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ABSTRACT

Let f : {0,1}" — {0,1} be a boolean function, and let fA(x,y) =
f(xAy) denote the AND-function of f, where x Ay denotes bit-wise
AND. We study the deterministic communication complexity of fx
and show that, up to a log n factor, it is bounded by a polynomial
in the logarithm of the real rank of the communication matrix of
fa. This comes within a logn factor of establishing the log-rank
conjecture for AND-functions with no assumptions on f. Our result
stands in contrast with previous results on special cases of the log-
rank conjecture, which needed significant restrictions on f such as
monotonicity or low Fy-degree. Our techniques can also be used to
prove (within a log n factor) a lifting theorem for AND-functions,
stating that the deterministic communication complexity of f, is
polynomially related to the AND-decision tree complexity of f.

The results rely on a new structural result regarding boolean
functions f : {0,1}" — {0, 1} with a sparse polynomial represen-
tation, which may be of independent interest. We show that if the
polynomial computing f has few monomials then the set system of
the monomials has a small hitting set, of size poly-logarithmic in its
sparsity. We also establish extensions of this result to multi-linear
polynomials f : {0, 1}" — R with a larger range.
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1 INTRODUCTION

Communication complexity has seen rapid development in the
last couple of decades. However, most of the celebrated results in
the field are about the communication complexity of important
concrete functions, such as set disjointness [29] and gap Hamming
distance [4]. Unfortunately, the understanding of communication
complexity of arbitrary functions is still lacking.

Probably the most famous problem of this type is the log-rank
conjecture [21]. It speculates that given any total boolean com-
munication problem, its deterministic communication complex-
ity is polynomially related to the logarithm of the real rank of
its associated communication matrix. Currently, there is an expo-
nential gap between the lower and upper bounds relating to the
log-rank conjecture. The best known upper bound [22] states that
the communication complexity of a boolean function F is at most
O(y/rank(F) log rank(F)), where rank(F) denotes the real rank of
the communication matrix of F. On the other hand, the best known
lower bound [15] states that there exist a boolean function F with
communication complexity Q(log? (rank(F))).

Given this exponential gap and lack of progress for general com-
munication problems, many works [5, 7, 9, 11, 12, 14, 15, 17, 18,
20, 23-25, 27, 30, 34, 35, 37, 38] focused on the communication
complexity of functions with some restricted structure. In partic-
ular, the study of composed functions was especially successful,
and produced the so-called lifting method, which connects query
complexity measures of boolean functions with communication
complexity measures of their corresponding communication prob-
lems.

Concretely, given a boolean function f : {0,1}" — {0,1} and a
gadget g : {0,1}¢ x {0,1}™ — {0, 1}, the corresponding lifted func-
tion is the following communication problem: Alice gets as input
x € ({0,1}")™, Bob gets as input y € ({0, 1}™)", and their goal is to
compute the composed function f o g”, defined as (f o ") (x,y) =
f(g(x1,y1),...,9(xn, yn)). Lifting theorems allow to connect query
complexity measures of the underlying boolean function f with
communication complexity measures of the composed function.
Figure 1 lists some notable examples.
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Figure 1: Query-to-communication lifting theorems. QM
stands for query model and CM stands for communication
model. The parameter m is polynomial in n; g in the last line
is any function that has as sub-functions both an AND and
an OR. P¢ denotes determenistic communication complex-
ity, P4t denotes decision tree complexity, BPP4t denotes the
probabilistic decision tree complexity with bounded error,
BPP®¢ denotes the probabilistic communication complexity
with bounded error, P4t denotes AND-decision tree com-
plexity, deg denotes the real degree, and rank denotes the real
rank. The “total functions” column contains “Yes” if the cor-
responding theorem holds only for total functions, and “No”
if it holds for partial functions and search relations.

Of particular interest to us are lifting theorems with very simple
gadgets. The reason for that is twofold. First, using complex gadgets
(such as inner product or indexing) yields sub-optimal bounds in
applications. A second and perhaps more important reason is that
the study of composed functions with complex gadgets does not
bring us any closer towards the understanding of general communi-
cation problems. This is because the corresponding lifting theorems
connect the communication complexity of the lifted function to
well-studied query measures of the underlying boolean function
(such as decision tree complexity, or degree as a real polynomial),
and hence does not shed new light on general communication
problems.

Thus, in this paper we consider gadgets which are as simple
as they could be — one-bit gadgets. In fact, there are only two
non-equivalent one-bit gadgets: one-bit XOR, which yields XOR-
functions; and one-bit AND, which yields AND-functions. As we
shortly discuss, they naturally correspond to query models which
extend the standard ones: parity-decision trees and AND-decision
trees.

