

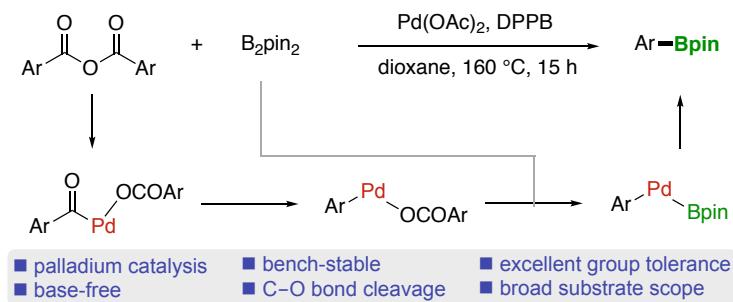
Palladium-Catalyzed Decarbonylative Borylation of Aryl Anhydrides

Wenzhi Zhang,[†] Fusheng Bie,[‡] Jie Ma,[†] Fengyan Zhou,[†] Michal Szostak^{,§} and Chengwei Liu^{*,#}*

[†]College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, 1 Bei'an
Road, Zaozhuang, Shandong 277160, China

[‡]Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, Zaozhuang
University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China

[§]Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United
States


[#]School of Chemistry and Materials Science, Nanjing University of Information Science and
Technology, 219 Ningliu Road, Nanjing, Jiangsu 210044, China

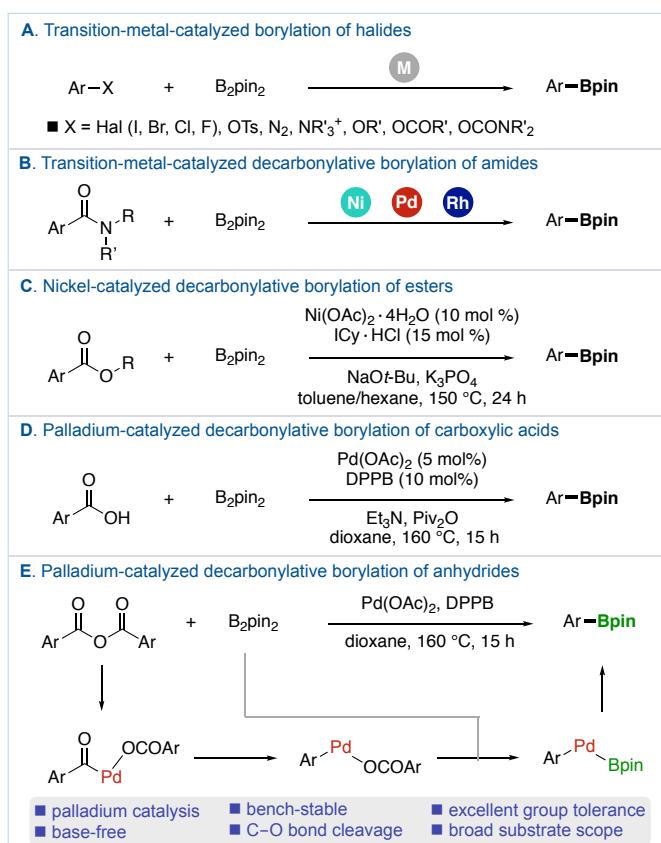
**RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required
according to the journal that you are submitting your paper to)**

Corresponding author

michal.szostak@rutgers.edu; chengwei.liu@nuist.edu.cn

TOC

A palladium-catalyzed base-free decarbonylative borylation of aryl anhydrides has been developed. Catalyst system consisting of $\text{Pd}(\text{OAc})_2/\text{dppb}$ enables readily available aryl anhydrides to be employed as electrophiles for the synthesis of versatile arylboronate esters via $\text{O}-\text{C}(\text{O})$ bond activation and decarbonylation. This method is characterized by an excellent functional group tolerance and broad substrate scope, using bench stable aryl anhydrides as aryl electrophiles in $\text{C}-\text{B}$ bond formation. Mechanistic studies and functionalization of late-stage pharmaceutical molecules are disclosed.


Suzuki-Miyaura cross-coupling is the most powerful method for the construction of C–C bonds, exploiting the reactivity of various electrophiles and organoboron reagents as cross-coupling partners.^{1,2} In addition to the Suzuki-Miyaura cross-coupling, organoboron reagents represent versatile linchpins in organic synthesis, enabling the formation of a plethora of C–C, C–N, C–O and C–X bonds by transition-metal-catalyzed and transition-metal-free approaches.³ Thus, as the key ingredients for Suzuki-Miyaura reaction and versatile intermediates in organic synthesis, efficient methods for the synthesis of organoboron reagents are highly desirable.

The traditional way for the synthesis of organoboron compounds is the reaction of borates and organometallic reagents, such as organomagnesium or organolithium.^{3,4} With the developments in the cross-coupling arena, new catalytic methods have been established.^{5,6} Among these methods, transition-metal-catalyzed Miyaura borylation of aryl halides or pseudohalides with B_2Pin_2 as the diboron reagent represents arguably the most direct and effective approach for the preparation of organoboron reagents.⁷ At present, Miyaura borylation has been achieved using various catalytic systems and halide/pseudohalide equivalents (Figure 1A).^{1–4}

In this context, recently major advances have been made using carboxylic acid derivatives as aryl electrophiles after selective oxidative addition of the C(acyl)–X bond to a transition metal and decarbonylation.^{8–10} These reactions proceed under redox-neutral conditions in the absence of external oxidants and without the typical limitations of decarboxylative approaches in terms of restricted substrate scope and high barrier for decarboxylation.¹⁰ Most crucially, the use of ubiquitous carboxylic acid derivatives permits to expand the toolbox of cross-coupling reactions to orthogonal carboxylic acid sub-strates (R–CO₂H vs. R–X) that are inherently present in inter-mediates, pharmaceuticals and functional materials.

Within the decarbonylative cross-coupling framework, decarbonylative Miyaura borylation of carboxylic acid derivatives has emerged as a new strategy.^{8–21} Thus, decarbonylative borylation of amides has been achieved via nickel,¹¹ palladium¹² or rhodium¹³ catalysis (Figure 1B), demonstrating various approaches to overcoming the high resonance barrier of the N–C bond by amide bond twisting.¹⁴

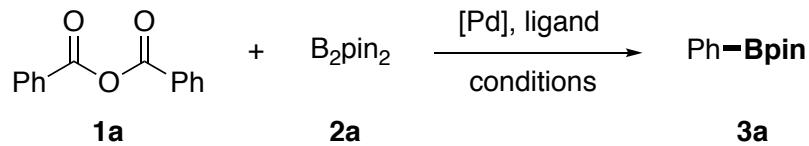
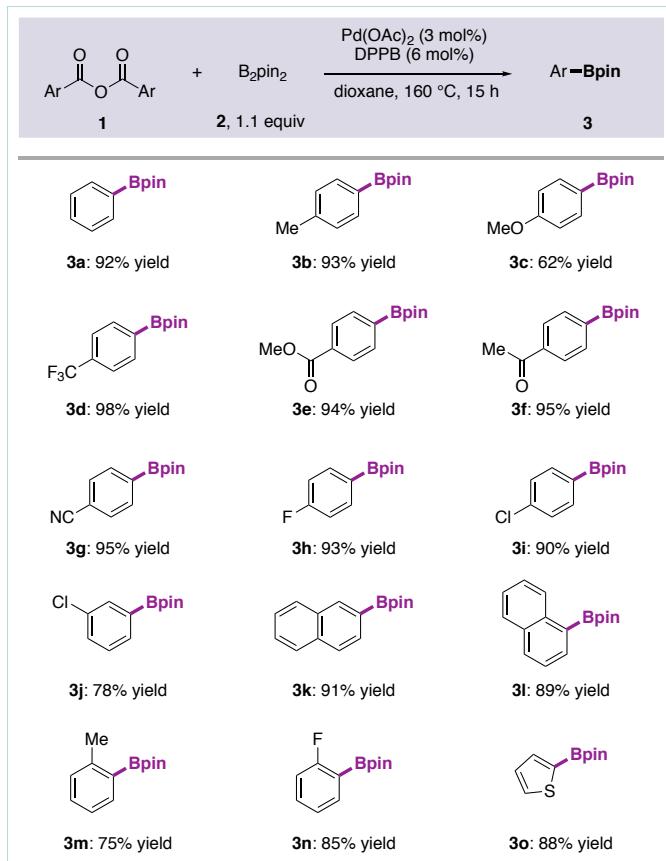

