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Abstract—This paper designs an intelligent and secure control
approach based on adaptive dynamic programming for a class
of nonlinear systems under the actuator attacks. The designed
method can monitor and identify the attacks by an established
state estimator based detector. When an attack is triggered,
the control process automatically switches to a game-theoretical
architecture for attack mitigation. The intelligent learning process
is developed for both nominal and attack conditions without the
requirement of system dynamics and attack information. Neural
network techniques are applied to implement the proposed
method with two critic networks and the control signals are
calculated accordingly. Therefore, the designed intelligent control
method can reduce the computation complexity. Simulation
studies and results demonstrate the necessary of attack detection
and mitigation during the learning process, and also verify the
effectiveness of the developed method.

Index Terms—Adaptive dynamic programming, reinforcement
learning, attack mitigation, intelligent control, attack detection
and identification.

I. INTRODUCTION

Networked control systems have attracted significant in-

creasing attention over the past decades due to the develop-

ment of more decentralized control applications and the rise of

cyber-physical systems [1]–[6]. Generally, networked control

systems integrate sensing, control and actuation components

through a communication network [7], which is usually vulner-

able to malicious attacks. Therefore, security of such systems

is one of the critical requirements to guarantee the operation

of various infrastructure and control systems without leading

to catastrophic failures.

Recently, extensive efforts and studies have been dedicated

on attack detection, prevention and resilient control designs

from both theoretical research and real-world applications [8]–

[12]. For instance, a polynomial fuzzy detection filter was

designed in [13] to safeguard the system against faults and

guarantee the stability and control performance. In [14], the

dynamic response of a system under optimal data injection

attacks was analyzed. The authors developed a switching con-

dition to obtain the optimal attack sequence and a closed-form

switching policy for data injection attacks. The attack detection
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and identification problem was considered in [15] for cyber-

physical systems. Considering the fundamental limitations of a

class of monitors, they designed the centralized and distributed

monitors to completely detect and identify the attacks applied

on the systems. In [16], the security of networked control

systems was considered and the attack scenarios corresponding

to denial-of-service, replay, zero-dynamics, and bias injection

attacks were analyzed using the networked control framework.

A hidden moving target defense approach was developed in

[17] to improve the stealthiness which cannot be detected by

the attackers. In [18], a false data detection mechanism was

developed based on the separation of nominal power grid state

and anomalies. Two methods were considered as the nuclear

norm minimization and low rank matrix factorization to solve

the false data injection problem. However, most of the above

literature have focused on the setting that the system dynamics

and attack information are known by the designers with vary-

ing degree of availability. With the ever increasing complexity

and dimensionality of the control systems and communication

networks, the explicit information of the system models is

usually difficult or even unfeasible to achieve.

Fortunately, recent studies on reinforcement learning (RL)

and adaptive dynamic programming (ADP) have made it possi-

ble to solve the feedback control problem with partially known

or fully unknown system dynamics. By attempting to obtain

the approximate solutions of the Hamilton–Jacobi–Bellman

(HJB) equations, RL and ADP have been widely recognized

as one of the core methodologies to achieve optimal control in

stochastic process [19]–[23]. Extensive efforts and promising

results have been achieved over the past decade [24]–[30],

which demonstrate the effectiveness and performance of RL-

and ADP-based learning methods without the requirement

of explicit information of system models. In recent years,

such techniques have also been studied in the game theory to

estimate the solution of Hamilton-Jacobi-Isaacs (HJI) equation

[31]–[36]. One of the popular problems is the two-player zero-

sum game with the two players acting as the defensive and

adversarial agents respectively [37]–[41]. This idea was further

extended to the systems under external attacks to handle the

adversary environment in the control and learning process

[42]. Besides, to address the cyber-physical security in the net-
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worked systems, RL and ADP techniques have been integrated

into the attack detection problem to develop secure learning

architectures. Particularly, a learning-based secure method was

designed in [7] for cyber-physical systems under sensor and

actuator attacks and a threat-detection level function was also

developed to characterize the estimators which were used to

detect the attacks. In [43], the compositional attacks such

as the eavesdropping and covert attack were considered and

solved by a proposed attack-resilient RL algorithm. For the

attacks targeting the communication links, a networked attack

detection residual was developed in [44] to determine the

existence of attacks. The attack detection method with the

event-triggered learning design was provided in [45] with

explicit stability analysis.

