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ABSTRACT
Let 𝑓 : {0, 1}𝑛 → {0, 1} be a boolean function, and let 𝑓∧ (𝑥,𝑦) =
𝑓 (𝑥∧𝑦) denote the AND-function of 𝑓 , where 𝑥∧𝑦 denotes bit-wise

AND. We study the deterministic communication complexity of 𝑓∧
and show that, up to a log𝑛 factor, it is bounded by a polynomial

in the logarithm of the real rank of the communication matrix of

𝑓∧. This comes within a log𝑛 factor of establishing the log-rank

conjecture for AND-functions with no assumptions on 𝑓 . Our result

stands in contrast with previous results on special cases of the log-

rank conjecture, which needed significant restrictions on 𝑓 such as

monotonicity or low F2-degree. Our techniques can also be used to

prove (within a log𝑛 factor) a lifting theorem for AND-functions,

stating that the deterministic communication complexity of 𝑓∧ is

polynomially related to the AND-decision tree complexity of 𝑓 .

The results rely on a new structural result regarding boolean

functions 𝑓 : {0, 1}𝑛 → {0, 1} with a sparse polynomial represen-

tation, which may be of independent interest. We show that if the

polynomial computing 𝑓 has few monomials then the set system of

the monomials has a small hitting set, of size poly-logarithmic in its

sparsity. We also establish extensions of this result to multi-linear

polynomials 𝑓 : {0, 1}𝑛 → R with a larger range.
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1 INTRODUCTION
Communication complexity has seen rapid development in the

last couple of decades. However, most of the celebrated results in

the field are about the communication complexity of important

concrete functions, such as set disjointness [29] and gap Hamming

distance [4]. Unfortunately, the understanding of communication

complexity of arbitrary functions is still lacking.
Probably the most famous problem of this type is the log-rank

conjecture [21]. It speculates that given any total boolean com-

munication problem, its deterministic communication complex-

ity is polynomially related to the logarithm of the real rank of

its associated communication matrix. Currently, there is an expo-

nential gap between the lower and upper bounds relating to the

log-rank conjecture. The best known upper bound [22] states that

the communication complexity of a boolean function 𝐹 is at most

𝑂 (
√
rank(𝐹 ) log rank(𝐹 )), where rank(𝐹 ) denotes the real rank of

the communication matrix of 𝐹 . On the other hand, the best known

lower bound [15] states that there exist a boolean function 𝐹 with

communication complexity Ω(log2 (rank(𝐹 ))).
Given this exponential gap and lack of progress for general com-

munication problems, many works [5, 7, 9, 11, 12, 14, 15, 17, 18,

20, 23–25, 27, 30, 34, 35, 37, 38] focused on the communication

complexity of functions with some restricted structure. In partic-

ular, the study of composed functions was especially successful,

and produced the so-called lifting method, which connects query

complexity measures of boolean functions with communication

complexity measures of their corresponding communication prob-

lems.

Concretely, given a boolean function 𝑓 : {0, 1}𝑛 → {0, 1} and a

gadget 𝑔 : {0, 1}ℓ × {0, 1}𝑚 → {0, 1}, the corresponding lifted func-

tion is the following communication problem: Alice gets as input

𝑥 ∈ ({0, 1}ℓ )𝑛 , Bob gets as input 𝑦 ∈ ({0, 1}𝑚)𝑛 , and their goal is to
compute the composed function 𝑓 ◦ 𝑔𝑛 , defined as (𝑓 ◦ 𝑔𝑛) (𝑥,𝑦) =
𝑓 (𝑔(𝑥1, 𝑦1), . . . , 𝑔(𝑥𝑛, 𝑦𝑛)). Lifting theorems allow to connect query

complexity measures of the underlying boolean function 𝑓 with

communication complexity measures of the composed function.

Figure 1 lists some notable examples.
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Gadget QM CM Total Functions Reference

Ind𝑚
P
dt

P
cc

No [28]

BPP
dt

BPP
cc

No [14]

IP
log𝑚

P
dt

P
cc

No [6]

BPP
dt

BPP
cc

No [5]

EQ
log𝑚 P

∧-dt
P
cc

No [25]

⊕ P
⊕-dt

P
cc

Yes [17]

𝑔 deg rank Yes [31]

Figure 1: Query-to-communication lifting theorems. QM
stands for query model and CM stands for communication
model. The parameter𝑚 is polynomial in 𝑛; 𝑔 in the last line
is any function that has as sub-functions both an AND and
an OR. Pcc denotes determenistic communication complex-
ity, Pdt denotes decision tree complexity, BPPdt denotes the
probabilistic decision tree complexity with bounded error,
BPP

cc denotes the probabilistic communication complexity
with bounded error, P∧-dt denotes AND-decision tree com-
plexity, deg denotes the real degree, and rank denotes the real
rank. The “total functions” column contains “Yes” if the cor-
responding theoremholds only for total functions, and “No”
if it holds for partial functions and search relations.

Of particular interest to us are lifting theorems with very simple

gadgets. The reason for that is twofold. First, using complex gadgets

(such as inner product or indexing) yields sub-optimal bounds in

applications. A second and perhaps more important reason is that

the study of composed functions with complex gadgets does not

bring us any closer towards the understanding of general communi-

cation problems. This is because the corresponding lifting theorems

connect the communication complexity of the lifted function to

well-studied query measures of the underlying boolean function

(such as decision tree complexity, or degree as a real polynomial),

and hence does not shed new light on general communication

problems.

Thus, in this paper we consider gadgets which are as simple

as they could be — one-bit gadgets. In fact, there are only two

non-equivalent one-bit gadgets: one-bit XOR, which yields XOR-

functions; and one-bit AND, which yields AND-functions. As we

shortly discuss, they naturally correspond to query models which

extend the standard ones: parity-decision trees and AND-decision

trees.

XOR-functions. These functions have been studied in several

works [17, 18, 20, 23, 24, 30, 34, 35, 37, 38]. Given a boolean function

𝑓 : {0, 1}𝑛 → {0, 1}, its corresponding XOR-function is 𝑓⊕ =

𝑓 ◦ ⊕𝑛
, defined as 𝑓⊕ (𝑥,𝑦) = 𝑓 (𝑥 ⊕ 𝑦). A natural query measure

corresponding to the communication complexity of XOR-functions

is the Parity-Decision Tree (PDT) model. This model is an extension

of the standard decision tree model, where nodes can query an

arbitrary parity of the bits. To see the connection, note that if 𝑓

can be computed by a PDT of depth 𝑑 (denoted by P
⊕-dt (𝑓 ) = 𝑑),

then 𝑓⊕ has a communication protocol of complexity 2𝑑 . This is by

simulating the computation in the PDT: whenever the PDT needs to

compute the parity of 𝑥⊕𝑦 on some set 𝑆 of coordinates, each player

computes the corresponding parity on their input, and then they

exchange the answers, which allows to compute the corresponding

parity on 𝑥 ⊕ 𝑦 as well, and continue to traverse the tree. Thus we

have P
cc (𝑓⊕) ≤ 2P

⊕-dt (𝑓 ).
In the other direction, [17] proved that P

⊕-dt (𝑓 ) is at most a poly-

nomial in the communication complexity of 𝑓⊕ . That is, P⊕-dt (𝑓 ) ≤
poly (Pcc (𝑓⊕)). Thus, the two measures are equivalent, up to poly-

nomial factors.

If one considers the log-rank conjecture for XOR-functions, then

a simple observation [34] is that the rank of the communication

matrix of 𝑓⊕ is equal to the Fourier sparsity of 𝑓 . Thus, in order

to prove the log-rank conjecture for XOR-functions it is sufficient

to show that P
⊕-dt (𝑓 ) is at most a polynomial in the log of the

Fourier sparsity of 𝑓 . Unfortunately, the latter relation is currently

unknown.

AND-functions. The goal of this paper is to develop an analogous
theory of AND-functions. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a boolean

function. Its corresponding AND-function is 𝑓∧ = 𝑓 ◦ ∧𝑛 , defined
as 𝑓∧ (𝑥,𝑦) = 𝑓 (𝑥 ∧ 𝑦). Similar to the case of XOR-functions, there

is a corresponding natural query model, AND-Decision Tree (ADT),
where each node in the decision tree can query an arbitrary AND

of the input bits. We denote by P
∧-dt (𝑓 ) the minimal depth of an

ADT computing 𝑓 . Also here, efficient ADTs for 𝑓 imply efficient

communication protocols for 𝑓∧, where Pcc (𝑓∧) ≤ 2P
∧-dt (𝑓 ). Our

main focus in this work is

(i) lifting theorems for AND-functions, and

(ii) the log-rank conjecture for AND-functions.

Concretely, we will show that assuming that 𝑓∧ has either (i) effi-

cient deterministic communication protocol or (ii) low rank, then

𝑓 has an efficient ADT. As we will shortly see, understanding both

questions is directly related to understanding the monomial struc-

ture of polynomials computing boolean functions.

1.1 Main Results
Let 𝑓 : {0, 1}𝑛 → {0, 1} be a boolean function. It is computed by

a unique multi-linear polynomial over the reals. That is, 𝑓 (𝑥) =∑
𝑠 𝑓𝑠

∏
𝑖∈𝑠 𝑥𝑖 , where 𝑠 ⊆ [𝑛] and 𝑓𝑠 ∈ R are real-valued coefficients;

note that this is not the Fourier representation of 𝑓 , as we are

working with {0, 1}𝑛 instead of {−1, 1}𝑛 . The sparsity of 𝑓 , denoted
spar(𝑓 ), is the number of nonzero coefficients in the decomposition.

This is related to AND-functions, as a simple observation (Claim 4.1)

is that this also equals the rank of its communicationmatrix, namely

rank(𝑓∧) = spar(𝑓 ).
Before describing our results, we need one more definition. Let

F be a set system (family of sets). A set 𝐻 is a hitting set for F if

it intersects all the sets in F . Of particular interest to us are set

systems that correspond to the monomials of boolean functions.

Given a boolean function 𝑓 , defineM(𝑓 ) = {𝑠 : 𝑓𝑠 ≠ 0, 𝑠 ≠ 0} to
be the set system of the non-constant monomials of 𝑓 . We exclude

the constant term as it is irrelevant for the purpose of constructing

hitting sets, and it simplifies some of the later arguments. Note that

|M(𝑓 ) | ∈ {spar(𝑓 ), spar(𝑓 ) − 1}.
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Our main combinatorial result is that set systems corresponding

to the monomials of boolean functions have small hitting sets. (Note

that an upper bound on the hitting set in terms of degree was known

before [8].)