Recent advances have been made in transition-metal-catalyzed cross-coupling of esters via the activation of inert C–O bond,¹⁵ which prevents the presence of toxic halide salts. Nickel-catalyzed decarbonylative borylation of esters using NHC ligands has been developed,¹⁶ which gives the desired organoboron compounds in excellent yields (Figure 1C). Afterwards, another nickel-catalyzed decarbonylative borylation of esters using phosphine ligands has been reported.¹⁷ The decarbonylative cross-coupling of carboxylic acids has also been achieved using carboxylic acids as electrophiles via redox-neutral decarbonylative pathway (Figure 1D).¹⁸ Furthermore, decarbonylative borylation of thioesters using rhodium-phosphine systems has been reported,¹⁹ while more recent advances include decarbonylative borylation of acyl fluorides via nickel catalysis (not shown).^{20,21} It is worthwhile to note that borylation of aryl halides and decarbonylative borylation of carboxylic acid derivatives requires inorganic bases and other additives as activators, which restricts the application of these approaches.^{8–21}

Figure 1. (A–D) Decarbonylative cross-coupling of carboxylic acids. (E) Palladium-catalyzed decarbonylative borylation of aryl anhydrides (this work).

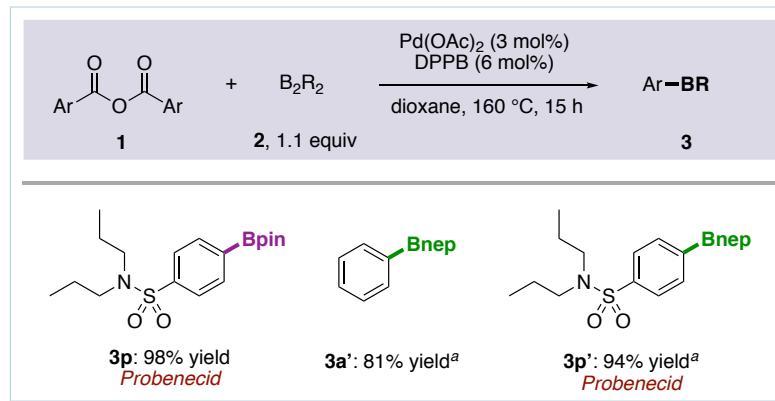
Considering that aryl anhydrides are readily available and broadly utilized class of substrates in organic synthesis, we set out to develop decarbonylative borylation of aryl anhydrides to produce arylboronate esters (Figure 1E). It is noteworthy that although various methods for decarbonylative cross-coupling of aryl anhydrides have been developed,²²⁻²⁵ decarbonylative borylation is missing from this reactivity toolbox despite the tremendous importance of Miyaura borylation methods.⁴⁻⁷ Herein, we report the palladium-catalyzed borylation of aryl anhydrides, which operates under base-free conditions. Compared with previous methods, in particular decarbonylative borylation of carboxylic acids, the following features of this method are noteworthy: (1) additives for activation of substrates are not required; (2) external bases are not needed; (3) comparatively higher efficiency of the cross-coupling; (4) broad scope, general and practical reaction conditions for the synthesis of organoboron compounds. It is worthwhile to note that aryl anhydrides are a class of fundamental and bench-stable carboxylic acid derivatives that can be prepared from acyl chlorides in a straightforward manner and the crude product purified by recrystallization or distillation.

Table 1. Summary of Optimization Studies^a



entry	catalyst	ligand	base	yield (%)
1	Pd(OAc) ₂	dppb	Et ₃ N	93
2 ^b	Pd(OAc) ₂	dppb	Et ₃ N	88
3 ^c	Pd(OAc) ₂	dppb	Et ₃ N	79
4	Pd(OAc) ₂	dppb	-	92
5	Pd(OAc) ₂	XantPhos	-	20
6	Pd(OAc) ₂	dppp	-	49
7	Pd(OAc) ₂	dpppent	-	50
8	Pd(OAc) ₂	dppf	-	54
9	Pd(OAc) ₂	XPhos	-	<1

10	Pd(OAc) ₂	SPhos	-	<1
11	Pd(OAc) ₂	PCy ₃	-	34
12	Pd(OAc) ₂	PCyPh ₂	-	23
13 ^d	Pd(OAc) ₂	dppb	-	69
14 ^e	Pd(OAc) ₂	dppb	-	63
15 ^f	Pd(OAc) ₂	dppb	-	46


^aConditions: **1a** (1.0 equiv), **2a** (1.1 equiv), [Pd] (3 mol%), ligand (6 mol%), base (1.1 equiv), dioxane, 160 °C, 15 h; ^b**2a** (1.5 equiv), base (1.5 equiv); ^c**2a** (2.0 equiv), base (2.0 equiv); ^dtoluene; ^e140 °C; ^f120 °C.

The proposed palladium-catalyzed decarbonylative borylation of anhydrides was examined using benzoic anhydride and bis(pinacolato)diboron as model substrates (Table 1). We first screened the stoichiometric amount of the reagents under Lewis base conditions, and obtained the optimal stoichiometry (Table 1, entries 1-3). Notably, we next found that the conditions in the absence of Lewis bases delivered the desired product in excellent yield, showing that the presence of base is not needed for this protocol (Table 1, entry 4). Apparently, benzoate anion is effective in promoting transmetalation in this protocol,^{10a} resulting in an attractive base-free approach to Miyaura borylation. After a range of experiments screening phosphine ligands, we identified dppb as the optimal ligand for this protocol (Table 1, entries 5-12). Furthermore, toluene had been identified as an alternative solvent for this transformation, albeit it gave slightly lower reactivity than dioxane (Table 1, entry 13). Finally, we tested lower reaction temperature, which afforded the cross-coupling product in 63% and 46% yields at 140 °C and 120 °C, respectively (Table 1, entries 14-15). The optimized conditions involve aryl anhydride (1.0 equiv), bis(pinacolato)diboron (1.1 equiv), Pd(OAc)₂ (3 mol%) and DPPB (6 mol%) in dioxane (0.20 M) at 160 °C (Table 1, entry 4). It is worth noting that the conditions with Pd:P ratio of 1:2 give the product in 40% yield (not shown).

Figure 2. Pd-catalyzed base-free decarbonylative borylation of anhydrides. Conditions: anhydrides (1.0 equiv), B_2pin_2 (1.1 equiv), $\text{Pd}(\text{OAc})_2$ (3 mol%), DPPB (6 mol%), dioxane, 160°C , 15 h. Isolated yields.

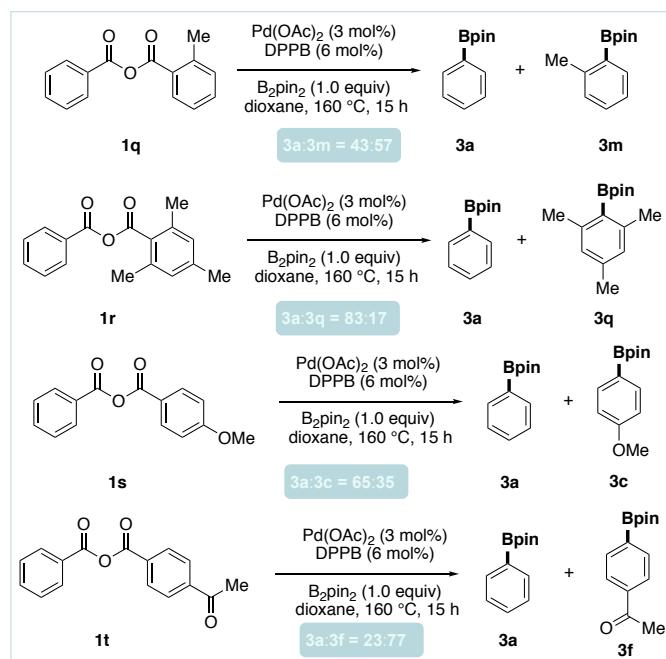
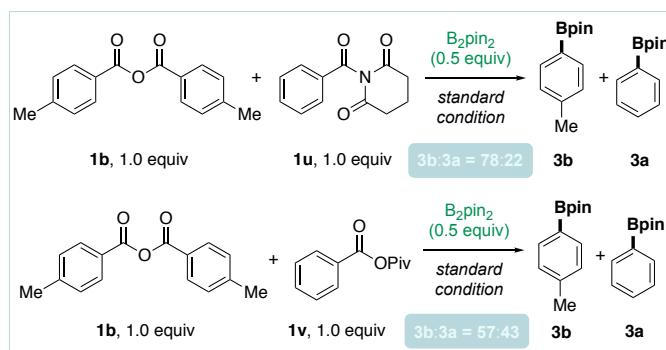

