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ABSTRACT. We give a simplified exposition of Kummert’s approach
to proving that every matrix-valued rational inner function in two
variables has a minimal unitary transfer function realization. A slight
modification of the approach extends to rational functions which are
isometric on the two-torus, and we use this to give a largely elemen-
tary new proof of the existence of Agler decompositions for every
matrix-valued Schur function in two variables. We use a recent result
of Dritschel to prove that two variable matrix-valued rational Schur
functions always have finite-dimensional contractive transfer func-
tion realizations. Finally, we prove that two variable matrix-valued
polynomial inner functions have transfer function realizations built
out of special nilpotent linear combinations.
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1. INTRODUCTION

The goal of this paper is to give a simple proof and several applications of the
following theorem.

Theorem 1.1 (Main Theorem). Assume S : D2 → CM×N is rational with no
poles in D2 and satisfies S∗S = IN on T2 away from the zero set of the denominator
of S.

Then, there exist an integer r and an (M + r) × (N + r) isometric matrix
U =

(
A B
C D

)
such that

(1.1) S(z) = A+ B∆(z)(I −D∆(z))−1C

where ∆(z1, z2) = z1P1+z2P2 and P1, P2 are orthogonal projections with P1+P2 =
Ir .

Above D2 = {z = (z1, z2) ∈ C2 : |z1|, |z2| < 1} is the unit bidisk, and
T2 = {(z1, z2) ∈ C2 : |z1| = |z2| = 1} is the two-torus (or bitorus). We shall call
functions that satisfy the hypotheses of this theorem rational iso-inner functions.
Formulas in the conclusion of this theorem (such as (1.1)), which are built out
of block operators, will be called transfer function realizations (or TFRs). If the
operator is a finite matrix we will call it a finite TFR, and if we have extra infor-
mation about the operator involved, we will incorporate it into the terminology.
For example, the above theorem asserts the existence of a “finite isometric TFR”
for two variable rational iso-inner functions.

This theorem is due to Kummert in the square case M = N [33]. Kummert’s
theorem was ahead of its time and its proof was both ingenious and largely ele-
mentary. At the same time, Kummert’s argument seems complicated and the engi-
neering terminology may obscure the underlying concepts for some, so one of our
main goals is to give a simplified, conceptual, and entirely mathematical account
of Kummert’s approach. We also give an algorithm for constructing the matrix U .
Motivation for doing so comes from recent interest in the wavelet community in
transfer function formulas in one and several variables [14]. We have presented
generalizations of our simplified argument in a couple of papers [21, 32], but the
generalizations can also potentially obscure the underlying concepts. A minor ad-
justment allows us to treat the non-square case M &= N, which in turn allows us
to give possibly the most elementary and direct proof of the following seminal
theorem of Agler.

Theorem 1.2 (Agler [1,2]). Let f :D2→CM×N be holomorphic, and ‖f (z)‖≤1
for all z ∈ D2. Then, f has a contractive TFR: there exists a contractive operator T

on some Hilbert space with block decomposition T =
(
A B
C D

)
such that

f (z) = A+ B∆(z)(I −D∆(z))−1C

where ∆(z) = z1P1+z2P2 and P1, P2 are pairwise orthogonal projections which sum
to the identity on the domain of D.
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Perhaps the most important application of this theorem is a Pick interpolation
theorem for holomorphic functions on the bidisk. For this and other applications,
we refer the reader to the book [4] and the papers [3, 5, 6, 10].

Dritschel has recently proven a strong Fejér-Riesz type of result in two vari-
ables (Theorem 6.7) which makes it possible to prove that every two-variable ratio-
nal function bounded by one in norm on D2 (with no assumptions on boundary
behavior) has a finite contractive TFR.

Theorem 1.3. Let S : D2 → CM×N be rational with no poles in D2 and assume
‖S(z)‖ ≤ 1 for all z ∈ D2. Then, there exists a contractive matrix T =

(
A B
C D

)
such

that
S(z) = A+ B∆(z)(I −D∆(z))−1C

where ∆(z1, z2) = z1P1 + z2P2, P1, P2 are orthogonal projections with P1 + P2 = I.
A very important bonus of Kummert’s approach is that it constructs the ma-

trix U in Theorem 1.1 with the minimal possible dimensions in a strong way.
For a rational iso-inner function S : D2 → CM×N we can always make sense of
z1 ! S(z1, z2) for each fixed z2 ∈ T, and this is a one variable rational iso-inner
function (Lemma 4.3). If we have a formula as in Theorem 1.1 where the ranks of
P1, P2 are r1, r2, then we can construct a transfer function realization for S(·, z2)
with size r1 and a transfer function realization for S(z1, ·) with size r2. In the
square case M = N, this can be done optimally.

Theorem 1.4 (Kummert’s minimality theorem). Suppose S : D2 → CN×N is
rational and inner. Then, one can choose U in Theorem 1.1 so that the ranks r1, r2

of P1, P2 are simultaneously minimal: r1 is the maximum of the minimal size of a
unitary TFR for z1 ! S(z1, z2) where z2 varies over T and r2 is the maximum of
the minimal size of a unitary TFR for z2 ! S(z1, z2) where z1 varies over T.

In particular, among all possible unitary TFRs for S, neither r1 nor r2 can be
smaller than those in Kummert’s construction. We will give a conceptual proof
of Kummert’s minimality theorem, and clarify why this is the best possible result.
Before the mathematical community knew of Kummert’s results, this result was
reproven in the scalar case using the framework of Geronimo-Woerdeman [20] in
[30]. Later, Theorem 1.4 was also proven using Hilbert space methods in [12].
The scalar minimality theorem was crucial in giving a characterization of two-
variable rational matrix-monotone functions in [5]. It is also useful in proving
determinantal representations for certain families of polynomials p ∈ C[z1, z2]
with no zeros in D2 [29].

We shall present a new application of the minimality theorem which has some
relevance to the applications of this theory to wavelets in [13,14]. In these papers,
matrix-valued polynomial inner functions are of particular interest.

Theorem 1.5. Let S ∈ CN×N[z1, z2] and assume S∗S = IN on T2. Then, U in
Theorem 1.1 can be chosen with det(I −D∆(z)) ≡ 1.

Note this means D∆(z) = z1DP1 + z2DP2 is nilpotent for every z.
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1.1. Guide to the reader. This paper is structured so that it can hopefully
be read by a broad audience. We make no mention of systems theory terminology
(except for “transfer function”) and we make no use of von Neumann inequalities
and related operator theory originally used in the proof of Agler’s theorem. (We
do discuss some of this for context in Section 6.) Our first goal is to quickly
and simply prove Kummert’s Theorem 1.1, and explain how this proves Agler’s
theorem.

Some readers may be satisfied with this quick and mostly constructive ap-
proach to these results and can stop after Section 6. After that, we introduce
the technicalities necessary to prove Kummert’s minimality theorem and give an
application to inner polynomials. We include an appendix with extra background.

2. FINITE-DIMENSIONAL TRANSFER FUNCTION REALIZATIONS

One of the fundamental things that Agler did in his original proof of Theorem
1.2 was connect TFRs to certain formulas now called Agler decompositions which
involved positive semi-definite kernels. The following theorem establishes some
basic equivalences about finite TFRs and finite-dimensional Agler decompositions
which hold not just on D2 but on any polydisk Dd. Note that “matrix” below
always refers to a finite matrix.

Theorem 2.1 (Equivalences Theorem). Let S : Dd → CM×N be a function.
The following are equivalent:

(1) There exists a contractive matrix T =
(
A B
C D

)
such that

S(z) = A+ B∆(z)(I −D∆(z))−1C

where∆(z)=
∑
j zjPj , for some pairwise orthogonal projections with

∑
j Pj=I.

(2) There exist matrix functions Fj and a constant contractive matrix T such that

T




I
z1F1(z)

...
zdFd(z)



=




S(z)
F1(z)

...
Fd(z)



.

(3) There exist matrix functions F1, . . . , Fd,G such that

I − S(w)∗S(z) = G(w)∗G(z)+
∑

j

(1− w̄jzj)Fj(w)∗Fj(z).

We also have the following bonuses:
(B1) Assuming (1)–(3), we have S, F1, . . . , Fd,G are all rational and ‖S(z)‖ ≤ 1

for all z ∈ Dd. If we assume at the outset that S is holomorphic, then item
(3) need only hold initially on an open set in order for it to hold globally.
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(B2) The T that works in (1) also works in (2).
(B3) We also get equivalences if we replace “contractive” in (1) and (2) with “iso-

metric” and G with 0 in (3). In this case, S is iso-inner and analytic outside
the zeros of det(I −D∆(z)).

Proof. (2) =⇒ (1). It helps to define

F(z) =




F1(z)
...

Fd(z)


 .

Let Pj be the projection matrix for the block corresponding to Fj . Then, the
equation in (2) can be written as

(2.1)

(
A B
C D

)(
I 0
0 ∆(z)

)(
I

F(z)

)

=
(
S(z)
F(z)

)

for ∆(z) =
∑
j zjPj . Block by block, this says

A+ B∆F = S,
C +D∆F = F,

which yields F = (I −D∆)−1C and then S = A+ B∆(I −D∆)−1C.

(1) =⇒ (2). We simply define F = (I −D∆)−1C. Then, (2.1) holds because

C +D∆(I −D∆)−1C = (I −D∆)−1C.

(2) =⇒ (3). The given equation implies

(
I

∆(w)F(w)

)∗
T∗T

(
I

∆(z)F(z)

)

=
(
S(w)
F(w)

)∗ (
S(z)
F(z)

)

.