Theorem 1.1. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a boolean function

with sparsity spar(𝑓 ) = 𝑟 . Then there exists a hitting set 𝐻 for

M(𝑓 ) of size |𝐻 | = 𝑂 ((log 𝑟 )5).

This result can be seen as an analog of a similar result for union-

closed families. A set system F is union-closed if it is closed under

taking unions; namely, if 𝑆1, 𝑆2 ∈ F then also 𝑆1 ∪ 𝑆2 ∈ F . A

famous conjecture of Frankl [10] is that in any union-closed family

F there is an element which belongs to at least half the sets in the

set system. Assume |F | = 𝑟 ; the best known result in this direction

is that F has a hitting set of size log(𝑟 ) [19], which implies that

one of its elements belongs to a 1/log(𝑟 ) fraction of sets in the set

system. We view Theorem 1.1 as a qualitative extension of this

result to more general set systems.

Our main application of Theorem 1.1 is a near-resolution of the

log-rank conjecture for AND-functions. Our bounds nearly match

the conjectured bounds (poly-log in the rank), except for an extra

log(𝑛) factor that we are currently unable to eliminate.

Theorem 1.2 (Log-rank Theorem for AND-functions). Let 𝑓 :

{0, 1}𝑛 → {0, 1} be a boolean function. Let 𝑟 = spar(𝑓 ) = rank(𝑓∧).
Then 𝑓 can be computed by an AND-decision tree of depth

P
∧-dt (𝑓 ) = 𝑂 ((log 𝑟 )5 · log𝑛) .

In particular, the deterministic communication complexity of 𝑓∧ is

bounded by

P
cc (𝑓∧) = 𝑂 ((log 𝑟 )5 · log𝑛) .

Note that if 𝑓 : {0, 1}𝑛 → {0, 1} is a function of sparsity at least

𝑛0.1, say, then Theorem 1.2 proves the log-rank conjecture for its

corresponding AND-function. Thus, the only remaining obstacle is

to extend the result to very sparse functions.

Observe that Theorem 1.2 implies a lifting theorem for AND-

functions. Assume that 𝑓∧ has deterministic communication com-

plexity 𝐶 . The rank of the associated communication matrix is

then at most 2
𝐶
, which by Theorem 1.2 gives an ADT for 𝑓 of

depth 𝑂 (𝐶5
log𝑛). We can improve the exponent 5 to 3 by directly

exploiting the existence of a communication protocol.

Theorem 1.3 (Lifting Theorem for AND-functions). Let 𝑓 be a

boolean function from {0, 1}𝑛 to {0, 1}, and let 𝐶 = P
cc (𝑓∧) denote

the deterministic communication complexity of its corresponding

AND-function. Then 𝑓 can be computed by an AND-decision tree

of depth

P
∧-dt (𝑓 ) = 𝑂 (𝐶3 · log𝑛).

1.2 Proof Overview
We first discuss how our combinatorial theorem (Theorem 1.1)

implies the log-rank theorem (Theorem 1.2). It relies on showing

that sparse boolean functions have efficient AND-decision trees

(ADTs).

Let 𝑓 be a boolean function with spar(𝑓 ) = 𝑟 . Our goal is to

construct an ADT for 𝑓 of depth poly(log 𝑟 ) · log(𝑛). This directly

implies Theorem 1.2, as the sparsity of 𝑓 equals the rank of its

AND-function 𝑓∧, and an ADT for 𝑓 of depth 𝑑 implies a protocol

for 𝑓∧ which sends 2𝑑 bits.

It will be convenient to first consider another model of decision

trees, called zero decision trees. A (standard) decision tree computing

𝑓 has zero decision tree complexity 𝑑 , if any path from root to leaf

in it queries at most 𝑑 variables which evaluate to 0. We denote by

P
0-dt (𝑓 ) the minimal such 𝑑 over all decision trees that compute

𝑓 . It is shown in [25] (see also Claim 4.4) that ADT complexity

and zero DT complexity are tightly connected. Concretely, for any

boolean function 𝑓 they show that

P
0-dt (𝑓 ) ≤ P

∧-dt (𝑓 ) ≤ P
0-dt (𝑓 ) · ⌈log(𝑛 + 1)⌉ .

Thus, we will show that P
0-dt (𝑓 ) ≤ poly(log 𝑟 ), which implies our

target bound of P
∧-dt (𝑓 ).

Theorem 1.1 gives that there is a hitting set size ℎ = poly(log 𝑟 )
which intersects all the monomials of 𝑓 . In particular, there is a

variable 𝑥𝑖 that intersects at least a 1/ℎ fraction of the monomials of

𝑓 . The decision tree will first query 𝑥𝑖 , and then branch depending

on whether 𝑥𝑖 = 0 or 𝑥𝑖 = 1. We use the simple fact that the sparsity

of 𝑓 cannot increase when variables are fixed, and continue this

process, until the value of the function is determined. Observe that

every time that we query a variable and get 0, we eliminates a 1/ℎ
fraction of the monomials. If we get a 1 the number of monomials

can either stay the same or decrease, but it cannot increase. So, as

𝑓 starts with 𝑟 monomials, we get that the maximal number of 0s

queried before all monomials are eliminated is at most ℎ · log(𝑟 ).
Hence P

0-dt (𝑓 ) ≤ ℎ · log(𝑟 ) = poly(log 𝑟 ), as claimed.

Thus, from now on we focus on proving Theorem 1.1. Let 𝑓 be a

boolean function of sparsity 𝑟 , and let M(𝑓 ) denote the set system
of its monomials. We consider four complexity measures associated

with it:

(1) The hitting set complexity (HSC) is the minimal size of a

hitting set for it. This is what we are trying to bound, and

can be phrased as an covering integer program.

(2) The fractional hitting set complexity (FHSC) is the fractional

relaxation for HSC. Here, we want a distribution over vari-

ables that hits every monomial with high probability, which

can be phrased as a fractional covering linear program.

(3) The fractional monotone block sensitivity (FMBS) is the dual

linear program. The reason for the name would become

clear soon. It can be phrased as a fractional packing linear

program.

(4) The monotone block sensitivity (MBS) is the integral version

of FMBS. It equals the maximal number of pairwise disjoint

monomials in 𝑓 . Equivalently, it is block sensitivity of 𝑓 at

0
𝑛
. It can be phrased as a packing integer program.

More generally, given 𝑠 ⊆ [𝑛], let 𝑓𝑠 denote the restriction of 𝑓

given by setting 𝑥𝑖 = 1 for all 𝑖 ∈ 𝑠 . It will be convenient to identify

𝑠 with its indicator vector 1𝑠 ∈ {0, 1}𝑛 . Thus, for 𝑧 ∈ {0, 1}𝑛 , we
denote by 𝑓𝑧 the restriction of 𝑓 to the 1s in 𝑧. Define HSC(𝑓 , 𝑧),
FHSC(𝑓 , 𝑧), FMBS(𝑓 , 𝑧), MBS(𝑓 , 𝑧) to be the above four measures

for the monomials of 𝑓𝑧 . It is simple to observe (see Claim 2.16) that

for each 𝑧 we have:

MBS(𝑓 , 𝑧) ≤ FMBS(𝑓 , 𝑧) = FHSC(𝑓 , 𝑧) ≤ HSC(𝑓 , 𝑧).
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Note that hitting set complexity is an analogue of certificate

complexity, monotone block sensitivity is an analogue of block

sensitivity; and fractional hitting set complexity and fractional

monotone block sensitivity are analogues of fractional certificate

complexity and fractional block sensitivity defined by [1, 32].

As a first step, we use existing techniques in boolean function

analysis techniques to bound MBS(𝑓 , 𝑧) in terms of the sparsity of

𝑓 . Lemma 3.1 shows that

MBS(𝑓 , 𝑧) ≤ 𝑂 ((log spar(𝑓𝑧))2) ≤ 𝑂 ((log 𝑟 )2) .

Thus, to complete the picture, we need to show that if MBS(𝑓 , 𝑧)
is low then so is HSC(𝑓 , 𝑧). This however is false, if one compares

them point wise (for a single 𝑧). However, we show that the mea-

sures are equivalent (up to polynomial factors) if instead we con-

sider their maximal value over all 𝑧. Define

MBS(𝑓 ) = max

𝑧∈{0,1}𝑛
MBS(𝑓 , 𝑧)

and similarly define FMBS(𝑓 ), FHSC(𝑓 ),HSC(𝑓 ). Lemma 3.2 shows

that

FMBS(𝑓 ) = 𝑂 (MBS(𝑓 )2),

linear programming duality gives FHSC(𝑓 ) = FMBS(𝑓 ), and we

show in Lemma 3.3 that

HSC(𝑓 ) = 𝑂 (FHSC(𝑓 ) · log 𝑟 ).

This completes the proof of Theorem 1.1.

We also briefly discuss Theorem 1.3. The improved exponent

is obtained by using the bound MBS(𝑓 ) = 𝑂 (Pcc (𝑓∧)), which we

prove in Corollary 4.9. Its proof is based on the observation that

if MBS(𝑓 ) = 𝑏 then 𝑓∧ embeds as a sub-function unique disjoint-

ness on 𝑏 bits, and combine it with known lower bounds on the

communication complexity of unique disjointness.

1.3 Generalizations
Several of our definitions and techniques readily extend to non-

boolean functions, namely to functions 𝑓 : {0, 1}𝑛 → R. We refer

the reader to Section 2 for the relevant definitions and Section 5

for a detailed discussion of the generalized results. Here, we briefly

state some of the results.

Theorem 1.4. Let 𝑓 : {0, 1}𝑛 → R be a multlinear polynomial

with sparsity 𝑟 . Suppose MBS(𝑓 ) = 𝑚. Then the hitting set com-

plexity of 𝑓 is bounded by

HSC(𝑓 ) = 𝑂 (𝑚2
log 𝑟 ).

Theorem 1.5. Let 𝑓 : {0, 1}𝑛 → 𝑆 for 𝑆 ⊂ R. Assume that

spar(𝑓 ) = 𝑟 and |𝑆 | = 𝑠 . Then the hitting set complexity of 𝑓 is

bounded by

HSC(𝑓 ) = 𝑂 (𝑠4 (log 𝑟 )5) .

Acknowledgements. S.L. thanks Kaave Hosseini, who was in-

volved in early stages of this work. S.M. thanks Russell Impagliazzo

for useful discussions throughout the course of this work.

