woerdeman [20] in
[30]. Later, Theorem 1.4 was also proven using Hilbert space methods in [12].
The scalar minimality theorem was crucial in giving a characterization of two-
variable rational matrix-monotone functions in [5]. It is also useful in proving
determinantal representations for certain families of polynomials p € C[z;, z;]
with no zeros in D? [29].

We shall present a new application of the minimality theorem which has some
relevance to the applications of this theory to wavelets in [13, 14]. In these papers,
matrix-valued polynomial inner functions are of particular interest.

Theorvem 1.5. Let S € CN*N[zy, z,] and assume S*S = In on T2. Then, U in
Theorem 1.1 can be chosen with det(I — DA(z)) = 1.

Note this means DA(z) = z;DP; + z,DP; is nilpotent for every z.
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1.1. Guide to the reader. This paper is structured so that it can hopefully
be read by a broad audience. We make no mention of systems theory terminology
(except for “transfer function”) and we make no use of von Neumann inequalities
and related operator theory originally used in the proof of Agler’s theorem. (We
do discuss some of this for context in Section 6.) Our first goal is to quickly
and simply prove Kummert’s Theorem 1.1, and explain how this proves Agler’s
theorem.

Some readers may be satisfied with this quick and mostly constructive ap-
proach to these results and can stop after Section 6. After that, we introduce
the technicalities necessary to prove Kummert’s minimality theorem and give an
application to inner polynomials. We include an appendix with extra background.

2. FINITE-DIMENSIONAL TRANSFER FUNCTION REALIZATIONS

One of the fundamental things that Agler did in his original proof of Theorem
1.2 was connect TFRs to certain formulas now called Agler decompositions which
involved positive semi-definite kernels. The following theorem establishes some
basic equivalences about finite TFRs and finite-dimensional Agler decompositions
which hold not just on D? but on any polydisk D4. Note that “matrix” below
always refers to a finite matrix.

Theorem 2.1 (Equivalences Theorem). LetS : D* — CM*N be a function.
The following are equivalent:

(1) There exists a contractive matrix T = <é 5 ) such that
S(z) = A+ BA(z)(I - DA(z))"!C

where A(2)=3. ; zjPj, for some pairwise orthogonal projections with 3 ; Pj=1.
(2) There exist matrix functions Fj and a constant contractive matrix T such that

1 S(z)
zZ1F1(2) Fi(z)
z4Fa(2) Faq(2)

(3) There exist matrix functions F1,...,Fa, G such that

I-S(w)*S(z) = G(w)*G(2) + >.(1 —w;jz;)Fj(w)*Fj(z).
J

We also have the following bonuses:
(B1) Assuming (1)—(3), we have S, Fi, ..., Fa, G are all rational and ||S(2)|| < 1

for all z € DY, If we assume at the outset that S is holomorphic, then item
(3) need only hold initially on an open set in order for it to hold globally.
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(B2) The T that works in (1) also works in (2).

(B3) We also get equivalences if we replace “contractive” in (1) and (2) with “iso-
metric” and G with 0 in (3). In this case, S is iso-inner and analytic outside
the zeros of det(I — DA(z)).

Proof. (2) = (1). It helps to define

Fi(z)
F(z) = :
Fa(z)

Let P; be the projection matrix for the block corresponding to F;. Then, the
equation in (2) can be written as

AB\ (I 0 I S(z)
2.1) <C D) (0 A(z)) (F(z)) = (F(z))

for A(z) = > zjPj. Block by block, this says

A+ BAF =8,
C+DAF =F

which yields F = (I — DA)"!C and then § = A + BA(I - DA)"!C.
(1) = (2). We simply define F = (I — DA)~!C. Then, (2.1) holds because

C+DA(I-DA)'C=(U-DA)IC.

(2) = (3). The given equation implies

I e I (Sw)\" (S(2)
A(w)F(w) A(z)F(z))  \F(w) F(z))"

Let A=VI-T*Tand G(z) = A (A(Z)IF(Z) ) Then,

I VA sw)\" (s(2)
(A(w)F(W)) (A(z)F(z)):(nw)) <F<z> Fow)T6(),

and this rearranges exactly into the equation in (3).

(3) = (2). This is known as a lurking isometry argument. The map

I S(z)
o) £
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extends linearly and in a well-defined way to an isometric map from the span of
the vectors on the left to the span of the vectors on the right as z varies over D4.
We can extend this to an isometric matrix V satisfying

I S(z)
v (A(z)F(z)) it

which we can compress to get a contractive matrix satisfying the equation in (2).
The bonus results follow. For (B1), S is rational and bounded in operator
norm by 1 by (1) and (3). The matrix functions F;, G are rational by the proofs
of (2) = (1) and (2) = (3). If we assume S is holomorphic and (3) only holds
on an open set, then all of the proofs work on this restricted set but automatically
extend holomorphically to D4 by the matrix formulas. Bonus (B2) follows from
the proof of (1) < (2). For bonus (B3), notice that if T is an isometric matrix,
then we have G = 0 in the proof (2) = (3), and if we start with G = 0 we get T
to be isometric in the proof (3) = (2) since no compression is necessary. Finally,
S is iso-inner because we can insert z = w € T into condition (3) to see S*S = I
at least away from the zero set of det(I — DA(z)) which is a denominator for the
Fjand S by the formula in (2) = (1). O

The next proposition says the conditions of Theorem 2.1 are also equivalent
to S being a submatrix of a rational inner function possessing a finite-dimensional
unitary transfer function realization. Moreover, the various sizes of the transfer
function realizations stay the same. To be more precise, let ¥; be the rank of P;
in condition (1) of Theorem 2.1. Then, v = (r1,...,74) will be called the size
breakdown of the TFR. This terminology is endemic to this paper. The size of the
TFR will refer to |¥| = 71 + - - - +74. Note that #; also equals the number of rows
of F; in conditions (2) and (3) of Theorem 2.1.

Proposition 2.2. Let S : D? — CM*N be 4 function which has a finite contrac-
tive TFR with size breakdown v. Then, there exists n = N, M and a matrix rational
inner function ® : D4 — C™" with finite unitary TR with size breakdown v such
that S is a submatrix of ®.

As a sort of converse, every submatrix of S has a finite contractive TFR with same
size breakdown.

Proof. Suppose S has a finite contractive TFR given via contractive T =
(é g). Every contractive matrix is a submatrix of a finite unitary, say U. If
we rearrange rows and columns we may write

A A;p B
U=|Ax Ay B
C Co D
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If
A Ap B _
P(z) = (A21 A22> + <B2) A(z)(I — DA(z))7! (C Cz,)

then S(2) = (10)®(2) ().
This same type of observation shows that every submatrix of S has a finite
contractive 7FR. O

The following is referred to as the adjunction formula in [13].

Proposition 2.3. Let S : D4 — CM*N be 4 function with a finite contractive
TER given via a matrix T as in (1), (2) of Theorem 2.1. Set S(z) = S(2)*. Then,
S has a finite contractive TFR given via T*.

In particular, if T is isometric, then S has a [finite coisometric TFR.

Proof: With S(z) = A+ BA(z)(I — DA(z))"'C, we have

S(z) = A* + C*(I - A(z)D*)"'A(z)B*
=A* + C*A(z)(I - D*A(z))"'B*,

which is exactly condition (1) of Theorem 2.1 with T* in place of T. O

3. ONE-VARIABLE VERSION OF THEOREM 1.1

We now prove a detailed one-variable version of the Main Theorem (Theorem 1.1).
IfS=Q/p:D — CM*N is a rational iso-inner function, then $*S = I on T away
from zeros of p, but then |p|?I = Q*Q on all of T by continuity.