Let A =
√
I − T∗T and G(z) = A

(
I

∆(z)F(z)

)
. Then,

(
I

∆(w)F(w)

)∗ (
I

∆(z)F(z)

)

=
(
S(w)
F(w)

)∗ (
S(z)
F(z)

)

+G(w)∗G(z),

and this rearranges exactly into the equation in (3).

(3) =⇒ (2). This is known as a lurking isometry argument. The map

(
I

∆(z)F(z)

)

!



S(z)
F(z)
G(z)



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extends linearly and in a well-defined way to an isometric map from the span of
the vectors on the left to the span of the vectors on the right as z varies over Dd.
We can extend this to an isometric matrix V satisfying

V

(
I

∆(z)F(z)

)

=



S(z)
F(z)
G(z)




which we can compress to get a contractive matrix satisfying the equation in (2).
The bonus results follow. For (B1), S is rational and bounded in operator

norm by 1 by (1) and (3). The matrix functions Fj,G are rational by the proofs
of (2) =⇒ (1) and (2) =⇒ (3). If we assume S is holomorphic and (3) only holds
on an open set, then all of the proofs work on this restricted set but automatically
extend holomorphically to Dd by the matrix formulas. Bonus (B2) follows from
the proof of (1) ⇐⇒ (2). For bonus (B3), notice that if T is an isometric matrix,
then we have G = 0 in the proof (2) =⇒ (3), and if we start with G = 0 we get T
to be isometric in the proof (3) =⇒ (2) since no compression is necessary. Finally,
S is iso-inner because we can insert z =w ∈ Td into condition (3) to see S∗S = I
at least away from the zero set of det(I −D∆(z)) which is a denominator for the
Fj and S by the formula in (2) =⇒ (1). !

The next proposition says the conditions of Theorem 2.1 are also equivalent
to S being a submatrix of a rational inner function possessing a finite-dimensional
unitary transfer function realization. Moreover, the various sizes of the transfer
function realizations stay the same. To be more precise, let rj be the rank of Pj
in condition (1) of Theorem 2.1. Then, r = (r1, . . . , rd) will be called the size
breakdown of the TFR. This terminology is endemic to this paper. The size of the
TFR will refer to |r | = r1+· · ·+rd. Note that rj also equals the number of rows
of Fj in conditions (2) and (3) of Theorem 2.1.

Proposition 2.2. Let S : Dd → CM×N be a function which has a finite contrac-
tive TFR with size breakdown r . Then, there exists n ≥ N,M and a matrix rational
inner function Φ : Dd → Cn×n with finite unitary TFR with size breakdown r such
that S is a submatrix of Φ.

As a sort of converse, every submatrix of S has a finite contractive TFR with same
size breakdown.

Proof. Suppose S has a finite contractive TFR given via contractive T =(
A B
C D

)
. Every contractive matrix is a submatrix of a finite unitary, say U . If

we rearrange rows and columns we may write

U =



A A12 B
A21 A22 B2

C C2 D


 .
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If

Φ(z) =
(
A A12

A21 A22

)

+
(
B
B2

)

∆(z)(I −D∆(z))−1
(
C C2,

)

then S(z) = ( I O )Φ(z)
(
I
O

)
.

This same type of observation shows that every submatrix of S has a finite
contractive TFR. !

The following is referred to as the adjunction formula in [13].

Proposition 2.3. Let S : Dd → CM×N be a function with a finite contractive
TFR given via a matrix T as in (1), (2) of Theorem 2.1. Set S̆(z) = S(z̄)∗. Then,
S̆ has a finite contractive TFR given via T∗.

In particular, if T is isometric, then S̆ has a finite coisometric TFR.

Proof. With S(z) = A+ B∆(z)(I −D∆(z))−1C, we have

S̆(z) = A∗ + C∗(I −∆(z)D∗)−1∆(z)B∗

= A∗ + C∗∆(z)(I −D∗∆(z))−1B∗,

which is exactly condition (1) of Theorem 2.1 with T∗ in place of T . !

3. ONE-VARIABLE VERSION OF THEOREM 1.1

We now prove a detailed one-variable version of the Main Theorem (Theorem 1.1).
If S = Q/p : D→ CM×N is a rational iso-inner function, then S∗S = I on T away
from zeros of p, but then |p|2I = Q∗Q on all of T by continuity.

Theorem 3.1. Assume p ∈ C[z] has no zeros in D, Q ∈ CM×N[z], and
|p|2I = Q∗Q on T. Let n be the maximum of the degrees of p and the entries
of Q. Then,

K(w,z) = p(w)p(z)I −Q(w)
∗Q(z)

1− w̄z(3.1)

= (I, w̄I, . . . , w̄n−1I)T(I, zI, . . . , zn−1I)t,

where T is a positive semi-definite matrix whose entries can be expressed as polynomials
in the coefficients of p, p̄,Q,Q∗. Furthermore, K(w,z) is a positive semi-definite
kernel whose rank matches the rank of the matrix T .

Positive semi-definite kernels are reviewed in Definition A.5, and the rank of
such a kernel is defined in Definition A.6 in Appendix A.

The theorem allows for common zeros of Q and p which is important in
using this result in two variables. It immediately follows that S = Q/p possesses
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an isometric TFR because we can factor T = F∗F where F is an r × nN matrix.
Then, for F(z) = F(I, zI, . . . , zn−1I)t, we have

I − S(w)∗S(z) = (1− w̄z)
(
F(w)

p(w)

)∗
F(z)

p(z)
.

By Theorem 2.1 we see that S has an isometric TFR. After the proof of Theo-
rem 3.1, we give an explicit way to find a formula for an isometry U out of which
a TFR for S can be built. We need a standard lemma to prove Theorem 3.1. We
give the short proof in the appendix (see Subsection A.3).

Lemma 3.2. Assume S : D → CM×N is analytic and ‖S(z)‖ ≤ 1 in D. Then,
the kernel

(3.2) KS(w, z) =
I − S(w)∗S(z)

1− w̄z

is positive semi-definite.
The swapping of z,w is deliberate and is discussed in the proof in Appen-

dix A.

Proof of Theorem 3.1. By analyticity, we have p(1/z̄)p(z)I = Q(1/z̄)∗Q(z)
on C \ {0}. This implies the polynomial in z, w̄

p(w)p(z)I −Q(w)∗Q(z)

is divisible by (1−w̄z), and hence we can write (3.1) where T is indeed anN×nN
matrix whose entries are polynomials in the coefficients of p, p̄,Q,Q∗. We could
solve for them but we do not need to. By Lemma 3.2, KS(w, z) in (3.2) is positive
semi-definite. Multiplying through by p(w)p(z), we have that K(w,z) as in
(3.1) is a positive semi-definite matrix-valued polynomial function of bounded
degree.

To show T is positive semi-definite, take any z1, . . . , zn ∈ D and note that

(K(zi, zj))i,j =




I z̄1I · · · z̄n−1
1 I

I z̄2I · · · z̄n−1
2

...
...

. . .
...

I z̄nI · · · z̄n−1
n I



T




I I · · · I

z1I z2I
... znI

...
...

. . .
...

zn−1
1 I zn−1

2 · · · zn−1
n I



= V∗TV

is positive semi-definite where V = (Vi,j) is the block Vandermonde matrix Vi,j =
zi−1
j I. If the zj are all distinct then V is invertible which implies that T is positive

semi-definite. The above computation also shows that the rank of K equals the
rank of T , although we omit some details. !
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Remark 3.3. We now explain how to find an isometry U out of which a
TFR for S = Q/p can be built. This will closely parallel our approach in the
two-variable setting. We first factor T = A∗A where A is r × nN with r =
rank(T). Then, A will possess a right inverse B, namely, AB = I. Set F(z) =
A(I, zI, . . . , zn−1I)t. To find U such that

U

(
p(z)I
zF(z)

)

=
(
Q(z)
F(z)

)

we write out p(z) =
∑n
j=0pjz

j , Q(z) =
∑n
j=0 zjQj , and extracting coefficients,

we equivalently need U to satisfy

U

(
p0I [p1I, . . . , pnI]
O A

)

=
(
[Q0, . . . ,Qn−1] Qn

A O

)

.

The matrix
(
p0I [p1I,...,pnI]
O A

)
has right inverse

(
p−1

0 I X
O B

)

where X = −p−1
0 [p1I, . . . , pnI]B so that

U =
(
[Q0, . . . ,Qn−1] Qn

A O

)(
p−1

0 I X
O B

)

.

Thus, U can be computed directly from p,Q,A, B.

4. TWO VARIABLES AND THEOREM 1.1

The basic idea of Kummert’s argument is to attempt a parametrized version of the
one-variable theorem above.The matrix Fejér-Riesz factorization in one variable,
which we now review, then becomes crucial in attempting a parametrized version
of the implication (3) =⇒ (2) in the Equivalences Theorem (Theorem 2.1).

Theorem 4.1 (Matrix Fejér-Riesz). Let T(z) =
∑n
j=−n Tjz

j be a matrix
Laurent polynomial (Tj ∈ CN×N) such that T(z) ≥ 0 for z ∈ T. Then, there exist a
natural number r ≤ N, a matrix polynomial A0 ∈ Cr×r [z] with detA0(z) &= 0 for
z ∈ D, and a polynomial matrix V ∈ CN×N[z] with polynomial inverse such that for

A =
(
A0 0r×N−r

)
V we have T = A∗A on T. Furthermore, A has degree at most

n and a right rational inverse B which is analytic in D.
The case where T(z) is positive definite at all points of T is usually attributed

to Rosenblatt [36]. If detT(z) vanishes at a finite number of points, it is possible
to factor out these zeros from T (see [16, 17]). If detT(z) is identically zero,
it is possible to use operator-valued versions of this theorem which guarantee an
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outer factorization of T . We explain how to go from the case of detT &≡ 0 to the
case detT ≡ 0 in Appendix A (Subsection A.2). The factorization above can be
computed using semidefinite programming or Riccati equations (see, e.g., [27]).