2 PRELIMINARIES
This section introduces a number of complexity measures used in

the proofs of our main results. We start by collecting some sim-

ple definitions, proceed to define the complexity measures, and

then provide some examples which clarify some aspects of these

definitions.

Throughout this section, fix a boolean function 𝑓 : {0, 1}𝑛 →
R. We identify elements of {0, 1}𝑛 with subsets of [𝑛]. Namely,

we identify 𝑧 ∈ {0, 1}𝑛 with the set {𝑖 : 𝑧𝑖 = 1}, and shorthand

[𝑛] \𝑧 = {𝑖 : 𝑧𝑖 = 0}. Given two inputs 𝑧,𝑤 ∈ {0, 1}𝑛 we denote by

𝑧∨𝑤 their union and by 𝑧∧𝑤 their intersection. The partial order on

{0, 1}𝑛 is defined by the relation 𝑧 ≤ 𝑤 , satisfied precisely when 𝑧 is

a subset of𝑤 . Define 𝑓𝑧 : {0, 1} [𝑛]\𝑧 → R to be the restriction of 𝑓 to
inputs which are consistent with the 1s in 𝑧; namely 𝑓𝑧 (𝑤) = 𝑓 (𝑧 ∨
𝑤). DefineW(𝑓 , 𝑧) =

{
𝑤 ∈ {0, 1} [𝑛]\𝑧 : 𝑓 (𝑧) ≠ 𝑓 (𝑧 ∨𝑤)

}
which

is equivalent toW(𝑓 , 𝑧) =
{
𝑤 ∈ {0, 1} [𝑛]\𝑧 : 𝑓𝑧 (𝑤) ≠ 𝑓𝑧 (0)

}
.

Recall also the notation from the proof overview. Any function

𝑓 : {0, 1}𝑛 → R can be written uniquely as a multilinear real-valued

polynomial 𝑓 (𝑥) =
∑
𝑠⊆[𝑛] 𝛼𝑠

∏
𝑖∈𝑠 𝑥𝑖 (note that this is not the

Fourier expansion, as here the variables are {0, 1}-valued whereas

in the Fourier expansion they are {±1}-valued). The sparsity of 𝑓 , de-
noted spar(𝑓 ), is the number of nonzero coefficients in the polyno-

mial expansion of 𝑓 . Next, letM(𝑓 ) = {𝑠 ⊆ [𝑛] : 𝛼𝑠 ≠ 0, 𝑠 ≠ 0
𝑛}

denote the set system of non-zero, non-constant monomials in 𝑓

when written as a multilinear polynomial. We emphasize that the

coefficient 𝛼∅ is not included in M(𝑓 ); 𝛼∅ is inessential, since we
are interested in hitting sets for monomials and ∅ is trivially hit by

any set. Observe that |M(𝑓 ) | ∈ {spar(𝑓 ), spar(𝑓 ) − 1}.
For any set system F over [𝑛], an element 𝑧 ∈ F is minimal if

there does not exist𝑤 ∈ F with𝑤 < 𝑧.

Claim 2.1. Fix 𝑓 : {0, 1}𝑛 → R, 𝑧 ∈ {0, 1}𝑛 and W(𝑓 , 𝑧), M(𝑓𝑧)
as above. Then, for any 𝑤 ∈ {0, 1}𝑛 , 𝑤 is a minimal element in

W(𝑓 , 𝑧) if and only if𝑤 is a minimal element inM(𝑓𝑧).

Proof. We assume for simplicity that 𝑧 = ∅ so that 𝑓𝑧 (𝑤) =

𝑓 (𝑤), 𝑓 (∅) = 𝛼∅ and write W = W(𝑓 , ∅). Suppose 𝑤 ∈ M(𝑓 )
is a minimal element. Writing 𝑓 as a multilinear polynomial, we

get 𝑓 (𝑤) = ∑
𝑢≤𝑤 𝛼𝑢 . Since 𝛼𝑤 is minimal, 𝑓 (𝑤) = 𝛼∅ + 𝛼𝑢 and so

𝑓 (𝑤) ≠ 𝑓 (∅) and𝑤 ∈ W. Additionally,𝑤 is minimal inW because

if 𝑤 ′ < 𝑤 then the non-constant terms of 𝑓 (𝑤 ′) = ∑
𝑢≤𝑤′ 𝛼𝑢 are

all 0, hence 𝑓 (𝑤 ′) = 𝑓 (0) and𝑤 ′ ∉ W.

In the other direction, suppose 𝑤 ∈ W is a minimal element.

Assume there is 𝑤 ′ < 𝑤 in M(𝑓 ); choosing such a minimal 𝑤 ′
,

we would get 𝑓 (𝑤 ′) ≠ 𝑓 (0) which violates the minimality of 𝑤 .

Similarly, if 𝑤 ∉ M(𝑓 ) then we get 𝑓 (𝑤) =
∑
𝑢≤𝑤 𝛼𝑢 = 𝑓 (0),

which violates the assumption that𝑤 ∈ W. Thus𝑤 is a minimal

element in M(𝑓 ). □

2.1 Monotone Block Sensitivity
First, we consider monotone block sensitivity, a variant of the stan-
dard notion of block sensitivity due to Nisan and Szegedy [26]. In a

nutshell, this is a “directed” restriction of block sensitivity, where we

can only change an input by flipping 0’s to 1’s. We also define MBS

(and all other complexity measures introduced later in this section)

with respect to real-valued functions over {0, 1}𝑛 . This differs from
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block sensitivity, which is usually (though not always [13]) studied

in the context of boolean-valued functions. The generalization to

real-valued 𝑓 will be immaterial to some of our proofs, permit-

ting us to draw more general conclusions regarding the monomial

structure of multilinear polynomials; see Section 5 for more details.

Say that two inputs 𝑧,𝑤 are disjoint if 𝑧 ∧𝑤 = 0
𝑛
; namely, their

corresponding sets are disjoint.

Definition 2.2 (Monotone block sensitivity). For 𝑓 : {0, 1}𝑛 → R
and 𝑧 ∈ {0, 1}𝑛 , the monotone block sensitivity of 𝑓 at 𝑧, denoted
MBS(𝑓 , 𝑧), is the largest integer 𝑘 such that there exist 𝑘 pair-

wise disjoint inputs 𝑤1, . . . ,𝑤𝑘 ∈ W(𝑓 , 𝑧). We denote MBS(𝑓 ) =
max𝑧 MBS(𝑓 , 𝑧).

For two motivating examples, observe that for the 𝑛-bit AND

and OR functions we have MBS(AND) = 1 and MBS(OR) = 𝑛,

respectively.

Remark 2.3. We emphasize thatW(𝑓 , 𝑧) ⊆ {0, 1} [𝑛]\𝑧 , so each

𝑤𝑖 is disjoint from 𝑧. This corresponds to the standard definition

of block sensitivity where we restrict each block𝑤𝑖 to be disjoint

from the support of 𝑧.

Remark 2.4. Suppose 𝑤1, . . . ,𝑤𝑘 are minimal witnesses that

MBS(𝑓 , 𝑧) = 𝑘 in the sense that for any 𝑖 ∈ [𝑘] there is no𝑤 ′
𝑖
< 𝑤𝑖

so that 𝑤 ′
𝑖
∈ W(𝑓 , 𝑧). Then by Claim 2.1, each 𝑤𝑖 is a minimal

element in M(𝑓𝑧).

As alluded to in the proof overview, MBS(𝑓 , 𝑧) can be phrased

as the value of a particular set packing linear program (LP). Fixing

𝑧, writeW = W(𝑓 , 𝑧). The program optimizes over variables 𝑎𝑤
for each𝑤 ∈ W.

maximize

∑
𝑤∈W

𝑎𝑤

subject to

∑
𝑤∈W:𝑤𝑖=1

𝑎𝑤 ≤ 1 for all 𝑖 ∈ [𝑛]

𝑎𝑤 ∈ {0, 1} for all𝑤 ∈ W

Fractional monotone block sensitivity (FMBS) is obtained by relax-

ing the constraints in the above LP, allowing variables 𝑎𝑤 to assume

non-integral values in [0, 1]. We use an alternative formulation of

FMBS whose equivalence to the LP formulation is simple to verify.

Definition 2.5 (Smooth distribution). AdistributionD over {0, 1}𝑛
is said to be 𝑝-smooth if for any 𝑖 ∈ [𝑛] it holds that

Pr

𝑤∼D
[𝑤𝑖 = 1] ≤ 𝑝.

Definition 2.6 (Fractional monotone block sensitivity). The frac-

tional monotone block sensitivity of a function 𝑓 : {0, 1}𝑛 →
R at an input 𝑧 ∈ {0, 1}𝑛 , denoted FMBS(𝑓 , 𝑧), is equal to 1/𝑝 ,
where 𝑝 > 0 is the smallest number for which there exists a 𝑝-

smooth distribution D supported on a subset ofW(𝑓 , 𝑧). We de-

note FMBS(𝑓 ) = max𝑧 FMBS(𝑓 , 𝑧).

Remark 2.7. To see the equivalence between this definition of

FMBS and the LP formulation, notice that a solution

{𝑎𝑤 : 𝑤 ∈ W(𝑓 , 𝑧)}

to the LP with 𝑠 =
∑
𝑎𝑤 gives rise to a 1/𝑠-smooth distribution D

overW(𝑓 , 𝑧) via D(𝑤) = 𝑎𝑤/𝑠 .

Remark 2.8. Clearly, any solution to the fractional program for

FMBS is a solution to the integral program for MBS. Hence, both

being maximization problems, FMBS upper bounds MBS. Later, we

prove in Lemma 3.2 that the converse of this inequality holds in the

sense that FMBS(𝑓 ) is upper bounded by a polynomial in MBS(𝑓 ).

Remark 2.9. Fractional block sensitivity (the non-monotone vari-

ant) was considered by Tal in [33]. Tal mentions explicitly the prob-

lem of finding separations between fractional block sensitivity and

sensitivity.

2.2 Hitting Set Complexity
Next, we consider hitting set complexity. This can be viewed as a

variant of certificate complexity, a commonly-studied quantity in

standard query complexity.

Definition 2.10 (Hitting set complexity). The hitting set complex-

ity of a function 𝑓 : {0, 1}𝑛 → R at an input 𝑧 ∈ {0, 1}𝑛 , denoted
HSC(𝑓 , 𝑧), is the minimal size of a set 𝐻 ⊆ [𝑛] which intersects

all sets in W(𝑓 , 𝑧). In other words, for every𝑤 ∈ W(𝑓 , 𝑧) there is
some 𝑖 ∈ 𝐻 so that𝑤𝑖 = 1. We denote HSC(𝑓 ) = max𝑧 HSC(𝑓 , 𝑧).