Motivated by the above observations and literature studies,

this paper develops an ADP-based intelligent and secure

control method for a class of nonlinear systems under the

attacks. The major contributions of this paper are as follows:

First, this paper designs a state estimator-based detector to

monitor the system and identify the attacks along the learning

process. Second, we consider a secure switching mechanism to

automatically switch the control strategy between the nominal

and attack models. Since the impacts of the adversaries are

only considered in the attack model, the computation com-

plexity will be significantly reduced. Finally, we formulate the

system in the attack model in a game-theoretical problem for

attack mitigation, with one agent to minimize the performance

index and one adversary to maximize it. In addition, the ADP

techniques are designed to intelligently solve the switching

problem. This design is suitable for both partially known and

fully unknown system dynamics. Then, the neural network

techniques are applied to implement the developed control

method and the rigorous theoretical analysis is also provided to

guarantee the control performance and safety. Comparing with

[7], this paper considers a class of nonlinear systems which is

more widely used in the real-world applications. Furthermore,

comparing with [44] and [45], this paper develops an ADP

control method with the critic networks design only in the

learning process which reduces the computation complexity.

The rest of this paper is organized as follows. In Section

II, we formulate the nonlinear system in both nominal and

attack models. In order to automatically mitigate the attacks

during the learning process, Section III designs an attack

detector based on the state estimation techniques to monitor

and identify the attacks applied on the system. In Section

IV, we develop the ADP-based controller for secure learning

and attack mitigation. When the measured state estimation

error exceeds a threshold, an attack is alert which triggers

the secure control process into a game-theoretical architecture.

The neural network techniques are applied in Section V to

implement the designed method. In Section VI, a numerical

example is provided to show the necessary of the attack

detector design and the effectiveness of the proposed ADP-

based secure control method.

II. PROBLEM FORMULATION

Consider the following continuous-time nonlinear system in

the nominal condition

ẋ(t) = f(x(t)) +Bu(t) (1)

where x(t) is the state vector with the initial state as x(0),
u(t) is the control input applied to the system, and B is the

input matrix which is assumed known. The nonlinear function

f(x(t)) with f(0) = 0 denotes the actual system function and

is considered unknown in this paper.

Under the nominal condition, it is desired to find the control

action u(t) = K(x(t)) by optimizing the following cost

function

Jn(x(t), u(t)) = ∫
∞

t
[xT (τ)Qnx(τ) + uT (τ)Rnu(τ)]dτ

(2)

where Qn and Rn are the symmetric and positive definite

matrices in the nominal condition.

In this paper, we consider that the system and the controller

are sending data through a vulnerable communication channel,

which may make the data exchange altered. Most attacks and

faults can be modeled by additive inputs on system actuator

and sensor measurement. This paper will focus on the actuator

attacks. Hence, the altered system dynamics becomes

{ẋ(t) =f(x(t)) +Bua(t)
ua(t) =K(x(t)) +Daw(t) (3)

where ua(t) is the measured control signal under attacks, Da

is the attack matrix, and w(t) is the attack input. Hence, we

can rewrite (3) as

ẋ(t) = f(x(t)) +B(K(x(t)) +Daw(t))
= f(x(t)) +Bu(t) +BDaw(t). (4)

Since the nonlinear function f(x(t)) is assumed unknown

in this paper, we establish a multi-layer neural network to

reconstruct the function as,

f(x(t)) = ζ∗Tφ(x(t)) + γ(t) (5)

where ζ∗ denotes the ideal weights of the neural network

which is bounded by ∣∣ζ∗∣∣ ≤ ζM , φ(x(t)) is the bounded

polynomial basis function with ∣∣φ(x(t))∣∣ ≤ φM , and γ(t)
is the neural network construction error which is bounded by

∣∣γ(t)∣∣ ≤ γM . Generally, the ideal weights ζ∗ are difficult to

achieve. Therefore, we consider the neural network output with

the estimated weights ζ̂(t), such that

f̂(x(t)) = ζ̂T (t)φ(x(t)). (6)

III. ATTACK DETECTOR DESIGN

In this section, a state estimator-based detector is designed

to monitor the learning system and identify the attacks applied

on the system. The detector is designed as

˙̂x(t) = ζ̂T (t)φ(x(t)) +Bu(t) −L(x(t) − x̂(t)) (7)
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where x̂(t) is the estimated system state and L is the detector

feedback gain matrix.