With the optimized conditions in hand, we next investigated the substrate scope for this palladium-catalyzed base-free decarbonylative borylation of anhydrides (Figure 2). As shown, a wide range of aryl anhydrides bearing electron-neutral (**3a-b**), electron-donating (**3c**) and electron-withdrawing (**3d**) substituents are compatible with this method. Notably, electrophilic functional groups that would not be compatible in the classic organometallic addition, including esters (**3e**) and ketones (**3f**) are well compatible with this method. Moreover, cyano- (**3g**), fluoro- (**3h**) and chloro- (**3i-j**) groups can also be well tolerated. Furthermore, polycyclic aromatic anhydrides (**3k-l**) can be readily employed, delivering the desired arylboronate esters in excellent yield. Interestingly, sterically-hindered substrates (**3m**) and ortho-substituted substrates (**3n**) are also compatible in this approach. Furthermore, heterocyclic anhydrides can also be employed in this method, exemplified by 2-thienyl anhydride, which produced 2-thienylboronate ester (**3o**) in excellent yield. At this stage of reaction development, cyclic anhydrides are not tolerated under standard reaction conditions.

Figure 3. Pd-catalyzed base-free decarbonylative borylation of anhydrides. Conditions: anhydrides (1.0 equiv), B_2pin_2 (1.1 equiv), $\text{Pd}(\text{OAc})_2$ (3 mol%), DPPB (6 mol%), dioxane, 160°C , 15 h. Isolated yields. ^a B_2nep_2 (1.1 equiv).


Encouraged by the successful application of a range of aryl anhydrides as substrates in this decarbonylative Miyaura protocol, we next tested more challenging substrates using this method (Figure 3). To our delight, late-stage derivatization of pharmaceuticals can also be tolerated, as exemplified by Probenecid anhydride, which delivered the desired arylboronate ester in 98% yield (**3p**).

Moreover, alternative diboron reagents, such as B_2nep_2 , can also be tolerated in this approach, which delivered the Ph–Bnep product (**3a'**) in 81% yield. It is noteworthy that this borylating reagent is also applicable to Probenecid anhydride (**3p'**), demonstrating high reactivity in more complex settings.

Figure 4. Selectivity studies in palladium-catalyzed base-free decarbonylative borylation of anhydrides. Conditions: anhydrides (1.0 equiv), B_2pin_2 (1.0 equiv), $\text{Pd}(\text{OAc})_2$ (3 mol%), DPPB (6 mol%), dioxane, 160 °C, 15 h.

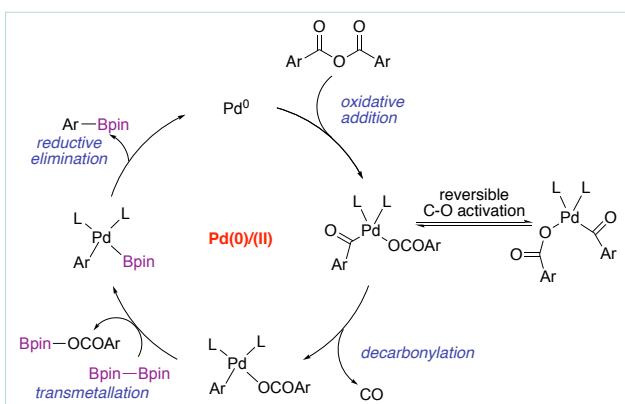

The use of aryl anhydrides allows to conduct intramolecular competition experiments to gain insight into the selectivity of decarbonylative Miyaura borylation (Figure 4). The competition studies indicate that ortho-substituted O–C(O)Ar bonds show comparable reactivity to sterically-unbiased electrophiles (**3a:3m** = 43:57). However, increase in steric hindrance, such as 2,6-di-ortho-substitution of O–C(O)Ar, exerts a substantial effect on the coupling (**3a:3q** = 83:17). Moreover, electron-deficient O–C(O)Ar bonds are more reactive than electron-rich counterparts (**3a:3c** = 65:35; **3a:3f** = 23:77), which is consistent with facility of oxidative addition/decarbonylation.

Figure 5. Selectivity studies in palladium-catalyzed base-free decarbonylative borylation of anhydrides. Conditions: anhydrides (1.0 equiv), B_2pin_2 (1.0 equiv), $\text{Pd}(\text{OAc})_2$ (3 mol%), DPPB (6 mol%), dioxane, 160 °C, 15 h.

To investigate the selectivity in decarbonylative borylation of aryl anhydrides over other carboxylic acid derivatives, competition studies between different carboxylic acid derivatives were conducted (Figure 5). As such, aryl anhydrides show significantly higher reactivity than amides (**3b:3a** = 78:22), while the reactivity vs. aryl alkyl anhydrides is also higher (**3b:3a** = 57:43). Furthermore, competition experiments between aryl anhydrides and carboxylic acids give the selectivity of 51:49, which indicates that when carboxylic acids and anhydrides are in the same catalytic system, carboxylic acids can form mixed anhydrides (not shown). Further, competition between anhydrides and acyl fluorides give the selectivity of >95:5, which indicates that anhydrides show much higher reactivity than acyl fluorides.

under standard conditions (not shown). These experiments indicate that the O–C(O) bond in aryl anhydrides undergoes more facile oxidative addition/decarboxylative than other inert acyl bonds.

Figure 6. Proposed mechanism.

The proposed mechanism for this Pd-catalyzed base-free decarbonylative borylation of anhydrides is shown in Figure 6. First, the O–C(O) bond oxidatively adds to palladium, a process which likely involves reversible C–O activation. This is followed by decarbonylation. Next, transmetalation between Ar–Pd–OC(O)Ar and B₂pin₂ gives Ar–Pd–Bpin. Finally, reductive elimination affords the desired arylboronate product and regenerates the Pd catalyst. We tentatively propose that Bpin–OCOAr is formed as a by-product, however its presence has not been detected due to decomposition. Control experiments in the absence of activator result in unproductive reactions, indicating that decarboxylative process is unlikely.

Conclusions

In summary, we have reported palladium-catalyzed base-free decarbonylative Miyaura borylation of aryl anhydrides. The method is notable for general and practical borylation conditions under base-free conditions using readily available aryl anhydrides. This versatile decarbonylation method allows for a broad substrate scope and excellent functional group tolerance, permitting rapid access to valuable arylboronate esters. The utility of this approach has been demonstrated in the decarbonylative borylation of pharmaceuticals as well as utilization of challenging substrates for borylation and double decarbonylative borylation of cyclic anhydrides. We expect that this decarbonylative borylation method

will provide an important alternative method for the synthesis of organoboron compounds.²⁵ Further studies on decarbonylative cross-coupling are underway and will be reported in due course.

Experimental Section

General Methods. All starting materials reported in the manuscript have been prepared according to the method reported previously.²⁴ All compounds reported in this manuscript have been previously reported or are commercially available. Spectroscopic data matched literature values. General methods have been published.²⁴ All reactions were performed in oven-dried sealed microwave tube vials.

General Procedure for Anhydride Synthesis. An oven-dried vial (20 mL) equipped with a stir bar was charged with pyridine (10.0 mmol, 1.0 equiv), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Acyl chloride (typically, 0.5 equiv) was added dropwise to the reaction mixture with vigorous stirring at 0 °C, and the reaction mixture was stirred 1 h at room temperature. After the indicated time, the reaction mixture was diluted with ice-cold water (50 mL). Then the solid that precipitated was filtrated, washed with ice-cold water and dried. Unless stated otherwise, the crude product was purified by recrystallization (toluene) to give analytically pure product.

General Procedure for Borylation Reaction of Aryl Anhydrides. An oven-dried vial equipped with a stir bar was charged with anhydride (neat, 1.0 equiv), diborionate ester (neat, 1.1 equiv), Pd(OAc)₂ (typically, 3 mol%), and ligand (typically, 6 mol%), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Dioxane (0.20 M) was added with vigorous stirring at room temperature, the reaction mixture was placed in a preheated oil bath at 160 °C, and stirred for the indicated time at 160 °C. After the indicated time, the reaction mixture was cooled down to room temperature. Then the sample was analyzed by ¹H NMR (CDCl₃, 500 MHz) and GC-MS to obtain conversion, yield and selectivity using internal standard and comparison with authentic samples. All substrates' yields reported in the manuscript refer to isolated yields after purification by chromatography on silica gel (ethyl acetate/hexane = 1/15 to 1/10).

