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ABSTRACT: The selection of solvents is essential as a suitable reaction milieu in chemical processes
of industrial and academic impact. We present an evaluation of a range of green solvents for acyl
Buchwald-Hartwig cross-coupling of amides in order to provide the first green solvent selection guide
for this powerful C—N to C—N’ cross-coupling interconversion engaging typically inert amide bonds and
resulting in a net transamidation process of historically challenging amide bonds. Out of solvents
considered, MTBE (MTBE = methyl tert-butyl ether) and 2-MeTHF (2-MeTHF = 2-
methyltetrahydrofuran) were identified as the preferred alternative solvents for the acyl-Buchwald-
Hartwig cross-coupling using well-defined and robust Pd(II)-NHC (NHC = N-heterocyclic carbene)
precatalysts. MTBE and, in particular, 2-MeTHF are superior solvents in this cross-coupling manifold
and recommended in terms of safety, health, biodegradability and environmental score. The results
indicate the replacement of hazardous solvents with green organic solvents in the biorelevant C-N to C—
N’ cross-coupling manifold of amides to further the burgeoning chemical repertoire of amide bond

activation methods.

KEYWORDS: N-C(O) activation, Buchwald-Hartwig amination, green solvent selection, 2-
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INTRODUCTION

The Buchwald-Hartwig amination has emerged as one of the most central and widely utilized cross-
coupling methods in organic synthesis enabling for the assembly of key structural motifs in
pharmaceuticals, agrochemicals and natural products.' This class of reactions takes advantage of
transition-metal-catalysts that operate through well-defined catalytic cycle and enable C(sp?)-N cross-
coupling in a highly predictable manner with excellent functional group tolerance.!'%-'®

Recently, tremendous progress has been achieved in transition-metal-catalyzed activation of amide
bonds (Figure 1).'733 Although, traditionally, amide N—C(O) bonds are inert to oxidative addition to
transition metals due to high resonance energy of the amide bond, by exploiting ground-state-
destabilization concept oxidative addition of amides occurs readily, enabling for the powerful
manipulation of amides by well-defined transition-metal-catalyzed cycles.?®3¢ In this context, acyl-
Buchwald-Hartwig reaction of amides is especially valuable as a method to achieve C—N to C—N’ cross-
coupling interconversion of typically inert amide bonds and resulting in a net transamidation process of

historically challenging amide bonds.>”-+
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Figure 1. Acyl Buchwald-Hartwig cross-coupling of amides.

The selection of solvents is critical as a reaction milieu in organic processes. The environmental
and health impact of common solvents in the synthesis of APIs (API = active pharmaceutical ingredient),

where solvents constitute up to 90% of the nonaqueous waste, has led to the evolution of solvent



selection guides to reduce the impact of solvents on human health and environment.*®7 One of the key
areas in green chemistry is the replacement of toxic solvents that pose environmental and health issues
with non-toxic and sustainable alternatives.*3-°! The use of green solvents reduces environmental waste,
facilitates downstream processing and decreases overall energy cost, while at the same time prevents
health and safety concerns of conventional solvents.38-63

However, the most common solvent for the Pd-catalyzed acyl-Buchwald-Hartwig cross-coupling
of amides is dimethoxyethane (DME),*-42:66:67 which is classified as hazardous and undesirable at best
by the recent solvent selection guides.*®37 To exploit the full potential of acyl-Buchwald-Hartwig cross-
coupling of amides, a process that is analogous to the traditional Buchwald-Hartwig amination, but
leads to a powerful amide interconversion (transamidation),>’#’ it is critical that safer alternatives to
DME are identified. To address this urgent need in the biorelevant amide C—N to C—N’ interconversion,
we present the first solvent selection guide for the acyl Buchwald-Hartwig cross-coupling of amides.
We show that out of the solvents considered, MTBE®-7! (MTBE = methyl fert-butyl ether) and 2-
MeTHF’?>7* (2-MeTHF = 2-methyltetrahydrofuran) are the preferred alternative solvents for this cross-
coupling using a selection of robust Pd(II)-NHC (NHC = N-heterocyclic carbene) precatalysts.”>’8 We
show that 2-MeTHF in particular is the preferred solvent in terms of safety, health, biodegradability and
environmental score,*-37.72-7* while providing superior reactivity in terms of kinetics and scope studies
to the conventionally used DME in the acyl-Buchwald-Hartwig cross-coupling of amides.40-42-66.67
Furthermore, MTBE is the common industrial solvent that features excellent solvating properties, while
diminishing the formation of peroxides, and is also superior to the classically used DME in this cross-
coupling manifold.®%7!

