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Abstract—This paper designs an intelligent and secure control
approach based on adaptive dynamic programming for a class
of nonlinear systems under the actuator attacks. The designed
method can monitor and identify the attacks by an established
state estimator based detector. When an attack is triggered,
the control process automatically switches to a game-theoretical
architecture for attack mitigation. The intelligent learning process
is developed for both nominal and attack conditions without the
requirement of system dynamics and attack information. Neural
network techniques are applied to implement the proposed
method with two critic networks and the control signals are
calculated accordingly. Therefore, the designed intelligent control
method can reduce the computation complexity. Simulation
studies and results demonstrate the necessary of attack detection
and mitigation during the learning process, and also verify the
effectiveness of the developed method.

Index Terms—Adaptive dynamic programming, reinforcement
learning, attack mitigation, intelligent control, attack detection
and identification.

I. INTRODUCTION

Networked control systems have attracted significant in-
creasing attention over the past decades due to the develop-
ment of more decentralized control applications and the rise of
cyber-physical systems [1]-[6]. Generally, networked control
systems integrate sensing, control and actuation components
through a communication network [7], which is usually vulner-
able to malicious attacks. Therefore, security of such systems
is one of the critical requirements to guarantee the operation
of various infrastructure and control systems without leading
to catastrophic failures.

Recently, extensive efforts and studies have been dedicated
on attack detection, prevention and resilient control designs
from both theoretical research and real-world applications [8]—
[12]. For instance, a polynomial fuzzy detection filter was
designed in [13] to safeguard the system against faults and
guarantee the stability and control performance. In [14], the
dynamic response of a system under optimal data injection
attacks was analyzed. The authors developed a switching con-
dition to obtain the optimal attack sequence and a closed-form
switching policy for data injection attacks. The attack detection
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and identification problem was considered in [15] for cyber-
physical systems. Considering the fundamental limitations of a
class of monitors, they designed the centralized and distributed
monitors to completely detect and identify the attacks applied
on the systems. In [16], the security of networked control
systems was considered and the attack scenarios corresponding
to denial-of-service, replay, zero-dynamics, and bias injection
attacks were analyzed using the networked control framework.
A hidden moving target defense approach was developed in
[17] to improve the stealthiness which cannot be detected by
the attackers. In [18], a false data detection mechanism was
developed based on the separation of nominal power grid state
and anomalies. Two methods were considered as the nuclear
norm minimization and low rank matrix factorization to solve
the false data injection problem. However, most of the above
literature have focused on the setting that the system dynamics
and attack information are known by the designers with vary-
ing degree of availability. With the ever increasing complexity
and dimensionality of the control systems and communication
networks, the explicit information of the system models is
usually difficult or even unfeasible to achieve.

Fortunately, recent studies on reinforcement learning (RL)
and adaptive dynamic programming (ADP) have made it possi-
ble to solve the feedback control problem with partially known
or fully unknown system dynamics. By attempting to obtain
the approximate solutions of the Hamilton—Jacobi—-Bellman
(HJB) equations, RL and ADP have been widely recognized
as one of the core methodologies to achieve optimal control in
stochastic process [19]-[23]. Extensive efforts and promising
results have been achieved over the past decade [24]-[30],
which demonstrate the effectiveness and performance of RL-
and ADP-based learning methods without the requirement
of explicit information of system models. In recent years,
such techniques have also been studied in the game theory to
estimate the solution of Hamilton-Jacobi-Isaacs (HJI) equation
[31]-[36]. One of the popular problems is the two-player zero-
sum game with the two players acting as the defensive and
adversarial agents respectively [37]-[41]. This idea was further
extended to the systems under external attacks to handle the
adversary environment in the control and learning process
[42]. Besides, to address the cyber-physical security in the net-
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worked systems, RL and ADP techniques have been integrated
into the attack detection problem to develop secure learning
architectures. Particularly, a learning-based secure method was
designed in [7] for cyber-physical systems under sensor and
actuator attacks and a threat-detection level function was also
developed to characterize the estimators which were used to
detect the attacks. In [43], the compositional attacks such
as the eavesdropping and covert attack were considered and
solved by a proposed attack-resilient RL algorithm. For the
attacks targeting the communication links, a networked attack
detection residual was developed in [44] to determine the
existence of attacks. The attack detection method with the
event-triggered learning design was provided in [45] with
explicit stability analysis.