Define the state estimation error as x̃(t) = x(t) − x̂(t). By

substituting (7) from (4), we have

˙̃x(t) = Lx̃(t) + ζ̃T (t)φ(x(t)) +BDaw(t) + γ(t) (8)

where ζ̃(t) = ζ∗ − ζ̂(t) is the weights estimation error.

Theorem 1: Consider the nonlinear system (1) without any

attacks. If the updating law for the detector (7) is given as

˙̂
ζ(t) = −β(x̃T (t)L−1)Tφ(x(t)) (9)

then the state estimation error x̃(t) and the weights estimation

error ζ̃(t) are uniformly ultimately bounded (UUB).

Proof: Consider matrix M as positive definite and satisfying

LTM +ML = −U , where U is a symmetric positive definite

matrix. Hence, define the Lyapunov function as

LD = 1

2
x̃T (t)Mx̃(t) + tr{ζ̃T (t)ζ̃(t)} (10)

where tr{⋅} describes the matrix trace.

Considering (8) with w(t) = 0, we have the first derivative

of (10) with respect to the system trajectory as

L̇D =1
2
x̃T (t)(LTM +ML)x̃(t) + x̃T (t)M(ζ̃T (t)φ(x(t))
+ γ(t)) + tr{ζ̃T (t)βL−T x̃(t)φ(x(t))}
≤ − 1

2
λmin(U)∣∣x̃(t)∣∣2 + ∣∣x̃(t)∣∣∣∣M ∣∣γM

+ ∣∣La∣∣∣∣x̃(t)∣∣ζMφM (11)

where La = βL−T + M . Define λmin(⋅) as the minimal

eigenvalue of matrix. We have L̇D < 0 as long as the following

condition is satisfied,

∣∣x̃(t)∣∣ >
2(∣∣M ∣∣γM + ∣∣La∣∣ζMφM)

λmin(U) ≐ Ωx. (12)

This completes the proof. ∎
Remark 1: Theorem 1 shows that without the network

attacks, the state estimation error is UUB and the bound is

Ωx. This fact can be used in attack detection by considering

the estimation error as the detection residual [45].

Remark 2: If the communication network is under attacks,

the system dynamics become (3). Therefore, the state esti-

mation error (8) in this situation contains the attack input

w(t) ≠ 0. Assume x̂(0) = x(0), i.e., x̃(0) = 0. Taking the

integral on both sides of (8), we have

x̃(t) = ∫
t

0

(Lx̃(τ) + ζ̃Tφ(x(τ)) +BDaw(τ) + γ(τ))dτ.
(13)

According to the reverse triangle inequality, it becomes

∣∣x̃(t)∣∣ ≥ ∣∣BDa ∫
t

0

w(τ)dτ ∣∣ − Ga (14)

where

Ga = ∣∣∫
t

0

(Lx̃(τ) + ζ̃Tφ(x(τ)) + γ(τ))dτ ∣∣ . (15)

Considering (12), if the injected input satisfies

∣∣BDa ∫
t

0

w(τ)dτ ∣∣ > Ωx
+ ∣∣∫

t

0

(Lx̃(τ) + ζ̃Tφ(x(τ)) + γ(τ))dτ ∣∣
(16)

we have

∣∣x̃(t)∣∣ > Ωx + ∣∣∫
t

0

(Lx̃(τ) + ζ̃Tφ(x(τ)) + γ(τ))dτ ∣∣ − Ga
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ωx

(17)

which means a class of attacks can be detected by the designed

detector. Therefore, the detector will constantly monitor the

condition (12). Once the state estimation error is larger than

the bound Ωx, we consider the system is under attacks.