Following breakthrough studies by Garg and co-workers on Ni-catalyzed transamidation of N-Boc-
activated amides (RE, resonance energy, PhCO,NRBoc, 9.7 kcal/mol, R = Ph),”8" Pd(II)-NHCs have

been identified as highly active catalysts for acyl-Buchwald-Hartwig cross-coupling of amides.*’*? This

manifold exploits site-selective N-tert-butoxycarbonylation of secondary amide bonds to decrease the



kinetic and thermodynamic barrier for the process.?!®* The exceptional activity of Pd-NHCs results
from the electronic properties of the ancillary NHC ligand with strong c-donation enabling facile
oxidative addition of the amide N—-C(O) bond to the monoligated Pd(0)-NHC,'®”>-77 while the use of
well-defined Pd(II)-NHC precatalysts permits air- and moisture-stability of the precatalysts without
resorting to glovebox techniques as is often the case with Ni(0) systems.*0-42780 The latter is important
difference between Ni(0) and Pd(II) catalysts for acyl-Buchwald-Hartwig of amides, which is critical for
the wide utilization of this cross-coupling manifold, although several elegant solutions including Ni

capsules have been developed.”8°

RESULTS AND DISCUSSION

For the initial screen, we selected 14 solvents as shown in Table 1. The selection was based on
environmental and health impact as outlined by the recent solvent selection guides**-” and compatibility
with PA(I)-NHC systems.”>78% As a crucial selection criterium solvents should also be readily
available to the end-users in both industrial and academic settings, while their removal from the post-
reaction mixtures should be facile. Neolyst CX31, [Pd(IPr)(cin)Cl], IPr = 1,3-bis(2,6-
diisopropylphenyl)imidazol-2-ylidene, was selected as the Pd(I1)-NHC catalyst for the initial screen due
to its robustness, commercial-availability and the high activity in the amide cross-coupling.®%¢ DME
has been included for comparison as benchmark.

We were pleased to find that several recommended solvents performed well in the cross-coupling
under the Pd(II)-NHC conditions using 2,6-dimethylaniline (2 equiv), and K>COs3 (3 equiv) as a base in
the presence of [Pd(IPr)(cin)Cl] (3 mol%) as the catalyst. The initial screen (Table 1, entries 1-14)
identified 2-MeTHF (2-methyltetrahydrofuran) (entry 1), CPME (cyclopentyl methyl ether) (entry 2), i-
PrOAc (isopropyl acetate) (entry 3), p-cymene (entry 4), DEC (diethyl carbonate) (entry 5) and MTBE
(methyl tert-butyl ether) (entry 6) as the best solvents for the cross-coupling, affording the desired

transamidation product in 63-98% yields; however, it should be noted that EA (ethyl acetate) (entry 7)



Table 1. Selection of Green Solvents®”

Me
o Me  [Pd(IPr)(cin)CI] o
VQ{N,BOC HzN K2CO3 - @AKN
| + H
(j Ph M Ii Solvent, 110 °C Me

e
1 2 3
entry solvent yield (%)

1 2-MeTHF 98
2 CPME 63
3 i-PrOAc 77
4 p-cymene 87
5 DEC 90
6 MTBE 92
7 EA 72
8 anisole 16
9 1,8-cineole 40
10 DMC 79
11 GVL 25
12 ethyl levulinate 32
13 PC 22
14 DME 86

“Amide (1.0 equiv), Ar-NH, (2.0 equiv), [Pd] (3 mol%), K,CO; (3.0 equiv), solvent (0.25 M), 110 °C,
15 h. >\GC/'H NMR yields. 2-MeTHF = 2-methyltetrahydrofuran; CPME = cyclopentyl methyl ether; i-
PrOAc = isopropyl acetate; p-cymene = 1-methyl-4-(propan-2-yl)benzene; DEC = diethyl carbonate;
MTBE = methyl tert-butyl ether; EA = -ethyl acetate; 1,8-cineole = 1,3,3-trimethyl-2-
oxabicyclo[2.2.2]octane; DMC = dimethyl carbonate; GVL = y-valerolactone; ethyl levulinate = ethyl 4-
oxopentanoate; PC = propylene carbonate; DME = 1,2-dimethoxyethane.

and DMC (dimethyl carbonate) (entry 10) are also effective solvents. These results compare favorably

with the benchmark DME (86% yield) (entry 14). It is worth noting that anisole (entry 8), 1,8-cineole