Motivated by the above observations and literature studies,
this paper develops an ADP-based intelligent and secure
control method for a class of nonlinear systems under the
attacks. The major contributions of this paper are as follows:
First, this paper designs a state estimator-based detector to
monitor the system and identify the attacks along the learning
process. Second, we consider a secure switching mechanism to
automatically switch the control strategy between the nominal
and attack models. Since the impacts of the adversaries are
only considered in the attack model, the computation com-
plexity will be significantly reduced. Finally, we formulate the
system in the attack model in a game-theoretical problem for
attack mitigation, with one agent to minimize the performance
index and one adversary to maximize it. In addition, the ADP
techniques are designed to intelligently solve the switching
problem. This design is suitable for both partially known and
fully unknown system dynamics. Then, the neural network
techniques are applied to implement the developed control
method and the rigorous theoretical analysis is also provided to
guarantee the control performance and safety. Comparing with
[7], this paper considers a class of nonlinear systems which is
more widely used in the real-world applications. Furthermore,
comparing with [44] and [45], this paper develops an ADP
control method with the critic networks design only in the
learning process which reduces the computation complexity.

The rest of this paper is organized as follows. In Section
I, we formulate the nonlinear system in both nominal and
attack models. In order to automatically mitigate the attacks
during the learning process, Section III designs an attack
detector based on the state estimation techniques to monitor
and identify the attacks applied on the system. In Section
IV, we develop the ADP-based controller for secure learning
and attack mitigation. When the measured state estimation
error exceeds a threshold, an attack is alert which triggers
the secure control process into a game-theoretical architecture.
The neural network techniques are applied in Section V to
implement the designed method. In Section VI, a numerical
example is provided to show the necessary of the attack
detector design and the effectiveness of the proposed ADP-
based secure control method.

II. PROBLEM FORMULATION

Consider the following continuous-time nonlinear system in
the nominal condition

() = f(x(t)) + Bu(t) ()

where z(t) is the state vector with the initial state as x(0),
u(t) is the control input applied to the system, and B is the
input matrix which is assumed known. The nonlinear function
f(xz(t)) with f(0) = 0 denotes the actual system function and
is considered unknown in this paper.

Under the nominal condition, it is desired to find the control
action u(t) = K(z(t)) by optimizing the following cost
function

@@ u(®) = [ [ (1) Qua(r) + u” (1) Ruu(r)Jdr
2
where Q,, and R,, are the symmetric and positive definite
matrices in the nominal condition.

In this paper, we consider that the system and the controller
are sending data through a vulnerable communication channel,
which may make the data exchange altered. Most attacks and
faults can be modeled by additive inputs on system actuator
and sensor measurement. This paper will focus on the actuator
attacks. Hence, the altered system dynamics becomes

{x'(t) =f((t)) + Bua(t) 3)
ua(t) =K (x(t)) + Daw(t)

where u,(t) is the measured control signal under attacks, D,
is the attack matrix, and w(t) is the attack input. Hence, we
can rewrite (3) as

i(t) = F(2(t)) + B(K((t)) + Dow(?))
= f(z(t)) + Bu(t) + BD,w(t). “)

Since the nonlinear function f(z(t)) is assumed unknown
in this paper, we establish a multi-layer neural network to
reconstruct the function as,

F@() = ¢ ola(t)) + (1) (5)

where (* denotes the ideal weights of the neural network
which is bounded by ||C*|| < (ar, ¢(x(t)) is the bounded
polynomial basis function with ||¢(z(¢))]| < ¢ar » and v(t)
is the neural network construction error which is bounded by
ll[v()|] < var. Generally, the ideal weights ¢* are difficult to
achieve. Therefore, we consider the neural network output with
the estimated weights (), such that

Fa@®) =T (t)p(x(t)). (6)
III. ATTACK DETECTOR DESIGN

In this section, a state estimator-based detector is designed
to monitor the learning system and identify the attacks applied
on the system. The detector is designed as

2(t) =" (W) p(x(t)) + Bu(t) - L(z(t) - 2(t)) (D)
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where £(t) is the estimated system state and L is the detector
feedback gain matrix.