Theorem 4.1 in particular shows that T(z) has rank r except at the finite
number of zeros of detA0. One nice application of Theorem 4.1 is the one variable
version of Theorem 1.3.

Proposition 4.2. Let S : D→ CM×N be rational and ‖S(z)‖ ≤ 1 for all z ∈ D.
Then, S has a finite contractive TFR.

Proof. Write S = Q/p. Then, |p|2I−Q∗Q is positive semi-definite on T. By
Theorem 4.1, there exists a matrix polynomial A such that |p|2−Q∗Q = A∗A on

T. Then, Φ =
(

S
A/p

)
is iso-inner, and by Theorem 3.1 possesses a finite isometric

TFR. By Proposition 2.2, we see that S possesses a finite contractive TFR. !

The following lemma lets us apply Theorem 3.1 to one variable slices.

Lemma 4.3. Suppose S : D2 → CM×N is rational and iso-inner. Write S = Q/p
where Q ∈ CM×N[z1, z2], p ∈ C[z1, z2] has no zeros in D2, and Q, p have no
common factors. Then, |p|2I = Q∗Q on T2, and for each z2 ∈ T, the one-variable
polynomial z1 ! p(z1, z2) has no zeros in D.

Proof. As in one variable, |p|2I = Q∗Q on T2 by continuity. For fixed τ ∈ T,
notice that z1 ! p(z1,τ) either has no zeros in D or is identically zero by Hur-
witz’s theorem (by considering τ as a limit of t ∈ D). If p(·,τ) is identically
zero, then Q(·,τ) is identically zero because of |p|2I = Q∗Q on T2. Hence, both
polynomials are divisible by z2 − τ, contradicting the assumption of no common
factors. Thus, for every z2 ∈ T, z1 ! p(z1, z2) has no zeros in D. !

We are now ready to prove the Main Theorem (Theorem 1.1).

Proof of Theorem 1.1. Assume the setup of Theorem 1.1 and write S = Q/p
as in Lemma 4.3. We can essentially follow a parametrized version of Remark 3.3
but we use the matrix Fejér-Riesz theorem to deal with certain matrix factoriza-
tions.

Step 1. Fix z2 = w2 ∈ T, divide p(w)p(z)I −Q(w)∗Q(z) by (1 − w̄1z1), and

then extract the coefficients of w̄j
1z

k
1 to obtain

p(w)p(z)I −Q(w)∗Q(z)
1− w̄1z1

(4.1)

=
∑

j,k

w̄
j
1z

k
1Tjk(z2) = (I, w̄1I, . . . , w̄

n1−1
1 I)T(z2)




I
z1I

...
z
n1−1
1 I



,
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where T(z2) = (Tjk(z2))jk is a positive semi-definite (n1N ×n1N) matrix Lau-
rent polynomial. This follows from Theorem 3.1 applied to p(·, z2), Q(·, z2).
Here, n1 is the maximum of the degree of p,Q with respect to z1.

Step 2. Apply the matrix Fejér-Riesz theorem (Theorem 4.1) to T(z2) to get an
r ×n1N matrix polynomial A(z2) and an analytic (in D) rational matrix function
B(z2) such that A∗A = T on T and AB = I in D. For convenience, we define

Λ(z1) = (IN, z1IN, . . . , z
n1−1
1 IN)

t ∈ Cn1N×N[z1].

Then, for z2 = w2 ∈ T and z1,w1 ∈ C,

p(w)p(z)IN −Q(w)∗Q(z) = (1− w̄1z1)Λ(w1)
∗A(w2)

∗A(z2)Λ(z1).

By Lemma 4.3, for each fixed z2 ∈ T the map z1 ! Q(z1, z2)/p(z1, z2) is an iso-
inner rational function and Theorem 2.1 guarantees the existence of an isometric
matrix U(z2) such that

(4.2) U(z2)

(
p(z)IN

z1A(z2)Λ(z1)

)

=
(

Q(z)
A(z2)Λ(z1)

)

.

Step 3. In this step we find a formula for U(z2) and show it extends to D̄ as
a rational iso-inner function in one variable. We can rewrite (4.2) in terms of
the coefficients of the powers of z1 by writing p(z) =

∑
j pj(z2)z

j
1 and Q(z) =

∑
j Qj(z2)z

j
1, defining "p(z2) = (p0(z2)IN,p1(z2)IN, . . . , pn1(z2)IN), and also

"Q(z2) = (Q0(z2), . . . ,Qn1(z2)). Then,

(4.3) U(z2)

(
"p(z2)

Or×N A(z2)

)

=
(

"Q(z2)
A(z2) Or×N,

)

using Or×N to denote the r × N zero matrix. Since p(0, z2) = p0(z2) has no
zeros in D, the matrix (

"p(z2)
0 A(z2)

)

has a rational matrix right inverse of the form

(
p0(z2)−1I X(z2)

0 B(z2)

)

.

The exact formula for X(z2) is (−1/p0)(p1I, . . . , pn1I)B.
Then,

(4.4) U(z2) =
(
"Q(z2)
A(z2) 0

)(
p0(z2)−1I X(z2)

0 B(z2)

)
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extends to a rational function holomorphic in D and isometry-valued on T away
from any singularities. Thus, not only is U uniquely determined (by A,B) and
iso-inner, but both sides of (4.3) are now holomorphic, so (4.3) extends to D.
(We caution that the blocks in (4.4) do not line up as written. There is no need
to multiply this out, so there is no real concern.)

Step 4. In this step we find an isometric matrix V such that S has a TFR built
out of V . It turns out U(z2) as a one variable function has a TFR built out of the
same isometry V . Indeed, by Theorem 3.1 and Theorem 2.1 there exist a constant
isometric matrix V and matrix function F(z2) such that

V

(
I

z2F(z2)

)

=
(
U(z2)
F(z2)

)

.

A formula for V can be found via Remark 3.3. As we now show, V is the isometry
we are looking for. If we multiply on the right by

(
p(z)I

z1A(z2)Λ(z1)

)

and define

H(z) := F(z2)

(
p(z)I

z1A(z2)Λ(z1)

)

, G(z) := A(z2)Λ(z1),

we get

V



p(z)I
z1G(z)
z2H(z)


 =



Q(z)
G(z)
H(z)


 .

By Theorem 2.1, this means S has a finite-dimensional isometric transfer function
realization built out of the isometry V . This proves Theorem 1.1. !

When we prove the minimality theorem (Theorem 1.4) we will pick up where
this proof leaves off. We will later refer to G∗G as the dominant z1-term associ-
ated with S, while we will refer to H∗H as the sub-dominant z2-term. We write
G∗G := G(w)∗G(z), H∗H := H(w)∗H(z) instead of G,H because the former
are uniquely determined while G,H are determined up to left multiplication by
isometric matrices. By symmetry we could also construct a dominant z2-term
with associated sub-dominant z1-term.

5. DETAILED EXAMPLE

In this section we give a detailed example of the four steps presented in the proof
of Theorem 1.1. The N ×N identity matrix is written IN , the N ×N zero matrix
is written ON , and the N ×M zero matrix is written ON×M .
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Consider the following simple rational inner function:

S(z) = 1
2

(
z1(z1 + z2) z1z2(z1 − z2)
z1 − z2 z2(z1 + z2)

)

=
(
z1 0
0 1

)

X

(
z1 0
0 z2

)

X

(
1 0
0 z2,

)

where X = (1/
√

2)
( 1 1

1 −1

)
is a unitary. The right expression shows S is a product

of inner functions and is therefore inner itself. Since S is a polynomial, the process
below will be simpler than the general case but still illustrative. Note then that,
referring to the proof of Theorem 1.1, we have p = 1 and Q = S.

Step 1. Set |z2| = 1, divide I − S(w1, z2)∗S(z1, z2) by 1 − w̄1z1, and extract

coefficients of the monomials w̄j
1z

k
1 in order to write

I − S(w1, z2)∗S(z1, z2)

1− w̄1z1
=

∑

j,k=0,1

w̄
j
1z

k
1Tjk(z2) = (I2, w̄2I2)T(z2)

(
I2
z1I2

)

where T(z2) is the matrix Laurent polynomial

T(z2) =
1
4




3 z2 z−1
2 1

z−1
2 3 −z−2

2 −z−1
2

z2 −z2
2 1 z2

1 z2 z−1
2 1


 .

Necessarily, T is positive semi-definite on T.

Step 2. Factor T according to the one-variable matrix Fejér-Riesz theorem. There
exist algorithms for doing this ([27]), and it can also be essentially reduced to
polynomial algebra and one variable Fejér-Riesz factorizations (see [17] where this
is done in a more general setup). We get T(z2) = A(z2)∗A(z2) on T where

A(z2) =
1
2

(√
2 (
√

2)z2 0 0
z2 −z2

2 1 z2

)

=: (A0(z2),A1(z2))

has right inverse

B(z2) =




√
2 0

0 0
(−
√

2)z2 2
0 0


 =:

(
B0(z2)
B1(z2)

)

.