Representative Procedure for Borylation Reaction of Aryl Anhydrides. An oven-dried vial equipped with a stir bar was charged with benzoic anhydride (neat, 45.3 mg, 0.2 mmol), bis(pinacolato)diboron (neat, 55.9 mg, 1.1 equiv), Pd(OAc)₂ (1.4 mg, 3 mol%), and 1,4-bis(diphenylphosphino)butane (5.2 mg, 6 mol%), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Dioxane (1.0 mL) was added with vigorous stirring at room temperature, the reaction mixture was placed in a preheated oil bath at 160 °C, and stirred for 15 h at 160 °C. After the indicated time, the reaction mixture was cooled down to room temperature. Then the sample was analyzed by ¹H NMR (CDCl₃, 500 MHz) and GC-MS to obtain conversion, yield and selectivity using internal standard and comparison with authentic samples. Purification by chromatography on silica gel (ethyl acetate/hexane = 1/15 to 1/10) afforded the title product. Yield 92% (37.6 mg, 0.184 mmol). White solid. Characterization data are included in the section below.

Benzoic anhydride (1a). This compound was commercially available.

4-Methylbenzoic anhydride (1b).²⁴ White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.07-8.05 (d, *J* = 8.2 Hz, 4 H), 7.34-7.33 (d, *J* = 8.0 Hz, 4 H), 2.48 (s, 6 H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 162.6, 145.6, 130.7, 129.6, 126.3, 21.9.

4-Methoxybenzoic anhydride (1c).²⁴ White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.13-8.11 (d, *J* = 8.8 Hz, 4 H), 7.01-6.99 (d, *J* = 8.8 Hz, 4 H), 3.92 (s, 6 H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 164.6, 162.3, 132.9, 121.3, 114.2, 55.6.

4-(Trifluoromethyl)benzoic anhydride (1d).²⁴ White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.31-8.29 (d, *J* = 8.2 Hz, 4 H), 7.85-7.84 (d, *J* = 8.3 Hz, 4 H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 160.8, 136.1 (q, ²J_{C-F} = 32.9 Hz), 131.7, 131.0, 126.1 (q, ³J_{C-F} = 3.7 Hz), 123.3 (q, ¹J_{C-F} = 271.5 Hz).

4-(Methoxycarbonyl)benzoic anhydride (1e).²⁴ White solid. **¹H NMR (400 MHz, CDCl₃)** δ 8.23-8.17 (m, 8 H), 3.97 (s, 6 H). **¹³C{¹H} NMR (100 MHz, CDCl₃)** δ 166.0, 161.4, 135.6, 132.3, 130.7, 130.2, 52.8.

4-Acetylbenzoic anhydride (1f).²⁴ White solid. **¹H NMR (500 MHz, CDCl₃)** δ 8.28-8.26 (d, *J* = 8.4 Hz, 4 H), 8.13-8.11 (d, *J* = 8.4 Hz, 4 H), 2.70 (s, 6 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 197.2, 161.2, 141.5, 132.2, 130.9, 128.7, 27.0.

4-Cyanobenzoic anhydride (1g).²⁴ White solid. **¹H NMR (400 MHz, CDCl₃)** δ 8.26-8.24 (d, *J* = 8.6 Hz, 4 H), 7.87-7.85 (d, *J* = 8.6 Hz, 4 H). **¹³C{¹H} NMR (100 MHz, CDCl₃)** δ 160.2, 132.8, 132.0, 131.0, 118.2, 117.4.

4-Fluorobenzoic anhydride (1h).²⁴ White solid. **¹H NMR (400 MHz, CDCl₃)** δ 8.19-8.14 (m, 4 H), 7.23-7.17 (m, 4 H). **¹³C{¹H} NMR (100 MHz, CDCl₃)** δ 166.7 (d, ¹*J*_{C-F} = 255.8 Hz), 161.2, 133.3 (d, ³*J*_{C-F} = 9.7 Hz), 125.0 (d, ⁴*J*_{C-F} = 2.9 Hz), 116.3 (d, ²*J*_{C-F} = 22.1 Hz). **¹⁹F (377 MHz, CDCl₃)** δ -102.03.

4-Chlorobenzoic anhydride (1i).²⁴ White solid. **¹H NMR (500 MHz, CDCl₃)** δ 8.11-8.09 (d, *J* = 8.7 Hz, 4 H), 7.55-7.53 (d, *J* = 8.7 Hz, 4 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 161.3, 141.4, 131.9, 129.4, 127.1.

3-Chlorobenzoic anhydride (1j).²⁴ White solid. **¹H NMR (400 MHz, CDCl₃)** δ 8.10-8.10 (d, *J* = 1.3 Hz, 2 H), 8.04-8.02 (d, *J* = 9.8 Hz, 2 H), 7.67-7.65 (m, 2 H), 7.51-7.47 (m, 2 H). **¹³C{¹H} NMR (100 MHz, CDCl₃)** δ 160.9, 135.2, 134.8, 130.5, 130.3, 130.2, 128.7.

2-Naphthoic anhydride (1k).²⁴ White solid. **¹H NMR (500 MHz, CDCl₃)** δ 8.81 (s, 2 H), 8.23-8.21 (d, *J* = 8.3 Hz, 2 H), 8.06-8.04 (d, *J* = 8.1 Hz, 2 H), 8.02-8.00 (d, *J* = 8.7 Hz, 2 H), 7.98-7.96 (d, *J* = 8.2 Hz, 2 H), 7.71-7.68 (t, *J* = 7.4 Hz, 2 H), 7.65-7.62 (t, *J* = 7.6 Hz, 2 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 162.8, 136.3, 132.8, 132.5, 129.7, 129.3, 128.9, 128.0, 127.2, 126.1, 125.4.

1-Naphthoic anhydride (1l).²⁴ White solid. **¹H NMR (500 MHz, CDCl₃)** δ 9.13-9.12 (d, *J* = 8.7 Hz, 2 H), 8.46-8.44 (d, *J* = 7.2 Hz, 2 H), 8.14-8.12 (d, *J* = 8.2 Hz, 2 H), 7.96-7.94 (d, *J* = 8.2 Hz, 2 H), 7.71-7.68 (t, *J* = 7.1 Hz, 2 H), 7.61-7.57 (m, 4 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 173.0, 135.6, 134.7, 134.0, 131.9, 131.7, 128.7, 128.2, 126.4, 125.9, 124.6.

2-Methylbenzoic anhydride (1m).²⁴ White solid. **¹H NMR (500 MHz, CDCl₃)** δ 8.09-8.07 (d, *J* = 7.9 Hz, 2 H), 7.55-7.52 (t, *J* = 7.5 Hz, 2 H), 7.37-7.33 (m, 4 H), 2.73 (s, 6 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 163.0, 142.6, 133.6, 132.3, 131.5, 127.8, 126.1, 22.0.

2-Fluorobenzoic anhydride (1n).²⁴ White solid. **¹H NMR (400 MHz, CDCl₃)** δ 8.10-8.05 (m, 2 H), 7.67-7.61 (m, 2 H), 7.31-7.27 (m, 2 H), 7.24-7.16 (m, 2 H). **¹³C{¹H} NMR (100 MHz, CDCl₃)** δ 162.6 (d, ¹J_{C-F} = 261.3 Hz), 159.4 (d, ⁵J_{C-F} = 2.7 Hz), 136.4 (d, ³J_{C-F} = 9.8 Hz), 132.9, 124.5 (t, ⁶J_{C-F} = 2.1 Hz), 117.4 (d, ²J_{C-F} = 22.3 Hz), 117.1 (d, ⁴J_{C-F} = 8.5 Hz). **¹⁹F (377 MHz, CDCl₃)** δ -107.67.

Thiophene-2-carboxylic anhydride (1o).²⁴ White solid. **¹H NMR (500 MHz, CDCl₃)** δ 7.93-7.92 (m, 2 H), 7.68-7.67 (m, 2 H), 7.18-7.16 (m, 2 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 167.7, 135.0, 134.0, 132.9, 128.1.