XOR-functions. These functions have been studied in several
works [17, 18, 20, 23, 24, 30, 34, 35, 37, 38]. Given a boolean function
f + {0,1}" — {0,1}, its corresponding XOR-function is fg
f o @", defined as fg(x,y) = f(x ® y). A natural query measure
corresponding to the communication complexity of XOR-functions
is the Parity-Decision Tree (PDT) model. This model is an extension
of the standard decision tree model, where nodes can query an
arbitrary parity of the bits. To see the connection, note that if f
can be computed by a PDT of depth d (denoted by P& (f) = d),
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then fg has a communication protocol of complexity 2d. This is by
simulating the computation in the PDT: whenever the PDT needs to
compute the parity of x@®y on some set S of coordinates, each player
computes the corresponding parity on their input, and then they
exchange the answers, which allows to compute the corresponding
parity on x @ y as well, and continue to traverse the tree. Thus we
have P*(fg) < 2P®dt(f).

In the other direction, [17] proved that pa-dt( f) is at most a poly-
nomial in the communication complexity of fg. That is, P&t () <
poly (P€(fg)). Thus, the two measures are equivalent, up to poly-
nomial factors.

If one considers the log-rank conjecture for XOR-functions, then
a simple observation [34] is that the rank of the communication
matrix of fg is equal to the Fourier sparsity of f. Thus, in order
to prove the log-rank conjecture for XOR-functions it is sufficient
to show that P®-4(f) is at most a polynomial in the log of the
Fourier sparsity of f. Unfortunately, the latter relation is currently
unknown.

AND-functions. The goal of this paper is to develop an analogous
theory of AND-functions. Let f : {0,1}"" — {0, 1} be a boolean
function. Its corresponding AND-function is fn = f o A", defined
as fa(x,y) = f(x Ay). Similar to the case of XOR-functions, there
is a corresponding natural query model, AND-Decision Tree (ADT),
where each node in the decision tree can query an arbitrary AND
of the input bits. We denote by P""4(f) the minimal depth of an
ADT computing f. Also here, efficient ADTs for f imply efficient
communication protocols for fy, where P¢(f,) < 2P4t(f). Our
main focus in this work is

(i) lifting theorems for AND-functions, and
(ii) the log-rank conjecture for AND-functions.

Concretely, we will show that assuming that f, has either (i) effi-
cient deterministic communication protocol or (ii) low rank, then
f has an efficient ADT. As we will shortly see, understanding both
questions is directly related to understanding the monomial struc-
ture of polynomials computing boolean functions.

1.1 Main Results

Let f : {0,1}" — {0, 1} be a boolean function. It is computed by
a unique multi-linear polynomial over the reals. That is, f(x) =
> fs [1ies xi, wheres C [n] and f; € R are real-valued coefficients;
note that this is not the Fourier representation of f, as we are
working with {0, 1}" instead of {—1, 1}". The sparsity of f, denoted
spar(f), is the number of nonzero coefficients in the decomposition.
This is related to AND-functions, as a simple observation (Claim 4.1)
is that this also equals the rank of its communication matrix, namely
rank(fy) = spar(f).

Before describing our results, we need one more definition. Let
F be a set system (family of sets). A set H is a hitting set for ¥ if
it intersects all the sets in ¥ . Of particular interest to us are set
systems that correspond to the monomials of boolean functions.
Given a boolean function f, define M(f) ={s : fs # 0,s # 0} to
be the set system of the non-constant monomials of f. We exclude
the constant term as it is irrelevant for the purpose of constructing
hitting sets, and it simplifies some of the later arguments. Note that

IM(f) € {spar(f),spar(f) —1}.
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Our main combinatorial result is that set systems corresponding
to the monomials of boolean functions have small hitting sets. (Note
that an upper bound on the hitting set in terms of degree was known
before [8].)

Theorem 1.1. Let f : {0,1}" — {0,1} be a boolean function
with sparsity spar(f) = r. Then there exists a hitting set H for
M(f) of size |H| = O((logr)°).

This result can be seen as an analog of a similar result for union-
closed families. A set system ¥ is union-closed if it is closed under
taking unions; namely, if S1,S2 € F then also S US; € 7. A
famous conjecture of Frankl [10] is that in any union-closed family
¥ there is an element which belongs to at least half the sets in the
set system. Assume || = r; the best known result in this direction
is that 7 has a hitting set of size log(r) [19], which implies that
one of its elements belongs to a 1/log(r) fraction of sets in the set
system. We view Theorem 1.1 as a qualitative extension of this
result to more general set systems.