Theorem 3.1. Assume p € C[z] has no zeros in D, Q € CMN[z], and
IpI2I = Q*Q on T. Let n be the maximum of the degrees of p and the entries

of Q. Then,

p(w)p(2)] - Q(w)*Q(z)
1-wz
=, wl,..., w" 'DTU,zI,...,z" ')t

(3.1) Kw,z) =

where T is a positive semi-definite matrix whose entries can be expressed as polynomials
in the coefficients of p, P, Q, Q*. Furthermore, K(w, z) is a positive semi-definite
kernel whose rank matches the rank of the matrix T.

Positive semi-definite kernels are reviewed in Definition A.5, and the rank of
such a kernel is defined in Definition A.6 in Appendix A.

The theorem allows for common zeros of Q and p which is important in
using this result in two variables. It immediately follows that S = Q/p possesses
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an isometric TFR because we can factor T = F*F where F is an ¥ X nN matrix.
Then, for F(z) = F(,zI,...,z" )t we have

*
I—Sw)*S(z) = (1 —wz) (M) Fz)
pw)/ p(z2)

By Theorem 2.1 we see that S has an isometric TFR. After the proof of Theo-
rem 3.1, we give an explicit way to find a formula for an isometry U out of which
a TFR for S can be built. We need a standard lemma to prove Theorem 3.1. We
give the short proof in the appendix (see Subsection A.3).

Lemma 3.2. Assume S : D — CM*N s analytic and ||1S(2)|| < 1 in D. Then,
the kernel

I-Sw)*S(2)
is positive semi-definite.

The swapping of z, w is deliberate and is discussed in the proof in Appen-
dix A.

Proof of Theorem 3.1. By analyticity, we have p(1/2)p(2)I = Q(1/2)*Q(z)
on C\ {0}. This implies the polynomial in z, w

p(w)p(2)I - Q(w)*Q(z)

is divisible by (1-wz), and hence we can write (3.1) where T is indeed a nN xnN
matrix whose entries are polynomials in the coeflicients of p, p, Q, Q*. We could
solve for them but we do not need to. By Lemma 3.2, Ks(w, z) in (3.2) is positive
semi-definite. Multiplying through by p(w)p(z), we have that K(w, z) as in
(3.1) is a positive semi-definite matrix-valued polynomial function of bounded

degree.

To show T is positive semi-definite, take any zi,..., 2z, € D and note that
I20--- 20T rr .- 1
Iz0--- 237! 2l ozl i ozl
(K(zi,zj)ij = , o " =viTY

ol - 201 A
I zyl zy I PAR ) N i |

is positive semi-definite where V' = (V; ;) is the block Vandermonde matrix V; j =
zi7'1. If the z; are all distinct then V is invertible which implies that T is positive
semi-definite. The above compurtation also shows that the rank of K equals the
rank of T, although we omit some details. O
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Remark 3.3. We now explain how to find an isometry U out of which a
TER for § = Q/p can be built. This will closely parallel our approach in the
two-variable setting. We first factor T = A*A where A is ¥ X nN with v =
rank(T). Then, A will possess a right inverse B, namely, AB = I. Set F(z) =
A, zI,...,zZ" 1t To find U such that

U <v(z)1) B <Q(Z)>
zF(z)] — \ F(2)

we write out p(z) = Z?:o pjzj, Q(z) = Z?:o zjQj, and extracting coeflicients,
we equivalently need U to satisfy

U (POI [pll,...,pnl]) _ ([Qo,---,Qn—l] Qn)
0] A B A o)’

The matrix (’”OOI [’”1[’;"’”"[ ]) has right inverse

po'l X
O B

where X = —pyl[p1l,..., pul]B so that

- ([Qo,...,Qn_l] Qn) (poll X)
A ) O B’

Thus, U can be computed directly from p, Q, A, B.

4. TwO VARIABLES AND THEOREM 1.1

The basic idea of Kummert’s argument is to attempt a parametrized version of the
one-variable theorem above.The matrix Fejér-Riesz factorization in one variable,
which we now review, then becomes crucial in attempting a parametrized version
of the implication (3) = (2) in the Equivalences Theorem (Theorem 2.1).

Theorem 4.1 (Matrix Fejér-Riesz). Ler T(z) = Z?:_n T;izJ be a matrix
Laurent polynomial (T} € CN*NY such that T(z) = 0 for z € T. Then, there exist a
natural number v < N, a matrix polynomial Ay € C"™"[z] with det Ao(z) # 0 for

z € D, and a polynomial matrix V-e CN*N[z] with polynomial inverse such that for
A= <A0 OrxN_y> V we have T = A*A  on T. Furthermore, A has degree at most
N and a right rational inverse B which is analytic in D.

The case where T(z) is positive definite at all points of T is usually attributed
to Rosenblatt [36]. If det T(z) vanishes at a finite number of points, it is possible
to factor out these zeros from T (see [16, 17]). If detT(z) is identically zero,
it is possible to use operator-valued versions of this theorem which guarantee an
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outer factorization of T. We explain how to go from the case of det T # 0 to the
case det T = 0 in Appendix A (Subsection A.2). The factorization above can be
computed using semidefinite programming or Riccati equations (see, e.g., [27]).

Theorem 4.1 in particular shows that T(z) has rank ¥ except at the finite
number of zeros of det Ag. One nice application of Theorem 4.1 is the one variable
version of Theorem 1.3.

Proposition 4.2. LerS : D — CMXN be yational and |S (2)|| < 1 forall z € D.
Then, S has a finite contractive TFR.

Proof: Write S = Q/p. Then, |p|*I — Q*Q is positive semi-definite on T. By
Theorem 4.1, there exists a matrix polynomial A such that |p 2-Q*Q = A*Aon
T. Then, ® = ( A%, ) is iso-inner, and by Theorem 3.1 possesses a finite isometric
TFR. By Proposition 2.2, we see that S possesses a finite contractive TFR. O

The following lemma lets us apply Theorem 3.1 to one variable slices.

Lemma 4.3. Suppose S : D* — CM*N s rational and iso-inner. Write S = Q /p
where Q € CM*N[zy, 2,1, p € Clz1, 23] has no zeros in D?, and Q, p have no
common factors. Then, |p|*I = Q*Q on T2, and for each z, € T, the one-variable
polynomial z, — p(z1,22) has no zeros in D.

Proof- As in one variable, |p |2I = Q*Q on T? by continuity. For fixed T € T,
notice that z; — p(z;, T) either has no zeros in D or is identically zero by Hur-
witzZ’s theorem (by considering T as a limit of t € D). If p(-,T) is identically
zero, then Q (-, T) is identically zero because of |p|2I = Q*Q on T2. Hence, both
polynomials are divisible by z; — T, contradicting the assumption of no common
factors. Thus, for every z; € T, z; — p(z1,22) has no zeros in D. O

We are now ready to prove the Main Theorem (Theorem 1.1).

Proof of Theorem 1.1. Assume the setup of Theorem 1.1 and write § = Q/p
as in Lemma 4.3. We can essentially follow a parametrized version of Remark 3.3
but we use the matrix Fejér-Riesz theorem to deal with certain matrix factoriza-
tions.
Step 1. Fix zy = wy € T, divide p(w)p(2)I — Q(w)*Q(z) by (1 —w;z1), and

then extract the coefficients of 1] z¥ to obtain

pw)p(2)I - Q(w)*Q(z)

(41) 1-wz;
I
. 211
= > Wk Tj(z2) = Lwnd,..., w" ' DT(z) | . |,
Jik -
zZh
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where T(z3) = (Tjk(z2)) jk is a positive semi-definite (1N X n;N) matrix Lau-
rent polynomial. This follows from Theorem 3.1 applied to p(-,z2), Q(-,22).
Here, n; is the maximum of the degree of p, Q with respect to z;.