4-(*N,N*-Dipropylsulfamoyl)benzoic anhydride (1p).²⁴ White solid. **¹H NMR (400 MHz, CDCl₃)** δ 8.28-8.26 (d, *J* = 10.8 Hz, 4 H), 7.98-7.96 (d, *J* = 10.8 Hz, 4 H), 3.14-3.11 (m, 8 H), 1.60-1.51 (m, 8 H), 0.89-0.85 (t, *J* = 9.3 Hz, 12 H). **¹³C{¹H} NMR (100 MHz, CDCl₃)** δ 160.6, 146.1, 131.5, 131.2, 127.5, 49.9, 21.9, 11.2.

Benzoic 2-methylbenzoic anhydride (1q).²⁴ White solid. **¹H NMR (500 MHz, CDCl₃)** δ 8.18-8.17 (d, *J* = 7.3 Hz, 2 H), 8.09-8.07 (d, *J* = 7.9 Hz, 1 H), 7.71-7.68 (t, *J* = 7.5 Hz, 1 H), 7.57-7.52 (m, 3 H), 7.37-7.34 (t, *J* = 7.4 Hz, 2 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 162.8, 162.5, 142.7, 134.4, 133.7, 132.3, 131.5, 130.5, 129.1, 128.9, 127.7, 126.1, 22.0.

Benzoic 2,4,6-trimethylbenzoic anhydride (1r).²⁴ White solid. **¹H NMR (500 MHz, CDCl₃)** δ 8.20-8.18 (d, *J* = 7.2 Hz, 1 H), 8.14-8.13 (d, *J* = 7.2 Hz, 1 H), 7.66-7.63 (t, *J* = 7.4 Hz, 1 H), 7.57-7.54 (t, *J* = 8.0 Hz, 1 H), 7.52-7.49 (t, *J* = 7.7 Hz, 1 H), 6.91 (s, 2 H), 2.42 (s, 6 H), 2.32 (s, 3 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 175.0, 171.8, 140.1, 136.1, 133.8, 130.6, 130.2, 128.9, 128.8, 128.5, 21.2, 20.3.

Benzoic 4-methoxybenzoic anhydride (1s).²⁴ White solid. **¹H NMR (500 MHz, CDCl₃)** δ 8.18-8.17 (d, *J* = 7.2 Hz, 2 H), 8.14-8.12 (d, *J* = 9.0 Hz, 2 H), 7.70-7.67 (t, *J* = 7.4 Hz, 1 H), 7.56-7.53 (t, *J* = 8.1 Hz, 2 H), 7.02-7.00 (d, *J* = 9.0 Hz, 2 H), 3.92 (s, 3 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 164.7, 162.6, 162.1, 134.4, 132.9, 130.5, 129.1, 128.8, 121.1, 114.2, 55.6.

4-Acetylbenzoic benzoic anhydride (1t).²⁴ White solid. **¹H NMR (500 MHz, CDCl₃)** δ 8.28-8.27 (d, *J* = 7.9 Hz, 2 H), 8.19-8.18 (d, *J* = 7.9 Hz, 2 H), 8.13-8.10 (m, 2 H), 7.74-7.69 (m, 1 H), 7.59-7.54 (m, 2 H), 2.70 (s, 3 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 197.2, 162.4, 161.6, 141.4, 134.5, 132.5, 130.8, 130.6, 129.0, 128.9, 128.6, 27.0.

4,4,5,5-Tetramethyl-2-phenyl-1,3,2-dioxaborolane (3a, Figure 2).¹³ According to the general procedure, the reaction of benzoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 92% yield (37.6 mg). White solid. **¹H NMR (500 MHz, CDCl₃)** δ 7.84-7.83 (d, *J* = 6.9 Hz, 2 H), 7.50-7.47 (t, *J* = 7.4 Hz, 1 H), 7.41-7.38 (t, *J* = 7.6 Hz, 2 H), 1.37 (s, 12 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 134.8, 131.3, 127.7, 83.8, 24.9. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

4,4,5,5-Tetramethyl-2-(*p*-tolyl)-1,3,2-dioxaborolane (3b, Figure 2).¹³ According to the general procedure, the reaction of 4-methylbenzoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title

compound in 93% yield (40.6 mg). White solid. **$^1\text{H NMR}$ (400 MHz, CDCl_3)** δ 7.72-7.70 (d, J = 7.9 Hz, 2 H), 7.20-7.18 (d, J = 7.6 Hz, 2 H), 2.37 (s, 3 H), 1.34 (s, 12 H). **$^{13}\text{C}\{^1\text{H}\} \text{NMR}$ (100 MHz, CDCl_3)** δ 141.4, 134.8, 128.5, 83.6, 24.9, 21.7.

The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

2-(4-Methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3c, Figure 2).¹³ According to the general procedure, the reaction of 4-methoxybenzoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), $\text{Pd}(\text{OAc})_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 62% yield (29.1 mg). White solid. **$^1\text{H NMR}$ (500 MHz, CDCl_3)** δ 7.79-7.77 (d, J = 8.6 Hz, 2 H), 6.93-6.91 (d, J = 8.7 Hz, 2 H), 3.85 (s, 3 H), 1.36 (s, 12 H). **$^{13}\text{C}\{^1\text{H}\} \text{NMR}$ (125 MHz, CDCl_3)** δ 162.2, 136.5, 113.3, 83.6, 55.1, 24.9. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

4,4,5,5-Tetramethyl-2-(4-(trifluoromethyl)phenyl)-1,3,2-dioxaborolane (3d, Figure 2).¹³ According to the general procedure, the reaction of 4-(trifluoromethyl)benzoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), $\text{Pd}(\text{OAc})_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 98% yield (53.4 mg). White solid. **$^1\text{H NMR}$ (500 MHz, CDCl_3)** δ 7.94-7.93 (d, J = 7.7 Hz, 2 H), 7.64-7.63 (d, J = 7.9 Hz, 2 H), 1.38 (s, 12 H). **$^{13}\text{C}\{^1\text{H}\} \text{NMR}$ (125 MHz, CDCl_3)** δ 135.0, 132.8 (q, $^2J_{\text{C-F}} = 31.9$ Hz), 124.3 (q, $^3J_{\text{C-F}} = 3.7$ Hz), 124.1 (q, $^1J_{\text{C-F}} = 270.7$ Hz), 84.3, 24.9. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening. **$^{19}\text{F NMR}$ (471 MHz, CDCl_3)** δ -62.97.

Methyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (3e, Figure 2).¹³ According to the general procedure, the reaction of 4-(methoxycarbonyl)benzoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), $\text{Pd}(\text{OAc})_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%)

in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 94% yield (49.3 mg). White solid. **¹H NMR (500 MHz, CDCl₃)** δ 8.05-8.03 (d, *J* = 8.2 Hz, 2 H), 7.90-7.88 (d, *J* = 8.2 Hz, 2 H), 3.95 (s, 3 H), 1.38 (s, 12 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 167.2, 134.7, 132.3, 128.6, 84.2, 52.2, 24.9. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethanone (3f, Figure 2).¹³ According to the general procedure, the reaction of 4-acetylbenzoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 95% yield (46.8 mg). White solid. **¹H NMR (500 MHz, CDCl₃)** δ 7.96-7.91 (m, 4 H), 2.64 (s, 3 H), 1.38 (s, 12 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 198.5, 139.0, 134.9, 127.3, 84.2, 26.8, 24.9. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (3g, Figure 2).¹³ According to the general procedure, the reaction of 4-cyanobenzoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 95% yield (43.6 mg). White solid. **¹H NMR (500 MHz, CDCl₃)** δ 7.91-7.90 (d, *J* = 8.0 Hz, 2 H), 7.67-7.66 (d, *J* = 8.0 Hz, 2 H), 1.38 (s, 12 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 135.1, 131.2, 118.9, 114.6, 84.5, 24.9. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

2-(4-Fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3h, Figure 2).¹³ According to the general procedure, the reaction of 4-fluorobenzoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title

compound in 93% yield (41.3 mg). White solid. **$^1\text{H NMR}$ (400 MHz, CDCl_3)** δ 7.81-7.78 (m, 2 H), 7.07-7.02 (t, J = 9.0 Hz, 2 H), 1.34 (s, 12 H). **$^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl_3)** δ 165.1 (d, $^1J_{\text{C-F}}$ = 248.8 Hz), 137.0 (d, $^3J_{\text{C-F}}$ = 8.2 Hz), 114.8 (d, $^2J_{\text{C-F}}$ = 20.1 Hz), 83.9, 24.9. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening. **$^{19}\text{F NMR}$ (377 MHz, CDCl_3)** δ -108.47.