Our main application of Theorem 1.1 is a near-resolution of the
log-rank conjecture for AND-functions. Our bounds nearly match
the conjectured bounds (poly-log in the rank), except for an extra
log(n) factor that we are currently unable to eliminate.

Theorem 1.2 (Log-rank Theorem for AND-functions). Let f :
{0,1}" — {0, 1} be a boolean function. Let r = spar(f) = rank(fx).
Then f can be computed by an AND-decision tree of depth

PYA(f) = O((logr)® - logn).

In particular, the deterministic communication complexity of fj is
bounded by

P(fy) = O((logr)® - logn).

Note that if f : {0,1}" — {0, 1} is a function of sparsity at least
n%1, say, then Theorem 1.2 proves the log-rank conjecture for its
corresponding AND-function. Thus, the only remaining obstacle is
to extend the result to very sparse functions.

Observe that Theorem 1.2 implies a lifting theorem for AND-
functions. Assume that fj has deterministic communication com-
plexity C. The rank of the associated communication matrix is
then at most 2€, which by Theorem 1.2 gives an ADT for f of
depth O(C? log n). We can improve the exponent 5 to 3 by directly
exploiting the existence of a communication protocol.

Theorem 1.3 (Lifting Theorem for AND-functions). Let f be a
boolean function from {0, 1} to {0, 1}, and let C = P*°(f») denote
the deterministic communication complexity of its corresponding
AND-function. Then f can be computed by an AND-decision tree
of depth

P () = 0(C? - logn).

1.2 Proof Overview

We first discuss how our combinatorial theorem (Theorem 1.1)
implies the log-rank theorem (Theorem 1.2). It relies on showing
that sparse boolean functions have efficient AND-decision trees
(ADTS).

Let f be a boolean function with spar(f) = r. Our goal is to
construct an ADT for f of depth poly(logr) - log(n). This directly
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implies Theorem 1.2, as the sparsity of f equals the rank of its
AND-function f, and an ADT for f of depth d implies a protocol
for fn which sends 2d bits.

It will be convenient to first consider another model of decision
trees, called zero decision trees. A (standard) decision tree computing
f has zero decision tree complexity d, if any path from root to leaf
in it queries at most d variables which evaluate to 0. We denote by
POdt( £) the minimal such d over all decision trees that compute
f. It is shown in [25] (see also Claim 4.4) that ADT complexity
and zero DT complexity are tightly connected. Concretely, for any
boolean function f they show that

POt £y < pAAt(£) < POAL( ) . [log(n + 1)].

Thus, we will show that P*4t(£) < poly(log r), which implies our
target bound of PA4t(f).

Theorem 1.1 gives that there is a hitting set size h = poly(logr)
which intersects all the monomials of f. In particular, there is a
variable x; that intersects at least a 1/h fraction of the monomials of
f. The decision tree will first query x;, and then branch depending
on whether x; = 0 or x; = 1. We use the simple fact that the sparsity
of f cannot increase when variables are fixed, and continue this
process, until the value of the function is determined. Observe that
every time that we query a variable and get 0, we eliminates a 1/h
fraction of the monomials. If we get a 1 the number of monomials
can either stay the same or decrease, but it cannot increase. So, as
f starts with r monomials, we get that the maximal number of 0s
queried before all monomials are eliminated is at most A - log(r).
Hence Po'dt(f) < h-log(r) = poly(logr), as claimed.

Thus, from now on we focus on proving Theorem 1.1. Let f be a
boolean function of sparsity r, and let M(f) denote the set system
of its monomials. We consider four complexity measures associated
with it:

(1) The hitting set complexity (HSC) is the minimal size of a
hitting set for it. This is what we are trying to bound, and
can be phrased as an covering integer program.

The fractional hitting set complexity (FHSC) is the fractional
relaxation for HSC. Here, we want a distribution over vari-
ables that hits every monomial with high probability, which
can be phrased as a fractional covering linear program.
The fractional monotone block sensitivity (FMBS) is the dual
linear program. The reason for the name would become
clear soon. It can be phrased as a fractional packing linear
program.

The monotone block sensitivity (MBS) is the integral version
of FMBS. It equals the maximal number of pairwise disjoint
monomials in f. Equivalently, it is block sensitivity of f at
0". It can be phrased as a packing integer program.