Step 2. Apply the matrix Fejér-Riesz theorem (Theorem 4.1) to T(z,) to get an
7 X NN matrix polynomial A(z;) and an analytic (in D) rational matrix function
B(z,) such that A¥*A = T on T and AB = I in D. For convenience, we define

Az1) = (Un, z1In, ..., 2" )t e CYN<N[z].,
Then, for z, = wy € T and z1,w; € C,
pw)p(2)Iy - Q(w)*Q(2) = (1 - w1z A(w) *A(wz) *A(22)A(z)).
By Lemma 4.3, for each fixed z; € T the map z; — Q(z1,22)/p(z1,22) is an iso-

inner rational function and Theorem 2.1 guarantees the existence of an isometric
matrix U(z;) such that

p(z)Iyn Q(z2)
(4.2) U(z2) <21A(22)A<zl)) - <A<22)A<Zl))'

Step 3. In this step we find a formula for U(z;) and show it extends to D as
a rational iso-inner function in one variable. We can rewrite (4.2) in terms of

the coefficients of the powers of z; by writing p(z) = 3 pj(zz)zf and Q(z2) =

3 Qj(22)21, defining (22) = (Po(22)In, P1(22) I, .-, P, (22)In), and also
Q(z2) = (Qo(22),...,Qn,(22)). Then,

p(z2) B Q(z)
(4.3) U(z2) <OrxN A(22)> h <A(22) OrxN,>
using Oyxn to denote the ¥ X N zero matrix. Since p(0,z2) = po(z2) has no

zeros in D, the matrix
p(z2)
0 A(z)

has a rational matrix right inverse of the form

po(z2) 7' X(z3)
0 B(zy) )"

The exact formula for X(z,) is (=1/po)(p1l,..., pn,I)B.
Then,

_(Q(z2) ) (Po(z2) 7' X(22)
@4 U(ZZ)_(A(22)0>( 0 B(zz))
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extends to a rational function holomorphic in D and isometry-valued on T away
from any singularities. Thus, not only is U uniquely determined (by A, B) and
iso-inner, but both sides of (4.3) are now holomorphic, so (4.3) extends to D.
(We caution that the blocks in (4.4) do not line up as written. There is no need
to multiply this out, so there is no real concern.)

Step 4. In this step we find an isometric matrix V' such that S has a TFR built
out of V. It turns out U(z,) as a one variable function has a TFR built out of the
same isometry V. Indeed, by Theorem 3.1 and Theorem 2.1 there exist a constant
isometric matrix V and matrix function F(z;) such that

v I _(U(z)
zF(z2))  \F(z2) )"
A formula for V' can be found via Remark 3.3. As we now show, V is the isometry
we are looking for. If we multiply on the right by

p(z)I
21A(22)A(z1)
and define
._ p(2)I .
H(z) := F(z,) <21A(22)A(21)) , G(2) = A(z2)A(z1),
we get

p(2)1 Q(z)
V]z1G(z) | = | G(2) |.
zoH(z) H(z)

By Theorem 2.1, this means S has a finite-dimensional isometric transfer function
realization built out of the isometry V. This proves Theorem 1.1. O

When we prove the minimality theorem (Theorem 1.4) we will pick up where
this proof leaves off. We will later refer to G*G as the dominant z,-term associ-
ated with S, while we will refer to H*H as the sub-dominant z,-term. We write
G*G := G(w)*G(z), H*H := H(w)*H(z) instead of G, H because the former
are uniquely determined while G, H are determined up to left multiplication by
isometric matrices. By symmetry we could also construct a dominant z;-term
with associated sub-dominant z;-term.

5. DETAILED EXAMPLE

In this section we give a detailed example of the four steps presented in the proof
of Theorem 1.1. The N x N identity matrix is written Iy, the N X N zero matrix
is written Oy, and the N X M zero matrix is written Onxp.
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Consider the following simple rational inner function:
_ l z1(z1 + 23) z122(21 — 2z7) _[= 0 z1 0 10
S(Z)_2< Z1— 2 z2(z1 + 22) >_(0 1)X(0 Zz)X(OZZ,)

where X = (1/+/2) (1 _1) is a unitary. The right expression shows S is a product
of inner functions and is therefore inner itself. Since S is a polynomial, the process
below will be simpler than the general case but still illustrative. Note then that,
referring to the proof of Theorem 1.1, we have p = 1and Q = S.

Step 1. Set |z3| = 1, divide I — S(w1,22)*S(21,22) by 1 — w;2, and extract

coefficients of the monomials w{ z¥ in order to write

I —-S(wy,22)*S(z1,z2)
1—@121

- j - I
= 2 wz{Tje(z2) = (I, 121) T (22) <221 )
Jik=0,1 142

where T(z;) is the matrix Laurent polynomial

3 z, z' 1
-1 T2 -1
Ty =g |2 3,72 T2

zy —z5 1 Z

\122 ;! 1}

Necessarily, T is positive semi-definite on T.

Step 2. Factor T according to the one-variable matrix Fejér-Riesz theorem. There
exist algorithms for doing this ([27]), and it can also be essentially reduced to
polynomial algebra and one variable Fejér-Riesz factorizations (see [17] where this
is done in a more general setup). We get T(z,) = A(z2)*A(z2) on T where

1 2 (/2 00
Az =3 (g N ZZ) = (Ao(22), A (22))
has right inverse
V2 0
|0 o] (Betz
Bz =1 (—2)z,2| = <31<z2))'
0 0

We use the equations above to define the 22 matrix polynomials Ay (z2), A; (z2),
By(z3), Bi(z2). Note that the right inverse in general could be rational.
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Step 3. We find our parametrized unitary U(z;) in this step. Form the “vectors” of
coefficients p(z2) = (I,02,02) and Q(22) = (Qo(22),Q1(22),Q2(22)), where

1(0 0 1 (22 -23 L(l2
Qo(22)=§<_222%)’ Q1<22>=§<1 222)’ Q2(22):§<oo,)

and then compute the one variable rational inner function U(z,) as in (4.3):

L 0
_ [Qo(22) Q1(22) Qa(22)
Ulzy) = (AO(ZZ) A(z) O, ) (g; gfg;;;)
0 0 01
2z 1
22 2
L 200
77
2z 1,
2 22

The fourth step is to find a TFR for U(z3). To do this we apply Remark 3.3.
Let us emphasizel the steps. Divide Iy — U(w;)*U(z3) by 1 — w,2z; and extract

coefficients of W3 z5 to write

Ii —U(wy)*U(z2) . I4
w2, = (I4, waly)Y <2214)
where . .
2 0 o)) 0 20,
01 00
0, 0, (0] 0,

_ 2
Y= ( 0 0) (0 0)
1) 0 (1) o
2 0 0 2
0, 0, 0, 0,
Then, we factor Y = C*C where

|G e) o)

Note that
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is a right inverse for C (i.e., CD = I,). Set

1 1
I 2200
e =eld) - ()

We need to compute the unitary (or isometry in general) V such that

v I4 _ U(zy)
2,F(z3) F(z2) )®
After equating coefficients of powers of z;, this is equivalent to

Uo Uy U,
14 O4><8 _ L _L
V<02x4 c )_ \/ZO , 02 0 V2 ],02| O2x4
01 0 0

where U(z,) = Uy + z,Uy + Z3Us. Using the right inverse D, we have

Uy Uy Uz
s 1 O—L Is O4x2
V2 O |,02 V2 |,02| Oax4 | \Osx4 D
01 0 0
0001 O 0
0 OLO—L 0
1 V2 V2 1
— 0 0 0 O —
_ V2 ) . V2
0 0—=0 — 0
1 V2 V2 1
—0 00 0 —
V2 V2
01 00 O 0

This is the desired unitary out of which we build our TFR. Setting

01 0 0
Vi1 = Oy, Vio=| 1

1 o-Ly,
V2 V2
1
1 000 —
—0
72 L 2
00 —0— 0
Var=| 4 ,V22=\/§\/§1,
\ﬁ‘)) 000 -—
01 000 0
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we have
S(z1,22) = Vi1 + Vo A(2) (I — V3 A(2)) 'V
where
[z O3
A(zlizZ) = <02 ZZIZ> .