2-(4-Chlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3i, Figure 2).¹³ A According to the general procedure, the reaction of 4-chlorobenzoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), $\text{Pd}(\text{OAc})_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 90% yield (43.0 mg). White solid. **$^1\text{H NMR}$ (500 MHz, CDCl_3)** δ 7.76-7.74 (d, J = 8.3 Hz, 2 H), 7.37-7.36 (d, J = 8.3 Hz, 2 H), 1.36 (s, 12 H). **$^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz, CDCl_3)** δ 137.5, 136.1, 128.0, 84.0, 24.9. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

2-(3-Chlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3j, Figure 2).¹³ A According to the general procedure, the reaction of 3-chlorobenzoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), $\text{Pd}(\text{OAc})_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 78% yield (37.2 mg). White solid. **$^1\text{H NMR}$ (500 MHz, CDCl_3)** δ 7.80 (s, 1 H), 7.69-7.68 (d, J = 7.3 Hz, 1 H), 7.46-7.43 (m, 1 H), 7.34-7.31 (t, J = 7.7 Hz, 1 H), 1.37 (s, 12 H). **$^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz, CDCl_3)** δ 134.6, 134.1, 132.7, 131.3, 129.2, 84.2, 24.9. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

4,4,5,5-Tetramethyl-2-(naphthalen-2-yl)-1,3,2-dioxaborolane (3k, Figure 2).¹³ According to the general procedure, the reaction of 2-naphthoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), $\text{Pd}(\text{OAc})_2$ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for

15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 91% yield (46.3 mg). White solid. **¹H NMR (500 MHz, CDCl₃)** δ 8.40 (s, 1 H), 7.92-7.90 (d, *J* = 7.9 Hz, 1 H), 7.88-7.84 (m, 3 H), 7.55-7.48 (m, 2 H), 1.42 (s, 12 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 136.3, 135.0, 132.8, 130.4, 128.7, 127.7, 127.0, 127.0, 125.8, 83.9, 24.9. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

4,4,5,5-Tetramethyl-2-(naphthalen-1-yl)-1,3,2-dioxaborolane (3l, Figure 2).¹³ According to the general procedure, the reaction of 1-naphthoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 89% yield (45.3 mg). White solid. **¹H NMR (400 MHz, CDCl₃)** δ 8.79-8.77 (d, *J* = 8.4 Hz, 1 H), 8.10-8.09 (d, *J* = 6.1 Hz, 1 H), 7.96-7.93 (d, *J* = 8.2 Hz, 1 H), 7.85-7.83 (d, *J* = 8.0 Hz, 1 H), 7.57-7.53 (m, 1 H), 7.50-7.46 (t, *J* = 7.7 Hz, 2 H), 1.44 (s, 12 H). **¹³C{¹H} NMR (100 MHz, CDCl₃)** δ 135.9, 134.6, 132.2, 130.6, 127.4, 127.3, 125.3, 124.4, 123.9, 82.7, 23.9. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

4,4,5,5-Tetramethyl-2-(o-tolyl)-1,3,2-dioxaborolane (3m, Figure 2).¹³ According to the general procedure, the reaction of 2-methylbenzoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 75% yield (32.8 mg). White solid. **¹H NMR (500 MHz, CDCl₃)** δ 7.79-7.77 (d, *J* = 6.8 Hz, 1 H), 7.35-7.32 (t, *J* = 7.5 Hz, 1 H), 7.19-7.17 (t, *J* = 7.0 Hz, 2 H), 2.56 (s, 3 H), 1.37 (s, 12 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 144.8, 135.9, 130.8, 129.8, 124.7, 83.4, 24.9, 22.2. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

2-(2-Fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3n, Figure 2).¹³ According to the general procedure, the reaction of 2-fluorobenzoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22

mmol), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 85% yield (37.8 mg). White solid. **¹H NMR (400 MHz, CDCl₃)** δ 7.76-7.72 (m, 1 H), 7.46-7.40 (m, 1 H), 7.15-7.12 (t, *J* = 7.4 Hz, 1 H), 7.05-7.00 (t, *J* = 8.7 Hz, 1 H), 1.36 (s, 12 H). **¹³C{¹H} NMR (100 MHz, CDCl₃)** δ 167.2 (d, ¹J_{C-F} = 249.2 Hz), 136.8 (d, ⁴J_{C-F} = 8.0 Hz), 133.3 (d, ³J_{C-F} = 8.7 Hz), 123.6 (d, ⁵J_{C-F} = 3.3 Hz), 115.3 (d, ²J_{C-F} = 23.8 Hz), 83.9, 24.8. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening. **¹⁹F NMR (377 MHz, CDCl₃)** δ -102.68.

4,4,5,5-Tetramethyl-2-(thiophen-2-yl)-1,3,2-dioxaborolane (3o, Figure 2).¹³ According to the general procedure, the reaction of thiophene-2-carboxylic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 88% yield (37.0 mg). White solid. **¹H NMR (400 MHz, CDCl₃)** δ 7.66-7.63 (m, 2 H), 7.21-7.18 (m, 1 H), 1.35 (s, 12 H). **¹³C{¹H} NMR (100 MHz, CDCl₃)** δ 137.2, 132.4, 128.2, 84.1, 24.8. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

N,N-Dipropyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzenesulfonamide (3p, Figure 3).¹³ According to the general procedure, the reaction of 4-(*N,N*-dipropylsulfamoyl)benzoic anhydride (0.2 mmol), bis(pinacolato)diboron (0.22 mmol), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 98% yield (72.0 mg). White solid. **¹H NMR (500 MHz, CDCl₃)** δ 7.94-7.93 (d, *J* = 8.2 Hz, 2 H), 7.81-7.80 (d, *J* = 8.3 Hz, 2 H), 3.10-3.07 (t, *J* = 7.7 Hz, 4 H), 1.59-1.52 (m, 4 H), 1.38 (s, 12 H), 0.90-0.87 (t, *J* = 7.4 Hz, 6 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 142.4, 135.2, 126.0, 84.4, 50.0, 24.9, 22.0, 11.2. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

5,5-Dimethyl-2-phenyl-1,3,2-dioxaborinane (3a', Figure 3).¹³ According to the general procedure, the reaction of benzoic anhydride (0.2 mmol), bis(neopentyl glycolato)diboron (0.22 mmol), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 81% yield (30.8 mg). White solid. **¹H NMR (500 MHz, CDCl₃)** δ 7.83-7.82 (d, *J* = 7.2 Hz, 2 H), 7.46-7.43 (t, *J* = 7.0 Hz, 1 H), 7.39-7.36 (t, *J* = 7.4 Hz, 2 H), 3.80 (s, 4 H), 1.05 (s, 6 H). **¹³C{¹H} NMR (125 MHz, CDCl₃)** δ 133.8, 130.7, 127.6, 72.3, 31.9, 21.9. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

4-(5,5-Dimethyl-1,3,2-dioxaborinan-2-yl)-*N,N*-dipropylbenzenesulfonamide (3p', Figure 3).¹³ According to the general procedure, the reaction of 4-(*N,N*-dipropylsulfamoyl)benzoic anhydride (0.2 mmol), and bis(neopentyl glycolato)diboron (0.22 mmol), Pd(OAc)₂ (3 mol%), 1,4-bis(diphenylphosphino)butane (6 mol%) in 1,4-dioxane (0.20 M) for 15 h at 160 °C, afforded after work-up and chromatography (silica gel, hexane/DCM = 20/1) the title compound in 94% yield (66.5 mg). White solid. **¹H NMR (400 MHz, CDCl₃)** δ 7.91-7.89 (d, *J* = 8.2 Hz, 2 H), 7.77-7.75 (d, *J* = 8.2 Hz, 2 H), 3.78 (s, 4 H), 3.08-3.04 (t, *J* = 7.6 Hz, 4 H), 1.57-1.48 (m, 4 H), 1.03 (s, 6 H), 0.87-0.83 (t, *J* = 7.4 Hz, 6 H). **¹³C{¹H} NMR (100 MHz, CDCl₃)** δ 140.7, 133.3, 124.9, 71.4, 48.9, 30.9, 20.9, 20.8, 10.2. The carbon directly attached to the boron atom was not detected due to quadrupolar broadening.

