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ABSTRACT: We report the palladium-catalyzed double decarbonylative synthesis of aryl thioethers by aryl exchange reaction between
amides and thioesters. In this method, amides serve as aryl donors and thioesters are sulfide donors, enabling the synthesis of valuable aryl
sulfides. The use of Pd/Xantphos without any additives has been identified as the catalytic system promoting the aryl exchange by C(O)—
N/C(O)-S cleavages. The method is amenable to a wide variety of amides and sulfides.

Aryl sulfides represent one of the most important functional
groups in organic synthesis due to the lipophilic properties of
sulfur, which renders them particularly attractive as key com-
ponents of bioactive compounds and functional materials.” Alt-
hough the most widely utilized approach in organic synthe-sis
involves transition-metal-catalyzed C—S bond cross-coupling,” a
major limitation of this method is the use of toxic thiols. As a
result, alternative methods for the synthesis of aryl sulfides have
been developed, including intramolecular decarbonylation,” the
use of alkyl sulfides as a thiol source’” and cross-coupling with
disulfides;" however, compared with other developments, transi-
tion-metal-catalyzed thioetherification in the absence of thiols is
underdeveloped.”

Simultaneously, recent studies have demonstrated transi-tion-
metal-catalyzed functional group exchange between two electro-
philes (Figure 1A).”" This approach provides valuable alternative
to the traditional electrophile-nucleophile cross-coupling as it
permits to avoid nucleophilic coupling partners that often result in
catalyst poisoning and side processes, while maintaining the clas-
sical elementary steps in the catalytic cy-cle. The side reactions
and catalyst poisoning are particularly pronounced in the reactions
with thiol nucleophiles. The func-tional group exchange approach
relies on careful design of the catalytic method and strong driving

forces that favor the equi-librium in the appropriate direction. In
this context, methods for transition-metal-catalyzed functional
group exchange have been reported using Pd catalysis between
aroyl chlorides and iodoarenes by Ar—C(O)CI/Ar’I exchange.”™
Subsequently,  Ni-catalyzed  aryl  exchange  between
haloarenes/arenols and 3-pyridyl esters was reported by Ar—X/3-
py—CO:Ar exchange.” Most recently, Yamaguchi and co-
workers reported Ni-catalyzed aryl sulfide synthesis by aryl ex-
change between 2-pyridyl sulfides and aromatic esters by 2-py—
SR/Ar—CO:Ar’ exchange (Figure 1B)."

In light of the report by Yamaguchi® and our own work,
we considered it appropriate to disclose our findings on the syn-
thesis of aryl sulfides by Pd-catalyzed double decarbonylative aryl
exchange between amides and thioesters (Figure 1C). In contrast
to the Ni-catalyzed method,”® there are three distinct features of
our approach: (1) The reaction uses amides as Ar—C(O)X electro-
philes (cf. esters), which enables to translate the aryl exchange
manifold to amide bonds. Amide bonds represent key motifs in
chemistry, biochemistry and biology. (2) The reaction is Pd-
catalyzed (cf. Ni) which enables for a comparatively broader
scope and functional group tolerance inherent to Pd catalysis.™
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A. Transition-metal-catalyzed aryl exchange catalysis concept [ref 12-14]
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C. Pd-catalyzed aryl exchange of thioesters and amides by double decarbonylation
[this work]
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Figure 1. Aryl exchange catalysis: previous and this work.

Furthermore, Pd-catalysis enables to use well-established and
broadly available ligands. (3) Finally, the reaction is compatible
with various thioesters as sulfide donors (cf. 2-pyridyl sulfides).

In a broader view, the two catalytic systems should be consid-
ered in terms of complementary classes of substrates (2-py-SR vs.
Ar-COSR), metal catalysts (Ni vs. Pd) and products (diaryl sul-
fides vs. aryl alkyl sulfides). We hypothesize that the reaction
mechanism is similar to that reported by Yamaguchi and co-
workers with the key difference that the reaction involves oxida-
tive addition of the C(O)-N bond vs. C(O)-O bond and Pd(0) vs.
Ni(0) (Figure 2).
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Figure 2. Possible aryl exchange mechanism.
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The proposed decarbonylative thioether synthesis was first in-
vestigated using  1-(4-(trifluoromethyl)benzoyl)piperidine-2,6-
dione (la) and S-phenyl benzothioate (2a) as modular substrates.
The key optimization results are summarized in