Define the state estimation error as Z(t) = xz(t) — &(¢). By
substituting (7) from (4), we have

(t) = La(t) + (T ()((t)) + BDyw(t) +4(t)  (8)

where ((t) = ¢* = {(t) is the weights estimation error.
Theorem 1: Consider the nonlinear system (1) without any
attacks. If the updating law for the detector (7) is given as

C(t) = -p(E" (L) p(x(t)) ©)

then the state estimation error Z(t) and the weights estimation
error ¢ (t) are uniformly ultimately bounded (UUB).

Proof: Consider matrix M as positive definite and satisfying
LTM + ML = -U, where U is a symmetric positive definite
matrix. Hence, define the Lyapunov function as

Lo = 53" OMi(0) + (T (0]

where tr{-} describes the matrix trace.
Considering (8) with w(¢) = 0, we have the first derivative
of (10) with respect to the system trajectory as

(10)

in % ¥ (0)(L7M + ML)a(t) + &7 () M(C(1)(a(t))
+7(1) + e {CT(OBLTH(B)d( (1)) |
<= Dnin OO + [FO Mg

+ILallllZ()lICrrdar (1)

where £, = BL™T + M. Define Amin(-) as the minimal
eigenvalue of matrix. We have Lp < 0 as long as the following
condition is satisfied,

o 2(IMllvas + Il g )
D> =y =%
This completes the proof. [ ]

Remark 1: Theorem 1 shows that without the network
attacks, the state estimation error is UUB and the bound is
Q.. This fact can be used in attack detection by considering
the estimation error as the detection residual [45].

Remark 2: If the communication network is under attacks,
the system dynamics become (3). Therefore, the state esti-
mation error (8) in this situation contains the attack input
w(t) # 0. Assume 7(0) = x(0), i.e.,, £(0) = 0. Taking the
integral on both sides of (8), we have

#(t) = fo t (£&(7) + (T o(a(7)) + BDgw(r) + (7)) dr.

12)

13)
According to the reverse triangle inequality, it becomes
ez ||Boa [(w@ar| -6, aa
where
G = Hfot (22(r) +CTo(a(r)) +4(7))dr||. (15

Considering (12), if the injected input satisfies

t
HBDG[ w(T)dr|| > Qe
0

+

(La(r) + o (a(r)) +4(n))dr
0
(16)

we have

()] > Qa + fot (La(r) + T (r)) + (7)) dr|| - Ga

Qfll

A7)

which means a class of attacks can be detected by the designed
detector. Therefore, the detector will constantly monitor the
condition (12). Once the state estimation error is larger than
the bound €2,, we consider the system is under attacks.

IV. CONTROLLER DESIGN AND ATTACK MITIGATION

Based on Theorem 1, our designed detector can automati-
cally identify whether the system is under attacks. Specifically,
we consider the system in the nominal condition (w(t) = 0)
at the beginning until the state estimation error exceeds the
bound €2,. At this moment, the control mechanism considers
that the system is under attacks (w(¢) # 0) and switches to a
zero-sum differential game problem with two players, i.e., u(t)
as the agent input and w(t) as the adversary input. Therefore,
instead of just solving u(t) itself, the controller is designed to
approximate both the optimal control signal and the worst-case
attack input under this condition.

Nominal Condition: Let us start with the nominal condition.
The control signal is provided to optimize the cost function
(2). Hence, the optimal performance index will be defined as

Vi (2 (1)) = min A " (2" (1) Qua(r) + u” ()R yu(r) ) dr.
(18)

Assuming (18) is continuously differentiable and consider-
ing the system dynamics (1), we have the Hamiltonian function
in the nominal condition as

+ 27 (1) Qna(t) + ul (O)Ruu(t).  (19)

Then, the optimal control input «*(¢) can be obtained based
on the stationary condition for optimality OH.,,/0u = 0 and we
have

70V, (x(t))
ox(t)

Note that, in this paper, we consider the input matrix B is
known. However, even if B is unknown in the design phase, it
can be easily obtained from the detector design by calculating
the derivative of (7) with respect to u(t).