Similarly to MBS, it is simple to see that the 𝑛-bit AND and OR

functions have HSC(AND𝑛) = 1 and HSC(OR𝑛) = 𝑛, respectively.

Remark 2.11. Note that HSC(𝑓 , 𝑧) is equal to the certificate com-

plexity of 𝑓𝑧 at the all 0s input.

Remark 2.12. It suffices to consider 𝐻 ⊆ [𝑛] which have non-

empty intersection with any minimal element of W(𝑓 , 𝑧). This
is simply because if 𝐻 hits an element 𝑤 then it also hits every

superset of𝑤 .

Remark 2.13. Let 𝐻 ⊆ [𝑛] be a set such that |𝐻 | = 𝑏 and it

witnesses HSC(𝑓 , 0𝑛) = 𝑏. By the previous remark and Claim 2.1,

one can see that 𝐻 is hitting set ofM(𝑓 ).

We can also phrase HSC(𝑓 , 𝑧) as the value of a certain set cover-

ing LP. Putting W = W(𝑓 , 𝑧), the LP optimizes over the variables

{𝑏𝑖 : 𝑖 ∈ [𝑛]} as follows:

minimize

∑
𝑖∈[𝑛]

𝑏𝑖

subject to

∑
𝑖∈[𝑛]:𝑤𝑖=1

𝑏𝑖 ≥ 1 for all𝑤 ∈ W

𝑏𝑖 ∈ {0, 1} for all 𝑖 ∈ [𝑛]

One can easily verify that this LP is dual to the LP defining mono-

tone block sensitivity. Fractional hitting set complexity is obtained

from hitting set complexity by relaxing each constraint 𝑏𝑖 ∈ {0, 1}
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to 𝑏𝑖 ∈ [0, 1]. We give an alternative definition, equivalent to the

LP formulation:

Definition 2.14 (Fractional hitting set complexity). The frac-

tional hitting set complexity of a function 𝑓 : {0, 1}𝑛 → R at

an input 𝑧 ∈ {0, 1}𝑛 , denoted FHSC(𝑓 , 𝑧), is 1/𝑝 , where 𝑝 > 0 is

the smallest number for which there exists a distribution D of in-

dices 𝑖 ∈ [𝑛] with the property that Pr𝑖∼D [𝑤𝑖 = 1] ≥ 𝑝 for each

𝑤 ∈ W(𝑓 , 𝑧). We denote FHSC(𝑓 ) = max𝑧 FHSC(𝑓 , 𝑧).

Remark 2.15. The same reasoning as the FMBS case can be used

to show that this definition is equivalent to the LP definition. Also

by analogous reasoning, FHSC(𝑓 , 𝑧) ≤ HSC(𝑓 , 𝑧) (recalling that

FHSC is a minimization problem).

The LPs defining FHSC and FMBS are dual, so linear program-

ming duality yields FHSC(𝑓 , 𝑧) = FMBS(𝑓 , 𝑧). Combined with the

remarked-upon relationships between MBS/FMBS and HSC/FHSC,
we conclude the following:

Claim 2.16. For any function 𝑓 : {0, 1}𝑛 → R and input 𝑧 ∈
{0, 1}𝑛 ,

MBS(𝑓 , 𝑧) ≤ FMBS(𝑓 , 𝑧) = FHSC(𝑓 , 𝑧) ≤ HSC(𝑓 , 𝑧).

2.3 Some Informative Examples
To digest the definitions, some examples are in order. We start by

noting that there are large gaps in the inequalities from Claim 2.16

for fixed 𝑧. These correspond to integrality gaps for the set cover and
hitting set linear programs (of which FHSC(𝑓 , 𝑧) and FMBS(𝑓 , 𝑧)
are a special case), which are central to combinatorial optimization.

The first example gives a separation between FMBS(𝑓 , 𝑧) and
MBS(𝑓 , 𝑧).
Example 2.17 (Projective plane). For a prime power 𝑚, let 𝑃

be the set of 1-dimensional subspaces of F3𝑚 and 𝐿 the set of 2-

dimensional subspaces of F3𝑚 . 𝑃 is the set of points and 𝐿 is the set

of lines. Note that |𝑃 | = |𝐿 | =𝑚2 +𝑚 + 1.

It is well-known that 𝑃 and 𝐿 form a projective plane, in that they

satisfy the following properties:

(1) Any two points in 𝑃 are contained in exactly one line in 𝐿.

Moreover, each point is contained in𝑚 + 1 lines.

(2) Any two lines in 𝐿 intersect at exactly one point in 𝑃 . More-

over, each line contains𝑚 + 1 points.

(3) There are 4 points, no 3 of which lie on the same line.

For more background on finite geometry, see, for example, [2].

Let 𝑛 =𝑚2 +𝑚+1, thinking of each 𝑖 ∈ [𝑛] as corresponding to a
point 𝑝𝑖 ∈ 𝑃 . For lines ℓ ∈ 𝐿, let 𝑆ℓ = {𝑖 ∈ [𝑛] : 𝑝𝑖 is contained in ℓ}
be the set of (indices of) points incident to ℓ and define a function

𝑓 : {0, 1}𝑛 → {0, 1} as

𝑓 (𝑧) =
∨
ℓ∈𝐿

( ∧
𝑖∈𝑆ℓ

𝑧𝑖

)
.

Since any two lines intersect at a point, any ℓ1, ℓ2 ∈ 𝐿 have 𝑆ℓ1 ∩
𝑆ℓ2 ≠ ∅. This implies MBS(𝑓 , 0𝑛) = 1. On the other hand, because

each line contains𝑚+1 points, Pr𝑖∈[𝑛] [𝑖 ∈ 𝑆ℓ ] = (𝑚+1)/(𝑚2+𝑚+1)
when 𝑖 is uniform and therefore FMBS(𝑓 , 0𝑛) ≈𝑚 ≈

√
𝑛.

The next example gives a similar separation between FHSC(𝑓 , 𝑧)
and HSC(𝑓 , 𝑧).
Example 2.18 (Majority). For 𝑛 even, let 𝑓 (𝑧) = 1[∑𝑖 𝑧𝑖 ≥ 𝑛/2]
be the Majority function. The minimal elements ofM(𝑓 ) consist
of sets 𝑠 with 𝑛/2 members.

Any set 𝑠 of size at most 𝑛/2 will fail to hit [𝑛] \ 𝑠 ∈ M(𝑓 ).
Therefore any hitting set for the monomials of 𝑓 , namely forM(𝑓 ),
has size more than 𝑛/2. In particular, HSC(𝑓 , 0𝑛) = 𝑛/2 + 1 (clearly

𝑛/2 + 1 suffices). On the other hand, the uniform distribution over

[𝑛] satisfies Pr[𝑖 ∈ 𝑠] = 1/2 for any minimal monomial 𝑠 ∈ M(𝑓 ).
Hence FHSC(𝑓 , 0𝑛) = 2.

These two examples show that it will be necessary to utilize the

fact that MBS and HSC are defined as the maximum over all inputs.

The next examples shows that HSC(𝑓 ) and MBS(𝑓 ) can be con-

stant while spar(𝑓 ) grows exponentially.
Example 2.19 (AND-OR). Consider a string 𝑧 ∈ {0, 1}2𝑛 written

as 𝑧 = 𝑥𝑦 for 𝑥,𝑦 ∈ {0, 1}𝑛 . Define

𝑓 (𝑥,𝑦) =
∧
𝑗 ∈[𝑛]

(
𝑥 𝑗 ∨ 𝑦 𝑗

)
.

One can verify that HSC(𝑓 ) = MBS(𝑓 ) = 2. On the other hand,

writing 𝑓 as a multilinear polynomial yields

𝑓 (𝑥,𝑦) =
∏
𝑗 ∈[𝑛]

(𝑥𝑖 + 𝑦 𝑗 − 𝑥 𝑗 · 𝑦 𝑗 ),

which clearly has sparsity exponential in 𝑛.

Note that this holds for the global (i.e. maximizing over {0, 1}𝑛)
definitions of MBS and HSC. To see the significance of this example,

recall from the proof overview that we are interested in eventually

showing MBS(𝑓 ) ≤ 𝑂 ((log spar(𝑓 ))2). This example shows that

this latter inequality can be very far from the truth; we are able to

make up for this discrepancy by using the low-sparsity assumption

multiple times.

Finally, we include an example which will become relevant to

our applications to communication complexity in Section 4.

Example 2.20 (Redundant indexing). Let 𝑘 ≥ 1, and consider

two sets of variables {𝑥𝑆 }𝑆⊆[𝑘 ] and {𝑦𝑖 }𝑖∈[𝑘 ] of sizes 2𝑘 and 𝑘 ,

respectively. Let 𝑛 = 2
𝑘 + 𝑘 and define

𝑓 (𝑥,𝑦) =
∑
𝑖∈[𝑘 ]

( ∏
𝑆 : 𝑖∈𝑆

𝑥𝑆

)
(1 − 𝑦𝑖 )

©­«
∏
𝑗≠𝑖

𝑦 𝑗
ª®¬ .

In words, 𝑓 (𝑥,𝑦) = 1 when 𝑦 has weight exactly 𝑘 − 1 with 𝑦𝑖 = 0

and 𝑥𝑆 = 1 for every 𝑆 containing 𝑖 .

By the mutilinear representation, one can see that the sparsity

of 𝑓 is 2𝑘 ∼ log𝑛. Moreover, HSC(𝑓 ) ≤ 2. To see why, consider an

input 𝑧 = (𝑎, 𝑏) and note that 𝑓 restricted to inputs𝑤 = (𝑥,𝑦) ≥ 𝑧

becomes

𝑓 ′(𝑥,𝑦) =
∑
𝑖:𝑏𝑖=0

©­«
∏

𝑆 :𝑖∈𝑆,𝑎𝑆=0
𝑥𝑆

ª®¬ (1 − 𝑦𝑖 )
©­«

∏
𝑗 :𝑗≠𝑖,𝑏 𝑗=0

𝑦 𝑗
ª®¬ .