This is easy to verify since (V22A(z))3 = O so that the formula reduces to
S(z) = ViaA(2) (I + Vo A(2) + (V2 A(2)%) Vay,

which can be verified by hand.
While the above method involves several steps it is entirely systematic. Since

S is a product of simple inner functions, there are ad hoc ways of coming up with
a TFR which might be shorter.

6. MATRIX AGLER DECOMPOSITIONS IN TWO VARIABLES

Theorem 1.1 makes it possible to prove Agler’s theorem (Theorem 1.2). Cole-
Wermer [15] showed that in the scalar case it is enough to prove Agler’s theorem
for rational inner functions because holomorphic f : D? — D can be approxi-
mated locally uniformly by a rational inner function (Theorem 5.5.1 of Rudin
[37]). This approximation argument does not seem to transfer to the matrix-
valued function setting, but there is a workaround.

Lemma 6.1. Let f : D4 — CM*N be holomorphic and || f(2)|l < 1 for all
z € DA, Suppose || f(zo) || = 1 for some zy € D42, Then, there exist unitary matrices
Ui, Uy such that Uy fU, is a direct sum of a constant unitary matrix and a matrix
valued holomorphic function g on D with ||g(2) | < 1 forallz € D4,

Proof: 1f || f(20) |l = 1, then there exists v € CN with |[v] = 1 such that
|f(zo)vl = 1. By the maximum principle, {f(z)v, f(zo)v) is constant and
equal to one. Then, by equality in Cauchy-Schwarz, f(z)v = f(z¢)v. Since
f(2) has at most norm one, v is reducing for f(z), meaning f(z)w L f(z)v
whenever v L w. Thus, f(z) can be written in the form

1 0
0g(2)

using the block decomposition Cf (zo)v @ (f(zo)v)* X (Cv) ® v+. We can, of
course, iterate this argument until we are left with the claimed decomposition. O

This lets us reduce to the case of f with || f(z)|| < 1 for all z € D%. The
following is found in Rudin’s book [37] in the scalar case (see Theorem 5.5.1 of
[37]). Define

| fllpa = sup lf(2)]l.

zehd
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Lemma 6.2. Suppose f : D4 — CM*N is holomorphic and || f(2)|| < 1 for all
z € DY, Then, foranyr € (0,1) and € > 0 there exists P € CM*N[zy,...,24]
such that ||Plpa < 1 and || f — Pll,pa < €.

Consequently, every such f is a local uniform limit of matrix polynomials with
supremum norm strictly less than 1.

Proof. Set fr(z) = f(rz) for v € (0,1). For fixed r € (0,1) there exists
s € (0,1) such that || f — frsllpe < €/2 since f is uniformly continuous on D4,
Note || fsllpa < 1. Choose a Taylor polynomial P of f such that || fs — Pllpa <
min(1 — || fsllpa, €/2). Then,

||P||[D>d<1 and ”fV_PV”dﬁ”fr_frsnd+||frs_P1f||[D>d<5- O

We need the following Fejér-Riesz type theorem of Dritschel.

Theorem 6.3 (Dritschel [18]). Let T(z) = 3 jcza T;iz! be a matrix-valued
Laurent polynomial in d variables; that is, Tj € CN*N for j € 79 and at most
finitely many Tj # 0. If there isa & > 0 such that T(2) = I on T4, then there exists
a matrix polynomial A € CM*N[zy,...,24] such that T = A*A on T4,

We sketch a simple proof with some new elements in the appendix (see Sub-
section A.2).

Lemma 6.4. IfP : D — CM*N js 4 matrix polynomial such that |Pllpa < 1
then there exists a matrix polynomial A such that (ﬁ) is iso-inner. If d = 1,2, then
P has a finite contractive TFR.

Proof On T4, I — P*P is a positive definite matrix Laurent polynomial. By
Theorem 6.3 we can factor I — P*P = A*A. Then, S = <£) is isometry-valued

on T4. If d = 1,2, then S has a finite isometric TFR by Theorem 1.1, and hence
P possesses a finite contractive TFR by Proposition 2.2. O

Positive semi-definite kernels are defined in Definition A.5. Notice that an
expression of the form F(w)*F(z) will always be positive semi-definite. By the
above lemma and Theorem 2.1, any matrix polynomial P € CM*N[z, z,] with
IPllp2 < 1 will satisfy a formula of the form

2
I-PWw)*P(z) = ko(w,2) + > (1 —wjzj)kj(w,2)
j=1

where ko, k1, ky are positive semi-definite kernels. The term kg can be absorbed
into k; since

ko (w, Z)

1- w121
is positive semi-definite by the Schur product theorem. Thus, the following corol-
lary holds for such strictly contractive matrix polynomials in two variables. Such
formulas are called Agler decompositions.
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Corollary 6.5. Let f : D> — CM*N be holomorphic with ||f(2)|l < 1 for
z € D2 Then, there exist positive semi-definite kernels k1,k, : D? x D? — CN*N
such that

2
I-fw)*f(z) = > (1-wjzjkj(w,2z).
J=1

Sketch of Proof. The hard work has already been done while the general out-
line and some technicalities are essentially in [15], so we only sketch the proof.
We can assume that f is pointwise strictly contractive by Lemma 6.1. Then, f
is a local uniform limit of matrix polynomials with supremum norm strictly less
than one by Lemma 6.2. Each of these possesses an Agler decomposition by the
discussion above.

The final part of the argument is the piece found in [15]. The kernels in the
Agler decomposition are locally bounded because of the estimate

1 I I-f(2)*f(z)  ki(z,2)

= > _k , .
(1- |Zl|2)(1 - |22|2) (1-=1z112)(1 - |22|2) 1— |22|2 > ki(z,z2)

This shows the kernels in Agler decompositions form a normal family. Subse-
quences converge locally uniformly to form positive semi-definite kernels in an
Agler decomposition for f. 0

The above corollary proves Theorem 1.2. The proof is essentially the same
as (3) = (1) in the equivalences theorem (Theorem 2.1) since positive semi-
definite kernels can be factored as F(w)*F(z) for some possibly operator valued
function F. Readers who have ventured this far (and are not in the cognoscenti
of this material) may benefit from some context at this point. The fundamental
contribution of Agler can perhaps be encapsulated in the following result.

Theorem 6.6 (Agler [1,2]). Let f : D4 — CM*N be holomorphic. Assume
If (2l <1 for z € DY Then, the following are equivalent:

(1) f satisfies a von Neumann inequality || f(T)|| = [[(fjx(T))jxll < 1 for
every d-tuple T = (T,...,Tq) of pairwise commuting strictly contractive
operators (on some underlying Hilbert space).