Attack Condition: When the state estimation error identified
by the designed detector (7) exceeds the bound 2., an attack
alarm is triggered, at which moment, the control mechanism

u*(t) = —%R;lB (20)
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switches to the game-theoretical architecture for attack miti-
gation.

Under this condition, the system can be provided in (3) with
w(t) # 0. Hence, the cost function is augmented as

Jo(z,u,w) = ftoo [IT(T)an(T)-t-uT(T)Rau(T)
-p wT(T)w(T)]dT 21

where Q, > 0 and R, > 0 are the symmetric matrices, and
p is the amount of attenuation of the attack input to the
defined performance. In this way, we formulate the problem
into a differential game between two players u(t) and w(t).
Specifically, we assume the goal of player u(t) is to regulate
the system state to the origin and the player w(t) is just the
opposite. The term p?w? (t)w(t) represents the consideration
of the subsequent energy consumption which is directly deter-
mined by w(t). Note that even if the attacker can introduce
arbitrary attack input to the system, in order to guarantee the
control performance, we consider the worst-case attack input
it can bring into rather than the actual one. Therefore, we
assume the attacker intends to maximize the state deviation
from the origin while minimizing p?w? (¢)w(t), which means
consuming as less energy as possible to cause a maximum
damage. This is because an attacker cannot inject arbitrarily
large false data due to the physical limitations of electronic
instruments in the real world.

Hence, the optimal performance index in the attack condi-

tion becomes
Vi (x(t)) = minmax J, (z, u, w).
u(t) w(t)

Assuming (22) is continuously differentiable, we have the
Hamiltonian function in the attack condition as

ov, VT (e (1))
Ha (50 ) e ) But)

+ Dw(t)) + F(x(t),u(t), w(t))

(22)

(23)

where D = BD,, and F(z(t),u(t),w(t)) = 27 (t)Qux(t) +
uT () Rau(t) — p?>w? (t)w(t). The optimal solution satisfies
the first order necessary condition. Hence, we obtain the
optimal control input as

Mo . 11 OV, (2(1))
=0 — =_Z pTZra \2\Y))
5y 0— u*(t) 27%@ 02(2) (24)
and the worst-case attack input as
OH, T@V (z(1))
— =0—w"(t) = ) 25

The solution (u*(¢),w*(t)) given in (24) and (25) generates
a saddle point solution, such that

Jo(2(0),u*,w) < Jo(2(0),u”,w*) < Jo (2(0),u,w*) (26)

where J,(z(0),u*,w*) =V, (x(0)).

Now we will show that the system can achieve Nash equilib-
rium with the solution (u*(¢),w*(t)). Since the equilibrium
point of the system is at the origin, we have x(t) = 0 when

t — oo. Therefore, the cost function satisfies J,(0,0,0) = 0
The time derivative of the optimal cost function becomes

J-a(.ﬁ(O)7 u*’ w*) _ a‘]a(xg;)(a;)l’*v w*)

i(t). @7

= 0 and

Considering the optimality H, aw
Jo(2(0),u*,w*) =V (x(0)), we have

Ja(2(0),u*, w*) + 2T (£) Qua(t)+u*T () Rau* (t)
—p*w*T (H)w* (t) = 0. (28)
Taking the integral on both sides of (28), it becomes
Ja(@(©).u w)+ [T [27(7)Qua(r) + w T ()R (7)
-pQw*T(T)w*(T)]dT =0. (29)

Hence, we add (29) on the cost function (21) and consider
the starting point as ¢t = 0. It becomes

To(2(0), usw) = foo]-'(x (1), u(t), w(t))dr
+ Ja(2(0),u*, w*) + f T(7)Qa(T)
+ut (M) Rau* (7) = P’ (1w (7) |dr. - (30)

Considering (23), (24) and (25), we can further rewrite

Jo(2(0),u,w) = Jo(2(0),u*,w*) + [ooo [xT(T)Qam(T)
+ul (T)Rau(r) - p*w” (7)w(r +7@V*(9@(7’))
() Ra(r) - 0 () +

(f(2(r)) + Bu* (7) + Dw (7)) |dr 31)
T w) ¢ [T () - (1) Ra(u(t)
—u*(t)) - p2(w(t) - w*(t))T(w(t) - wT(t))]dT. (32)

Therefore, condition (26) is satisfied and the Nash equilibrium
is achieved.