Supporting Information Available. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra. This material is available free of charge via the Internet at <http://pubs.acs.org>.

Author	Information.	Corresponding	authors:	
				michal.szostak@rutgers.edu;
chengwei.liu@rutgers.edu				

Acknowledgements. We thank the NSF (CAREER CHE-1650766), Rutgers University, Zaozhuang University and Nanjing University of Information Science and Technology for financial support. The Bruker 500 MHz spectrometer used in this study was supported by the NSF-MRI (CHE-1229030). The

Bruker 400 MHz spectrometer used in this study was supported by Zaozhuang University. Additional support was provided by the Rutgers Graduate School in the form of Dean's Dissertation Fellowship.

References

1. Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. *Chem. Rev.* **1995**, *95*, 2457-2483.
2. (a) Lennox, A. J. J.; Lloyd-Jones, G. C. Selection of Boron Reagents for Suzuki-Miyaura Coupling. *Chem. Soc. Rev.* **2014**, *43*, 412-443. (b) Johansson-Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-Catalyzed Cross-Coupling: A Historical Con-textual Perspective to the 2010 Nobel Prize. *Angew. Chem. Int. Ed.* **2012**, *51*, 5062-5085.
3. Hall, D. G. *Boronic Acids*; Wiley: New York, 2005.
4. (a) *Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials*, 2nd ed.; Hall, D. G., Ed.; Wiley-VCH: Weinheim, Germany, 2011. (b) Lennox, A. J. J.; Lloyd-Jones, G. C. Selection of Boron Reagents for Suzuki-Miyaura Coupling. *Chem. Soc. Rev.* **2014**, *43*, 412-443. (c) Molander, G. A. Organotri-fluoroborates: Another Branch of the Mighty Oak. *J. Org. Chem.* **2015**, *80*, 7837-7848. (d) Fyfe, J. W. B.; Watson, A. J. B. Recent Developments in Organoboron Chemistry: old dogs, new tricks. *Chem.* **2017**, *3*, 31-55.
5. For reviews on borylation, see: (a) Wang, M.; Shi, Z. Methodologies and Strategies for Selective Borylation of C–Het and C–C Bonds. *Chem. Rev.* **2020**, *120*, 7348-7398. (b) Neeve, E. C.; Geier, S. J.; M Khalid, I. A. I.; Westcott, S. A.; Marder, T. Diboron Compounds: from Structural Curiosity to Synthetic Workhorse. *Chem. Rev.* **2016**, *116*, 9091-9161. (c) Chow, W. K.; Yuen, O. Y.; Choy, P. Y.; So, C. M.; Lau, C. P.; Wong, W. T.; Kwong, F. Y. A Decade Advancement of Transition Metal-Catalyzed Borylation of Aryl Halides and Sul-fonates. *RSC Adv.* **2013**, *3*, 12518-12539. (d) M Khalid, I.

A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. C–H Activation for the Construction of C–B Bonds. *Chem. Rev.* **2010**, *110*, 890–931.

6. (a) Hu, J.; Wang, G.; Li, S.; Shi, Z. Selective C–N Borylation of Alkyl Amines Promoted by Lewis Base. *Angew. Chem. Int. Ed.* **2018**, *57*, 15227–15231. (b) Wang, D.; Xue, X.-S.; Houk, K. N.; Shi, Z. Mild Ring-Opening 1,3-Hydroborations of Non-Activated Cyclopropanes. *Angew. Chem. Int. Ed.* **2018**, *57*, 16861–16865. (c) Jin, S.; Dang, H. T.; Haug, G. C.; He, R.; Nguyen, V. D.; Nguyen, V. T.; Arman, H. D.; Schanze, K. S.; Larionov, O. V. Visible Light-Induced Borylation of C–O, C–N, and C–X Bonds. *J. Am. Chem. Soc.* **2020**, *142*, 1603–1613.

7. For metal-catalyzed borylation of halides or pseudohalides, see: (a) Ishiyama, T.; Murata, M.; Miyaura, N. Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters. *J. Org. Chem.* **1995**, *60*, 7508–7510. (b) Ishiyama, T.; Itoh, Y.; Kitano, T.; Miyaura, N. Synthesis of Arylboronates via the Palladium(0)-Catalyzed Cross-Coupling Reaction of Tetra(alkoxo)diborons with Aryl Triflates. *Tetrahedron Lett.* **1997**, *38*, 3447–3450. (c) Takagi, J.; Takahashi, K.; Ishiyama, T.; Miyaura, N. Palladium-Catalyzed Cross-Coupling Reaction of Bis(pinacolato)diboron with 1-Alkenyl Halides or Triflates: Convenient Synthesis of Unsymmetrical 1,3-Dienes via the Borylation-Coupling Sequence. *J. Am. Chem. Soc.* **2002**, *124*, 8001–8006. (d) Billingsley, K. L.; Barder, T. E.; Buchwald, S. L. Palladium-Catalyzed Borylation of Aryl Chlorides: Scope, Applications, and Computational Studies. *Angew. Chem., Int. Ed.* **2007**, *46*, 5359–5363. (e) Molander, G. A.; Trice, S. L. J.; Dreher, S. D. Palladium-Catalyzed, Direct Boronic Acid Synthesis from Aryl Chlorides: A Simplified Route to Diverse Boronate Ester Derivatives. *J. Am. Chem. Soc.* **2010**, *132*, 17701–17703. (f) Kinuta, H.; Tobisu, M.; Chatani, N. Rhodium-Catalyzed Borylation of Aryl 2-Pyridyl Ethers through Cleavage of the Carbon–Oxygen Bond: Borylative Removal of the Directing Group. *J. Am. Chem. Soc.* **2015**, *137*, 1593–1600. (g) Zarate, C.; Manzano, R.; Martin, R. *Ipso*-Borylation of Aryl Ethers via Ni-Catalyzed C–OMe Cleavage. *J. Am. Chem. Soc.* **2015**, *137*, 6754–6757. (h) Liu, X. W.; Echavarren, J.; Zarate, C.; Martin, R. Ni-Catalyzed Borylation of Aryl Fluorides

via C–F Cleavage. *J. Am. Chem. Soc.* **2015**, *137*, 12470–12473. (i) Niwa, T.; Ochiai, H.; Watanabe, Y.; Hosoya, T. Ni/Cu-Catalyzed Defluoroborylation of Fluoroarenes for Diverse C–F Bond Functionalizations. *J. Am. Chem. Soc.* **2015**, *137*, 14313–14318.

8. Lu, H.; Yu, T.-Y.; Xu, P.-F.; Wei, H. Selective Decarbonylation via Transition-Metal-Catalyzed Carbon–Carbon Bond Cleavage. *Chem. Rev.* **2021**, *121*, 365–411.

9. For reviews on carboxylic acids as cross-coupling substrates, see: (a) Gooßen, L. J.; Rodriguez, N.; Gooßen, K. Carboxylic Acids as Substrates in Homogeneous Catalysis. *Angew. Chem. Int. Ed.* **2008**, *47*, 3100–3120. (b) Rodriguez, N.; Gooßen, L. J. Decarboxylative Coupling Reactions: A Modern Strategy for C–C-Bond Formation. *Chem. Soc. Rev.* **2011**, *40*, 5030–5048. (c) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Metal-Catalyzed Decarboxylative C–H Functionalization. *Chem. Rev.* **2017**, *117*, 8864–8907.

10. For representative studies, see: (a) Malapit, C. A.; Bour, J. R.; Brigham, C. E.; Sanford, M. S. Base-Free Nickel-Catalysed Decarbonylative Suzuki–Miyaura Coupling of Acid Fluorides. *Nature* **2018**, *563*, 100–104. (b) Keaveney, S. T.; Schoenebeck, F. Palladium-Catalyzed Decarbonylative Trifluoromethylation of Acid Fluorides. *Angew. Chem. Int. Ed.* **2018**, *57*, 4073–4077. (c) Pan, F.; Boursalian, G. B.; Ritter, T. Palladium-Catalyzed Decarbonylative Difluoromethylation of Acid Chlorides at Room Temperature. *Angew. Chem. Int. Ed.* **2018**, *57*, 16871–16876. (d) ~~Liu, C.; Ji, C. L.; Qin, Z. X.; Hong, X.; Szostak, M. Synthesis of Biaryls via Decarbonylative Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Carboxylic Acids. *iScience*.~~ **2019**, *19*, 749–759. (e) ~~Zhou, T.; Xie, P.; Ji, C. L.; Hong, X.; Szostak, M. Decarbonylative Suzuki–Miyaura Cross-Coupling of Aroyl Chlorides. *Org. Lett.* **2020**, *22*, 6434–6440.~~

11. Hu, J.; Zhao, Y.; Liu, J.; Zhang, Y.; Shi, Z. Nickel-Catalyzed Decarbonylative Borylation of Amides: Evidence for Acyl C–N Bond Activation. *Angew. Chem. Int. Ed.* **2016**, *55*, 8718–8722.