(2) f has an Agler decomposition: that is, there exist positive semi-definite kernels
ki,...,kq: D% x D4 — CN*N such that

d
I-fw)*f(z)=> (1 -wzjk;j(w,z).
j=1

(3) f has a contractive transfer function realization: there exists a contractive

operator with block decomposition (T =2 g) on some Hilbert space such

that f(z) = A + BA(2)(I - DA(2))7'C, where A(z) = 3%, z;P;j and
the P; are pairwise orthogonal projections which sum to the identity on the
domain of D.
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Theorem 1.2 was originally proven via Andd’s inequality [7] which gives
item (1) above. The approach we have given sidesteps the use of von Neu-
mann’s inequality and the implication (1) = (2) in Theorem 6.6. The proof of
(1) = (2) is possibly the hardest part of the theorem, and is non-constructive
since it uses a Hahn-Banach cone separation argument. On the other hand,
(2) = (1) is a relatively straightforward matter of “plugging” the d-tuple T into
the Agler decomposition in item (2) in an appropriate sense. (See [15] for details.)
Ball-Sadosky-Vinnikov [11] have a different way to prove Theorem 1.2 directly
using multi-evolution scattering systems. Theorem 1.2’s analogue for 3 or more
variables fails because the von Neumann inequality fails for 3 or more contractions
[39]. Thus, Theorem 6.6 gives the best way of demonstrating that a function does
not have a contractive TFR; specifically, showing that it fails the von Neumann
inequality. It is probably difficult to directly show that a function fails item (2) or
(3) in Theorem 6.6.

We conclude this section by plugging Dritschel’s strong Fejér-Riesz type result
(stated below) into earlier arguments in order to show rational contractive matrix-
valued functions in two variables have a finite contractive TFR (Theorem 1.3).

Theorem 6.7 (Dritschel [19]). Let T(z) = X jcp T;iz! be a matrix-valued
Laurent polynomial in two variables; that is, Tj € CN*N for j € 7% and at most
finitely many Tj + 0. If T(z) = 0 on T2, then there exists a matrix polynomial
A e CMXN[z, z5] such that T = A*A on T2

This theorem is considerably deeper than Theorem 6.3, and both theorems
also apply to operator-valued functions. An earlier sums-of-squares theorem of
Scheiderer, which applied to polynomials on a much more general class of two-
dimensional domains (than simply T2), implies Theorem 6.7 in the scalar case

[38].

Proof of Theorem 1.3. Apply the proof of Proposition 4.2 with Theorem 6.7
in place of Theorem 4.1. O

7. MORE ON FINITE TFRS

We need to collect one more fact about finite-dimensional TFRs before proving
the minimality theorem. If we have an Agler decomposition of an iso-inner func-
tion S = Q/p written in lowest terms, then the sums of squares terms are rational
with denominator p.

Theorem 7.1. Suppose S : D4 — CMXN s yational and iso-inner. Write S =

Q/p in lowest terms with Q € CM*N[zy,...,z4] and p € Clzy,...,24]. Suppose
we have an Agler decomposition

da
In—S(Ww)*S(z) = > (1 —w;z;)Fj(w)*Fj(z),
j=1
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where the Fj are matrix functions. Then, for j = 1,...,d, p(2)Fj(2) is a matrix
polynomial.

The significance of this theorem is that although S has a TFR with denomi-
nator det(I — DA(z)), this polynomial may not be the lowest-degree denominator
of S.

Proof- By Theorem 2.1, we already see that each Fj is rational and holomor-
phic in D4. To prove that H; := pF; is a matrix polynomial, consider

d
p(w)p(2)Iy - Q(w)*Q(z) = > (1 —wjz;)H;(w)*Hj(2).
j=1

Fix T € T and set z = CT, w = nT for C,n € D. Then,

d
p(NT)p(CT)In — Q(NT)*Q(LT) = (1 - AL) X H;j(nT)*H; ().

j=1

Because S*S = Iy on T4, the lefthand side above is divisible by (1 — T), and
therefore

d
Z Hi(nT)*H;(CT)
j=1

is a polynomial in G, N} of degree in each less than the total degree of p and Q.
For simplicity, we can regroup Z?=1 Hij(w)*H;(z) = H(w)*H(z), where now
H(nT)*H(CT) is a polynomial in €, 7 for every T € T4. If we write out the
homogeneous expansion of H,

H(z) = > Pj(2),
j=0
we see that
HT)*H(CT) = > 1 C*P;(T)*Pe(T).
J.k

In particular, for j greater than the total degrees of p and Q, the coefficient of
77 €7 vanishes for every T; specifically, we have P;(T)*P;(T) = 0 forall T € T4.
Since P; is a matrix polynomial, this implies P; = 0 for j greater than the total
degrees of p and Q. Therefore, H is a polynomial. O

We conclude this short section with a few asides. The Agler norm (sometimes
Schur-Agler norm) for holomorphic f : D4 — CM*N js

lfla, :=sup lf(T)
T
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where the supremum is taken over all d-tuples T = (T7,..., Ty) of strictly con-
tractive pairwise commuting operators on some Hilbert space. The Agler class A4
consists of functions satisfying || fll a, < 1.

The argument in the proof above is related to the argument used to prove the
following automatic finite-dimensionality resul.

Theorem 7.2. Suppose S : D4 — CM*N s yational, iso-inner, or coiso-inner
(SS* =1 on T4, and belongs to the Agler class Aq. Then, S has a finite-dimensional
isometric (respectively coisometric TFR as in Theorem 2.1.

The essence of this theorem was first proved in Cole-Wermer [15]. Although
it was only stated and proved in the scalar case for d = 2, the proof goes through
easily to all d and for iso-inner functions. We gave a proof with some bounds on
degrees and the numbers of squares involved in the scalar case in [31]. A proof of
the square matrix-valued case is in [9]. Extending to the iso-inner (non-square)
case causes no difficulties. The coisometric case follows from Proposition 2.3.
A proof where S is assumed to be a polynomial is also given in [13]. The next
theorem also produces a family of functions with finite TFRs.

Theorem 7.3 (Grinshpan et al [23]). Suppose S : D4 — CM*N s rational and

analytic on a neighborhood of D4, and IS\, < 1. Then, S has a [finite-dimensional
contractive TER as in Theorem 2. 1.

The following question asks about what is still left open.

Question 7.4. Ford > 2, if S : D4 — CMXN s yational, |S\|a, = 1, and is
neither iso-inner nor coiso-inner. Then, does S have a finite-dimensional contractive

TFR?

We also do not know how essential analyticity on D% is for Theorem 7.3.
Note d = 1, 2 follows from Theorem 1.3.

8. KUMMERT’S MINIMALITY THEOREM

In this section we discuss minimality of size breakdowns for finite TFRs, namely,
Theorem 1.4. Minimality in one variable follows directly from Theorem 2.1.

Proposition 8.1. Let S : D — CM*N be yational and iso-inner. Then, the
minimal size of an isometric TER for S is the rank of the positive semi-definite kernel

*
(w,2) I—S(w)_ S(z)'

1-wz

The definition of the rank of a positive semi-definite kernel is given in Defi-
nition A.6 in Appendix A. In two variables, we will frequently refer to the domi-
nant z;-term G*G and sub-dominant z;-term H* H associated with S which were
constructed in the proof of Theorem 1.1 (see the end of Section 4). Note that the
number of rows of G matches the generic rank of the matrix T(z;) as in equation
(4.1). This cannot be reduced because this is the generic or maximal rank of the
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positive semi-definite kernels

I-S(wi,22)*S(z1,22) )
(wy,z1) — D22 (21,22 as z, varies over T.
1—w121

Note division of (4.1) by p (w1, z2) p(z1, z2) will not change the rank of the pos-
itive semi-definite kernel and does not introduce any poles in D since p(-, z3) has
no zeros in D by Lemma 4.3.

We claim that in the inner case the rank of H*H is also as small as possible.
We suspect this happens in the iso-inner case but cannot prove it.

Question 8.2. If S : D?> — CM*N s iso-inner (and not inner), does the con-
struction in Section 4 produce a size breakdown (v1,72) with v1 equal to the generic
size of a TER for S (-, z2) (for zo € T) and v equal to the generic size of a TFR for
S(zi1,-) (forz; € T)?