In particular, if 𝑎 ≠ 1
[2𝑘 ]

then the variable 𝑥 [2𝑘 ]\𝑎 hits all the mono-

mials, and if 𝑎 = 1
[2𝑘 ]

then any two 𝑦𝑖 , 𝑦 𝑗 hit all the monomials.
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We view this as an important example in understanding the

log𝑛 factor currently present in the statements of Theorem 1.2 and

Theorem 1.3. This connection will be discussed in more detail in

Section 6.

3 PROOF OF THEOREM 1.1
We recall the statement of Theorem 1.1.

Theorem 1.1. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a boolean function

with sparsity spar(𝑓 ) = 𝑟 . Then there exists a hitting set 𝐻 for

M(𝑓 ) of size |𝐻 | = 𝑂 ((log 𝑟 )5).

The proof relies on three lemmas which provide various rela-

tionships between spar(𝑓 ), MBS(𝑓 ) and HSC(𝑓 ), as well as their
fractional variants. In this subsection, we will state the lemmas

and show how Theorem 1.1 follows as a consequence. Then, in the

following subsections, we prove the lemmas.

The first gives an upper bound on the monotone block sensitivity

of a boolean-valued 𝑓 in terms of its sparsity.

Lemma 3.1. For any 𝑓 : {0, 1}𝑛 → {0, 1},

MBS(𝑓 ) = 𝑂 (log(spar(𝑓 ))2) .

We stress that this only holds for boolean-valued functions. To

some extent, we will be able to relax this condition when we con-

sider generalizations in Section 5. Additionally, we note that this

inequality can be very far from tight: Example 2.19 gives a function

with constant MBS but exponential sparsity.

The second lemma shows that FMBS and MBS are equivalent

up to a polynomial factor. Unlike Lemma 3.1, this holds for any

real-valued function.

Lemma 3.2. For any 𝑓 : {0, 1}𝑛 → R,

FMBS(𝑓 ) = 𝑂 (MBS(𝑓 )2).

The third lemma, which also holds for any real-valued function,

upper bounds the hitting set complexity of 𝑓 in terms of FMBS(𝑓 )
and spar(𝑓 ).
Lemma 3.3. For any 𝑓 : {0, 1}𝑛 → R,

HSC(𝑓 ) ≤ FMBS(𝑓 ) · log(spar(𝑓 )) .

Theorem 1.1 now follows quite readily from the three lemmas.

Proof of Theorem 1.1. Fix a boolean function 𝑓 with sparsity 𝑟

as in the theorem statement. By Lemma 3.1, MBS(𝑓 ) = 𝑂 ((log 𝑟 )2).
By Lemma 3.2, FMBS(𝑓 ) = 𝑂 ((log 𝑟 )4). Finally, by Lemma 3.3,

HSC(𝑓 ) ≤ 𝑂 ((log 𝑟 )5), as desired. □

3.1 MBS from Sparsity
We begin by proving Lemma 3.1.

Lemma 3.1. For any 𝑓 : {0, 1}𝑛 → {0, 1},

MBS(𝑓 ) = 𝑂 (log(spar(𝑓 ))2) .

The proof uses a well-known relationship between the degree

and the sensitivity of boolean functions [26]. The sensitivity 𝑆 (𝑓 )
of a boolean function 𝑓 is the largest 𝑠 so that there exists an input

𝑧 and 𝑠 coordinates {𝑖1, . . . , 𝑖𝑠 } so that 𝑓 (𝑧) ≠ 𝑓 (𝑧 ⊕ 𝑒𝑖 𝑗 ) for all
𝑗 ∈ [𝑠].
Claim 3.4 (Nisan-Szegedy, [26]). For any 𝑓 : {0, 1}𝑛 → {0, 1},

𝑆 (𝑓 ) = 𝑂 (deg(𝑓 )2).

Proof of Lemma 3.1. Suppose MBS(𝑓 ) = 𝑘 , witnessed by pair-

wise disjoint 𝑧,𝑤1, . . . ,𝑤𝑘 ⊆ [𝑛]. Namely, 𝑓 (𝑧) ≠ 𝑓 (𝑧 ∨ 𝑤𝑖 ) for
𝑖 ∈ [𝑘]. Let 𝑔 : {0, 1}𝑘 → {0, 1} denote the function obtained

from 𝑓 by identifying variables in each 𝑤𝑖 and setting all vari-

ables not occurring in any 𝑤𝑖 to the corresponding bit in 𝑧. That

is, 𝑔(𝑥) = 𝑓 (𝑧 + ∑
𝑥𝑖𝑤𝑖 ). Note that 𝑆 (𝑔) = 𝑘 , since 𝑔(0) ≠ 𝑔(𝑒𝑖 ) for

𝑖 ∈ [𝑘], and spar(𝑔) ≤ spar(𝑓 ).
Let 𝑟 = spar(𝑓 ). Wewill reduce the degree of𝑔 to𝑑 = 𝑂 (log 𝑟 ) by

repeating the following process 𝑘/2 times: set to zero the coordinate

which appears in the largest number of monomials of degree at

least 𝑑 .

Let 𝑀𝑖 denote the number of monomials of degree at least 𝑑

remaining after the 𝑖-th step. Initially 𝑀0 ≤ 𝑟 . Next, note that

if 𝑀𝑖 > 0, then there is a variable that occurs in at least a 𝑑/𝑘
fraction of the monomials of degree ≥ 𝑑 . Indeed, the total length

of the monomials of degree ≥ 𝑑 is at least 𝑀𝑖𝑑 ; however, under

the assumption that each variable occur in less than 𝑑/𝑘 fraction

of these monomials, we can see that the total length is less than

(𝑑/𝑘)𝑀𝑖𝑑 = 𝑑𝑀𝑖 , which is a contradiction. We therefore obtain

the recurrence 𝑀𝑖+1 ≤ (1 − 𝑑/𝑘)𝑀𝑖 . After 𝑘/2 steps, 𝑀𝑘/2 ≤ (1 −
𝑑/𝑘)𝑘/2𝑟 ≤ exp(−𝑑/2)𝑟 < 1 for 𝑑 = 𝑂 (log 𝑟 ). As𝑀𝑘/2 is an integer,

we obtain that𝑀𝑘/2 is zero.
Let ℎ denote the function obtained by this restriction process.

Since 𝑀𝑘/2 = 0 we have deg(ℎ) < 𝑑 . Moreover, since 𝑔 had full

sensitivity at 0
𝑘
and we restricted only 𝑘/2 coordinates, 𝑆 (ℎ) ≥ 𝑘/2.

Finishing up, we have 𝑘/2 ≤ 𝑆 (ℎ) = 𝑂 (deg(ℎ)2) = 𝑂 ((log 𝑟 )2),
completing the proof. □

3.2 Fractional vs. Integral Solutions for MBS
This subsection proves Lemma 3.2, restated here:

Lemma 3.2. For any 𝑓 : {0, 1}𝑛 → R,

FMBS(𝑓 ) = 𝑂 (MBS(𝑓 )2).

We first need the following claim, which states that any function

𝑓 : {0, 1}𝑛 → R is not too sensitive to noise which is 𝑞-smooth for

𝑞 ≪ 1/FMBS(𝑓 ).
Claim 3.5. Let 𝑓 : {0, 1}𝑛 → R, 𝑧 ∈ {0, 1}𝑛 and D a distribution

on {0, 1} [𝑛]\𝑧 . Assume thatD is𝑞-smooth for some𝑞 ∈ (0, 1]. Then

Pr

𝑤∼𝐷
[𝑓 (𝑧) ≠ 𝑓 (𝑧 ∨𝑤)] ≤ 𝑞 · FMBS(𝑓 , 𝑧) .

Proof. Assume FMBS(𝑓 , 𝑧) = 1/𝑝 . We may assume 𝑞 < 𝑝 as

otherwise the claim is trivial. Let 𝛿 = Pr𝑤∼D [𝑓 (𝑧) ≠ 𝑓 (𝑧∨𝑤)]. Let
D ′

be the distribution D restricted to inputs 𝑤 such that 𝑓 (𝑧) ≠
𝑓 (𝑧 ∨𝑤). Observe that D ′

is (𝑞/𝛿)-smooth, and is supported on

inputs𝑤 such that 𝑓 (𝑧) ≠ 𝑓 (𝑧 ∨𝑤). As FMBS(𝑓 , 𝑧) = 1/𝑝 we have

𝑞/𝛿 ≥ 𝑝 which implies the claim. □
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Proof of Lemma 3.2. Let FMBS(𝑓 ) = 1/𝑝 . Let 𝑧 ∈ {0, 1}𝑛 such

that FMBS(𝑓 , 𝑧) = 1/𝑝 , and let D be a 𝑝-smooth distribution sup-

ported onW(𝑓 , 𝑧).
Fix 𝑘 to be determined later, and sample inputs𝑤1, . . . ,𝑤𝑘 ∼ D

independently. Let 𝑢 denote all the elements that appear at least in

two of the𝑤𝑖 , namely

𝑢 =
∨
𝑖≠𝑗

(
𝑤𝑖

∧
𝑤 𝑗

)
.

The main observation is that 𝑢 is 𝑞-smooth for 𝑞 = (𝑝𝑘)2. This
holds since for every ℓ ∈ [𝑛] we have

Pr[𝑢ℓ = 1] ≤
∑
𝑖≠𝑗

Pr[(𝑤𝑖 )ℓ = 1, (𝑤 𝑗 )ℓ = 1] ≤ 𝑘2𝑝2 .

Define the following “bad” events:

𝐸0 = [𝑓 (𝑧) ≠ 𝑓 (𝑧 ∨ 𝑢)],
𝐸𝑡 = [𝑓 (𝑧 ∨𝑤𝑡 ) ≠ 𝑓 (𝑧 ∨𝑤𝑡 ∨ 𝑢)] for 𝑡 ∈ [𝑘] .

We claim that Pr[𝐸𝑡 ] ≤ 𝑞/𝑝 = 𝑝𝑘2 for all 𝑡 = 0, . . . , 𝑘 . The proof for

𝐸0 follows directly from Claim 3.5. To see why it holds for 𝐸𝑡 for

𝑡 = 1, . . . , 𝑘 , define 𝑢𝑡 to be the elements that appear in two sets𝑤𝑖 ,

excluding𝑤𝑡 , namely

𝑢𝑡 =
∨

𝑖≠𝑗, 𝑖, 𝑗≠𝑡

(
𝑤𝑖

∧
𝑤 𝑗

)
.