IV. CONTROLLER DESIGN AND ATTACK MITIGATION

Based on Theorem 1, our designed detector can automati-

cally identify whether the system is under attacks. Specifically,

we consider the system in the nominal condition (w(t) = 0)

at the beginning until the state estimation error exceeds the

bound Ωx. At this moment, the control mechanism considers

that the system is under attacks (w(t) ≠ 0) and switches to a

zero-sum differential game problem with two players, i.e., u(t)
as the agent input and w(t) as the adversary input. Therefore,

instead of just solving u(t) itself, the controller is designed to

approximate both the optimal control signal and the worst-case

attack input under this condition.

Nominal Condition: Let us start with the nominal condition.

The control signal is provided to optimize the cost function

(2). Hence, the optimal performance index will be defined as

V ∗n (x(t)) =min
u(t)
∫
∞

t
(xT (τ)Qnx(τ) + uT (τ)Rnu(τ))dτ.

(18)

Assuming (18) is continuously differentiable and consider-

ing the system dynamics (1), we have the Hamiltonian function

in the nominal condition as

Hn (∂Vn
∂x

, x, u) =∂V
∗T
n (x(t))
∂x(t) (f(x(t)) +Bu(t))

+ xT (t)Qnx(t) + uT (t)Rnu(t). (19)

Then, the optimal control input u∗(t) can be obtained based

on the stationary condition for optimality ∂Hn/∂u = 0 and we

have

u∗(t) = −1
2
R−1n BT ∂V

∗
n (x(t))
∂x(t) . (20)

Note that, in this paper, we consider the input matrix B is

known. However, even if B is unknown in the design phase, it

can be easily obtained from the detector design by calculating

the derivative of (7) with respect to u(t).
Attack Condition: When the state estimation error identified

by the designed detector (7) exceeds the bound Ωx, an attack

alarm is triggered, at which moment, the control mechanism
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switches to the game-theoretical architecture for attack miti-

gation.

Under this condition, the system can be provided in (3) with

w(t) ≠ 0. Hence, the cost function is augmented as

Ja(x,u,w) = ∫
∞

t
[xT (τ)Qax(τ)+uT (τ)Rau(τ)

−ρ2wT (τ)w(τ)]dτ (21)

where Qa ≻ 0 and Ra ≻ 0 are the symmetric matrices, and

ρ is the amount of attenuation of the attack input to the

defined performance. In this way, we formulate the problem

into a differential game between two players u(t) and w(t).
Specifically, we assume the goal of player u(t) is to regulate

the system state to the origin and the player w(t) is just the

opposite. The term ρ2wT (t)w(t) represents the consideration

of the subsequent energy consumption which is directly deter-

mined by w(t). Note that even if the attacker can introduce

arbitrary attack input to the system, in order to guarantee the

control performance, we consider the worst-case attack input

it can bring into rather than the actual one. Therefore, we

assume the attacker intends to maximize the state deviation

from the origin while minimizing ρ2wT (t)w(t), which means

consuming as less energy as possible to cause a maximum

damage. This is because an attacker cannot inject arbitrarily

large false data due to the physical limitations of electronic

instruments in the real world.

Hence, the optimal performance index in the attack condi-

tion becomes

V ∗a (x(t)) =min
u(t)

max
w(t)

Ja(x,u,w). (22)

Assuming (22) is continuously differentiable, we have the

Hamiltonian function in the attack condition as

Ha (∂Va
∂x

, x, u,w) =∂V
∗T
a (x(t))
∂x(t) (f(x(t)) +Bu(t)

+ Dw(t)) + F(x(t), u(t), w(t))
(23)

where D = BDa and F(x(t), u(t), w(t)) = xT (t)Qax(t) +
uT (t)Rau(t) − ρ2wT (t)w(t). The optimal solution satisfies

the first order necessary condition. Hence, we obtain the

optimal control input as

∂Ha
∂u
= 0Ð→ u∗(t) = −1

2
R−1a BT ∂V

∗
a (x(t))
∂x(t) (24)

and the worst-case attack input as

∂Ha
∂w
= 0Ð→ w∗(t) = 1

2ρ2
DT ∂V

∗
a (x(t))
∂x(t) . (25)

The solution (u∗(t), w∗(t)) given in (24) and (25) generates

a saddle point solution, such that

Ja(x(0), u∗, w) ≤ Ja(x(0), u∗, w∗) ≤ Ja(x(0), u,w∗) (26)

where Ja(x(0), u∗, w∗) = V ∗a (x(0)).
Now we will show that the system can achieve Nash equilib-

rium with the solution (u∗(t),w∗(t)). Since the equilibrium

point of the system is at the origin, we have x(t) = 0 when

t → ∞. Therefore, the cost function satisfies Ja(0,0,0) = 0.