We use the equations above to define the 2×2 matrix polynomialsA0(z2), A1(z2),
B0(z2), B1(z2). Note that the right inverse in general could be rational.
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Step 3. We find our parametrized unitary U(z2) in this step. Form the “vectors” of
coefficients "p(z2) = (I2,O2,O2) and "Q(z2) = (Q0(z2),Q1(z2),Q2(z2)), where

Q0(z2) =
1
2

(
0 0
−z2 z

2
2

)

, Q1(z2) =
1
2

(
z2 −z2

2
1 z2

)

, Q2(z2) =
1
2

(
1 z2

0 0,

)

and then compute the one variable rational inner function U(z2) as in (4.3):

U(z2) =
(
Q0(z2) Q1(z2) Q2(z2)
A0(z2) A1(z2) O2

)

I2 O2

O2 B0(z2)
O2 B1(z2)




=




0 0 0 1

−z2

2
z2

2

2
1√
2

0

1√
2
z2√

2
0 0

z2

2
z2

2

2
1√
2

0




.

The fourth step is to find a TFR for U(z2). To do this we apply Remark 3.3.
Let us emphasize the steps. Divide I4 − U(w2)∗U(z2) by 1 − w̄2z2 and extract

coefficients of w̄j
2z

k
2 to write

I4 −U(w2)∗U(z2)

1− w̄2z2
= (I4, w̄2I4)Y

(
I4
z2I4

)

where

Y =







1
2

0

0 1



 O2



0 −1
2

0 0



 O2

O2 O2 O2 O2


0 0

−1
2

0



 O2




0 0

0
1
2



 O2

O2 O2 O2 O2




.

Then, we factor Y = C∗C where

C =








1√
2

0

0 1



 ,O2,



0 − 1√
2

0 0



 ,O2



 .

Note that

D =




(√
2 0

0 1

)

O2

O2

O2



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is a right inverse for C (i.e., CD = I2). Set

F(z2) = C
(
I4
z2I4

)

=




1√
2
− 1√

2
z2 0 0

0 1 0 0



 .

We need to compute the unitary (or isometry in general) V such that

V

(
I4

z2F(z2)

)

=
(
U(z2)
F(z2)

)

.

After equating coefficients of powers of z2, this is equivalent to

V

(
I4 O4×8

O2×4 C

)

=




U0 U1 U2






1√
2

0

0 1



 ,O2











0 − 1√
2

0 0



 ,O2



 O2×4




where U(z2) = U0 + z2U1 + z2
2U2. Using the right inverse D, we have

V =




U0 U1 U2






1√
2

0

0 1



 ,O2











0 − 1√
2

0 0



 ,O2



 O2×4




(
I4 O4×2

O8×4 D

)

=




0 0 0 1 0 0

0 0
1√
2

0 − 1√
2

0

1√
2

0 0 0 0
1√
2

0 0
1√
2

0
1√
2

0

1√
2

0 0 0 0 − 1√
2

0 1 0 0 0 0




.

This is the desired unitary out of which we build our TFR. Setting

V11 = O2, V12 =




0 1 0 0
1√
2

0 − 1√
2

0,





V21 =




1√
2

0

0 0
1√
2

0

0 1



, V22 =




0 0 0
1√
2

1√
2

0
1√
2

0

0 0 0 − 1√
2

0 0 0 0




,
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we have
S(z1, z2) = V11 + V12∆(z)(I − V22∆(z))−1V21

where

∆(z1, z2) =
(
z1I2 O2

O2 z2I2

)

.

This is easy to verify since (V22∆(z))3 = O so that the formula reduces to

S(z) = V12∆(z)(I + V22∆(z)+ (V22∆(z)2)V21,

which can be verified by hand.
While the above method involves several steps it is entirely systematic. Since

S is a product of simple inner functions, there are ad hoc ways of coming up with
a TFR which might be shorter.

6. MATRIX AGLER DECOMPOSITIONS IN TWO VARIABLES

Theorem 1.1 makes it possible to prove Agler’s theorem (Theorem 1.2). Cole-
Wermer [15] showed that in the scalar case it is enough to prove Agler’s theorem
for rational inner functions because holomorphic f : D2 → D can be approxi-
mated locally uniformly by a rational inner function (Theorem 5.5.1 of Rudin
[37]). This approximation argument does not seem to transfer to the matrix-
valued function setting, but there is a workaround.

Lemma 6.1. Let f : Dd → CM×N be holomorphic and ‖f (z)‖ ≤ 1 for all
z ∈ Dd. Suppose ‖f (z0)‖ = 1 for some z0 ∈ Dd. Then, there exist unitary matrices
U1, U2 such that U1fU2 is a direct sum of a constant unitary matrix and a matrix
valued holomorphic function g on Dd with ‖g(z)‖ < 1 for all z ∈ Dd.

Proof. If ‖f (z0)‖ = 1, then there exists v ∈ CN with |v| = 1 such that
|f (z0)v| = 1. By the maximum principle, 〈f (z)v, f (z0)v〉 is constant and
equal to one. Then, by equality in Cauchy-Schwarz, f (z)v ≡ f (z0)v. Since
f (z) has at most norm one, v is reducing for f (z), meaning f (z)w ⊥ f (z)v
whenever v ⊥w. Thus, f (z) can be written in the form

(
1 0
0 g(z)

)

using the block decomposition Cf (z0)v ⊕ (f (z0)v)⊥ × (Cv) ⊕ v⊥. We can, of
course, iterate this argument until we are left with the claimed decomposition. !

This lets us reduce to the case of f with ‖f (z)‖ < 1 for all z ∈ Dd. The
following is found in Rudin’s book [37] in the scalar case (see Theorem 5.5.1 of
[37]). Define

‖f‖Dd = sup
z∈Dd

‖f (z)‖.
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Lemma 6.2. Suppose f : Dd → CM×N is holomorphic and ‖f (z)‖ < 1 for all
z ∈ Dd. Then, for any r ∈ (0,1) and ε > 0 there exists P ∈ CM×N[z1, . . . , zd]
such that ‖P‖Dd < 1 and ‖f − P‖rDd < ε.

Consequently, every such f is a local uniform limit of matrix polynomials with
supremum norm strictly less than 1.

Proof. Set fr(z) = f (rz) for r ∈ (0,1). For fixed r ∈ (0,1) there exists
s ∈ (0,1) such that ‖fr − frs‖Dd < ε/2 since fr is uniformly continuous on D̄d.
Note ‖fs‖Dd < 1. Choose a Taylor polynomial P of fs such that ‖fs − P‖Dd <
min(1− ‖fs‖Dd, ε/2). Then,

‖P‖Dd < 1 and ‖fr − Pr‖Dd ≤ ‖fr − frs‖Dd + ‖frs − Pr‖Dd < ε. !

We need the following Fejér-Riesz type theorem of Dritschel.

Theorem 6.3 (Dritschel [18]). Let T(z) =
∑
j∈Zd Tjz

j be a matrix-valued
Laurent polynomial in d variables; that is, Tj ∈ CN×N for j ∈ Zd and at most
finitely many Tj &= 0. If there is a δ > 0 such that T(z) ≥ δI on Td, then there exists
a matrix polynomial A ∈ CM×N[z1, . . . , zd] such that T = A∗A on Td.

We sketch a simple proof with some new elements in the appendix (see Sub-
section A.2).

Lemma 6.4. If P : Dd → CM×N is a matrix polynomial such that ‖P‖Dd < 1

then there exists a matrix polynomial A such that
(
P
A

)
is iso-inner. If d = 1,2, then

P has a finite contractive TFR.

Proof. On Td, I − P∗P is a positive definite matrix Laurent polynomial. By

Theorem 6.3 we can factor I − P∗P = A∗A. Then, S =
(
P
A

)
is isometry-valued

on Td. If d = 1,2, then S has a finite isometric TFR by Theorem 1.1, and hence
P possesses a finite contractive TFR by Proposition 2.2. !

Positive semi-definite kernels are defined in Definition A.5. Notice that an
expression of the form F(w)∗F(z) will always be positive semi-definite. By the
above lemma and Theorem 2.1, any matrix polynomial P ∈ CM×N[z1, z2] with
‖P‖D2 < 1 will satisfy a formula of the form

I − P(w)∗P(z) = k0(w, z)+
2∑

j=1

(1− w̄jzj)kj(w, z)

where k0, k1, k2 are positive semi-definite kernels. The term k0 can be absorbed
into k1 since

k0(w, z)

1− w̄1z1

is positive semi-definite by the Schur product theorem. Thus, the following corol-
lary holds for such strictly contractive matrix polynomials in two variables. Such
formulas are called Agler decompositions.
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Corollary 6.5. Let f : D2 → CM×N be holomorphic with ‖f (z)‖ ≤ 1 for
z ∈ D2. Then, there exist positive semi-definite kernels k1, k2 : D2 × D2 → CN×N

such that

I − f (w)∗f (z) =
2∑

j=1

(1− w̄jzj)kj(w, z).

Sketch of Proof. The hard work has already been done while the general out-
line and some technicalities are essentially in [15], so we only sketch the proof.
We can assume that f is pointwise strictly contractive by Lemma 6.1. Then, f
is a local uniform limit of matrix polynomials with supremum norm strictly less
than one by Lemma 6.2. Each of these possesses an Agler decomposition by the
discussion above.

The final part of the argument is the piece found in [15]. The kernels in the
Agler decomposition are locally bounded because of the estimate

1
(1− |z1|2)(1− |z2|2)

I ≥ I − f (z)∗f (z)
(1− |z1|2)(1− |z2|2)

≥ k1(z, z)

1− |z2|2
≥ k1(z, z).

This shows the kernels in Agler decompositions form a normal family. Subse-
quences converge locally uniformly to form positive semi-definite kernels in an
Agler decomposition for f . !