)

More generally, given s C [n], let f; denote the restriction of f
given by setting x; = 1 for all i € s. It will be convenient to identify
s with its indicator vector 15 € {0, 1}". Thus, for z € {0, 1}", we
denote by f; the restriction of f to the 1s in z. Define HSC(f, z),
FHSC(f, z), FMBS(f, z), MBS(f, z) to be the above four measures
for the monomials of f;. It is simple to observe (see Claim 2.16) that
for each z we have:

MBS(f,z) < FMBS(f,z) = FHSC(f,z) < HSC(f, 2).
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Note that hitting set complexity is an analogue of certificate
complexity, monotone block sensitivity is an analogue of block
sensitivity; and fractional hitting set complexity and fractional
monotone block sensitivity are analogues of fractional certificate
complexity and fractional block sensitivity defined by [1, 32].

As a first step, we use existing techniques in boolean function
analysis techniques to bound MBS(f, z) in terms of the sparsity of
f.Lemma 3.1 shows that

MBS(f,z) < O((logspar(fz))z) < O((logr)z).

Thus, to complete the picture, we need to show that if MBS(f, z)
is low then so is HSC(f, z). This however is false, if one compares
them point wise (for a single z). However, we show that the mea-
sures are equivalent (up to polynomial factors) if instead we con-
sider their maximal value over all z. Define

MBS(f) = Zer?oaic}" MBS(f, z)

and similarly define FMBS(f), FHSC(f), HSC(f). Lemma 3.2 shows
that

EMBS(f) = O(MBS(f)?),

linear programming duality gives FHSC(f) = FMBS(f), and we
show in Lemma 3.3 that

HSC(f) = O(FHSC(f) - log r).

This completes the proof of Theorem 1.1.

We also briefly discuss Theorem 1.3. The improved exponent
is obtained by using the bound MBS(f) = O(P“(fx)), which we
prove in Corollary 4.9. Its proof is based on the observation that
if MBS(f) = b then f, embeds as a sub-function unique disjoint-
ness on b bits, and combine it with known lower bounds on the
communication complexity of unique disjointness.

1.3 Generalizations

Several of our definitions and techniques readily extend to non-
boolean functions, namely to functions f : {0,1}"* — R. We refer
the reader to Section 2 for the relevant definitions and Section 5
for a detailed discussion of the generalized results. Here, we briefly
state some of the results.

Theorem 1.4. Let f : {0,1}" — R be a multlinear polynomial
with sparsity r. Suppose MBS(f) = m. Then the hitting set com-
plexity of f is bounded by

HSC(f) = O(m?logr).

Theorem 1.5. Let f : {0,1}" — S for S c R. Assume that
spar(f) = r and |S| = s. Then the hitting set complexity of f is
bounded by

HSC(f) = O(s*(log r)°).
Acknowledgements. S.L. thanks Kaave Hosseini, who was in-

volved in early stages of this work. S.M. thanks Russell Impagliazzo
for useful discussions throughout the course of this work.
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2 PRELIMINARIES

This section introduces a number of complexity measures used in
the proofs of our main results. We start by collecting some sim-
ple definitions, proceed to define the complexity measures, and
then provide some examples which clarify some aspects of these
definitions.

Throughout this section, fix a boolean function f : {0,1}" —
R. We identify elements of {0, 1}" with subsets of [n]. Namely,
we identify z € {0,1}" with the set {i : z; = 1}, and shorthand
[n]\z ={i : z; = 0}. Given two inputs z, w € {0, 1}" we denote by
zVw their union and by zAw their intersection. The partial order on
{0, 1}" is defined by the relation z < w, satisfied precisely when z is
asubset of w. Define f; : {0, 1}["\* — R to be the restriction of f to
inputs which are consistent with the 1s in z; namely f;(w) = f(zV

w). Define W (f, z) = {w e {013\ L f(2) £ fzv w)} which

is equivalent to W(f,z) = {w e {0, 1}m\e £ (w) = fZ(O)}

Recall also the notation from the proof overview. Any function
f :{0,1}"* — R can be written uniquely as a multilinear real-valued
polynomial f(x) = Xsc[n] & [lies xi (note that this is not the
Fourier expansion, as here the variables are {0, 1}-valued whereas
in the Fourier expansion they are {+1}-valued). The sparsity of f, de-
noted spar(f), is the number of nonzero coefficients in the polyno-
mial expansion of f. Next, let M(f) ={s C [n] : as #0, s # 0"}
denote the set system of non-zero, non-constant monomials in f
when written as a multilinear polynomial. We emphasize that the
coefficient @ is not included in M(f); ag is inessential, since we
are interested in hitting sets for monomials and 0 is trivially hit by
any set. Observe that [M(f)| € {spar(f), spar(f) — 1}.