The time derivative of the optimal cost function becomes

J̇a(x(0), u∗, w∗) = ∂Ja(x(0), u
∗, w∗)

∂x(t) ẋ(t). (27)

Considering the optimality Ha(∂Va

∂x
, x, u∗, w∗) = 0 and

Ja(x(0), u∗, w∗) = V ∗a (x(0)), we have

J̇a(x(0), u∗, w∗) + xT (t)Qax(t)+u∗T (t)Rau∗(t)
−ρ2w∗T (t)w∗(t) = 0. (28)

Taking the integral on both sides of (28), it becomes

Ja(x(0), u∗, w∗) + ∫
∞

0

[xT (τ)Qax(τ) + u∗T (τ)Rau∗(τ)
−ρ2w∗T (τ)w∗(τ)]dτ = 0. (29)

Hence, we add (29) on the cost function (21) and consider

the starting point as t = 0. It becomes

Ja(x(0), u,w) = ∫
∞

0

F(x(t), u(t), w(t))dτ
+ Ja(x(0), u∗, w∗) + ∫

∞

0

[xT (τ)Qax(τ)
+ u∗(τ)Rau∗(τ) − ρ2w∗(τ)w∗(τ)]dτ. (30)

Considering (23), (24) and (25), we can further rewrite

Ja(x(0), u,w) = Ja(x(0), u∗, w∗) + ∫
∞

0

[xT (τ)Qax(τ)
+ uT (τ)Rau(τ) − ρ2wT (τ)w(τ) + ∂V

∗(x(τ))
∂x(τ)

⋅ (f(x(τ)) +Bu∗(τ) + Dw∗(τ))]dτ (31)

=Ja(x(0), u∗, w∗) + ∫
∞

0

[(u(t) − u∗(t))TRa(u(t)
− u∗(t)) − ρ2(w(t) −w∗(t))T (w(t) −wT (t))]dτ. (32)

Therefore, condition (26) is satisfied and the Nash equilibrium

is achieved.

V. ONLINE LEARNING AND STABILITY ANALYSIS

We design two critic networks (i.e., nominal and attack critic

networks) to estimate the performance index Vn(x(t)) and

Va(x(t)) respectively,

Vn(x(t)) = θ∗Tn ψ(x,u) + ǫ(x(t)) (33)

Va(x(t)) = θ∗Ta ϕ(x,u,w) + ε(x(t)) (34)

where θ∗n and θ∗a are the ideal neural network weights, ψ(x,u)
and ϕ(x,u,w) are the activation functions, and ǫ(⋅) and

ε(⋅) are the bounded neural network errors for the nominal

and attack critic networks, respectively. The controller will

switch between these two conditions based on the designed

detector (7). When the system is considered in the nominal

condition, we have
∂Vn(x(t))
∂x(t)

= ψTX (x,u)θ∗n+ǫX (x(t)), where

ψX (x,u) = ∂ψ(x,u)
∂x(t)

and ǫX (x(t)) = ǫ(x(t))
∂x(t)

. Because the ideal

weights θ∗n is difficult to achieve, we estimate the value as
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θ̂n(t) and consider the corresponding estimated output of the

nominal critic network as

V̂n(x(t)) = θ̂Tn (t)ψ(x,u) (35)

and its derivative as

∂V̂n(x(t))
∂x(t) = ψTX (x,u)θ̂n(t). (36)

Define the error function for the nominal critic network as

ec1 = H(∂Vn

∂x
, x, u) − H(∂V ∗n

x
, x, u∗). Since the latter term is

zero, we have the updating law as

˙̂
θn(t) = −βnΥ(t)(ψTX (x,u)ẋT (t)θ̂n + xT (t)Qnx(t)