Observe that𝑤𝑡 , 𝑢𝑡 are independent since 𝑢𝑡 is a subset of
∨

𝑖≠𝑡 𝑤𝑖 ,

that 𝑢𝑡 is (𝑝𝑘)2-smooth and that𝑤𝑡 ∨ 𝑢 = 𝑤𝑡 ∨ 𝑢𝑡 . Thus Claim 3.5

gives that, for any fixing of𝑤𝑡 , we have

Pr

𝑢𝑡
[𝑓 (𝑧 ∨𝑤𝑡 ) ≠ 𝑓 (𝑧 ∨𝑤𝑡 ∨ 𝑢𝑡 ) | 𝑤𝑡 ] ≤

𝑞 · FMBS(𝑓 , 𝑧 ∨𝑤𝑡 ) ≤ 𝑞 · FMBS(𝑓 ) = 𝑞/𝑝 = 𝑝𝑘2 .

The claim for 𝐸𝑡 follows by averaging over𝑤𝑡 .

Pick 𝑘 = 1/(2√𝑝), meaning 𝐸𝑡 occurs with probability at most

1/4 for each 0 ≤ 𝑡 ≤ 𝑘 . Then conditioning on ¬𝐸0 will increase the
probability of any event by a factor of at most 1/(1 − 1/4) = 4/3.
In particular, because Pr[𝐸𝑡 ] ≤ 𝑝𝑘2 = 1/4 for any 𝑡 , we have

Pr[𝐸𝑡 |¬𝐸0] ≤ 1/3 for any 𝑡 ≠ 0. This means that we can sample

the𝑤𝑡 ’s conditioned on ¬𝐸0, and still be sure that every ¬𝐸𝑡 occurs
with probability at least 2/3. Averaging, some setting of the {𝑤𝑡 }
satisfies ¬𝐸0 and at least 2/3 of ¬𝐸𝑡 for 1 ≤ 𝑡 ≤ 𝑘 . Fix these {𝑤𝑡 }.

Define 𝑧′ = 𝑧 ∨𝑢 and𝑤 ′
𝑡 = 𝑤𝑡 \𝑢. For every 1 ≤ 𝑡 ≤ 𝑘 for which

¬𝐸𝑡 holds, we have

𝑓 (𝑧′) = 𝑓 (𝑧), 𝑓 (𝑧′ ∨𝑤 ′
𝑡 ) = 𝑓 (𝑧 ∨𝑤𝑡 ) .

Thus 𝑓 (𝑧′) ≠ 𝑓 (𝑧′ ∨𝑤 ′
𝑡 ) for at least 2𝑘/3 choices of𝑤 ′

𝑡 . Moreover,

𝑧′,𝑤 ′
1
, . . . ,𝑤 ′

𝑘
are pairwise disjoint. Hence MBS(𝑓 ) ≥ 2𝑘/3. This

completes the proof, by recalling that 𝑘 = 1/(2√𝑝) with FMBS(𝑓 ) =
1/𝑝 . □

A notable feature of this proof is that we need to employ upper

bounds on the fractional block sensitivity for more than one choice

of input. This is actually necessary; there is a function 𝑓 based on

the projective plane for which MBS(𝑓 , 𝑧) = 1 and FMBS(𝑓 , 𝑧) ∼
√
𝑛

at a point 𝑧. See Example 2.17 for details.

3.3 Hitting Sets from Sparsity
Our final lemma is an upper bound on the hitting set complexity of

any 𝑓 : {0, 1}𝑛 → R in terms of FMBS(𝑓 ) and log(spar(𝑓 )). Recall
that FMBS and FHSC are equal, so such an upper bound implies

that FHSC and HSC are polynomially related for sparse boolean

functions.

Lemma 3.3. For any 𝑓 : {0, 1}𝑛 → R,

HSC(𝑓 ) ≤ FMBS(𝑓 ) · log(spar(𝑓 )) .

We note that the lemma is essentially the integrality gap of set

cover. Before proving it, we need two straightforward claims which

wewill use again later on. The first allows us to find (non-uniformly)

indices 𝑖 ∈ [𝑛] which hit a large fraction ofM(𝑓 ), given that 𝑓 has

small FMBS/FHSC at 0
𝑛
.

Claim 3.6. Suppose FMBS(𝑓 , 0𝑛) = FHSC(𝑓 , 0𝑛) = 𝑘 and this is

witnessed by a distribution D over [𝑛]. Then
(1) Pr𝑖∼D [𝑖 ∈ 𝑤] ≥ 1/𝑘 for every𝑤 ∈ M(𝑓 ). That is, D is also

a fractional hitting set for the monomials of 𝑓 .
(2) There is some 𝑖 in the support ofD which hits a 1/𝑘-fraction

ofM(𝑓 ).

Proof. Note that the second part of the claim follows from the

first by an averaging argument, so we are contented to prove the

first part of the claim.

LetD, FHSC(𝑓 , 0𝑛) = 𝑘 be as stated, so that Pr𝑖∼D [𝑖 ∈ 𝑤] ≥ 1/𝑘
for all 𝑤 ∈ W(𝑓 , 0𝑛). By Claim 2.1, it is the case that Pr𝑖∼D [𝑖 ∈
𝑤] ≥ 1/𝑘 for any minimal monomial 𝑤 . The measure of D on

some𝑤 is non-decreasing with respect to taking supersets, meaning

Pr𝑖∼D [𝑖 ∈ 𝑤] ≥ 1/𝑘 for every monomial𝑤 ∈ M(𝑓 ). □

The second claim says that FHSC(𝑓 ) is non-increasing under

restrictions. For simplicity, we only consider reductions which set

a single bit (which can be extended to more bits by induction).

Claim 3.7. Let 𝑓 : {0, 1}𝑛 → R be a function, 𝑖 ∈ [𝑛] and 𝑏 ∈
{0, 1}. Let 𝑓 ′ : {0, 1} [𝑛]\{𝑖 } → R be the function obtained by

restricting to inputs with 𝑥𝑖 = 𝑏. Then

FHSC(𝑓 ′) ≤ FHSC(𝑓 ) .

Proof. Fix 𝑧 ∈ {0, 1} [𝑛]\{𝑖 } . We will show that FHSC(𝑓 ′, 𝑧) ≤
FHSC(𝑓 , 𝑧∗) where 𝑧∗ = 𝑧 if 𝑏 = 0 and 𝑧∗ = 𝑧∪{𝑖} if 𝑏 = 1. In either

case, FHSC(𝑓 ′, 𝑧) ≤ FHSC(𝑓 ) and hence FHSC(𝑓 ′) ≤ FHSC(𝑓 ).
Consider first the case of 𝑏 = 0, and assume that FHSC(𝑓 , 𝑧) =

1/𝑝 . Recall that 𝑓𝑧 is the restriction of 𝑓 to inputs 𝑥 ≥ 𝑧, and that

FHSC(𝑓 , 𝑧) = FHSC(𝑓𝑧 , 0). By definition, there is a distribution D
over [𝑛] such that for every𝑤 ∈ M(𝑓𝑧) we have Pr𝑖∼D [𝑤𝑖 = 1] ≥
𝑝 . Observe that M(𝑓 ′𝑧 ) ⊂ M(𝑓𝑧) since setting a variable to 0 can

only remove monomials. Thus we get FHSC(𝑓 ′, 𝑧) ≤ FHSC(𝑓 , 𝑧).
Next, consider the case of 𝑏 = 1. Note that 𝑓 ′𝑧 = 𝑓𝑧∪{𝑖 } and hence

FHSC(𝑓 ′, 𝑧) = FHSC(𝑓 , 𝑧 ∪ {𝑖}). □

Proof of Lemma 3.3. Let 𝑘 = FHSC(𝑓 , 0) ≤ FHSC(𝑓 ), 𝑆0 = ∅,
𝑓0 = 𝑓 and perform the following iterative process. At time 𝑡 ≥ 1, let

𝑆𝑡 = 𝑆𝑡−1∪{𝑖𝑡 }where 𝑖𝑡 ∈ [𝑛] is the index which hits a 1/𝑘-fraction
ofM(𝑓𝑡−1), guaranteed to exist by Claim 3.6. Let 𝑓𝑡 = 𝑓𝑡−1 |𝑧𝑖𝑡 =0. At
each step, the restriction 𝑧𝑖𝑡 = 0 sets every monomial containing 𝑖𝑡
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to zero, causing the sparsity of 𝑓𝑡−1 to decrease by a multiplicative

factor (1−1/𝑘). Let 𝑟𝑡 = |M(𝑓𝑡 ) |. Since 𝑆𝑡 is a hitting set forM(𝑓 )
when 𝑓𝑡 has no non-zero monomials, this process terminates with

a hitting set when

𝑟𝑡 = (1 − 1/𝑘)𝑡𝑟0 ≤ 𝑒−𝑡/𝑘𝑟0 < 1.

Therefore, taking 𝑡 = 𝑘 log 𝑟0 suffices. □

4 COROLLARIES IN COMMUNICATION
COMPLEXITY

4.1 Preliminaries
Fix a boolean function 𝑓 : {0, 1}𝑛 → {0, 1}. Let 𝑓∧ = 𝑓 ◦ ∧ denote

the AND function corresponding to 𝑓 , given by 𝑓∧ (𝑥,𝑦) = 𝑓 (𝑥 ∧𝑦).
The sparsity of 𝑓 characterizes the rank of 𝑓∧.

Claim 4.1 ([3]). For any 𝑓 : {0, 1}𝑛 → {0, 1},

spar(𝑓 ) = rank(𝑓∧) .

We assume familiarity with the standard notion of a decision tree.
Our primary interest is in a variant of decision trees called AND
decision trees, which strengthens decision trees by allowing queries

of the conjunction of an arbitrary subset of the variables, namely

queries of the form ∧𝑖∈𝑆𝑧𝑖 for arbitrary 𝑆 ⊆ [𝑛]. Let P∧-dt (𝑓 )
denote the smallest depth of an AND decision tree computing 𝑓 .

The following simple connection to the communication complexity

of 𝑓∧ motivates our interest in this model:

Claim 4.2. For any 𝑓 : {0, 1}𝑛 → {0, 1},

P
cc (𝑓∧) ≤ 2P

∧-dt (𝑓 ).