Table 1. Optimization of Reaction Conditions”
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entry [Pd] ligand base yield (%)
1 Pd(OAc): DPPP Na:COs 48
2 Pd(OAc): DPPP KoCOs 26
3 Pd(OAc): DPPP KsPOs <2
4 Pd(OAc): DPPP DMAP 44
5 Pd(OAc): DPPP EtN 20
6 Pd(OAc): DPPP - 68
7 Pd(OAc): DPPP - 40
8 Pdx(dba)s DPPF - 56
9 Pd(OAc).  XantPhos - 90
10 Pd(OAc): DPPE - <5
11 Pd(OAc): PCys - <5
12 Pd(OAc): PPhs - <5
13" Pd(OAc):  XantPhos - 92
14" Pd(OAc:  XantPhos - 85
15 Pd(OAc):  XantPhos - 52
16  Pd(OAc::  XantPhos - 67

“‘Conditions: amide (0.20 mmol), thioester (1.0 equiv), [Pd] (5
mol%), ligand (10 mol%), base (1.5 equiv), toluene (0.20 M), 160
°C, 15 h.’[Pd] (3 mol%), ligand (6 mol%). ‘140 °C. ‘120 °C. ‘1 h.

Table 1. After extensive exploratory studies, we first discov-
ered that a combination of Pd(OAc)/DPPP and Na.CO:s as a base
delivered the desired aryl exchange product in 48% vyield (entry
1). Interestingly, compared with conditions with various bases,
base-free system provided the exchange product in an improved
yield (entries 2-6). The use of additive-free condi-tions is an im-
portant consideration from a practical standpoint. Furthermore, by
screening of phosphine ligands, XantPhos was identified as the
optimal ligand, delivering the product in 90% yield. There is a
correlation between phosphine bite angle and the reaction effi-
ciency (Xantphos, 8 = 108°; DPPB, B» = 94°; DPPP, B, = 91
DPPF, B: = 99"; DPPE, B: = 86"), with smaller bite angle phos-
phines such as DPPE completely inef-fective in the reaction (en-
tries 6-10). Likewise, monodentate phosphines, such as PCys or
PPhs are ineffective (entries 11-12). It is important to note that the
catalyst loading could be decreased to 3 mol% (entry 13), while
the transformation could be well accomplished at temperature as



low as 120 °C (entries 14-15). Finally, the transformation is facile
with 67% conversion achieved within 1 hour under the standard
condi-tions (entry 16). Thus, the palladium catalyst can engage
both Ar'—C(O)-NR: and Ar'—(CO)-SR’ substrates to form the de-
sired aryl exchange product Ar'—SR” after decarbonylation.

With the optimized conditions in hand, the scope of this novel
aryl exchange was investigated. As shown in Figure 3A, the
method can accommodate various aromatic as well as ali-

% &0
8 o O

2a: 92% yield 2b: 45% yield

Pd(OAc); (3 mol%)
XantPhos (6 mol%)

Jﬁ:sph

toluene, 160 °C

2c: 95% yield

o & &

2d: 92% yield 2e: 48% yield 2f: 67% yield

N N

2g: 98% yield

B. j)\ fo) o
aoj\)j * Ph)lf"SR
1 2

2a: 92% yield

i

2m: 94% yield

2h: 90% yield 2i: 77% vyield 2j: 70% vyield
Pd(OAc); (3 mol%)
XantPhos (6 mol%)

toluene, 160 °C

O

2k: 97% yield

1%

2n: 98% yield

21: 86% yield

e

20: 80% yield

\/\/W\/\\

2p: 72% yield
Figure 3. Thioester scope of the aryl exchange.

phatic variation of thioesters in terms of the acyl component. This
18 a significant difference with the protocol reported by Yamagu-
chi, which required 2-pyridyl sulfides to drive reduc-tive elimina-
tion towards the desired product. Furthermore, the scope of the
thioester component accommodates electron-neutral (3a), elec-
tron-rich (3c), electron-deficient (3d), sterically-hindered (3e),
heterocyclic (3f) and aliphatic (3g) substrates (Figure 3B). This is
another difference with the Ni-protocol, which is limited to ali-
phatic 2-pyridyl sulfides.