(eucalyptol) (entry 9), y-valerolactone (GVL) (entry 11), ethyl levulinate (entry 12) and PC (propylene
carbonate) (entry 13) were generally less effective. Furthermore, out of the carbonate solvents*-5
examined both DEC (diethyl carbonate) (entry 5) and DMC (dimethyl carbonate) (entry 10) proved
effective, while DEC showed better reactivity and was selected for further study (vide infra). Similarly,

out of the ester solvents*$-37

examined, both i-PrOAc (entry 3) and EA (entry 7) were effective, while i-
PrOAc showed better reactivity and was selected for further evaluation. It is also worth noting that
alcohols and ketones are not suitable solvents for amide bond cross-coupling by C—N activation due to
esterification and aldol type reactions of the resonance activated amide bonds.?* On the basis of the
initial screening, we have selected six solvents for further evaluation.

We have also conducted an additional round of screening using the six identified solvents that
showed the highest reactivity (Table S1, SI). For this round, we focused on evaluating the effect of
using (1) the less sterically demanding Neolyst CX21, [Pd(IPr)(allyl)Cl], that undergoes faster
activation;3>80 (2) the use of electron-rich imidazolinylidene Pd-PEPPSI-SIPr that promotes faster
oxidative addition;%%7#7 (3) the addition of water to promote ligand exchange/catalyst activation.®® In
this additional screen, 2-MeTHF and MTBE showed the highest overall reactivity (average of 80%);
however, we note that promising results have also been achieved using i-PrOAc, which is one of the top
recommended green solvents by solvent selection guides (vide infra).*3->’

Next, we have further conducted a detailed investigation using different Pd(II)-NHC precatalysts
as promoters for the coupling using 2-MeTHF and MTBE as the identified solvents (Table 2). This
comprehensive selection of catalysts (Figure 2) was based on their activity in the cross-coupling
reactions, stability of Pd(II)-NHC precatalysts, robustness to undergo activation to Pd(0) and diversity
of the ancillary and throw-away ligands. The selected catalysts included those with the privileged IPr
imidazolylidene scaffold and various throw-away ligands (cinnamyl, allyl, #~Bu-indenyl, 3-CI-Py), such
as [Pd(IPr)(cin)Cl1] (4),58 [PdA(IPr)(allyl)C1] (5),8>86 [Pd(IPr)(¢-Bu-ind)CI] (6),%° [Pd(IPr)(3-Cl-py)CI]

7),%° less sterically-demanding IMes imidazolylidene, such as [Pd(IMes)(allyl)Cl] (8),! saturated and
(7 y g y y



more o-donating imidazolinylidene SIPr, such as [Pd(SIPr)(3-Cl-py)Cl] (9)°?> and [Pd(SIPr)(cin)Cl]

(10),%>86 and extremely sterically-hindered IPr* ligand, such as [Pd(IPr*)(3-Cl-py)Cl] (11).”* Two other
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Figure 2. Structures of Pd(II)-NHC precatalysts in the acyl Buchwald-Hartwig cross-coupling of

amides.



Table 2. Selection of Pd-NHC Precatalysts*?

[Pd(IPr)(cin)Cl]

. L 7™
;‘N’ Boc H2N K2CO3 - ©)kN
| + H
Ph omMeSolvent, 110 °C
1 2 3

MTBE 2-MeTHF

entry catalyst yield yield
(%) (%)
1 [PA(IPr)(cin)C1] (4) 95 93
2 [PA(IPr)(ally])CI] (5) 94 90
3 [PA(IPr)(z-Bu-ind)Cl] (6) 93 98
4 [PA(IPr)(3-Cl-py)Cl] (7) 96 84
5 [Pd(IMes)(allyl)CI] (8) 95 97
6 [PA(SIPr)(3-Cl-py)Cl1] (9) 77 62
7 [PA(SIPr)(cin)Cl1] (10) 94 98
8 [PA(IPr*)(3-Cl-py)CI] (11) 49 32
9 [PA(IPr)(u-C1)Cl]2 (12) 91 98
10 SingaCycle A3 (13) 83 98

“Amide (1.0 equiv), Ar-NH, (2.0 equiv), [Pd] (3 mol%), K,CO; (3.0 equiv), solvent (0.25 M), 110 °C,
15 h. >\GC/"H NMR yields.
catalysts were selected with different throw-away ligands, namely chloro dimers [Pd(IPr)(u-C1)Cl]»
(12)%3%92 and palladacycles (SingaCycle A3) (13)** due to recent reports on their high activity in the
cross-coupling.