Proof. Whenever the AND-decision tree queries a set 𝑆 ⊆ [𝑛],
Alice and Bob privately evaluate 𝑎 = ∧𝑖∈𝑆𝑥𝑖 and 𝑏 = ∧𝑗 ∈𝑆𝑦 𝑗 ,
exchange them and continue the evaluation on the sub-tree ob-

tained by following the edge labelled 𝑎 ∧ 𝑏. If the decision tree

height is 𝑑 , this protocol uses 2𝑑 bits of communication. Correct-

ness follows from the observation that

∧
𝑖∈𝑆 (𝑥𝑖 ∧𝑦𝑖 ) = (∧𝑖∈𝑆 𝑥𝑖 ) ∧

(∧𝑗 ∈𝑆 𝑦 𝑗 ). □

There is also a simple connection between AND-decision trees

and sparsity:

Claim 4.3. Let 𝑓 : {0, 1}𝑛 → {0, 1} with 𝑑 = P
∧-dt (𝑓 ). Then

spar(𝑓 ) ≤ 3
𝑑
.

Proof. Assume that 𝑓 is computed by a depth-𝑑 AND decision

tree, where the first query is ∧𝑖∈𝑆𝑧𝑖 , and where 𝑓1, 𝑓2 are the func-

tions computed by the left and right subtrees, respectively. Note

that both are computed by AND decision trees of depth 𝑑 − 1. We

have

𝑓 (𝑧) =
∏
𝑖∈𝑆

𝑧𝑖 · 𝑓1 (𝑧) +
(
1 −

∏
𝑖∈𝑆

𝑧𝑖

)
𝑓2 (𝑧).

Thus

spar(𝑓 ) ≤ spar(𝑓1) + 2 · spar(𝑓2).
The claim follows, since in the base case, functions computed by

an AND-decision tree of depth 1 has sparsity at most 2. □

A related complexity measure introduced in [25], called the

0-decision tree complexity of 𝑓 , is defined as follows. The 0-depth
of a (standard) decision tree T is largest number of 0-edges encoun-

tered on a root-to-leaf path in T . The 0-decision tree complexity of

𝑓 , denoted P
0-dt (𝑓 ), is the smallest 0-depth over all trees T com-

puting 𝑓 . The following relationship between AND decision trees

and 0-decision tree complexity is from [25]:

Claim 4.4 ([25]). For any 𝑓 : {0, 1}𝑛 → {0, 1},

P
0-dt (𝑓 ) ≤ P

∧-dt (𝑓 ) ≤ P
0-dt (𝑓 ) ⌈log(𝑛 + 1)⌉ .

For completeness, we include the short proof.

Proof. The first inequality follows since an AND query can be

simulated by querying the bits in it one at a time, until the first 0 is

queried, or until they are all queried to be 1. In particular, at most a

single 0 query is made. This implies that an AND decision tree of

depth 𝑑 can be simulated by a standard decision tree of 0-depth 𝑑 .

For the second inequality, let T be a decision tree computing 𝑓

with 0-depth 𝑑 . Consider the subtree which is truncated after the

first 0 is read. We can compute which leaf in the subtree is reached

by doing a binary search on the at most 𝑛 + 1 options, which can

be implemented using ⌈log(𝑛 + 1)⌉ computations of ANDs. Then,

the same process continues on the tree rooted at the node reached,

which has 0-depth at most 𝑑 − 1. □

The following example shows that this gap of log𝑛 cannot be

avoided.

Example 4.5. For 𝑧 ∈ {0, 1}𝑛 , let ind(𝑧) ∈ [𝑛] denote the first
index 𝑖 for which 𝑧𝑖 = 0. Let

𝑓 (𝑧) =
{
1 if 𝑧 = 1

𝑛
or 𝑧 = 1

𝑛−1
0

𝑧
ind(𝑧)+1 otherwise

A simple decision tree for 𝑓 that queries bits of 𝑧 one after an-

other, will query at most two zeroes, corresponding to 𝑧
ind(𝑧)

and 𝑥
ind(𝑧)+1, and hence P

0-dt (𝑓 ) ≤ 2. However, a direct calcu-

lation shows that spar(𝑓 ) = Ω(𝑛) and therefore, by Claim 4.3,

P
∧-dt (𝑓 ) = Ω(log𝑛).

We also use a lemma closely related to Lemma 3.3.

Lemma 4.6. For any 𝑓 : {0, 1}𝑛 → {0, 1},

P
0-dt (𝑓 ) = 𝑂 (FMBS(𝑓 ) · log spar(𝑓 )) .

Proof. Let 𝑘 = FHSC(𝑓 , 0) ≤ FHSC(𝑓 ). By Claim 3.6, there is

an 𝑖 ∈ [𝑛] that belongs to at least a (1/𝑘)-fraction of M(𝑓 ). Query
the variable 𝑥𝑖 and let 𝑏𝑖 ∈ {0, 1} be the outcome. Let 𝑓 ′ : {0, 1}𝑛 →
{0, 1} be the function 𝑓 restricted to 𝑥𝑖 = 𝑏𝑖 . Consider the sparsity

of 𝑓 ′:

• If 𝑥𝑖 = 0 then |M(𝑓 ′) | ≤ (1 − 1/𝑘) |M(𝑓 ) |, as setting 𝑥𝑖 = 0

kills a (1/𝑘)-fraction of the non-constant monomials. Thus,

as long as 𝑓 is not a constant function, |M(𝑓 ) | ≥ 1 and we

have

spar(𝑓 ′) ≤ spar(𝑓 ) − |M(𝑓 ) |/𝑘 ≤ spar(𝑓 ) (1 − 1/2𝑘).
• If 𝑥𝑖 = 1 then spar(𝑓 ′) ≤ spar(𝑓 ), since fixing variables to

constants cannot increase the number monomials.
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Let 𝑡 the maximum number of 0’s queried along any path in the

obtained decision tree. The sparsity of the subfunction 𝑓 ′ corre-
sponding to a leaf must be 0 or else 𝑓 ′ is non-constant. By, Claim 3.7

𝑓 ′ is constant when (1−1/2𝑘)𝑡 spar(𝑓 ) ≤ 𝑒−𝑡/2𝑘 spar(𝑓 ) < 1, which

occurs when 𝑡 ≥ 2𝑘 · log spar(𝑓 ). □

4.2 The Log-Rank Conjecture
A weak version of the log-rank conjecture for AND-functions,

which includes an additional log𝑛 factor, now follows quite readily

from the tools we have developed.

Theorem 1.2 (Log-rank Theorem for AND-functions). Let 𝑓 :

{0, 1}𝑛 → {0, 1} be a boolean function. Let 𝑟 = spar(𝑓 ) = rank(𝑓∧).
Then 𝑓 can be computed by an AND-decision tree of depth

P
∧-dt (𝑓 ) = 𝑂 ((log 𝑟 )5 · log𝑛) .

In particular, the deterministic communication complexity of 𝑓∧ is

bounded by

P
cc (𝑓∧) = 𝑂 ((log 𝑟 )5 · log𝑛) .

Proof. By Lemma 3.1, MBS(𝑓 ) = 𝑂 ((log 𝑟 )2). By Lemma 3.2,

FMBS(𝑓 ) = 𝑂 ((log 𝑟 )4). By Lemma 4.6, P
0-dt (𝑓 ) = 𝑂 ((log 𝑟 )5). By

Claim 4.4 this gives us an AND-decision tree of height 𝑂 ((log 𝑟 )5 ·
log𝑛). Finally, we convert the AND-decision tree for 𝑓 into a proto-

col for 𝑓∧ using Claim 4.2 with complexity 𝑂 ((log 𝑟 )5 · log𝑛). □

In particular, the log-rank conjecture for AND-functions is true

for any 𝑓 with spar(𝑓 ) ≥ 𝑛𝑐 for any constant 𝑐 > 0. In some sense

this is an extremely mild condition, which random 𝑓 will satisfy

with exceedingly high probability. On the other hand, the log-rank

conjecture is about structured functions; rank and communication

complexity are both maximal for random functions, whereas we are

interested in low-complexity functions/low-rank matrices. It could

very well be the case that the ultra-sparse regime of spar(𝑓 ) = 𝑛𝑜 (1)

is precisely where the log-rank conjecture fails. We therefore see

removing the log𝑛 factor as an essential problem left open by this

work. See Section 6 for additional discussion.

4.3 Lifting AND-Functions
Since log(spar(𝑓 )) lower bounds the deterministic communication

of 𝑓∧, the log-rank result from the previous section immediately

implies a new upper bound on the AND decision tree complexity of

𝑓 . We can prove a better upper bound by making use of our stronger

assumption: instead of only assuming log(spar(𝑓 )) is small, we

assume that P
cc (𝑓∧) is small.

If 𝑓 has large monotone block sensitivity, then its AND-function

embeds unique disjointness as a sub-function. The unique dis-

jointness function on 𝑘 bits, denoted UDISJ𝑘 , takes two inputs

𝑎, 𝑏 ∈ {0, 1}𝑘 , and is defined as the partial function:

UDISJ𝑘 (𝑎, 𝑏) =


0 if |𝑎 ∧ 𝑏 | = 1

1 if |𝑎 ∧ 𝑏 | = 0

undefined otherwise

,

where | · | is the Hamming weight.

Claim 4.7 (c.f. [36]). Let 𝑓 : {0, 1}𝑛 → {0, 1} be a boolean func-

tion with MBS(𝑓 ) = 𝑘 . Then 𝑓∧ contains as a sub-matrix UDISJ𝑘 .

That is, there are maps x, y : {0, 1}𝑘 → {0, 1}𝑛 and 𝑐 ∈ {0, 1} such

that the following holds. For any 𝑎, 𝑏 ∈ {0, 1}𝑘 which satisfy that

|𝑎 ∧ 𝑏 | ∈ {0, 1}, it holds that

UDISJ𝑘 (𝑎, 𝑏) = 𝑓∧ (x(𝑎), y(𝑏)) ⊕ 𝑐.

Proof. Let 𝑧,𝑤1, . . . ,𝑤𝑘 ∈ {0, 1}𝑛 be pairwise disjoint such that

𝑓 (𝑧) ≠ 𝑓 (𝑧 ∨𝑤𝑖 ) for all 𝑖 ∈ [𝑘]. We may assume without loss of

generality that 𝑓 (𝑧) = 1, otherwise replace 𝑓 with its negation, and

set 𝑐 = 1.

Assume that Alice and Bob want to solve unique-disjointness on

inputs 𝑎, 𝑏 ∈ {0, 1}𝑘 , which we identify with subsets of [𝑘]. Define

x(𝑎) = 𝑧 ∨
∨
𝑖∈𝑎

𝑤𝑖 , y(𝑏) = 𝑧 ∨
∨
𝑗 ∈𝑏

𝑤 𝑗 .