The above corollary proves Theorem 1.2. The proof is essentially the same
as (3) =⇒ (1) in the equivalences theorem (Theorem 2.1) since positive semi-
definite kernels can be factored as F(w)∗F(z) for some possibly operator valued
function F . Readers who have ventured this far (and are not in the cognoscenti
of this material) may benefit from some context at this point. The fundamental
contribution of Agler can perhaps be encapsulated in the following result.

Theorem 6.6 (Agler [1, 2]). Let f : Dd → CM×N be holomorphic. Assume
‖f (z)‖ ≤ 1 for z ∈ Dd. Then, the following are equivalent:

(1) f satisfies a von Neumann inequality ‖f (T)‖ = ‖(fj,k(T))j,k‖ ≤ 1 for
every d-tuple T = (T1, . . . , Td) of pairwise commuting strictly contractive
operators (on some underlying Hilbert space).

(2) f has an Agler decomposition: that is, there exist positive semi-definite kernels
k1, . . . , kd : Dd ×Dd → CN×N such that

I − f (w)∗f (z) =
d∑

j=1

(1− w̄jzj)kj(w, z).

(3) f has a contractive transfer function realization: there exists a contractive

operator with block decomposition
(
T = A B

C D

)
on some Hilbert space such

that f (z) = A + B∆(z)(I − D∆(z))−1C, where ∆(z) =
∑d
j=1 zjPj and

the Pj are pairwise orthogonal projections which sum to the identity on the
domain of D.
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Theorem 1.2 was originally proven via Andô’s inequality [7] which gives
item (1) above. The approach we have given sidesteps the use of von Neu-
mann’s inequality and the implication (1) =⇒ (2) in Theorem 6.6. The proof of
(1) =⇒ (2) is possibly the hardest part of the theorem, and is non-constructive
since it uses a Hahn-Banach cone separation argument. On the other hand,
(2) =⇒ (1) is a relatively straightforward matter of “plugging” the d-tuple T into
the Agler decomposition in item (2) in an appropriate sense. (See [15] for details.)
Ball-Sadosky-Vinnikov [11] have a different way to prove Theorem 1.2 directly
using multi-evolution scattering systems. Theorem 1.2’s analogue for 3 or more
variables fails because the von Neumann inequality fails for 3 or more contractions
[39]. Thus, Theorem 6.6 gives the best way of demonstrating that a function does
not have a contractive TFR; specifically, showing that it fails the von Neumann
inequality. It is probably difficult to directly show that a function fails item (2) or
(3) in Theorem 6.6.

We conclude this section by plugging Dritschel’s strong Fejér-Riesz type result
(stated below) into earlier arguments in order to show rational contractive matrix-
valued functions in two variables have a finite contractive TFR (Theorem 1.3).

Theorem 6.7 (Dritschel [19]). Let T(z) =
∑
j∈Z2 Tjzj be a matrix-valued

Laurent polynomial in two variables; that is, Tj ∈ CN×N for j ∈ Z2 and at most
finitely many Tj &= 0. If T(z) ≥ 0 on T2, then there exists a matrix polynomial
A ∈ CM×N[z1, z2] such that T = A∗A on T2.

This theorem is considerably deeper than Theorem 6.3, and both theorems
also apply to operator-valued functions. An earlier sums-of-squares theorem of
Scheiderer, which applied to polynomials on a much more general class of two-
dimensional domains (than simply T2), implies Theorem 6.7 in the scalar case
[38].

Proof of Theorem 1.3. Apply the proof of Proposition 4.2 with Theorem 6.7
in place of Theorem 4.1. !

7. MORE ON FINITE TFRS

We need to collect one more fact about finite-dimensional TFRs before proving
the minimality theorem. If we have an Agler decomposition of an iso-inner func-
tion S = Q/p written in lowest terms, then the sums of squares terms are rational
with denominator p.

Theorem 7.1. Suppose S : Dd → CM×N is rational and iso-inner. Write S =
Q/p in lowest terms with Q ∈ CM×N[z1, . . . , zd] and p ∈ C[z1, . . . , zd]. Suppose
we have an Agler decomposition

IN − S(w)∗S(z) =
d∑

j=1

(1− w̄jzj)Fj(w)∗Fj(z),
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where the Fj are matrix functions. Then, for j = 1, . . . , d, p(z)Fj(z) is a matrix
polynomial.

The significance of this theorem is that although S has a TFR with denomi-
nator det(I−D∆(z)), this polynomial may not be the lowest-degree denominator
of S.

Proof. By Theorem 2.1, we already see that each Fj is rational and holomor-
phic in Dd. To prove that Hj := pFj is a matrix polynomial, consider

p(w)p(z)IN −Q(w)∗Q(z) =
d∑

j=1

(1− w̄jzj)Hj(w)∗Hj(z).

Fix τ ∈ Td and set z = ζτ, w = ητ for ζ,η ∈ D. Then,

p(ητ)p(ζτ)IN −Q(ητ)∗Q(ζτ) = (1− η̄ζ)
d∑

j=1

Hj(ητ)
∗Hj(ζτ).

Because S∗S = IN on Td, the lefthand side above is divisible by (1 − η̄ζ), and
therefore

d∑

j=1

Hj(ητ)
∗Hj(ζτ)

is a polynomial in ζ, η̄ of degree in each less than the total degree of p and Q.
For simplicity, we can regroup

∑d
j=1Hj(w)

∗Hj(z) = H(w)∗H(z), where now
H(ητ)∗H(ζτ) is a polynomial in ζ, η̄ for every τ ∈ Td. If we write out the
homogeneous expansion of H,

H(z) =
∞∑

j=0

Pj(z),

we see that

H(ητ)∗H(ζτ) =
∑

j,k

η̄jζkPj(τ)
∗Pk(τ).

In particular, for j greater than the total degrees of p and Q, the coefficient of
η̄jζj vanishes for every τ; specifically, we have Pj(τ)∗Pj(τ) ≡ 0 for all τ ∈ Td.
Since Pj is a matrix polynomial, this implies Pj ≡ 0 for j greater than the total
degrees of p and Q. Therefore, H is a polynomial. !

We conclude this short section with a few asides. The Agler norm (sometimes
Schur-Agler norm) for holomorphic f : Dd → CM×N is

‖f‖Ad := sup
T

‖f (T)‖
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where the supremum is taken over all d-tuples T = (T1, . . . , Td) of strictly con-
tractive pairwise commuting operators on some Hilbert space. The Agler classAd

consists of functions satisfying ‖f‖Ad ≤ 1.
The argument in the proof above is related to the argument used to prove the

following automatic finite-dimensionality result.

Theorem 7.2. Suppose S : Dd → CM×N is rational, iso-inner, or coiso-inner
(SS∗ = I on Td), and belongs to the Agler classAd. Then, S has a finite-dimensional
isometric (respectively coisometric TFR as in Theorem 2.1.

The essence of this theorem was first proved in Cole-Wermer [15]. Although
it was only stated and proved in the scalar case for d = 2, the proof goes through
easily to all d and for iso-inner functions. We gave a proof with some bounds on
degrees and the numbers of squares involved in the scalar case in [31]. A proof of
the square matrix-valued case is in [9]. Extending to the iso-inner (non-square)
case causes no difficulties. The coisometric case follows from Proposition 2.3.
A proof where S is assumed to be a polynomial is also given in [13]. The next
theorem also produces a family of functions with finite TFRs.

Theorem 7.3 (Grinshpan et al [23]). Suppose S : Dd → CM×N is rational and
analytic on a neighborhood of D̄d, and ‖S‖Ad < 1. Then, S has a finite-dimensional
contractive TFR as in Theorem 2.1.

The following question asks about what is still left open.

Question 7.4. For d > 2, if S : Dd → CM×N is rational, ‖S‖Ad = 1, and is
neither iso-inner nor coiso-inner. Then, does S have a finite-dimensional contractive
TFR?

We also do not know how essential analyticity on D̄d is for Theorem 7.3.
Note d = 1,2 follows from Theorem 1.3.

8. KUMMERT’S MINIMALITY THEOREM

In this section we discuss minimality of size breakdowns for finite TFRs, namely,
Theorem 1.4. Minimality in one variable follows directly from Theorem 2.1.

Proposition 8.1. Let S : D → CM×N be rational and iso-inner. Then, the
minimal size of an isometric TFR for S is the rank of the positive semi-definite kernel

(w, z) !
I − S(w)∗S(z)

1− w̄z .

The definition of the rank of a positive semi-definite kernel is given in Defi-
nition A.6 in Appendix A. In two variables, we will frequently refer to the domi-
nant z1-term G∗G and sub-dominant z2-term H∗H associated with S which were
constructed in the proof of Theorem 1.1 (see the end of Section 4). Note that the
number of rows of G matches the generic rank of the matrix T(z2) as in equation
(4.1). This cannot be reduced because this is the generic or maximal rank of the
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positive semi-definite kernels

(w1, z1)!
I − S(w1, z2)∗S(z1, z2)

1− w̄1z1
as z2 varies over T.

Note division of (4.1) by p(w1, z2)p(z1, z2) will not change the rank of the pos-
itive semi-definite kernel and does not introduce any poles in D since p(·, z2) has
no zeros in D by Lemma 4.3.

We claim that in the inner case the rank of H∗H is also as small as possible.
We suspect this happens in the iso-inner case but cannot prove it.

Question 8.2. If S : D2 → CM×N is iso-inner (and not inner), does the con-
struction in Section 4 produce a size breakdown (r1, r2) with r1 equal to the generic
size of a TFR for S(·, z2) (for z2 ∈ T) and r2 equal to the generic size of a TFR for
S(z1, ·) (for z1 ∈ T)?