We were pleased to find that with the exception of the SIPr-PEPPSI-based catalyst (9) (Table 2,
entry 6) and sterically-demanding IPr* ligand (11) (entry 8), all evaluated Pd(I1)-NHCs shows excellent

reactivity in both solvents identified. For subsequent screening, we selected Neolyst CX31 (4) (entry 1)



due to its ready availability and robustness in the coupling;®>8¢ however, it should be noted that several
other catalysts, including [Pd(IPr)(#-Bu-ind)Cl] (6) (entry 3), [Pd(IPr)(ally)CI] (5) (entry 2),
[PA(SIPr)(cin)Cl] (10) (entry 7) and [Pd(IMes)(allyl)Cl] (8) (entry 5) showed excellent reactivity in the
coupling, which could be useful for specific reaction optimization of the acyl-Buchwald-Hartwig cross-
coupling of amides in green recommended solvents.

Having conducted initial optimizations, we next performed evaluation of scope with respect to
representative anilines and amide variation across the six solvents that showed the highest reactivity in
the initial screen, namely 2-MeTHF (2-methyltetrahydrofuran), CPME (cyclopentyl methyl ether), i-
PrOAc (isopropyl acetate), p-cymene, DEC (diethyl carbonate) and MTBE (methyl zert-butyl ether)
(Table 3). Reaction time has not been optimized. 15 h has been selected as a benchmark based on
previous studies on Pd-catalyzed transamidations.**#? In terms of anilines, we selected electron-rich
(entry 1), electron-deficient (entry 2) and sterically-hindered anilines (entry 3). With respect to the
amide component, we selected sterically-hindered (entry 4), sterically- and electronically-unbiased
(entry 5), deactivated electron-rich (entry 6) and electron-deficient amide (entry 7). In this screen, 2-
MeTHF and MTBE showed the highest performance across all substrates examined with an average
yield of >90%. As expected, substitution with sterically-hindered groups (entry 4) and the sensitive ester
group (entry 2 and 7) proved to be the most challenging substrate combinations. Nevertheless, it is
worthwhile to note that several other solvents examined, namely CPME, i-PrOAc and DEC gave
satisfactory to high yields in the majority of the examples examined (average of 69-77%). This broad
compatibility with recommended solvents could be useful for further implementation of green protocols
for acyl-Buchwald-Hartwig cross-coupling of amides. Furthermore, the selectivity of the coupling of the
amide N—C bond in the presence of ester bond should be noted. This functional group tolerance is
inherent to Pd-catalyzed cross-coupling and not compatible with recent transition-metal-free protocols

for amide bond interconversion.**
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Table 3. Scope of the Acyl Buchwald-Hartwig Cross-Coupling of Representative Anilines and

Amide in Green Solvents®*¢

o [Pd(IPr)(cin)CI] o = 1R,
@){;{N,Boc HoN A~ K,COj _ NN !
Ri—— . + —R ~ Ry H
NG \O > Solent 110°C '\ |
1 2 3
2-MeTHF  CPME  i-PrOAc  p-Cymene DEC  MTBE
entry product yield yield yield yield yield yield
(%) (%) (%) (%) (%) (%)
1 78 76 57 72
2
3
4
5
6
7

“Amide (1.0 equiv), Ar-NHz (2.0 equiv), [Pd] (3 mol%), K2COs (3.0 equiv), solvent (0.25 M), 110 °C,
15 h. *Isolated yields. “Key: red, yield <50%; yellow, yield 50—89%; green, yield >90%.

With the insight from the solvent evaluation, we next probed the versatility of the acyl-Buchwald-
Hartwig cross-coupling of amides in 2-MeTHF and MTBE as the identified solvents (Tables 4-5). As

shown, the reaction showed broad scope and excellent functional group tolerance with respect to the

11



aniline component (Table 4). As such, electronic variation on the aniline is well-tolerated, which
includes the challenging deactivating ester group (3a-3d). Furthermore, steric-hindrance, including even
extremely sterically-hindered 2,6-diisopropylaniline afforded the products in high yields (3e-3h).
Moreover, meta-substitution (3i-3j) as well as fluoro-containing anilines that give valuable fluoro-
containing benzamides (3j-3k) were successfully employed in the coupling. Interestingly, even
secondary anilines such as N-methylaniline and tetrahydroquinoline could be used to furnish the
products in high yields (31-3m). Interestingly, the reaction tolerates nitro-groups, which strongly
deactivate the aniline towards cross-coupling (3m).5%77980 Finally, biorelevant amines, such as 3-
amino-9-ethylcarbazole can also be used in this cross-coupling (30), highlighting the potential in
medicinal chemistry settings.*>** It should be noted that in some cases (3k, 3n) the yield is lower due to
side-reactions, including non-specific decomposition.