V. ONLINE LEARNING AND STABILITY ANALYSIS

We design two critic networks (i.e., nominal and attack critic
networks) to estimate the performance index V,,(x(t)) and
Va(z(t)) respectively,

Va(a(t)) = 077 (2, u) + e(x(t))

Va(@(t)) = 05" o(,u,w) +e(a(t))

where 07 and 0 are the ideal neural network weights, 1 (x,u)
and ¢(z,u,w) are the activation functions, and e(-) and
e(-) are the bounded neural network errors for the nominal
and attack critic networks, respectively. The controller will
switch between these two conditions based on the designed
detector (7). When the s stem is considered in the nominal

condition, we have avaﬁ"(”t) =5 (2,u)0} +ex(x(t)), where
Yy (w,u) = &gim) and ex(z(t)) = eél((tt))) Because the ideal

weights 0, is difficult to achieve, we estimate the value as

(33)

(34)
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én(t) and consider the corresponding estimated output of the
nominal critic network as

Vo(z(t)) = 05 ()0 (2, u) (35)
and its derivative as
Wa(z(t) 7 5
Tox(t) Yy (2,u)0,(1). (36)

Define the error function ;for the nominal critic network as

€c1 = 7—[(68‘;" ,T,u) - ’H(a‘;" ,z,u*). Since the latter term is

zero, we have the updating law as

6 (1) = B T () (W5 (2, w)ET ()6, + 27 (1) Quar(t)
wl (ORyu(t))  (37)

where Y(t) = rymyz> V() = Y (@,u)i(t) and B, >0
is the learning rate of the nominal critic network. Hence, we
have the estimated control input when the system is in the
nominal condition as
u(t) = —%R;lBTq/;;(x,u)an(t). (38)
The attack detector will constantly monitor the system
dynamics. When the state estimation error exceeds the bound
Q.., we consider the system is under attacks. At this moment,
the controller will automatically switch to the game-theoretical
architecture and consider the zero-sum control policy. There-
fore, the attack critic network will be applied and the derivative
of the performance index becomes

ava(x(t)) T A
— = ,u,w) 0, (t 39
which is the estimated version of derivative 78%22(;)) =

oh(x,u,w)0% + ex(x(t)) with the estimated neural net-
work weights 0,(t), where px(z,u,w) = 22&%0) ang

ox(t)
ex(z(t)) = Eé;((g) Consider the error function e.o =

’H,( 63‘;" , T, U, w) —’H( BZ" s ut w® ), the attack critic network
weights will be updated as

0u(t) = ~Bu A (% (2,0, w)E" ()b + 27 (1) Qua(t)
+uT (D) Rou(t) - p2wT(t)w(t)) (40)
5 .
where A(t) = Grasaymz> 0(t) = ¢x (z,u,w)i(t) and B, >
0 is the learning rate of the attack critic network. Under this
condition, the estimated optimal control input becomes
1 .
u(t) = =5 Ry BT 9% (w,u,w)0a(t) (“41)
and the estimated worst-case attack input can also be obtained
as

w(t) = DTG (2,010 (1).

27 (42)

Note that upon detection of the attack, the dynamics of the
designed detector becomes

2(t) = ¢ (1) (x(t))+Bu(t) - L(z(t) - &(1))

N T;Dpwg(x, u,w)B, (1)
which means the attack input is compensated to the dynamics.
The detector will maintain the dynamics (43) until the state
estimation error exceeds {2, again, after which moment, the
controller will reduce to the nominal optimization design.

The following theorem provides the stability of the closed-
loop design.

Theorem 2: Consider the system (1) with an attack detector
(7). Two critic networks (33) and (34) are established with one
operating in the nominal condition updated as (37) and another
one operating in the attack condition with the updating law
(40). Then the control and attack inputs are estimated as (38),
(41) and (42) for nominal and attack conditions, respectively.
Then, all the signals for the closed-loop system are UUB.