This question is subtle because every iso-inner function S is a submatrix of an
inner function Φ with the same size breakdown. We have built a size breakdown
with r1 minimal so r1 must also be minimal for Φ. We could then build a TFR
with size breakdown (r1, r

∗
2 ) where r∗2 is minimal for Φ. Is it minimal for the

restriction to S?
The next result characterizes G∗G and H∗H.
Proposition 8.3. Assume S : D2 → CM×N is rational and iso-inner. Write

S = Q/p in lowest terms. Suppose we had a formula

p(w)p(z)I−Q(w)∗Q(z) = (1− w̄1z1)Γ1(w)∗Γ1(z)+ (1− w̄2z2)Γ2(w)∗Γ2(z)

where Γ1, Γ2 are matrix polynomials. Then,

(8.1) (w, z) !
G(w)∗G(z)− Γ1(w)∗Γ1(z)

1− w̄2z2
= Γ2(w)∗Γ2(z)−H(w)∗H(z)

1− w̄1z1

is a positive semi-definite polynomial kernel. Here again, G∗G is the dominant z1-
term and H∗H is the sub-dominant z2-term.

This result characterizes G∗G as maximal and H∗H as minimal in the above
sense. Indeed, if some other kernel L∗L satisfied the same property as G∗G, then
both

G∗G− L∗L
1− w̄2z2

and
L∗L−G∗G
1− w̄2z2

would be positive semi-definite forcing G∗G = L∗L.

Proof of Proposition 8.3. If we set z2 =w2 ∈ T we get

p(w)p(z)I −Q(w)∗Q(z)
1− w̄1z1

= Γ1(w)∗Γ1(z) = G(w)∗G(z).
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The left side has degree at most n1 − 1 in z1. We claim Γ1(z) has degree at most
n1 − 1 in z1. Consider Γ1’s top degree term γ(z2)z

k
1 where γ(z2) is a matrix

polynomial. Then, the term w̄k
1 z

k
1 appears on the righthand side with coefficient

γ(z2)∗γ(z2) for z2 ∈ T. If k > n1 − 1 then γ(z2)∗γ(z2) ≡ 0 on T implying
γ(z2) ≡ 0 on T and also on C by analyticity. Thus, Γ1 has degree at most n1 − 1
in z1.

Just as we have factored G(z) = A(z2)Λ(z1) we can also factor Γ1(z) =
C(z2)Λ(z1). Recall Λ(z1) = (I, z1I, . . . , z

n1−1
1 I)t. Upon extracting coefficients

of w̄j
1z

k
1 we see that

A(z2)
∗A(z2) = C(z2)

∗C(z2) for z2 ∈ T.

This is related to characterizing uniqueness in the matrix Fejér-Riesz theorem. We
address this in the appendix in Theorem A.4. By Theorem A.4, since A has a left
inverse, there exists a one variable iso-inner function Φ such that C = ΦA.

Thus,

A(w2)∗A(z2)− C(w2)∗C(z2)

1− w̄2z2
= A(w2)

∗
(
I − Φ(w2)∗Φ(z2)

1− w̄2z2

)
A(z2),

which is positive semi-definite. Applying Λ(w1)∗ on the left and Λ(z1) on the
right, we get that

G(w)∗G(z)− Γ1(w)∗Γ1(z)
1− w̄2z2

= Γ2(w)∗Γ2(z)−H(w)∗H(z)
1− w̄1z1

is positive semi-definite. It is a polynomial kernel because A∗A = C∗C on T. !

We now switch to the square/inner case and show that the Kummert con-
struction gives the best possible size breakdown r = (r1, r2). We need to show
H(w)∗H(z) has the minimal rank possible in the sense that it matches the generic
size of a TFR for S(z1, ·) for z1 ∈ T. To do this, we show that we can “reflect”
an Agler decomposition of S to get an Agler decomposition for S̆, and this reflec-
tion reverses the dominant and sub-dominant properties of G∗G and H∗H. This
is not the original approach of Kummert; instead, it more closely resembles the
Hilbert space approach in [12]. Recall S̆(z) = S(z̄)∗.

Proposition 8.4. Suppose S : D2 → CN×N is rational and inner. Write S =
Q/p in lowest terms. Suppose we had a formula

p(w)p(z)IN −Q(w)∗Q(z) = (1− w̄1z1)Γ1(w)∗Γ1(z)(8.2)

+ (1− w̄2z2)Γ2(w)∗Γ2(z)

where Γ1, Γ2 are matrix polynomials. Then,

Γ̃1(z) := 1
z1p(1/z)

Γ1(1/z)S̆(z),(8.3a)
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and

Γ̃2(z) := 1
z2p(1/z)

Γ2(1/z)S̆(z)(8.3b)

are matrix polynomials, and

p̆(w)p̆(z)I − Q̆(w)∗Q̆(z) = (1− w̄1z1)Γ̃1(w)∗ Γ̃1(z)(8.4)

+ (1− w̄2z2)Γ̃2(w)∗ Γ̃2(z).

The sub-dominant z2-term of S reflects to the dominant z2-term of S̆.
When we say reflects above we mean the operations

Γ1 ! Γ̃1 and Γ2 ! Γ̃2

listed in the proposition statement equations (8.3a), (8.3b). Notice that reflection
of the Γ1 term is slightly different from the reflection of the Γ2 term.

Proof of Proposition 8.4. Since S(z)∗S(z) = I on T2 (where defined), we have
I = S(1/z̄)∗S(z) = S(z)S(1/z̄)∗ for z ∈ C2 where defined. (This is where
M = N gets used.) Thus, Q(1/z)Q̆(z) = p(1/z)p̆(z)I. Now, take equation
(8.2), replace z,w with 1/z,1/w, multiply on the right by Q̆(z) and left by
Q̆(w)∗, and finally divide through by−p(1/w)p(1/z) to get (8.4) after applying
various simplifications. Of course, we have the caveat that the formula only holds
where all of the operations are defined. Fortunately, (8.4) only needs to hold
on an open set for the proof of (3) =⇒ (1), (2) in Theorem 2.1 to go through
(bonus (B1) of Theorem 2.1 addresses this). We automatically obtain that Γ̃1, Γ̃2
are polynomials by Theorem 7.1, since if Q/p is in lowest terms then Q̆/p̆ is too.

If we reflect equation (8.1) in the sense of replacing z,w with 1/z,1/w and
conjugating by Q̆, we obtain

w̄1z1
G̃(w)∗G̃(z)− Γ̃1(w)∗Γ̃1(z)

1− (w̄2z2)−1
= w̄2z2

Γ̃2(w)∗ Γ̃2(z)− H̃(w)∗H̃(z)
1− (w̄1z1)−1

,

which can be rearranged into

Γ̃1(w)∗ Γ̃1(z)− G̃(w)∗G̃(z)
1− w̄2z2

= H̃(w)∗H̃(z)− Γ̃2(w)∗ Γ̃2(z)
1− w̄1z1

.

This is still a positive semi-definite polynomial kernel. Thus, H̃∗H̃ dominates an
arbitrary z2-term, making it the dominant z2-term for S̆. !

Proof of Theorem 1.4. By Proposition 8.4 the subdominant z2-term H∗H of
S reflects to the dominant z2-term of S̆, H̃∗H̃. Note that this reflection does not
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change the rank of a positive semi-definite kernel. The rank of H̃∗H̃ is then the
generic rank of

(w2, z2)!
I − S̆(z1,w2)∗S̆(z1, z2)

1− w̄2z2

for z1 ∈ T. This matches the generic size of a TFR for S̆(z1, ·) which matches
the generic size of a TFR for S(z1, ·) by the adjunction formula, Proposition 2.3.
Thus, the rank of H∗H matches the generic rank of

(w2, z2)!
I − S(z1,w2)∗S(z1, z2)

1− w̄2z2
. !

9. APPLICATION TO INNER POLYNOMIALS

Of special interest in the papers connecting wavelets to TFRs is the case of iso-
inner and inner polynomials [13, 14]. In one variable, we have the following
well-known result.

Proposition 9.1. Let S ∈ CM×N[z] be iso-inner. Then, every isometric TFR of

minimal size for S is built out of an isometric matrix T =
(
A B
C D

)
whereD is nilpotent.

We prove this using the following also well-known characterization of mini-
mality.

Proposition 9.2. Let S : D → CM×N be rational and iso-inner with minimal
isometric TFR built out of the isometric matrix T =

(
A B
C D

)
. Then,

span{range(DjC) : j = 0,1, . . .} = domain(D) and
⋂

j≥0

kernel(BDj) = {0}.

Proof. First note that if S has a TFR via T , meaning

S(z) = A+ zB(I − zD)−1C,

then it also has a TFR via
(
I 0
0 U∗

)

T

(
I 0
0 U

)

=
(
A BU
U∗C U∗DU

)

where U is a unitary matrix with the same dimensions as D. This is apparent
from the formula A + zBU(I − zU∗DU)−1U∗C = S(z). We can now apply
a unitary change of coordinates and break up the domain/codomain of D into
H = span{DjC : j = 0,1, . . . } and its orthogonal complement H⊥. In these
new coordinates, T takes the form

CN H H⊥

CM

H
H⊥



A B1 B2

C D|H ∗
0 0 ∗



,
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since D maps H to itself and range(C) ⊂ H . Since the formula for S is only
determined by D|H , we see that S has an isometric TFR via the matrix

(
A B1

C D|H

)

which has a smaller size unless H⊥ = {0} or rather H = domain(D).
For the second identity, we break up the domain of D into

L =
⋂

j≥0

kernel(BDj)

and its orthogonal complement L⊥. Using this orthogonal decomposition we can
write T in new coordinates as

CN L⊥ L
CM

L⊥
L



A B 0
C1 D11 0
C2 D21 D|L,




since B maps L to 0 while D maps L into itself. But since this is an isometry we
must have D|L, a unitary which forces C2,D21 = 0. This means S is given by the

TFR with isometry
(
A B
C1 D11

)
. This has smaller size unless L = {0}. !