The scope with respect of this acyl-Buchwald-Hartwig cross-coupling to the amide component is
also very broad (Table 5). As shown, sterically-hindered (3p) and electronically-differentiated amides
(3g-3s), including with ester functional group (3s) gave the coupling products in high yields and with
full N—C vs. O—C coupling selectivity. Furthermore, fluorinated amides that might be problematic due
to the strong-electron withdrawing effect enhancing the N-C(O) resonance are easily accommodated
(3t-3u).**47 Similarly, heterocycles, such as electronically deactivating 2-furylamide (3v) as well as
alkyl amides (3w) are well tolerated. It is worth noting that comparable efficiency has been observed
across all substrates using both 2-MeTHF and MTBE as the two solvents identified, which could be

useful for the selection of a most suitable solvent for the coupling.
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Scope of Anilines®?

o [Pd(IPr)(cin)CI] o /@ -
réN,Boc HaN K,CO4 N7

| + | R - H

Ph ~  2-MeTHF or MTBE
1 2 3

CO,Et

3a: 93% yield/95% yield 3b: 98% yield/98% yield 3c: 98% yield/90% yield

o Y oY

3d: 95% yield/93% yield 3e: 98% yield/92% yield 3f: 89% yield/85% yield

Me Me Et Me
(0] (o] (o]
N N N o "
H Me H Et H

3g: 94% yield/93% yield 3h: 95% yield/96% yield 3i: 92% yield/93% yield

T (L

3j: 96% yield/80% yield 3k: 72% yield/96% yield® 31: 90% yield/94% yi%l:i

Y RO

3m: 90% yield/88% yield 3n: 43% yield/48% yield 3o: 73% yield/91% yield

Table 4. Scope of the Acyl Buchwald-Hartwig Cross-Coupling of Amides in Green Solvents:

“Amide (1.0 equiv), Ar-NH, (2.0 equiv), [Pd] (3 mol%), K,CO; (3.0 equiv), 2-MeTHF or MTBE (0.25

M), 110 °C, 15 h. “Isolated yields in 2-MeTHF / MTBE. <[Pd] (6 mol%).
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Table 5. Scope of the Acyl Buchwald-Hartwig Cross-Coupling of Amides in Green Solvents:

Scope of Amides®?

Me
o Me [Pd(IPr)(cin)CI] o
R)J;\ - Boc HzN:© K,CO4 RJ\N
| + > H
P Me
e

h M 2-MeTHF or MTBE

1 2 3
Me Me Me
Me O (o] (0]
N N N
H Me H Me H Me
Me MeO

3p: 98% yield/91% yield 3q: 98% yield/93% yield 3r: 92% yield/98% yield

Me Me
0 0
Q)\H J@)\N
M M
MeO,C € F4C e

3s: 90% yield/92% yield 3t: 91% yield/90% yield

Me Me Me
(0] (o] (0]
F j; j 0 K j K j
i@ALH Me wu Me /\M%H Me
F

3u: 98% yield/97% yield 3v: 98% yield/97% yield 3w: 98% yield/83% yield

“Amide (1.0 equiv), Ar-NH, (2.0 equiv), [Pd] (3 mol%), K,CO; (3.0 equiv), 2-MeTHF or MTBE (0.25
M), 110 °C, 15 h. “Isolated yields in 2-MeTHF / MTBE.

Prompted by the high efficiency of this acyl-Buchwald-Hartwig cross-coupling, we demonstrated
the utility of this reaction in the late-stage functionalization of APIs (Table 6). As shown, direct cross-
coupling of amides of Febuxostat (antigout)®>°® and Probenecid (antihyperuricemic)’’ using 2-MeTHF
or MTBE as solvents, provided the transamidation products in high yields, demonstrating the potential
of this reaction in medicinal chemistry research. These reactions benefit from the functional group
tolerance to heterocycles, nitriles and sulfonamides of the Pd-catalyzed acyl Buchwald-Hartwig cross-

coupling of amides.**-47
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Table 6. Late-Stage Functionalization of Pharmaceuticals®?

fo) [Pd(IPr)(cin)CI] o =

H,N K,CO TR
B X 2 3
R)JVS\N oc . \GR' _ RJ‘kN NS
Bh Z#  2-MeTHF or MTBE H
1 2 3

from Febuxostat from Probenecid

3x: 64% yield/90% yield 3y: 98% yield/98% yield

“Amide (1.0 equiv), Ar-NH, (2.0 equiv), [Pd] (3 mol%), K,CO; (3.0 equiv), 2-MeTHF or MTBE (0.25
M), 110 °C, 15 h. “Isolated yields in 2-MeTHF / MTBE.