For any set system 7 over [n], an element z € ¥ is minimal if
there does not exist w € ¥ with w < z.

Claim 2.1. Fix f: {0,1}" > R, z € {0, 1}" and W(, z), M(f)
as above. Then, for any w € {0,1}", w is a minimal element in

W(f,z) if and only if w is a minimal element in M(f).

Proor. We assume for simplicity that z = 0 so that f;(w) =
f(w), f(0) = ap and write W = W(f,0). Suppose w € M(f)
is a minimal element. Writing f as a multilinear polynomial, we
get f(w) = X< @u. Since a,, is minimal, f(w) = ag + ay, and so
f(w) # f(0) and w € ‘W. Additionally, w is minimal in ‘W because
if w’ < w then the non-constant terms of f(w’) = 3, <, @y are
all 0, hence f(w’) = f(0) and w’ & W.

In the other direction, suppose w € ‘W is a minimal element.
Assume there is w’ < w in M(f); choosing such a minimal w’,
we would get f(w’) # f(0) which violates the minimality of w.
Similarly, if w ¢ M(f) then we get f(w) = Y, <wau = f(0),
which violates the assumption that w € ‘W. Thus w is a minimal
element in M(f). O

2.1 Monotone Block Sensitivity

First, we consider monotone block sensitivity, a variant of the stan-
dard notion of block sensitivity due to Nisan and Szegedy [26]. In a
nutshell, this is a “directed” restriction of block sensitivity, where we
can only change an input by flipping 0’s to 1’s. We also define MBS
(and all other complexity measures introduced later in this section)
with respect to real-valued functions over {0, 1}". This differs from
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block sensitivity, which is usually (though not always [13]) studied
in the context of boolean-valued functions. The generalization to
real-valued f will be immaterial to some of our proofs, permit-
ting us to draw more general conclusions regarding the monomial
structure of multilinear polynomials; see Section 5 for more details.

Say that two inputs z, w are disjoint if z A w = 0"; namely, their
corresponding sets are disjoint.

Definition 2.2 (Monotone block sensitivity). For f: {0,1}" —» R
and z € {0, 1}", the monotone block sensitivity of f at z, denoted
MBS(f, z), is the largest integer k such that there exist k pair-
wise disjoint inputs wy, ..., wr € W(f,z). We denote MBS(f) =
max; MBS(f, z).

For two motivating examples, observe that for the n-bit AND
and OR functions we have MBS(AND) = 1 and MBS(OR) = n,
respectively.

Remark 2.3. We emphasize that W(f,z) C {0, 1}[”]\2, so each
w; is disjoint from z. This corresponds to the standard definition
of block sensitivity where we restrict each block w; to be disjoint
from the support of z.

Remark 2.4. Suppose wy,..., wr are minimal witnesses that
MBS(f, z) = k in the sense that for any i € [k] there is no w; < w;
so that w] € W(f,z). Then by Claim 2.1, each w; is a minimal
element in M(fz).

As alluded to in the proof overview, MBS(f, z) can be phrased
as the value of a particular set packing linear program (LP). Fixing
z, write W = W (f, z). The program optimizes over variables a.,
for each w € W.

maximize E vy
weWw

by

weW:w;=1
aw € {0,1} forallw e W

subject to aw <1 forallie€ [n]

Fractional monotone block sensitivity (FMBS) is obtained by relax-
ing the constraints in the above LP, allowing variables a,, to assume
non-integral values in [0, 1]. We use an alternative formulation of
FMBS whose equivalence to the LP formulation is simple to verify.

Definition 2.5 (Smooth distribution).
is said to be p-smooth if for any i € [n] it holds that

P i=1] <p.
w~rD[Wl I<p

Definition 2.6 (Fractional monotone block sensitivity). The frac-
tional monotone block sensitivity of a function f : {0,1}" —
R at an input z € {0,1}", denoted FMBS(f, z), is equal to 1/p,
where p > 0 is the smallest number for which there exists a p-
smooth distribution D supported on a subset of ‘W(f, z). We de-
note FMBS(f) = max; FMBS(f, z).

A distribution D over {0, 1}"
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Remark 2.7. To see the equivalence between this definition of
FMBS and the LP formulation, notice that a solution

we W(f,2)}

{aw :

to the LP with s = } a,, gives rise to a 1/s-smooth distribution D
over W(f,z) via D(w) = ay/s.

Remark 2.8. Clearly, any solution to the fractional program for
FMBS is a solution to the integral program for MBS. Hence, both
being maximization problems, FMBS upper bounds MBS. Later, we
prove in Lemma 3.2 that the converse of this inequality holds in the
sense that FMBS( f) is upper bounded by a polynomial in MBS(f).