This question is subtle because every iso-inner function S is a submatrix of an
inner function ® with the same size breakdown. We have built a size breakdown
with 71 minimal so 71 must also be minimal for ®. We could then build a TFR
with size breakdown (71,7,) where 7;* is minimal for ®. Is it minimal for the

restriction to S?
The next result characterizes G*G and H*H.

Proposition 8.3. Assume S : D> — CM*N s rational and iso-inner. Write
S = Q/p in lowest terms. Suppose we had a formula

p(w)p(2)I-Q(w)*Q(z) = (1 —wiz) (W) *T1(2) + (1 - wrz2) L (w) * T (2)
where Iy, Iy are matrix polynomials. Then,

Cw)*G(z) -Ni(w)*Ti(z) _Lw)*Ih(z) - H(w)*H(z)

1 ,Z) — = =
(8 ) (w Z) 1 — W2 1 — W12

is a positive semi-definite polynomial kernel. Here again, G*G is the dominant z,-
term and H*H is the sub-dominant z,-term.

This result characterizes G*G as maximal and H*H as minimal in the above
sense. Indeed, if some other kernel L*L satisfied the same property as G*G, then

both
G*G - L*L L*L — G*G
1-—wyz; 1 -wsyzy
would be positive semi-definite forcing G*G = L*L.

Proof of Proposition 8.3. If we set z, = wy € T we get

p(w)p(2)I - Q(w)*Q(z)

1- 11_/121

=T (w)*T1(2) = G(w)*G(2).
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The left side has degree at most n; — 1 in z;. We claim I3 (z) has degree at most
n; — 1 in z;. Consider I''’s top degree term y(zz)zf where y(z,) is a matrix
polynomial. Then, the term w§z¥ appears on the righthand side with coefficient
y(z2)*y(zy) for z; € T. If k > ny — 1 then y(z2)*y(z2) = 0 on T implying
y(z3) = 0 on T and also on C by analyticity. Thus, I} has degree at most n; — 1
mn zj.

Just as we have factored G(z) = A(z;)A(z1) we can also factor I1(z) =
C(z2)A(z1). Recall A(zy) = (I,le,...,ZT“*lI)t. Upon extracting coeflicients

ofu'z{z{‘ we see that
A(z2)*A(z3) = C(z3)*C(zy) forz; €T.

This is related to characterizing uniqueness in the matrix Fejér-Riesz theorem. We
address this in the appendix in Theorem A.4. By Theorem A.4, since A has a left
inverse, there exists a one variable iso-inner function ® such that C = ®A.

Thus,

A(wr)*A(z2) — C(wa)*C(z2)
1 —w)z; a

I —®(wy)*®(z7)
1- u_/zZz

At ( ) Az,

which is positive semi-definite. Applying A(w;)* on the left and A(z1) on the

right, we get that

Gw)*G(z) -Ti(w)*Ti(z2) DL(w)*L(z) -HWw)*H(z)
1 -1z, B 1 —-wiz;

is positive semi-definite. It is a polynomial kernel because A*A = C*ConT. O

We now switch to the square/inner case and show that the Kummert con-
struction gives the best possible size breakdown v = (#1,72). We need to show
H(w)*H (z) has the minimal rank possible in the sense that it matches the generic
size of a TFR for S(z;, ) for z; € T. To do this, we show thaE we can “reflect”
an Agler decomposition of S to get an Agler decomposition for S, and this reflec-
tion reverses the dominant and sub-dominant properties of G*G and H*H. This
is not the original approach of Kummert; instead, it more closely resembles the
Hilbert space approach in [12]. Recall S(z) = S(2)*.

Proposition 8.4. Suppose S : D? — CN*N js yational and inner. Write S =
Q/p in lowest terms. Suppose we had a formula

(8.2) p(w)p(2)Iy - Q(w)*Q(z) = (1 —wyz))1 (w)*T1(2)
+ (1 —wyz)L(w)*Th(2)

where I, I, are matrix polynomials. Then,

(8.32) f(z):= I(1/2)S(2),

N
z1p(1/2)
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and

(8.3b) 0L(z) := L(1/2)S(2)

1
zop(1/z)

are matrix polynomials, and

(8.4) pw)p2)I-Qw)*Q(z) = (1 —wiz) (w)*Ti(2)
+ (1 —wyz) L (w)*h (2).

The sub-dominant z,-term of S reflects to the dominant z;-term of S.
When we say reflects above we mean the operations

I, and L ~1D

listed in the proposition statement equations (8.3a), (8.3b). Notice that reflection
of the I} term is slightly different from the reflection of the I term.

Proof of Proposition 8.4. Since S(z)*S(z) = I on T? (where defined), we have
I =8(1/2)*S(z) = S(2)S(1/2)* for z € C? where defined. (This is where
M = N gets used.) Thus, Q(1/2)Q(z) = p(1/z2)p(z)I. Now, take equation
(8.2), replace z, w with 1/z,1/w, multiply on the right by Q(z) and left by
Q(w)*, and finally divide through by —p (1/w)p(1/z) to get (8.4) after applying
various simplifications. Of course, we have the caveat that the formula only holds
where all of the operations are defined. Fortunately, (8.4) only needs to hold
on an open set for the proof of (3) = (1),(2) in Theorem 2.1 to go through
(bonus (B1) of Theorem 2.1 addresses this). We automatically obtain that Iy, T,
are polynomials by Theorem 7.1, since if Q /p is in lowest terms then Q /P is too.

If we reflect equation (8.1) in the sense of replacing z, w with 1/z,1/w and

conjugating by Q, we obtain

. Gw)*G(z) -Tiw)*Ti(z) .  D(w)*hi(z) - Hw)*H(z)
w12y — = W2z -
1 — (wyzy)7! 1—(wy1z1)!

’

which can be rearranged into

L w)*hi(2) -Gw)*G(z2)  Hw)*H(z) -Lw)*L(2)
l—u_/222 - 1—12/121 )

This is still a positive semi-definite polynomial kernel. Thus, H*H dominates an
arbitrary z;-term, making it the dominant z,-term for §. O

Proof of Theorem 1.4. By Proposition 8.4 the subdominant z;-term H*H of
S reflects to the dominant z,-term of S, H*H. Note that this reflection does not
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change the rank of a positive semi-definite kernel. The rank of H*H is then the

generic rank of

I-S(z1,w2)*S(z1,2,)
1—@222

(wa,22) —

for z; € T. This matches the generic size of a TFR for S(zy, -) which matches
the generic size of a TFR for S(zy, -) by the adjunction formula, Proposition 2.3.
Thus, the rank of H*H matches the generic rank of

I —S(z1,w2)*S(z1,22)

O
1- Wyzy

(w,22) —

9. APPLICATION TO INNER POLYNOMIALS

Of special interest in the papers connecting wavelets to TFRs is the case of iso-
inner and inner polynomials [13, 14]. In one variable, we have the following
well-known result.

Proposition 9.1. Let S € CMXN[z] be iso-inner. Then, every isometric TFR of
minimal size for S is built out of an isometric matrix T = ( AB ) where D is nilpotent.