Next, we investigated the amide scope in this aryl exchange
protocol. As shown in Figure 4A, a range of electronically-varied

amides 1s well-tolerated in this reaction, including elec-tron-
neutral (3h-j), electron-rich (3k) and electron-deficient amides
(3a). Furthermore, this method tolerates substrates containing
sensitive functional groups, such as esters (31), ketones (3m) and
chlorides (30-p). Moreover, ortho-substituted amides (3g-r), het-
erocyclic amides (3s-t) and even vinyl amides (3u) are well com-
patible in this method, afford-ing aryl exchange sulfide products
in 56-97% yields.

Finally, the scope of amides was investigated (Figure 4B). Var-
iation of amide substitution is critically important to control the
amide bond resonance (nv— T *c-o conjugation),
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Figure 4. Amide scope of the aryl exchange.

facilitating oxidative addition of the ArC(O)-NR2 bond to transi-
tion metals, while the availability of different amides broadens the
scope of reactions available by the historically challenging C(O)—
NR: disconnection.” As such, we were pleased to find that this



aryl exchange reaction is not limited to M-acyl-glutarimides and
could be extended to an array of amides with varied electronic
and steric (twist) properties of the amide bond, including half-
twisted M-acyl-succinimides (1c), electronically-activated N-acyl-
pyrroles (1d), and easily pre-pared from 2° amides, M-tosyl-
amides (le) and Acacyl-amides (1f). As expected, unactivated
amides, such as anilides (1g), M-methoxy-amides (1h) and dialkyl
amides (11) are recovered unchanged from the reaction, highlight-
ing a valuable chemo-differentiation feature of the amide bond
activation platform.

Aryl sulfides are widely used in medicinal chemistry re-search.”
To demonstrate that this aryl exchange method should be attrac-
tive in medicinal chemistry programs, we conducted
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Figure 5. Late-stage aryl exchange of pharmaceuticals.

this double decarbonylative aryl sulfide synthesis in late-stage
functionalization of pharmaceuticals (Figure 5). The synthesis of
aryl sulfides from amides derived from adapalene (3v), febuxostat
(Bw-x), probenecid (3y), estrone (3z) and febuxo-stat (3aa-ab)
highlights the synthetic utility of this strategy, employing readily
available amides and thioesters as electro-philes for the synthesis
of sulfur-containing products. Overall, this approach exhibits
broad substrate scope and excellent functional group tolerance
with respect to the reaction partners, including complex sub-
strates.

Several additional points should be noted: (1) as expected from

related exchange methods,”™" substrates are electronically-tuned.
Electron-rich amide substrates are inherently more reactive than

electron-deficient substrates, while electron-withdrawing thioe-
sters show higher reactivity than electron-donating substrates (see
SD. (2) The oxidative addition is likely reversible with the rate-
limiting decomposition of ArPd(II)NR: intermediate or reductive
elimination, while this step is necessary to regenerate Pd(0), it is
speculative and no reducing agent can be identified. However,
additional mechanistic studies are needed to confirm the individu-
al steps of the reaction mechanism. (3) Further, in select cases
direct decarbonylation product of thioester can be detected, how-
ever, typically, selectivity is >90:10 in all cases examined (aryl
exchange vs. direct decarbonylation). (4) The thioester decompo-
sition to make a thiol that would substitute the activated amide
and then undergo decarbonylation is unlikely as control experi-
ments in the absence of Pd indicate that thioesters are stable under
these conditions (see SI). (5) At present stage of the reaction de-
velopment only one representative aliphatic thiol was tested. (6)
The reaction does not proceed from a thioether that has undergone
decarbonylation. Future studies will be focused on expanding the
substrate scope of the method, mechanistic studies, including
computational investigation, and expansion to other electrophiles
in this decarbonylative platform.

In conclusion, we have reported the first double decarbonyl-
ative synthesis of aryl thioethers by aryl exchange reaction be-
tween amides and thioesters. This method avoids the use of toxic
and nucleophilic thiols for the synthesis of aryl sulfides by engag-
ing amides and thioesters as electrophilic components by C(O)—
N/C(O)-S cleavages. The method does not require external bases
or other additives and shows broad substrate scope. Applications
in the late-stage derivatization of pharma-ceuticals highlight the
utility of the method in medicinal chemistry. Mechanistic studies
and further investigation of decarbonylative aryl exchange reac-
tions are ongoing and will be reported in due course.
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