Remark 2.9. Fractional block sensitivity (the non-monotone vari-
ant) was considered by Tal in [33]. Tal mentions explicitly the prob-
lem of finding separations between fractional block sensitivity and
sensitivity.

2.2 Hitting Set Complexity

Next, we consider hitting set complexity. This can be viewed as a
variant of certificate complexity, a commonly-studied quantity in
standard query complexity.

Definition 2.10 (Hitting set complexity). The hitting set complex-
ity of a function f : {0,1}" — R at an input z € {0, 1}"*, denoted
HSC(f, z), is the minimal size of a set H C [n] which intersects
all sets in ‘W (f, z). In other words, for every w € ‘W(f, z) there is
some i € H so that w; = 1. We denote HSC(f) = max, HSC(f, z).

Similarly to MBS, it is simple to see that the n-bit AND and OR
functions have HSC(AND,,) = 1 and HSC(OR,,) = n, respectively.

Remark 2.11. Note that HSC(f, z) is equal to the certificate com-
plexity of f; at the all 0s input.

Remark 2.12. It suffices to consider H C [n] which have non-
empty intersection with any minimal element of ‘W (f,z). This
is simply because if H hits an element w then it also hits every
superset of w.

Remark 2.13. Let H C [n] be a set such that |[H| = b and it
witnesses HSC(f, 0™) = b. By the previous remark and Claim 2.1,
one can see that H is hitting set of M(f).

We can also phrase HSC(f, z) as the value of a certain set cover-
ing LP. Putting ‘W = W (f, z), the LP optimizes over the variables
{b; : i€ [n]} as follows:

minimize Z b;

i€[n]

subject to Z bi>1 foralwe W
i€[n]:w=1
b; € {0,1} foralli € [n]

One can easily verify that this LP is dual to the LP defining mono-
tone block sensitivity. Fractional hitting set complexity is obtained
from hitting set complexity by relaxing each constraint b; € {0,1}
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to b; € [0,1]. We give an alternative definition, equivalent to the
LP formulation:

Definition 2.14 (Fractional hitting set complexity). The frac-
tional hitting set complexity of a function f : {0,1}" — R at
an input z € {0, 1}", denoted FHSC(f, z), is 1/p, where p > 0 is
the smallest number for which there exists a distribution D of in-
dices i € [n] with the property that Pr; ¢ [w; = 1] > p for each
w € W(f, z). We denote FHSC(f) = max, FHSC(f, z).

Remark 2.15. The same reasoning as the FMBS case can be used
to show that this definition is equivalent to the LP definition. Also
by analogous reasoning, FHSC(f, z) < HSC(f, z) (recalling that
FHSC is a minimization problem).

The LPs defining FHSC and FMBS are dual, so linear program-
ming duality yields FHSC(f, z) = FMBS(f, z). Combined with the
remarked-upon relationships between MBS /FMBS and HSC/FHSC,
we conclude the following:

Claim 2.16.
{o, 13",

MBS(f,z) < FMBS(, z) = FHSC(f,z) < HSC(f, 2).

For any function f : {0,1}" — R and input z €

2.3 Some Informative Examples

To digest the definitions, some examples are in order. We start by
noting that there are large gaps in the inequalities from Claim 2.16
for fixed z. These correspond to integrality gaps for the set cover and
hitting set linear programs (of which FHSC(f, z) and FMBS(f, z)
are a special case), which are central to combinatorial optimization.

The first example gives a separation between FMBS(f, z) and
MBS(f, z).
Example 2.17 (Projective plane). For a prime power m, let P
be the set of 1-dimensional subspaces of F>, and L the set of 2-
dimensional subspaces of F>,. P is the set of points and L is the set
of lines. Note that |[P| = |L| = m® + m + 1.

It is well-known that P and L form a projective plane, in that they
satisfy the following properties:

(1) Any two points in P are contained in exactly one line in L.
Moreover, each point is contained in m + 1 lines.

(2) Any two lines in L intersect at exactly one point in P. More-
over, each line contains m + 1 points.

(3) There are 4 points, no 3 of which lie on the same line.

For more background on finite geometry, see, for example, [2].