We prove this using the following also well-known characterization of mini-

mality.
Proposition 9.2. Let S : D — CM*N be rational and iso-inner with minimal
isometric TER built out of the isometric matrix T = <é‘ 5 ) Then,

span{range(DjC) :j=0,1,...} = domain(D) and ﬂ kernel(BD7) = {0}.
j=0
Proof. First note that if § has a TFR via T, meaning
S(z) = A+zB(I-2zD)™'C,
then it also has a TFR via
10Y, (10\_(A BU
ouU* ou) \Uu*CcU*DU
where U is a unitary matrix with the same dimensions as D. This is apparent
from the formula A + zBU(I — zU*DU)"'U*C = S(z). We can now apply
a unitary change of coordinates and break up the domain/codomain of D into

H = span{D/C : j =0,1,...} and its orthogonal complement H'*. In these
new coordinates, T takes the form

CN H 3+
M (A B B
H [CDlyg * |
HL\0 0 =%
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since D maps H to itself and range(C) C H. Since the formula for S is only
determined by D/, we see that S has an isometric TFR via the matrix

A By
C Dy
which has a smaller size unless H+ = {0} or rather H = domain(D).
For the second identity, we break up the domain of D into

L= ﬂ kernel(BDY)
j=0

and its orthogonal complement £+. Using this orthogonal decomposition we can
write T in new coordinates as

cNrtr
M /A B 0
L+ (Cl Dy O )
L \C, Dy Dy,

since B maps £ to 0 while D maps £ into itself. But since this is an isometry we
must have D|r, a unitary which forces C;, D21 = 0. This means S is given by the

TFR with isometry ( & ) This has smaller size unless £ = {0}. O

Proof of Proposition 9.1. 1f S(z) = A+ zB(I — zD)!C is a polynomial, then
necessarily BD/C = 0 for all j large enough. By Proposition 9.2, BD™ = 0 for n
large enough. Then,

range(D™) C ﬂ kernel(BDY),
j=0

implying range(D™) = 0 or rather D" = 0. O

Minimality of TFR representations in the rational inner case in two variables
makes it possible to prove an analogous result for inner matrix-valued polynomials
in two variables. Our approach uses determinants to count the size of minimal
TFRs. The following is a standard result in one variable. We provide a proof in
Subsection A.3.

Proposition 9.3. Let S : D — CN*N be a rational inner function. Then,
degdet S equals the size of @ minimal TER for S.

Since S is rational inner, det S is a scalar rational inner function in one variable
which is a finite Blaschke product. Thus, the degdetS refers to the degree of the
numerator when written in lowest terms. This immediately yields a method using
determinants to calculate the optimal size breakdown for rational inner functions
in two variables. (This is another place where it helps to have square matrices.)
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Theorem 9.4 (Kummert). If'S : D? — CN*N is rational inner, then the mini-
mal size breakdown v = (v1,7v2) of a TER for S is

7j =deg;detS(z1,22) forj=1,2.
Similarly, for all but finitely many € € T, the degree of
z —detS(z,Cz2)

is 71 + 73. Therefore, the generic size of a TFR for z — §(z,Cz) is v + 12. This
shows that generic restrictions to slices of our two variable minimal TFRs yield
minimal TFRs for restricted functions.

Proof of Theorem 1.5. The above argument shows that if a polynomial inner

function S has a minimal TFR via the unitary U = (é g) and projections Py, P

as in Theorem 1.1, then z — S(z,Cz) has minimal unitary TFR via the unitary

AB\(I 0
cp)lop +cp,)"

By Proposition 9.1, DA(1, C) is nilpotent for all but finitely many € € T. This
means (DA(1,%))N = 0 for all but finitely many € € T. Since this is a polynomial
equation we have (DA(1, )N = 0, and since DA(z) is homogeneous we also
have (DA(z1,22))N = 0. Thus, DA(2) is always nilpotent. O

This leads to the interesting question of describing contractions D such that
DA(z) is nilpotent for all z. An easy way to produce examples would be to
make D strictly upper triangular and choose the projections Py, P, via projections
onto the span of subsets of standard basis vectors. For such examples, note that
DA(z) is triangular; however, it is possible to produce matrices D1, D such that
z1D1 + z,D; is nilpotent for all z yet is not triangularizable independent of z
(see [34]). This could be an interesting source of examples.

APPENDIX A. AUXILIARY RESULTS

1.1. Maximum principle for rational iso-inner functions.

Proposition A.1. Suppose S : D4 — CM*N s yational, analytic in D4, and
I1S2)l <1 forze T4 where defined. Then, |S(2)|l < 1 forall z € DA,

Rationality is a key assumption since f(z) = exp((1+2z)/(1—2)) is unimod-
ular on T\ {1} and analytic on C\ {1} yet not bounded by 1 in D.

Proof. We can reduce to the scalar case by considering arbitrary unit vectors
v,w and the function F(z) = w*S(z)v. Fix w € T% and consider the one-
variable rational function f(C) = F(Tw). This function is bounded by 1 on T
away from its potential finite number of poles. But, f must be unbounded near a
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pole, so any singularities on the boundary are removable. Hence, f is analytic on
D and bounded by 1 by the maximum principle. This implies F is bounded by
1 at any point of ¥ T4 for ¥ < 1. Given any z € D4, we can calculate F(z) as a
Poisson integral of F on T4 for || 2]l < ¥ < 1 to see that |F(2)] < 1. |

1.2. Fejér-Riesz proofs. A more traditional and well-known version of the
matrix Fejér-Riesz theorem is as follows. (See [16] for a proof.)

Theorem A.2. Let T(z) = Z;L,n szj be a matrix Laurent polynomial (with
T; € CN*N) such that T(z) =2 0 for z € T and det T(z) is not identically zero.

Then, there exists a matrix polynomial A € CN*N[z] of degree at most n such
that T = A*A on T and det A(z) + 0 for z € D.

We think it is worthwhile to show how to go from this theorem to the de-
generate version, Theorem 4.1, using ideas from [17]. The key tool is the Smith
normal form.

Theorem A.3 (Smith normal form). Let P € CM*N[z] be a matrix polyno-
mial. Then, there exist T} € CM*M[z] T, € CN*N[z] with matrix polynomial
inverses (equivalently, with constant determinants) and D € CMXN{z] such that
P = T'DT,. The matrix D has the following form: every entry off the main diag-
onal of D is zero and the main diagonal consists of polynomials d,, ..., dx such that
d;j divides dj,1. Here, k = min{N, M} and the d; may be zero for j large enough.

(See Hoffman-Kunze [28].)

Proof of Theorem 4.1. The function G(z) = z"T(z) is a polynomial matrix
and therefore has Smith normal form decomposition

G(z) = T1(2) (fo) g) I,(2).

Here, T1, T, are matrix polynomials with matrix polynomial inverses while
D(z) = diag(di(2),...,d,(2))

is an ¥ X v diagonal matrix with only non-zero polynomials on the diagonal.
Notice that T(z) has rank v whenever detD(z) # 0, z # 0. Since T is self-
adjoint on T, we have T(z) = T(1/2)* for z # 0, and so

(A.1) T, Y (1/2)*T(2)T, N(z) = z "T, 1 (1/2)*T1(2) (Déz) g)

>k
- zn (D“éZ) 8) T(1/2)*T; (2)

is a matrix Laurent polynomial which is positive semi-definite on T and with 0 in

the last N — 7 columns and rows. Thus, (A.1) has the form (T‘)éz ) 8) where Ty
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is an ¥ X ¥ matrix Laurent polynomial which is positive semi-definite on T and
crucially satistying det Ty # 0 since T has rank v outside of a finite set.

By Theorem A.2, there is an ¥ X ¥ matrix polynomial A so that det A¢(z) # 0
in D and Ag(2)*Ag(z) = To(z2) on T. If we set V = T, and

A= (Ao OTX(N—V)) v,

then A(z)*A(z) = T(z) on T. Note that A(1/2)*A(z) = T(z) holds in C\ {0}
since both sides are analytic and agree on T.
Our degree bound on A follows from the fact that

Ag(z)7!
0

Z"T(z)V(z)™} ( ) =Z"A(1/2)*

is analytic at 0. A right rational inverse of A is given by

4 (A
14 (0 . O

The matrix Fejér-Riesz factorization described is maximal in the sense of the
following theorem. One can also describe all other factorizations. There is nothing
essentially new about this result, but it is probably difficult to attribute. It could
be deduced from inner-outer factorizations.