Particularly noteworthy is the ability of this acyl-Buchwald-Hartwig cross-coupling to be directly
employed in the synthesis of bioactive chemicals, such as Mepronil’®®° and pyrazole fungicides'®
(Table 7). These reactions highlight the potential of amides as unconventional C-N to C-N’
electrophiles in organic synthesis.

Table 7. Synthesis of Agrochemicals®”

[Pd(IPr)(cin)CI] )
K,CO
.B 2= R
R1)J;‘I}I °C . H,N. . R1)J\N 2
Bh 2 2-MeTHF or MTBE H
1 2 3
Me o

4

KA

Mepronil

Pyrazole
fungicide

3z: 97% yield/92% yield 3aa: 98% yield/76% yield

“Amide (1.0 equiv), Ar-NH, (2.0 equiv), [Pd] (3 mol%), K,CO; (3.0 equiv), 2-MeTHF or MTBE (0.25
M), 110 °C, 15 h. “Isolated yields in 2-MeTHF / MTBE.
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Finally, we conducted kinetic studies to gain preliminary insight into the high efficiency of 2-
MeTHF and MTBE as the preferred solvents for the acyl-Buchwald-Hartwig cross-coupling of amides
(Figure 3). As shown, the kinetic studies indicate that green and sustainable 2-MeTHF is a superior
solvent to the toxic DME in the coupling, while the use of MTBE also provides improved kinetic profile.
It is interesting to note that with 2-MeTHF the conversion occurs at the beginning of the reaction. We
believe that 2-MeTHF might coordinate to Pd and facilitate catalyst activation. These observations

highlight the importance of using alternative solvents in the amide bond activation methods.

Plot of Conversion vs. Time for Cross-Coupling of 1a

100 - A/—A/l .
A—
1 | |
80 -
S
= 60 -
S " ¢
A —e— (DME)
¢ 40- —=— (MTBE)
C
g » —A— (2-MeTHF)
20 -
1 .
o4 &
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0 50 100 150 200 250 300
time (min)

Figure 3. Kinetic profile in the acyl-Buchwald-Hartwig cross-coupling of amides. 1a (1.0 equiv), Ph-
NH, (2.0 equiv), Pd(IPr)(cin)Cl (3 mol%), K,CO; (3.0 equiv), solvent (0.25 M), 110 °C, 0-300 min.

CONCLUSIONS

In summary, we have presented the first green solvent selection for the powerful platform of acyl
Buchwald-Hartwig cross-coupling of amides. This reaction proceeds by selective amide N—C bond
cleavage and results in a net transamidation of the historically challenging secondary amide bonds. The
present study identified 2-MeTHF and MTBE as the recommended solvents for the Buchwald-Hartwig

cross-coupling of amides. In particular, 2-MeTHF is a recommended solvent by several recent solvent
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selection guides in terms of health, safety, sustainability and environmental impact,*-77>74 while
MTBE has found broad industrial applications as an alternative to ethers.®®”! Furthermore, several other
alternative solvents, such as CPME, i-PrOAc and DEC have also been identified for the cross-coupling
and can be employed in select cross-coupling cases. The unique versatility of the method has been
demonstrated by broad scope, excellent functional group tolerance, applications to the late-stage
functionalization of APIs and synthesis of bioactive compounds. The green solvent selection enables
enhanced reactivity in the biorelevant C—N to C-N’ cross-coupling manifold of amides, while
significantly improving health, environmental and safety factors. Finally, it should be noted that even
though green solvents, such as ethers or THF derivatives are vastly preferred over not environmental
solvents, such as chlorinated solvents, there is still path to improvement to work with alcohols or water.
In this context, future studies on amide bond activation should incorporate green solvent selection

guides to expand the existing arsenal of amide bond interconversion methods.
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Synopsis: Evaluation of green solvents for acyl Buchwald-Hartwig cross-coupling of amides
(transamidation) to provide environmental solvent selection for this powerful C-N to C-N’

interconversion is reported.
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