Let n = m®+m+1, thinking of each i € [n] as corresponding to a
point p; € P.Forlines¢ € L,letS, = {i € [n] : p; is contained in ¢}
be the set of (indices of) points incident to ¢ and define a function
f:{0,1}" — {0,1} as

1@ =V ( [\ %)

tel ieS,

Since any two lines intersect at a point, any #, £2 € L have S;; N
Sg, # 0. This implies MBS(f, 0") = 1. On the other hand, because
each line contains m+1 points, Prie (] [i € S¢] = (m+1)/(m?+m+1)
when i is uniform and therefore FMBS(f,0") ~ m ~ /.
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The next example gives a similar separation between FHSC(f, z)
and HSC(f, 2).

Example 2.18 (Majority). For n even, let f(z) = 1[}};z; = n/2]
be the Majority function. The minimal elements of M(f) consist
of sets s with n/2 members.

Any set s of size at most n/2 will fail to hit [n] \ s € M(f).
Therefore any hitting set for the monomials of f, namely for M(f),
has size more than n/2. In particular, HSC(f, 0") = n/2 + 1 (clearly
n/2 + 1 suffices). On the other hand, the uniform distribution over
[n] satisfies Pr[i € s] = 1/2 for any minimal monomial s € M(f).
Hence FHSC(f, 0") = 2.

These two examples show that it will be necessary to utilize the
fact that MBS and HSC are defined as the maximum over all inputs.

The next examples shows that HSC(f) and MBS(f) can be con-
stant while spar(f) grows exponentially.

Example 2.19 (AND-OR). Consider a string z € {0, 1}2" written
as z = xy for x,y € {0, 1}". Define

fary =\ (xvy).
Jjeln]
One can verify that HSC(f) = MBS(f) = 2. On the other hand,
writing f as a multilinear polynomial yields

feoy) = [ @ity —x-9)),

j€ln]

which clearly has sparsity exponential in n.

Note that this holds for the global (i.e. maximizing over {0, 1}")
definitions of MBS and HSC. To see the significance of this example,
recall from the proof overview that we are interested in eventually
showing MBS(f) < O((log spar(f))?). This example shows that
this latter inequality can be very far from the truth; we are able to
make up for this discrepancy by using the low-sparsity assumption
multiple times.

Finally, we include an example which will become relevant to
our applications to communication complexity in Section 4.

Example 2.20 (Redundant indexing). Let k > 1, and consider
two sets of variables {xs}sc[x] and {yi}ie[k] of sizes 2F and k,
respectively. Let n = 2k + k and define

fry =) ( [ xs)u—yi) [ 1w

ic[k] \S: ies j#i
In words, f(x,y) = 1 when y has weight exactly k — 1 with y; = 0
and xg = 1 for every S containing i.

By the mutilinear representation, one can see that the sparsity
of f is 2k ~ log n. Moreover, HSC(f) < 2. To see why, consider an
input z = (g, b) and note that f restricted to inputs w = (x,y) > z
becomes

Feaey= > ] xs|a-w

i:b;=0 \S:i€S,as=0

[T vl

Jij#ib;=0

In particular, if a # 112 then the variable X[k ]\ q hits all the mono-

mials, and if a = 1(2"] then any two y;, y; hit all the monomials.
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We view this as an important example in understanding the
log n factor currently present in the statements of Theorem 1.2 and
Theorem 1.3. This connection will be discussed in more detail in
Section 6.

3 PROOF OF THEOREM 1.1

We recall the statement of Theorem 1.1.

Theorem 1.1. Let f : {0,1}" — {0,1} be a boolean function
with sparsity spar(f) = r. Then there exists a hitting set H for
M(f) of size [H| = O((logr)®).

The proof relies on three lemmas which provide various rela-
tionships between spar(f), MBS(f) and HSC(f), as well as their
fractional variants. In this subsection, we will state the lemmas
and show how Theorem 1.1 follows as a consequence. Then, in the
following subsections, we prove the lemmas.

The first gives an upper bound on the monotone block sensitivity
of a boolean-valued f in terms of its sparsity.

For any f: {0,1}" — {0,1},
MBS(f) = O(log(spar(f))?).

Lemma 3.1.

We stress that this only holds for boolean-valued functions. To
some extent, we will be able to relax this condition when we con-
sider generalizations in Section 5. Additionally, we note that this
inequality can be very far from tight: Example 2.19 gives a function
with constant MBS but exponential sparsity.

The second lemma shows that FMBS and MBS are equivalent
up to a polynomial factor. Unlike Lemma 3.1, this holds for any
real-valued function.

For any f: {0,1}" — R,
FMBS(f) = O(MBS(f)?).

Lemma 3.2.

The third lemma, which also holds for any real-valued function,
upper bounds the hitting set complexity of f in terms of FMBS(f)

and spar(f).
Lemma 3.3. Forany f:{0,1}" — R,

HSC(f) < FMBS(f) - log(spar(f)).