Proof: Define the following Lyapunov function:

Le = Va(x(t) + Va(2(t)) + B, tr {0] (£)0, (1)}
+ B e {0 (1)0a(1)} (44)

where 0, (t) = 0 - 0,(t) and 0,(t) = 07 — 04(t)
are the errors of the nominal and attack critic network
weights, respectively. From (37) and (40), we have 0,,(t) =
B X () (0T ()0, (t) + 2T (t)Qua(t) + uT (t)Rou(t)) and
0a(t) = BaA®) (6T (1)0a(t) + 2T () Qa(t) + uT () Rau(t) -
pPwT (H)w(t)).

This boundedness proof is carried out in two parts for
the nominal and attack dynamics. We will show that both
dynamics of the closed-loop design are UUB. Let us start with
the nominal dynamics without any attack inputs. We take the
time derivative of (44) and obtain

. OV (x(1)) 1 [T (NG

Le=—2——"24(t) + tri6, (t)0,(t

R O AR UAOLIO)

<= Amin (D) 12 (0)]* = Aain (Ron) [Ju(8)

+ B tr {ﬁnéf(t) v(t)

(43)

(WT(H)v(t) +1)2
: (UT(t)én(t) + 2T (£)Qna(t) + uT(t)Rnu(t))}. (45)

where Anin (+) denotes the minimal eigenvalue of matrix. This

deviation is achieved by considering the Hamiltonian function
7'[(852‘ ,z,u*) =0. Since 0,,(t) =0 - 0,,(t), we have

Le <= Amin (@) (DI = Amin (R [u(OIP = [[7 )

1 ~
o G,

I

1

T o)+ 1 (46)

||//z<t>||2)

Authorized licensed use limited to: Florida Atlantic University. Downloaded on May 02,2022 at 15:29:25 UTC from |IEEE Xplore. Restrictions apply.



where 7 (t) = % and Z(t) = T ()6 +

2T () Qna(t) + ul (t)R,u(t). Therefore, we can further
rewrite (46) as

LcS—Amin(Qn)IIw(t)HQ— Amin (R [Ju(t)]I”
(1—*)||4V(t)|| 18 (1)

2

L)’ 1
25 || T <1 “7)
Therefore, if the following conditions are satisfied
~ M (t
Bu<2, 8| W“ QI (48)
[o()|”
where Bi}) = m, we have I < 0. This means the

nominal dynamics of the closed-loop design are UUB.

When an attack alert is triggered based on the detector
design in Theorem 1, the system operates in attack dynamics.
At this moment, the attack critic network is applied with
the updating law (40). Therefore, the time derivative of the
Lyapunov function becomes

av OVa(z(t)) .
RS Lo {07 (60 (1) |

- (x () Qux(t) + uT(t)’Rau(t) - p2wT(t)w(t))
+ 67 tr {ﬁaéf(t)A(t)(éT(t)éa(t) +27 (1) Quz(t)

Le =

+ul (H)Rau(t) - psz(t)w(t))}. (49)

Assuming the condition BR,! BT > DT D is satisfied, we have
Lo <=7 (0)@ua(t) + 72t n{ - 4 (DAWT (0,1

+ 807 (A®(67 ()0 + 27 (1) Qua (1)

+ul () Rqu(t) - 2wT(t>w(t))}
< = Amin(Qa) |l ()] - >||W<t>|| 16"
2||W<t>||
(1) (50)
O

where A (t) = 67 (4)0F + 27 () Quz(t) + ul () Rou(t) -
*w (t)w(t) and # (t) = A(t)(67 (t)6(t) + 1). Hence, we
have L¢ < 0 if the following conditions are satisfied,

ol
5]’
where sz = m Therefore, the attack dynamics of

the designed closed-loop system is also UUB, which completes
the proof. [ |

Ba<2, |Ba()

0.8

06F 1\ "4

) 2 4 6 8 10 12 14
t/s

Fig. 1. The trajectories of system states with z1 (¢) = n(t) and z2(t) = a(t)
under the proposed ADP-based secure control approach.