+uT (t)Rnu(t)) (37)

where Υ(t) = υ(t)
(υT (t)υ(t)+1)2

, υ(t) = ψX (x,u)ẋ(t) and βn > 0
is the learning rate of the nominal critic network. Hence, we

have the estimated control input when the system is in the

nominal condition as

u(t) = −1
2
R−1n BTψTX (x,u)θ̂n(t). (38)

The attack detector will constantly monitor the system

dynamics. When the state estimation error exceeds the bound

Ωx, we consider the system is under attacks. At this moment,

the controller will automatically switch to the game-theoretical

architecture and consider the zero-sum control policy. There-

fore, the attack critic network will be applied and the derivative

of the performance index becomes

∂V̂a(x(t))
∂x(t) = ϕTX (x,u,w)θ̂a(t) (39)

which is the estimated version of derivative
∂Va(x(t))
∂x(t)

=
ϕTX (x,u,w)θ∗a + εX (x(t)) with the estimated neural net-

work weights θ̂a(t), where ϕX (x,u,w) = ∂ϕ(x,u,w)
∂x(t)

and

εX (x(t)) = ε(x(t))
∂x(t)

. Consider the error function ec2 =
H(∂Vn

∂x
, x, u,w)−H(∂V ∗n

x
, x, u∗, w∗), the attack critic network

weights will be updated as

˙̂
θa(t) = −βa∆(t)(ϕTX (x,u,w)ẋT (t)θ̂a + xT (t)Qax(t)

+uT (t)Rau(t) − ρ2wT (t)w(t)) (40)

where ∆(t) = δ(t)
(δT (t)δ(t)+1)2

, δ(t) = ϕX (x,u,w)ẋ(t) and βa >
0 is the learning rate of the attack critic network. Under this

condition, the estimated optimal control input becomes

u(t) = −1
2
R−1a BTϕTX (x,u,w)θ̂a(t) (41)

and the estimated worst-case attack input can also be obtained

as

w(t) = 1

2ρ2
DTϕTX (x,u,w)θ̂a(t). (42)

Note that upon detection of the attack, the dynamics of the

designed detector becomes

˙̂x(t) = ζ̂T (t)φ(x(t))+Bu(t) −L(x(t) − x̂(t))
+ 1

2ρ2
DDTϕTX (x,u,w)θ̂a(t) (43)

which means the attack input is compensated to the dynamics.

The detector will maintain the dynamics (43) until the state

estimation error exceeds Ωx again, after which moment, the

controller will reduce to the nominal optimization design.

The following theorem provides the stability of the closed-

loop design.

Theorem 2: Consider the system (1) with an attack detector

(7). Two critic networks (33) and (34) are established with one

operating in the nominal condition updated as (37) and another

one operating in the attack condition with the updating law

(40). Then the control and attack inputs are estimated as (38),

(41) and (42) for nominal and attack conditions, respectively.

Then, all the signals for the closed-loop system are UUB.

Proof: Define the following Lyapunov function:

LC = Vn(x(t)) + Va(x(t)) + β−1n tr{θ̃Tn (t)θ̃n(t)}
+ β−1a tr{θ̃Ta (t)θ̃a(t)} (44)

where θ̃n(t) = θ∗n − θ̂n(t) and θ̃a(t) = θ∗a − θ̂a(t)
are the errors of the nominal and attack critic network

weights, respectively. From (37) and (40), we have
˙̃
θn(t) =

βnΥ(t)(υT (t)θ̂n(t) + xT (t)Qnx(t) + uT (t)Rnu(t)) and
˙̃
θa(t) = βa∆(t)(δT (t)θ̂a(t) +xT (t)Qax(t) +uT (t)Rau(t) −
ρ2wT (t)w(t)).

This boundedness proof is carried out in two parts for

the nominal and attack dynamics. We will show that both

dynamics of the closed-loop design are UUB. Let us start with

the nominal dynamics without any attack inputs. We take the

time derivative of (44) and obtain

L̇C =∂V
T
n (x(t))
∂x(t) ẋ(t) + β−1n tr{θ̃Tn (t) ˙̃θn(t)}

≤ − λmin(Qn)∣∣x(t)∣∣2 − λmin(Rn)∣∣u(t)∣∣2

+ β−1n tr

⎧⎪⎪⎨⎪⎪⎩
βnθ̃

T
n (t) υ(t)