Theorem A.4. Assuming the setup and notation of Theorem 4.1. For any other
Jactorization T = C*C on T with a matrix polynomial C, there exists a rational iso-
inner function ® such that C = ®A (necessarily, ® = CB). If C has a right rational
inverse holomorphic in D, then ® is a constant unitary matrix.

Proof: Suppose T = C*C on T. Then, we may write CV~! = (Co C1> where
Co has v columns. Since
(v—l)*A*Av—l — (Af)kAO O) — <C(;I<C0 C(;kcl> — (V—l)*C*Cv—l
0o o)~ \crco cra '
we see that Cy'Co = AjAg, C;'Ci = 0 on T. This implies that C; = 0. Then,
® := CoAy! is analytic on D and isometry valued on T. Any poles on T are
necessarily removable because ® is rational and bounded on T. We also have
®A = C. If C has right rational inverse C’, then ®AC" = I. An isometry can
only have a right inverse if it is square, so ® must be square (hence unitary on T)
and AC" must be unitary-valued on T. By the maximum principle, ® and AC’ are
contractive in the disk; however, since they are inverses of each other they must
be unitary-valued in the disk. Such analytic functions are constant. (Lemma 6.1
proves something more general than this.) O
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We now sketch a simple proof of Dritschel’s positive definite multivariable
Fejér-Riesz result (Theorem 6.3). Although it borrows elements from the original
proof, we think it has some nice efficiencies in exposition.

Proof of Theorem 6.3. Let n be a positive integer and define the multivariable
Cesaro summation operator C,, which we apply to N X N matrix Laurent polyno-
mials L(z) = X yeza Lrzk:

(Cul)(z) = 3 Lzt = | Fa(z,0)LE) do (@)

kez4
where
d
n — |kjl

Y HT for [kil,..., [kal <,
Ck =1j=1

0 otherwise

l—Z"C"

=2 o

kezd

1 d
Fa(2,8) = -3 ﬂ T2,

is the Fejér kernel and do is normalized Lebesgue measure on T4.

Let Ly, be the vector space of N X N Laurent polynomials of degree at most
m in each variable separately. We shall consider CJi* := Cylr,, : Lm — Lm. By
basic properties of Cesaro summation, CJ'L — L uniformly on T4 as n — oo for
L € Ly,. Since the set of linear operators B(Ly,) on Ly, is finite dimensional, Cj*
tends to the identity as n — oo with respect to any norm on B(Ly,). In particular,
for n large enough, C"* is invertible and (CJ*)~! tends to the identity as n — co.

We next point out that if L € Ly, is positive semi-definite on T4 then C['L is
a sum of squares. The reason is that on T4, F,(z,C)L(T) is a Laurent polynomial
of degree at most n + m with respect to €. Then, the integral representation
of CyL can be computed via “quadrature.” Indeed, for any M, if H € Ly and
U= e2rri/(M+1)’ then

[ H©w0@ =ty S HEh .

7
(M + D am

This can be proven by testing on monomials. This means that C,,L(z) is a positive
finite linear combination of the terms

F’}’l(zv (HJI,,qu))L(HJI’,HJd)

Since Fy, is evidently a squared polynomial and each value of L on T4 is assumed
positive semi-definite, we see that C,L is a sum of squares of polynomials.

Now, let T € L™ be strictly positive on T¢; that is, there exists § > 0 such
that T(z) > 81 for z € T%. For n large enough, Ty := (C*)~!T is also strictly
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positive. Then, T = C,, Ty, is a Cesaro sum of a positive Laurent polynomial which
was already shown to be a sum of squares. O

1.3. PSD kernels. We now discuss the proof of Lemma 3.2 which claims
that for § : D — CM*N analytic and |S(2) || < 1 in D, we have that

_ *
Koty = =S5

is positive semi-definite (PSD). Let us recall the abstract definition of PSD for
matrix or operator-valued kernels.
Definition A.5. Let X be a set, let be £ a complex Hilbert space, and let
K : X XX — B(L) be a function; here, B(L) is the set of bounded linear self-maps
of L. We say that K is a PSD kernel if for any x1,...,xn, € X and v1,...,vp € £
we have
Z(K(xi,xj)vj, vi) = 0.
i,j
Notice that if (x,y) — K(x,y) is a PSD kernel, then (x,y) — K(y,x) is
not necessarily PSD except in the scalar case H = C.
Definition A.6. The rank of K is the maximum of the ranks of the block
operators (K(xj,x;))i,j as we vary over n and x1,...,Xn € X.

Proof of Lemma 3.2. Our proof uses rudiments of vector-valued Hardy spaces
on the unit disk. (See Agler-McCarthy [4] for details.)

Let Hy = H?*(D) ® CM be the set of M-dimensional column vectors with
entries in the Hardy space on the unit disk H?(D). Left multiplication by S,
Ms : Hy — Hy is contractive. If ky (z2) = k(z,w) := 1/(1 — wz) is the Szegd
kernel, then by a fundamental formula in reproducing kernel Hilbert space theory

M (ky ® V) =ky ® S(w)*v  forv e CM,
we see that
(I = MsgM{) (kw ® V1), kz ® Vo), = k(z, w){(I - S(2)S(w)*)v1,v2)cm,

which after a short calculation using the fact that I — MgM¢ > 0 shows that
(z,w) = (I-5(2)S(w)*)/(1-zw) is PSD. We could apply the same argument
to §(Z) := S(2)* to see that (z,w) -~ (I — S(2)*S(w))/(1 — zw) is PSD.
Replace z, w with their conjugates and relabel the variables to see that Ks(w, z)
is PSD. O

Proof of Proposition 9.3. Assuming S : D — CV*N is rational inner we need to
g

compute the rank of the positive semi-definite kernel

I-S(w)*S(z)
1-—wz )

(w,z) —
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We shall use notation from the proof of Lemma 3.2 above. As in the said proof, it
is notationally easier to deal with the kernel

_ I-S(z)S(w)*

K(z,w) 1—zw

and we can reduce to this case by replacing S with §(z)*.
Now, K is the reproducing kernel for Hy © SHy. This follows from the fact
that S is inner: SHy is a closed subspace of Hy and has reproducing kernel

S(z)S(w)*
1-zw

which can be verified by the calculation

(Sf, kwSS(W)* V) = (f, kwS (W) V) gy = (S(w) f(w), v)ey

for f € Hy. The rank of K is the dimension of Hy © SHy.

To count this dimension we write S = Q/p in lowest terms. Since S is
bounded on T it can have no poles on T, and therefore p has no zeros in D.
Let Q(z) = Ti(z)D(2)T2(z) be the Smith normal form decomposition for Q
(Theorem A.3 above). Notice that D has full rank on T since S is inner. Write
D = diag(dy,...,dn). Then, detQ = cdetD = c[];d; where ¢ = detT; det T,
is a constant because T, T, have polynomial inverses. Since S is inner, detS =
detQ/p" is a finite Blaschke product. Its degree equals its number of zeros in D,
which equals the number of zeros of det Q in D since p has none.

The vector space Hy © SHy is isomorphic to the vector space quotient

Hn/SHy = Hn/(Th'DT,)Hy = Hy/(T1DHy) = Hy/DHy.

The first equality holds because p has no zeros in D, the second holds because T»
has a polynomial inverse, and the last isomorphism holds because T} has a polyno-
mial inverse. Recalling D = diag(d;, ..., dn) we note the dimension of H?/d jH?
is the number of zeros of dj in D and therefore the dimension of Hy/DHy is the

number of zeros of 1_[?’:1 d; inside D (counting multiplicities). 0
This proof appears in [12].
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