0.05F

State Estimation Error
g
S
I
|

Fig. 2. The comparison of state estimation error ||Z(¢)|| and threshold .

VI. SIMULATION RESULTS

This section considers a nonlinear continuous-time system
to verify the performance of the designed ADP-based secure
control method with attack detection. The system dynamics
are described as follows:

{ 0(t) = a(t)
Ja(t) = —Mglsinn(t) — fan(t) + u(t).
This is a torsional pendulum system [46] with the system
states x(t) = [x1(¢),z2(t)] = [n(t),a(t)] which describe
the angle position and the angular velocity of the pendulum,
receptively. The input signal is denoted as wu(t). Hence, the
matrix B = [0;1]. Other parameters include that M = 1/3kg
and [ = 2/3m are the mass and the length of the pendulum,
respectively, .J = 4/3kg-m? is the rotary inertia, g = 9.8m/s? is
the acceleration of gravity, and f; = 0.2N-m-s/rad is the fric-
tional factor. Suppose that over the time intervals 2s < ¢ < 4s
and 10s <t < 11s, an attacker has access to the actuator and
launches an attack signal. During the attack, the input signal
becomes u,(t) = u(t) + w(t) which means D, = 1.

A state estimator-based detector is designed to identify the
attacks. Based on Theorem 1, we design the attack threshold
as 2, = 0.04. When an attack alarm is triggered, the control

(52)
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Fig. 3. The trajectory of control input u(¢) under the proposed ADP-based
secure control approach.
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Fig. 4. The trajectories of system states under the conventional ADP-based
approach without the detector design.

mechanism will automatically switch to the game-theoretical
architecture and the dynamics of the detector will become
(43). The control will continue under this architecture until
the state estimation error exceeds €2, again, at which moment
the optimization will reduce back to the nominal condition.
Two critic networks are established. The inputs for these
two neural networks are designed as [z (%), z2 (), u(t)] and
[21(¢), z2(t),u(t), w(t)], respectively. The initial weights are
chosen randomly within [-0.5,0.5]. The control signals and
adversary input are estimated based on (38), (41) and (42).
Assume the initial system state as z(0) = [-0.5,0.5]. The
trajectories of the system states during this learning process are
shown in Fig. 1. We observe that there is a sharp drop/increase
att = 2s and t = 10s, respectively, due to the attacks. Based on
the designed ADP-based secure control method, the state can
be quickly stabilized to the equilibrium point. The comparison
of the state estimation errors ||Z(¢)|| and the attack threshold
Q, is provided in Fig. 2. It is shown that at time ¢ = 2s and ¢ =
10s, the state estimation error exceeds the threshold €2, which
trigger the attack alarm. Therefore, the controller switches to

the game-theoretical architecture for attack mitigation until
||Z(t)|| exceeds 2, again which are at ¢ = 4s and ¢ = 11s,
respectively. Note that during the learning process, there exists
the situation that ||Z(t)|| exceeds €2, but there is no attack
applied on the system, e.g. at ¢ = 0.92s. This is because the
detector is learning online in this method and may cause some
noise during the learning process. However, even though this
happens, the developed controller can quickly correct itself
to switch back to the nominal situation. The trajectory of the
control input in this process is shown in Fig. 3. In addition,
to further show the effectiveness of the developed ADP-based
secure control method, we also apply the conventional ADP
control process without the attack detector on the system and
provide the results in Fig. 4. It is shown that only applying
the nominal controller cannot stabilize the system due to the
attacks. This comparison further demonstrate the necessary of
the detector design for attack mitigation and the effectiveness
of the developed secure control method.

VII. CONCLUSION

In this paper, we developed an ADP-based secure control
method with attack detection for a class of nonlinear systems.
An attack detector was designed based on the state estimation
approaches to monitor and identify the attacks on the system.
When the state estimation error exceeded the threshold, an
attack was alert which triggers the control process to a game-
theoretical architecture for attack mitigation. Two critic net-
works were established for both nominal and attack conditions
to implement the control method with explicit stability anal-
ysis. The numerical example verified the performance of the
designed attack detector and demonstrated the effectiveness of
the proposed method.
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