(υT (t)υ(t) + 1)2

⋅ (υT (t)θ̂n(t) + xT (t)Qnx(t) + uT (t)Rnu(t))
⎫⎪⎪⎬⎪⎪⎭
. (45)

where λmin(⋅) denotes the minimal eigenvalue of matrix. This

deviation is achieved by considering the Hamiltonian function

H(∂V ∗n
∂x

, x, u∗) = 0. Since θ̂n(t) = θ∗n − θ̃n(t), we have

L̇C ≤ − λmin(Qn)∣∣x(t)∣∣2 − λmin(Rn)∣∣u(t)∣∣2 − ∣∣V (t)∣∣2

⋅ ∣∣θ̃n(t)∣∣2 + 1

2βn

⎛
⎝β

2

n∣∣V (t)∣∣2∣∣θ̃n(t)∣∣2

+
RRRRRRRRRRR
RRRRRRRRRRR

1

υT (t)υ(t) + 1
RRRRRRRRRRR
RRRRRRRRRRR
2

∣∣M (t)∣∣2⎞⎠ (46)
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where V (t) = υ(t)
υT (t)υ(t)+1

and M (t) = vT (t)θ∗n +
xT (t)Qnx(t) + uT (t)Rnu(t). Therefore, we can further

rewrite (46) as

L̇C ≤ − λmin(Qn)∣∣x(t)∣∣2 − λmin(Rn)∣∣u(t)∣∣2
− (1 − βn

2
)∣∣V (t)∣∣2∣∣θ̃n(t)∣∣2

+ ∣∣M (t)∣∣
2

2β

RRRRRRRRRRR
RRRRRRRRRRR

1

υT (t)υ(t) + 1
RRRRRRRRRRR
RRRRRRRRRRR
2

(47)

Therefore, if the following conditions are satisfied

βn < 2, ∣∣θ̃n(t)∣∣2 > βP

n

∣∣M (t)∣∣2
∣∣v(t)∣∣2 (48)

where βP
n = 1

2βn(1−βn/2)
, we have L̇ < 0. This means the

nominal dynamics of the closed-loop design are UUB.

When an attack alert is triggered based on the detector

design in Theorem 1, the system operates in attack dynamics.

At this moment, the attack critic network is applied with

the updating law (40). Therefore, the time derivative of the

Lyapunov function becomes

L̇C =∂Va(x(t))
∂x(t) ẋ(t) + β−1a tr{θ̃Ta (t) ˙̃θa(t)}

= − (xT (t)Qax(t) + uT (t)Rau(t) − ρ2wT (t)w(t))
+ β−1a tr{βaθ̃Ta (t)∆(t)(δT (t)θ̂a(t) + xT (t)Qax(t)
+ uT (t)Rau(t) − ρ2wT (t)w(t))}. (49)

Assuming the condition BR−1a BT ≻ DTD is satisfied, we have

L̇C ≤ − xT (t)Qax(t) + β−1a tr{ − βaθ̃Ta (t)∆(t)δT (t)θ̃a(t)
+ βaθ̃Ta (t)∆(t)(δT (t)θ∗a + xT (t)Qax(t)
+ uT (t)Rau(t) − ρ2wT (t)w(t))}
≤ − λmin(Qa)∣∣x(t)∣∣2 − (1 − βa

2
)∣∣W (t)∣∣2∣∣θ̃a∣∣2

+ 1

2βa
∣∣W (t)∣∣2 ∣∣N (t)∣∣

2

∣∣δ(t)∣∣2 (50)

where N (t) = δT (t)θ∗a + xT (t)Qax(t) + uT (t)Rau(t) −
ρ2wT (t)w(t) and W (t) = ∆(t)(δT (t)δ(t) + 1). Hence, we

have L̇C < 0 if the following conditions are satisfied,

βa < 2, ∣∣θ̃a(t)∣∣2 > βP

a

∣∣N (t)∣∣2
∣∣δ(t)∣∣2 (51)

where βP
a = 1

2βa(1−βa/2)
. Therefore, the attack dynamics of

the designed closed-loop system is also UUB, which completes

the proof. ∎
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Fig. 1. The trajectories of system states with x1(t) = η(t) and x2(t) = α(t)
under the proposed ADP-based secure control approach.
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Fig. 2. The comparison of state estimation error ∣∣x̃(t)∣∣ and threshold Ωx.