Proof of Proposition 9.1. If S(z) = A+ zB(I − zD)−1C is a polynomial, then
necessarily BDjC = 0 for all j large enough. By Proposition 9.2, BDn = 0 for n
large enough. Then,

range(Dn) ⊂
⋂

j≥0

kernel(BDj),

implying range(Dn) = 0 or rather Dn = 0. !

Minimality of TFR representations in the rational inner case in two variables
makes it possible to prove an analogous result for inner matrix-valued polynomials
in two variables. Our approach uses determinants to count the size of minimal
TFRs. The following is a standard result in one variable. We provide a proof in
Subsection A.3.

Proposition 9.3. Let S : D → CN×N be a rational inner function. Then,
deg detS equals the size of a minimal TFR for S.

Since S is rational inner, det S is a scalar rational inner function in one variable
which is a finite Blaschke product. Thus, the deg detS refers to the degree of the
numerator when written in lowest terms. This immediately yields a method using
determinants to calculate the optimal size breakdown for rational inner functions
in two variables. (This is another place where it helps to have square matrices.)
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Theorem 9.4 (Kummert). If S : D2 → CN×N is rational inner, then the mini-
mal size breakdown r = (r1, r2) of a TFR for S is

rj = degj detS(z1, z2) for j = 1,2.

Similarly, for all but finitely many ζ ∈ T, the degree of

z ! detS(z,ζz)

is r1 + r2. Therefore, the generic size of a TFR for z ! S(z,ζz) is r1 + r2. This
shows that generic restrictions to slices of our two variable minimal TFRs yield
minimal TFRs for restricted functions.

Proof of Theorem 1.5. The above argument shows that if a polynomial inner

function S has a minimal TFR via the unitary U =
(
A B
C D

)
and projections P1, P2

as in Theorem 1.1, then z ! S(z,ζz) has minimal unitary TFR via the unitary

(
A B
C D

)(
I 0
0 P1 + ζP2

)

.

By Proposition 9.1, D∆(1,ζ) is nilpotent for all but finitely many ζ ∈ T. This
means (D∆(1,ζ))N = 0 for all but finitely many ζ ∈ T. Since this is a polynomial
equation we have (D∆(1,ζ))N ≡ 0, and since D∆(z) is homogeneous we also
have (D∆(z1, z2))N ≡ 0. Thus, D∆(z) is always nilpotent. !

This leads to the interesting question of describing contractions D such that
D∆(z) is nilpotent for all z. An easy way to produce examples would be to
make D strictly upper triangular and choose the projections P1, P2 via projections
onto the span of subsets of standard basis vectors. For such examples, note that
D∆(z) is triangular; however, it is possible to produce matrices D1,D2 such that
z1D1 + z2D2 is nilpotent for all z yet is not triangularizable independent of z
(see [34]). This could be an interesting source of examples.

APPENDIX A. AUXILIARY RESULTS

1.1. Maximum principle for rational iso-inner functions.

Proposition A.1. Suppose S : Dd → CM×N is rational, analytic in Dd, and
‖S(z)‖ ≤ 1 for z ∈ Td where defined. Then, ‖S(z)‖ ≤ 1 for all z ∈ Dd.

Rationality is a key assumption since f (z) = exp((1+z)/(1−z)) is unimod-
ular on T \ {1} and analytic on C \ {1} yet not bounded by 1 in D.

Proof. We can reduce to the scalar case by considering arbitrary unit vectors
v,w and the function F(z) = w∗S(z)v. Fix ω ∈ Td and consider the one-
variable rational function f (ζ) = F(ζω). This function is bounded by 1 on T
away from its potential finite number of poles. But, f must be unbounded near a
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pole, so any singularities on the boundary are removable. Hence, f is analytic on
D̄ and bounded by 1 by the maximum principle. This implies F is bounded by
1 at any point of rTd for r < 1. Given any z ∈ Dd, we can calculate F(z) as a
Poisson integral of F on rTd for ‖z‖∞ < r < 1 to see that |F(z)| ≤ 1. !

1.2. Fejér-Riesz proofs. A more traditional and well-known version of the
matrix Fejér-Riesz theorem is as follows. (See [16] for a proof.)

Theorem A.2. Let T(z) =
∑n
j=−n Tjz

j be a matrix Laurent polynomial (with
Tj ∈ CN×N) such that T(z) ≥ 0 for z ∈ T and detT(z) is not identically zero.

Then, there exists a matrix polynomial A ∈ CN×N[z] of degree at most n such
that T = A∗A on T and detA(z) &= 0 for z ∈ D.

We think it is worthwhile to show how to go from this theorem to the de-
generate version, Theorem 4.1, using ideas from [17]. The key tool is the Smith
normal form.

Theorem A.3 (Smith normal form). Let P ∈ CM×N[z] be a matrix polyno-
mial. Then, there exist T1 ∈ CM×M[z], T2 ∈ CN×N[z] with matrix polynomial
inverses (equivalently, with constant determinants) and D ∈ CM×N[z] such that
P = T1DT2. The matrix D has the following form: every entry off the main diag-
onal of D is zero and the main diagonal consists of polynomials d1, . . . , dk such that
dj divides dj+1. Here, k =min{N,M} and the dj may be zero for j large enough.

(See Hoffman-Kunze [28].)

Proof of Theorem 4.1. The function G(z) = znT(z) is a polynomial matrix
and therefore has Smith normal form decomposition

G(z) = T1(z)

(
D(z) 0

0 0

)

T2(z).

Here, T1, T2 are matrix polynomials with matrix polynomial inverses while

D(z) = diag(d1(z), . . . , dr (z))

is an r × r diagonal matrix with only non-zero polynomials on the diagonal.
Notice that T(z) has rank r whenever detD(z) &= 0, z &= 0. Since T is self-
adjoint on T, we have T(z) = T(1/z̄)∗ for z &= 0, and so

T−1
2 (1/z̄)∗T(z)T−1

2 (z) = z−nT−1
2 (1/z̄)∗T1(z)

(
D(z) 0

0 0

)

(A.1)

= zn
(
D(1/z̄)∗ 0

0 0

)

T1(1/z̄)∗T−1
2 (z)

is a matrix Laurent polynomial which is positive semi-definite on T and with 0 in

the last N − r columns and rows. Thus, (A.1) has the form
(
T0(z) 0

0 0

)
where T0
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is an r × r matrix Laurent polynomial which is positive semi-definite on T and
crucially satisfying detT0 &≡ 0 since T has rank r outside of a finite set.

By Theorem A.2, there is an r×r matrix polynomialA0 so that detA0(z) &= 0
in D and A0(z)∗A0(z) = T0(z) on T. If we set V = T2 and

A =
(
A0 0r×(N−r)

)
V,

then A(z)∗A(z) = T(z) on T. Note that A(1/z̄)∗A(z) = T(z) holds in C \ {0}
since both sides are analytic and agree on T.

Our degree bound on A follows from the fact that

znT(z)V(z)−1

(
A0(z)−1

0

)

= znA(1/z̄)∗

is analytic at 0. A right rational inverse of A is given by

V−1

(
A−1

0
0

)

. !

The matrix Fejér-Riesz factorization described is maximal in the sense of the
following theorem. One can also describe all other factorizations. There is nothing
essentially new about this result, but it is probably difficult to attribute. It could
be deduced from inner-outer factorizations.

Theorem A.4. Assuming the setup and notation of Theorem 4.1. For any other
factorization T = C∗C on T with a matrix polynomial C, there exists a rational iso-
inner function Φ such that C = ΦA (necessarily, Φ = CB). If C has a right rational
inverse holomorphic in D, then Φ is a constant unitary matrix.

Proof. Suppose T = C∗C on T. Then, we may write CV−1 =
(
C0 C1

)
where

C0 has r columns. Since

(V−1)∗A∗AV−1 =
(
A∗0A0 0

0 0

)

=
(
C∗0 C0 C

∗
0 C1

C∗1 C0 C
∗
1 C1

)

= (V−1)∗C∗CV−1,

we see that C∗0 C0 = A∗0A0, C∗1 C1 = 0 on T. This implies that C1 ≡ 0. Then,
Φ := C0A

−1
0 is analytic on D and isometry valued on T. Any poles on T are

necessarily removable because Φ is rational and bounded on T. We also have
ΦA = C. If C has right rational inverse C′, then ΦAC′ = I. An isometry can
only have a right inverse if it is square, so Φ must be square (hence unitary on T)
and AC′ must be unitary-valued on T. By the maximum principle, Φ and AC′ are
contractive in the disk; however, since they are inverses of each other they must
be unitary-valued in the disk. Such analytic functions are constant. (Lemma 6.1
proves something more general than this.) !



2398 GREG KNESE

We now sketch a simple proof of Dritschel’s positive definite multivariable
Fejér-Riesz result (Theorem 6.3). Although it borrows elements from the original
proof, we think it has some nice efficiencies in exposition.