Observe that

x(𝑎) ∧ y(𝑏) =
{
𝑧 if 𝑎 ∧ 𝑏 = ∅
𝑧 ∨𝑤𝑖 if 𝑎 ∧ 𝑏 = {𝑖}.

Thus we get that UDISJ𝑘 (𝑎, 𝑏) = 𝑓 (x(𝑎) ∧ y(𝑏)) for all 𝑎, 𝑏. □

It is well known that UDISJ𝑘 is hard with respect to several com-

munication complexity measures such as deterministic, randomized

and nondeterministic.

Theorem 4.8 ([16, 29]). For any communication complexity mea-

sure Δ ∈ {Pcc, BPPcc,NPcc},

Δ(UDISJ𝑘 ) = Ω(𝑘) .

We immediately get the following corollary:

Corollary 4.9. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a boolean function and
Δ ∈ {Pcc, BPPcc,NPcc} be a communication complexity measure.

Then MBS(𝑓 ) = 𝑂 (Δ(𝑓∧)).

Proof. Assume that MBS(𝑓 ) = 𝑘 . Claim 4.7 shows that any

protocol for 𝑓∧ also solves UDISJ𝑘 . Hence by Theorem 4.8 we have

𝑘 = 𝑂 (Δ(𝑓∧)). □

Taking Δ = P
cc
, we obtain the main theorem of this section:

Theorem 1.3 (Lifting Theorem for AND-functions). Let 𝑓 be a

boolean function from {0, 1}𝑛 to {0, 1}, and let 𝐶 = P
cc (𝑓∧) denote

the deterministic communication complexity of its corresponding

AND-function. Then 𝑓 can be computed by an AND-decision tree

of depth

P
∧-dt (𝑓 ) = 𝑂 (𝐶3 · log𝑛).

Proof. Claim 4.1 gives that log spar(𝑓 ) = log rank(𝑓∧) ≤ 𝐶 .

By Claim 4.7, MBS(𝑓 ) = 𝑂 (𝐶). By Lemma 3.2, FMBS(𝑓 ) = 𝑂 (𝐶2).
Combining this with the fact that log spar(𝑓 ) ≤ 𝐶 , we see, by

Lemma 4.6, that P
0-dt (𝑓 ) = 𝑂 (𝐶3). Finally, by Claim 4.4, we get

that P
∧-dt (𝑓 ) = 𝑂 (𝐶3 · log𝑛). □

5 GENERALIZATIONS TO NON-BOOLEAN
FUNCTIONS

In this section, we extend our conclusion to general multilinear

polynomials and set systems. The main observation is that all mea-

sures introduced in Section 2 are defined for general real-valued
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functions. In addition, both Lemma 3.2 and Lemma 3.3 are estab-

lished for real-valued functions. The following theorem holds true

as the joint result of these two lemmas.

Theorem 1.4. Let 𝑓 : {0, 1}𝑛 → R be a multlinear polynomial

with sparsity 𝑟 . Suppose MBS(𝑓 ) = 𝑚. Then the hitting set com-

plexity of 𝑓 is bounded by

HSC(𝑓 ) = 𝑂 (𝑚2
log 𝑟 ).

Proof. By Lemma 3.2, FHSC(𝑓 ) = 𝑂 (𝑚2). Then by Lemma 3.3,

we obtain the claimed bound. □

5.1 Finite-Range Functions
Lemma 3.1 is not true for general multilinear polynomials. Never-

theless, if wemake the assumption that themultilinear polynomial’s

range is finite, denote its size by 𝑠 , then we can bound the monotone

block sensitivity by a polynomial of log-sparsity and 𝑠 .

Lemma 5.1. Let 𝑓 : {0, 1}𝑛 → 𝑆 be a multilinear polynomial

where spar(𝑓 ) = 𝑟 and |𝑆 | = 𝑠 . Then MBS(𝑓 ) = 𝑂 (𝑠2 log2 𝑟 ).

Proof. Suppose MBS(𝑓 ) = MBS(𝑓 , 𝑧) = 𝑘 for 𝑧 ∈ {0, 1}𝑛 , and
let 𝑎 = 𝑓 (𝑧) ∈ 𝑆 . Define a polynomial 𝑝 : R → {0, 1} such that

𝑝 (𝑎) = 1 and 𝑝 (𝑏) = 0 for 𝑏 ∈ 𝑆 \{𝑎}. There exist such a polynomial

of degree deg(𝑝) = |𝑆 | − 1. Define a boolean function 𝑔 : {0, 1}𝑛 →
{0, 1} by 𝑔(𝑧) = 𝑝 (𝑓 (𝑧)). Note that MBS(𝑔, 𝑧) = 𝑘 and spar(𝑔) ≤
𝑟𝑠−1. Then by Lemma 3.1, we have

𝑘 = 𝑂 (log2 (spar(𝑔))) = 𝑂 (𝑠2 log2 𝑟 ).
□

Combining it with Theorem 1.4, one can bound the hitting set

complexity of finite-range functions.

Theorem 1.5. Let 𝑓 : {0, 1}𝑛 → 𝑆 for 𝑆 ⊂ R. Assume that

spar(𝑓 ) = 𝑟 and |𝑆 | = 𝑠 . Then the hitting set complexity of 𝑓 is

bounded by

HSC(𝑓 ) = 𝑂 (𝑠4 (log 𝑟 )5) .

The following example shows that a polynomial dependency on

the range size is necessary in Theorem 1.5.

Example 5.2. Let 𝑓 (𝑥) = 𝑥1 + · · · + 𝑥𝑠 . Then spar(𝑓 ) = 𝑠 , the

range of 𝑓 has size 𝑠 + 1, and HSC(𝑓 ) = 𝑠 .

6 DISCUSSION
6.1 Ruling out the log𝑛 Factor
Both results about communication complexities of AND-functions

(Theorems 1.2 and 1.3) are not “tight” in the sense that both of them

have a log𝑛 factor in the right side of the inequality. Unfortunately,

𝑛 can be exponential in sparsity (see Example 2.20).

It is easy to see that if the log𝑛 factor is truly necessary in these

theorems we are very close to refuting the log-rank conjecture.

Hence, we believe that a “tighter” version of the log-rank theorem

(Theorem 1.2) is true.

Conjecture 6.1. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a boolean function,

where spar(𝑓 ) = 𝑟 . Then

P
∧-dt (𝑓 ) ≤ poly(log 𝑟 ).

Note that this conjecture would imply a “tighter” version of the

lifting theorem as well.

6.2 Randomized Complexity
The main results of this paper are concerned with the deterministic

communication complexity of AND-functions. However, Corol-

lary 4.9 says that the randomized communication complexity of an

AND-function is lower bounded by its monotone block sensitivity.

The relation between randomized communication complexity and

sparsity remains unclear. We conjecture that the relation between

these two measures is the same as the proved relation (Theorem 1.3)

between sparsity and deterministic communication complexity.

Conjecture 6.2. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a boolean function.

Suppose that BPP
cc (𝑓∧) = 𝐶 . Then

log(spar(𝑓 )) ≤ poly(𝐶) · log𝑛.

In particular, 𝑓 can be computed by an AND-decision tree of depth

P
cc (𝑓∧) ≤ poly(𝐶) · log𝑛.

Observe that Conjecture 6.2 implies that randomness does not

significantly help to compute AND-functions. Concretely, it implies

that

P
cc (𝑓∧) ≤ poly

(
BPP

cc (𝑓∧)
)
· log𝑛.

Interestingly, the log𝑛 factor in this conjecture is necessary as

shown by the following example.

Example 6.3 (Threshold Functions). Let 𝑓 : {0, 1}𝑛 → {0, 1} be
the threshold function such that

𝑓 (𝑥) = 1 ⇐⇒ |𝑥 | ≥ 𝑛 − 1.

It is clear that spar(𝑓 ) = 𝑛 + 1; however, BPP
cc (𝑓 ) = 𝑂 (1). Indeed,

let us consider the following randomized AND-decision tree for 𝑓 :

it samples a subset 𝑆 ⊆ [𝑛] uniformly at random, then output the

value of

𝑞𝑆 (𝑥) =
(∧
𝑖∈𝑆

𝑥𝑖

)
∨

(∧
𝑖∉𝑆

𝑥𝑖

)
.

Note that if |𝑥 | ≥ 𝑛 − 1 then 𝑞𝑆 (𝑥) = 1 with probability 1. If

|𝑥 | ≤ 𝑛− 2, let 𝑖, 𝑗 be such that 𝑥𝑖 = 𝑥 𝑗 = 0. With probability 1/2 we
have 𝑖 ∈ 𝑆 , 𝑗 ∉ 𝑆 or 𝑖 ∉ 𝑆 , 𝑗 ∈ 𝑆 , in both cases 𝑞𝑆 (𝑥) = 0. In order to

reduce the error, repeat this for a few random sets 𝑆 .

6.3 Sparsity vs. Coefficients Size
Let 𝑓 : {0, 1}𝑛 → {0, 1} and consider the multi-linear polynomial

computing 𝑓 , namely 𝑓 (𝑥) = ∑
𝑠 𝑓𝑠

∏
𝑖∈𝑠 𝑥𝑖 . It is well known that

the coefficients 𝑓𝑠 take integer values. In particular, if we denote

by ∥ 𝑓 ∥1 =
∑ |𝑓𝑠 | the 𝐿1 norm of the coefficients, then we get the

obvious inequality

spar(𝑓 ) ≤ ∥ 𝑓 ∥1 .

We note the following corollary of Theorem 1.2, which shows that

∥ 𝑓 ∥1 cannot be much larger than spar(𝑓 ).
Claim 6.4. Let 𝑓 : {0, 1}𝑛 → {0, 1} and assume that spar(𝑓 ) = 𝑟 .

Then ∥ 𝑓 ∥1 ≤ 𝑛𝑂 (log 𝑟 )5
.

207



STOC ’21, June 21–25, 2021, Virtual, Italy Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan

Proof. By Theorem 1.2, P
∧-dt (𝑓 ) = 𝑑 for 𝑑 = 𝑂 ((log 𝑟 )5 log𝑛).

By a similar proof to Claim 4.3, any function 𝑓 computed by an

AND-decision tree of depth𝑑 has ∥ 𝑓 ∥1 ≤ 3
𝑑
. The claim follows. □

We conjecture that the gap between sparsity and 𝐿1 is at most

polynomial.

Conjecture 6.5. For any 𝑓 : {0, 1}𝑛 → {0, 1},
∥ 𝑓 ∥1 ≤ poly(spar(𝑓 )).
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