VI. SIMULATION RESULTS

This section considers a nonlinear continuous-time system

to verify the performance of the designed ADP-based secure

control method with attack detection. The system dynamics

are described as follows:

{ η̇(t) = α(t)
Jα̇(t) = −Mgl sin η(t) − fdη̇(t) + u(t). (52)

This is a torsional pendulum system [46] with the system

states x(t) = [x1(t), x2(t)] = [η(t), α(t)] which describe

the angle position and the angular velocity of the pendulum,

receptively. The input signal is denoted as u(t). Hence, the

matrix B = [0; 1]. Other parameters include that M = 1/3kg

and l = 2/3m are the mass and the length of the pendulum,

respectively, J = 4/3kg⋅m2 is the rotary inertia, g = 9.8m/s2 is

the acceleration of gravity, and fd = 0.2N⋅m⋅s/rad is the fric-

tional factor. Suppose that over the time intervals 2s ≤ t ≤ 4s
and 10s ≤ t ≤ 11s, an attacker has access to the actuator and

launches an attack signal. During the attack, the input signal

becomes ua(t) = u(t) +w(t) which means Da = 1.

A state estimator-based detector is designed to identify the

attacks. Based on Theorem 1, we design the attack threshold

as Ωx = 0.04. When an attack alarm is triggered, the control
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Fig. 3. The trajectory of control input u(t) under the proposed ADP-based
secure control approach.
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Fig. 4. The trajectories of system states under the conventional ADP-based
approach without the detector design.

mechanism will automatically switch to the game-theoretical

architecture and the dynamics of the detector will become

(43). The control will continue under this architecture until

the state estimation error exceeds Ωx again, at which moment

the optimization will reduce back to the nominal condition.

Two critic networks are established. The inputs for these

two neural networks are designed as [x1(t), x2(t), u(t)] and[x1(t), x2(t), u(t), w(t)], respectively. The initial weights are

chosen randomly within [−0.5,0.5]. The control signals and

adversary input are estimated based on (38), (41) and (42).

Assume the initial system state as x(0) = [−0.5,0.5]. The

trajectories of the system states during this learning process are

shown in Fig. 1. We observe that there is a sharp drop/increase

at t = 2s and t = 10s, respectively, due to the attacks. Based on

the designed ADP-based secure control method, the state can

be quickly stabilized to the equilibrium point. The comparison

of the state estimation errors ∣∣x̃(t)∣∣ and the attack threshold

Ωx is provided in Fig. 2. It is shown that at time t = 2s and t =
10s, the state estimation error exceeds the threshold Ωx which

trigger the attack alarm. Therefore, the controller switches to

the game-theoretical architecture for attack mitigation until∣∣x̃(t)∣∣ exceeds Ωx again which are at t = 4s and t = 11s,

respectively. Note that during the learning process, there exists

the situation that ∣∣x̃(t)∣∣ exceeds Ωx, but there is no attack

applied on the system, e.g. at t = 0.92s. This is because the

detector is learning online in this method and may cause some

noise during the learning process. However, even though this

happens, the developed controller can quickly correct itself

to switch back to the nominal situation. The trajectory of the

control input in this process is shown in Fig. 3. In addition,

to further show the effectiveness of the developed ADP-based

secure control method, we also apply the conventional ADP

control process without the attack detector on the system and

provide the results in Fig. 4. It is shown that only applying

the nominal controller cannot stabilize the system due to the

attacks. This comparison further demonstrate the necessary of

the detector design for attack mitigation and the effectiveness

of the developed secure control method.

VII. CONCLUSION

In this paper, we developed an ADP-based secure control

method with attack detection for a class of nonlinear systems.

An attack detector was designed based on the state estimation

approaches to monitor and identify the attacks on the system.

When the state estimation error exceeded the threshold, an

attack was alert which triggers the control process to a game-

theoretical architecture for attack mitigation. Two critic net-

works were established for both nominal and attack conditions

to implement the control method with explicit stability anal-

ysis. The numerical example verified the performance of the

designed attack detector and demonstrated the effectiveness of

the proposed method.
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