12. Shi, S.; Szostak, M. Decarbonylative Borylation of Amides by Palladium Catalysis. *ACS Omega*. **2019**, *4*, 4901–4907.

13. Bie, F.; Liu, X.; Shi, Y.; Cao, H.; Han, Y.; Szostak, M.; Liu, C. Rh-Catalyzed Base-Free Decarbonylative Borylation of Twisted Amides. *J. Org. Chem.* **2020**, *85*, 15676–15685.

14. (a) Liu, C.; Szostak, M. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N–C Amide Bond Activation. *Chem. Eur. J.* **2017**, *23*, 7157–7173. (b) Meng, G.; Szostak, M. Sterically Controlled Pd-Catalyzed Chemoselective Ketone Synthesis via N–C Cleavage in Twisted Amides. *Org. Lett.* **2015**, *17*, 4364–4367. (c) Liu, C.; Li, G.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, R.; Szostak, M. Acyl and Decarbonylative Suzuki Coupling of N-Acetyl Amides: Electronic Tuning of Twisted, Acyclic Amides in Catalytic Carbon–Nitrogen Bond Cleavage. *ACS Catal.* **2018**, *8*, 9131–9139. (d) Shi, S.; Meng, G.; Szostak, M. Synthesis of Biaryls through Nickel-Catalyzed Suzuki–Miyaura Coupling of Amides by Carbon–Nitrogen Bond Cleavage. *Angew. Chem. Int. Ed.* **2016**, *55*, 6959–6963. (e) Meng, G.; Szostak, M. General Olefin Synthesis by the Palladium-Catalyzed Heck Reaction of Amides: Sterically Controlled Chemoselective N–C Activation. *Angew. Chem. Int. Ed.* **2015**, *54*, 14518–14522. (f) Liu, C.; Szostak, M. Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Cross-Coupling of Amide Derivatives. *Angew. Chem. Int. Ed.* **2017**, *56*, 12718–12722. (g) Wu, H.; Li, Y.; Cui, M.; Jian, J.; Zeng, Z. Suzuki Coupling of Amides via Palladium-Catalyzed C–N Cleavage of N-Acylsaccharins. *Adv. Synth. Catal.* **2016**, *358*, 3876–3880.

15. (a) Tatamidani, H.; Kakiuchi, F.; Chatani, N. A New Ketone Synthesis by Palladium-Catalyzed Cross-Coupling Reactions of Es-ters with Organoboron Compounds. *Org. Lett.* **2004**, *6*, 3597–3599. (b) Amaike, K.; Muto, K.; Yamaguchi, J.; Itami, K. Decarbonylative C–H Coupling of Azoles and Aryl Esters: Unprecedented Nickel Catalysis and Application to the Synthesis of Muscoride A. *J. Am. Chem. Soc.* **2012**, *134*, 13573–13576. (c) Muto, K.; Yamaguchi, J.; Musaev, D. G.; Itami, K. Decarbonylative Organoboron Cross-Coupling of Esters by Nickel Catalysis. *Nat. Commun.* **2015**, *6*, 7508–7815.

16. Pu, X.; Hu, J.; Zhao, Y.; Shi, Z. Nickel-Catalyzed Decarbonylative Borylation and Silylation of Esters. *ACS Catal.* **2016**, *6*, 6692-6698.

17. Guo, L.; Rueping M. Functional Group Interconversion: De-carbonylative Borylation of Esters for the Synthesis of Organoboro-nates. *Chem. Eur. J.* **2016**, *22*, 16787-16790.

18. (a) Liu, C.; Ji, C. L.; Hong, X.; Szostak, M. Palladium-Catalyzed Decarbonylative Borylation of Carboxylic Acids: Tuning Reaction Selectivity by Computation. *Angew. Chem. Int. Ed.* **2018**, *57*, 16721-16726. For additional examples, see: (b) Liu, C.; Ji, C. L.; Zhou, T.; Hong, X.; Szostak, M. Bimetallic Cooperative Catalysis for Decarbonylative Heteroarylation of Carboxylic Acids via C–O/C–H Coupling. *Angew. Chem. Int. Ed.* **2021**, *60*, 10690-10699.

19. Ochiai, H.; Uetake, Y.; Niwa, T.; Hosoya, T. Rhodium-Catalyzed Decarbonylative Borylation of Aromatic Thioesters for Facile Diversification of Aromatic Carboxylic Acids. *Angew. Chem. Int. Ed.* **2017**, *56*, 2482–2486.

20. Wang, Z.; Wang, X.; Nishihara, Y. Nickel-Catalysed Decarbonylative Borylation of Aroyl Fluorides. *Chem. Commun.* **2018**, *54*, 13969-13972.

21. Malapit, C. A.; Bour, J. R.; Laursen, S. R.; Sanford, M. S. Mechanism and Scope of Nickel-Catalyzed Decarbonylative Borylation of Carboxylic Acid Fluorides. *J. Am. Chem. Soc.* **2019**, *141*, 17322-17330.

22. For palladium-catalyzed acyl Suzuki reaction of anhydrides, see: (a) Gooßen, L. J.; Ghosh, K. Palladium-Catalyzed Synthesis of Aryl Ketones from Boronic Acids and Carboxylic Acids Activated in situ by Pivalic Anhydride. *Eur. J. Org. Chem.* **2002**, 3254-3267. For rhodium-catalyzed decarbonylative Suzuki reaction of anhydrides, see: (b) Gooßen, L. J.; Paetzold, J. New Synthesis of Biaryls via Rh-Catalyzed Decarbonylative Suzuki-Coupling of Carboxylic Anhy-drides with Arylboroxines. *Adv. Synth. Catal.* **2004**, *346*, 1665-1668. For rhodium-catalyzed C–H functionalization of arenes via decar-

bonylative coupling using anhydrides, see: (c) Jin, W.; Yu, Z.; He, W.; Ye, W.; Xiao, W. J. Efficient Rh(I)-Catalyzed Direct Arylation and Alkenylation of Arene C-H Bonds via Decarbonylation of Benzoic and Cinnamic Anhydrides. *Org. Lett.* **2009**, *11*, 1317-1320.

23. For metal-catalyzed coupling of phthalic anhydrides, see: (a) Kajita, Y.; Kurahashi, T.; Matsubara, S. Nickel-Catalyzed Decarbonylative Addition of Anhydrides to Alkynes. *J. Am. Chem. Soc.* **2008**, *130*, 17226-17227. (b) Prakash, R.; Shekarrao, K.; Gogoi, S.; Boruah, R. C. Ruthenium-Catalyzed Decarbonylative Addition Reaction of Anhydrides with Alkynes: a Facile Synthesis of Isocoumarins and α -Pyrones. *Chem. Commun.* **2015**, *51*, 9972-9974.

24. For recent decarbonylative cross-coupling of anhydrides, see: (a) Zhou, J. Y.; Tao, S. W.; Liu, R. Q.; Zhu, Y. M. Forging C-S Bonds through Nickel-Catalyzed Aryl Anhydrides with Thiophenols: Decarbonylation or Decarbonylation Accompanied by Decarboxylation. *J. Org. Chem.* **2019**, *84*, 11891-11901. (b) Zhou, J. Y.; Liu, R. Q.; Wang, C. Y.; Zhu, Y. M. Synthesis of Biaryls via Decarbonylative Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling of Aryl Anhydrides. *J. Org. Chem.* **2020**, *85*, 14149-14157.

25. For a seminal study on decarbonylative coupling with anhydrides, see: Stephan, M. S.; Teunissen, A. J. J. M.; Verzijl, G. K. M.; de Vries, J. G. Heck Reaction without Salt Formation: Aromatic Carboxylic Anhydrides as Arylating Agents. *Angew. Chem. Int. Ed.* **1998**, *37*, 662-664.