Proof of Theorem 6.3. Let n be a positive integer and define the multivariable
Cesaro summation operator Cn which we apply to N ×N matrix Laurent polyno-
mials L(z) =

∑
k∈Zd Lkz

k:

(CnL)(z) =
∑

k∈Zd
cnk Lkz

k =
∫

Td
Fn(z,ζ)L(ζ)dσ (ζ)

where

cnk =






d∏

j=1

n− |kj|
n

for |k1|, . . . , |kd| ≤ n,

0 otherwise,

Fn(z,ζ) =
1
nd

d∏

j=1

∣∣∣∣∣∣

1− znj ζ̄nj
1− zjζ̄j

∣∣∣∣∣∣

2

=
∑

k∈Zd
cnk z

k

is the Fejér kernel and dσ is normalized Lebesgue measure on Td.
Let Lm be the vector space of N ×N Laurent polynomials of degree at most

m in each variable separately. We shall consider Cmn := Cn|Lm : Lm → Lm. By
basic properties of Cesaro summation, Cmn L → L uniformly on Td as n → ∞ for
L ∈ Lm. Since the set of linear operators B(Lm) on Lm is finite dimensional, Cmn
tends to the identity as n→∞ with respect to any norm on B(Lm). In particular,
for n large enough, Cmn is invertible and (Cmn )

−1 tends to the identity as n→∞.
We next point out that if L ∈ Lm is positive semi-definite on Td then Cmn L is

a sum of squares. The reason is that on Td, Fn(z,ζ)L(ζ) is a Laurent polynomial
of degree at most n +m with respect to ζ. Then, the integral representation
of CnL can be computed via “quadrature.” Indeed, for any M , if H ∈ LM and
µ = e2πi/(M+1), then

∫

Td
H(ζ)dσ (ζ) = 1

(M + 1)d
∑

0≤j1,...,jd≤M
H(µj1 , . . . , µjd).

This can be proven by testing on monomials. This means that CnL(z) is a positive
finite linear combination of the terms

Fn(z, (µ
j1 , . . . , µjd))L(µj1 , . . . , µjd).

Since Fn is evidently a squared polynomial and each value of L on Td is assumed
positive semi-definite, we see that CnL is a sum of squares of polynomials.

Now, let T ∈ Lm be strictly positive on Td; that is, there exists δ > 0 such
that T(z) ≥ δI for z ∈ Td. For n large enough, Tn := (Cmn )−1T is also strictly
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positive. Then, T = CnTn is a Cesaro sum of a positive Laurent polynomial which
was already shown to be a sum of squares. !

1.3. PSD kernels. We now discuss the proof of Lemma 3.2 which claims
that for S : D→ CM×N analytic and ‖S(z)‖ ≤ 1 in D, we have that

KS(w, z) =
IN − S(w)∗S(z)

1− w̄z

is positive semi-definite (PSD). Let us recall the abstract definition of PSD for
matrix or operator-valued kernels.

Definition A.5. Let X be a set, let be L a complex Hilbert space, and let
K : X×X → B(L) be a function; here, B(L) is the set of bounded linear self-maps
of L. We say that K is a PSD kernel if for any x1, . . . , xn ∈ X and v1, . . . , vn ∈ L
we have ∑

i,j

〈K(xi, xj)vj, vi〉 ≥ 0.

Notice that if (x,y) ! K(x,y) is a PSD kernel, then (x,y) ! K(y,x) is
not necessarily PSD except in the scalar case H = C.

Definition A.6. The rank of K is the maximum of the ranks of the block
operators (K(xi, xj))i,j as we vary over n and x1, . . . , xn ∈ X.

Proof of Lemma 3.2. Our proof uses rudiments of vector-valued Hardy spaces
on the unit disk. (See Agler-McCarthy [4] for details.)

Let HM = H2(D) ⊗ CM be the set of M-dimensional column vectors with
entries in the Hardy space on the unit disk H2(D). Left multiplication by S,
MS : HN → HM is contractive. If kw(z) = k(z,w) := 1/(1 − w̄z) is the Szegő
kernel, then by a fundamental formula in reproducing kernel Hilbert space theory

M∗
S (kw ⊗ v) = kw ⊗ S(w)∗v for v ∈ CM,

we see that

〈(I −MSM
∗
S )(kw ⊗ v1), kz ⊗ v2〉HM = k(z,w)〈(I − S(z)S(w)∗)v1, v2〉CM ,

which after a short calculation using the fact that I − MSM
∗
S ≥ 0 shows that

(z,w)! (I−S(z)S(w)∗)/(1−zw̄) is PSD. We could apply the same argument
to S̆(z) := S(z̄)∗ to see that (z,w) ! (I − S(z̄)∗S(w̄))/(1 − zw̄) is PSD.
Replace z,w with their conjugates and relabel the variables to see that KS(w, z)
is PSD. !

Proof of Proposition 9.3. Assuming S : D→ CN×N is rational inner we need to
compute the rank of the positive semi-definite kernel

(w, z) !
I − S(w)∗S(z)

1− w̄z .
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We shall use notation from the proof of Lemma 3.2 above. As in the said proof, it
is notationally easier to deal with the kernel

K(z,w) = I − S(z)S(w)∗
1− zw̄ ,

and we can reduce to this case by replacing S with S(z̄)∗.
Now, K is the reproducing kernel for HN 6 SHN . This follows from the fact

that S is inner: SHN is a closed subspace of HN and has reproducing kernel

S(z)S(w)∗

1− zw̄ ,

which can be verified by the calculation

〈Sf , kwSS(w)∗v〉HN = 〈f , kwS(w)∗v〉HN = 〈S(w)f (w),v〉CN

for f ∈ HN . The rank of K is the dimension of HN 6 SHN .
To count this dimension we write S = Q/p in lowest terms. Since S is

bounded on T it can have no poles on T, and therefore p has no zeros in D̄.
Let Q(z) = T1(z)D(z)T2(z) be the Smith normal form decomposition for Q
(Theorem A.3 above). Notice that D has full rank on T since S is inner. Write
D = diag(d1, . . . , dN). Then, detQ = c detD = c

∏
j dj where c = detT1 detT2

is a constant because T1, T2 have polynomial inverses. Since S is inner, det S =
detQ/pN is a finite Blaschke product. Its degree equals its number of zeros in D,
which equals the number of zeros of detQ in D since p has none.

The vector space HN 6 SHN is isomorphic to the vector space quotient

HN/SHN = HN/(T1DT2)HN = HN/(T1DHN) 7 HN/DHN.

The first equality holds because p has no zeros in D̄, the second holds because T2

has a polynomial inverse, and the last isomorphism holds because T1 has a polyno-
mial inverse. Recalling D = diag(d1, . . . , dN) we note the dimension of H2/djH2

is the number of zeros of dj in D and therefore the dimension of HN/DHN is the
number of zeros of

∏N
j=1 dj inside D (counting multiplicities). !

This proof appears in [12].
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An algebraic perspective on multivariate tight wavelet frames. II, Appl. Comput. Harmon. Anal. 39

(2015), no. 2, 185–213. http://dx.doi.org/10.1016/j.acha.2014.09.003. MR3352013
[14] MARIA CHARINA, COSTANZA CONTI, MARIANTONIA COTRONEI, and MIHAI PUTI-

NAR, System theory and orthogonal multi-wavelets, J. Approx. Theory 238 (2019), 85–102.
http://dx.doi.org/10.1016/j.jat.2017.09.004. MR3912669

http://www.ams.org/mathscinet-getitem?mr=
http://dx.doi.org/10.1515/crll.1999.004
http://dx.doi.org/10.1515/crll.1999.004
http://www.ams.org/mathscinet-getitem?mr=
http://dx.doi.org/10.1090/gsm/044
http://dx.doi.org/10.1090/gsm/044
http://www.ams.org/mathscinet-getitem?mr=
http://dx.doi.org/10.4007/annals.2012.176.3.7
http://dx.doi.org/10.4007/annals.2012.176.3.7
http://www.ams.org/mathscinet-getitem?mr=
http://dx.doi.org/10.1007/s00208-011-0650-7
http://www.ams.org/mathscinet-getitem?mr=
http://www.ams.org/mathscinet-getitem?mr=
http://dx.doi.org/10.1007/s11045-010-0123-2
http://dx.doi.org/10.1007/s11045-010-0123-2
http://www.ams.org/mathscinet-getitem?mr=
http://dx.doi.org/10.1016/j.laa.2013.10.022
http://dx.doi.org/10.1016/j.laa.2013.10.022
http://www.ams.org/mathscinet-getitem?mr=
http://dx.doi.org/10.1006/jfan.1998.3278
http://www.ams.org/mathscinet-getitem?mr=
http://dx.doi.org/10.1007/s00020-005-1351-y
http://www.ams.org/mathscinet-getitem?mr=
http://dx.doi.org/10.1016/j.jfa.2013.08.002
http://dx.doi.org/10.1016/j.jfa.2013.08.002
http://www.ams.org/mathscinet-getitem?mr=
http://dx.doi.org/10.1016/j.acha.2014.09.003
http://www.ams.org/mathscinet-getitem?mr=
http://dx.doi.org/10.1016/j.jat.2017.09.004
http://www.ams.org/mathscinet-getitem?mr=


2402 GREG KNESE

[15] BRIAN J. COLE and JOHN WERMER, Ando’s theorem and sums of squares, Indiana
Univ. Math. J. 48 (1999), no. 3, 767–791. http://dx.doi.org/10.1512/iumj.1999.48.

1716. MR1736979
[16] PHILIPPE DELSARTE, Y. GENIN, and Y. KAMP, A simple approach to spectral factorization,

IEEE Trans. Circuits and Systems 25 (1978), no. 11, 943–946. http://dx.doi.org/10.1109/
TCS.1978.1084403. MR508983
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