Theorem 1.1 now follows quite readily from the three lemmas.

Proor or THEOREM 1.1. Fix a boolean function f with sparsity r
as in the theorem statement. By Lemma 3.1, MBS(f) = O((log r)?).
By Lemma 3.2, FMBS(f) = O((logr)*). Finally, by Lemma 3.3,
HSC(f) < O((logr)®), as desired. O

3.1 MBS from Sparsity
We begin by proving Lemma 3.1.
For any f: {0,1}" — {0,1},

MBS (f) = O(log(spar(f))?).

Lemma 3.1.

The proof uses a well-known relationship between the degree
and the sensitivity of boolean functions [26]. The sensitivity S(f)
of a boolean function f is the largest s so that there exists an input
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z and s coordinates {iy,.
jelsl
Claim 3.4 (Nisan-Szegedy, [26]).

..»is} so that f(z) # f(z @ e;;) for all
For any f: {0,1}" — {0,1},

S(f) = O(deg(f)?).

PRrROOF OF LEMMA 3.1. Suppose MBS(f) = k, witnessed by pair-
wise disjoint z, wy,...,wx C [n]. Namely, f(z) # f(z V w;) for
i € [k]. Letg : {0, 1}¥ = {0,1} denote the function obtained
from f by identifying variables in each w; and setting all vari-
ables not occurring in any w; to the corresponding bit in z. That
is, g(x) = f(z + X xjw;). Note that S(g) = k, since g(0) # g(e;) for
i € [k], and spar(g) < spar(f).

Let r = spar(f). We will reduce the degree of g to d = O(log r) by
repeating the following process k/2 times: set to zero the coordinate
which appears in the largest number of monomials of degree at
least d.

Let M; denote the number of monomials of degree at least d
remaining after the i-th step. Initially My < r. Next, note that
if M; > 0, then there is a variable that occurs in at least a d/k
fraction of the monomials of degree > d. Indeed, the total length
of the monomials of degree > d is at least M;d; however, under
the assumption that each variable occur in less than d/k fraction
of these monomials, we can see that the total length is less than
(d/k)M;d = dM;, which is a contradiction. We therefore obtain
the recurrence Mi+1 < (1 —d/k)M;. After k/2 steps, My, < (1 -
d/k)k/2r < exp(—d/2)r < 1ford = O(logr). As My, is an integer,
we obtain that My, is zero.

Let h denote the function obtained by this restriction process.
Since M/, = 0 we have deg(h) < d. Moreover, since g had full

sensitivity at 0% and we restricted only k/2 coordinates, S(h) > k/2.
Finishing up, we have k/2 < S(h) = O(deg(h)?) = O((logr)?),
completing the proof. O

3.2 Fractional vs. Integral Solutions for MBS
This subsection proves Lemma 3.2, restated here:

Lemma 3.2. Forany f:{0,1}" - R,

FMBS(f) = O(MBS(f)?).

We first need the following claim, which states that any function
f:{0,1}" — Ris not too sensitive to noise which is g-smooth for
q < 1/FMBS(f).

Claim 3.5. Let f:{0,1}" - R, z € {0,1}" and D a distribution
on {0, 1} [n]\z Assume that D is g-smooth for some g € (0, 1]. Then

WPNr]:)[f(z) # f(zVw)] < q-FMBS(f,z).

Proor. Assume FMBS(f,z) = 1/p. We may assume g < p as
otherwise the claim is trivial. Let § = Pr,,.p[f(2) # f(zVw)]. Let
D’ be the distribution D restricted to inputs w such that f(z) #
f(z V w). Observe that D’ is (q/8)-smooth, and is supported on
inputs w such that f(z) # f(z V w). As FMBS(f,z) = 1/p we have
q/d > p which implies the claim. O
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PRrROOF OF LEMMA 3.2. Let FMBS(f) = 1/p. Let z € {0,1}" such
that FMBS(f, z) = 1/p, and let D be a p-smooth distribution sup-
ported on W(f, z).

Fix k to be determined later, and sample inputs w1, ..., wg ~ D
independently. Let u denote all the elements that appear at least in
two of the w;, namely

u= \/ (Wl‘ /\ w j) .
i#j
The main observation is that u is g-smooth for ¢ = (pk)?2. This
holds since for every ¢ € [n] we have
Prlu; = 1] < Zpr[(wi)f =1,(wj)e = 1] < k?p?.
i#)
Define the following “bad” events:

Eo=[f(2) # f(zVu)],
Er=[f(zVw) # f(zVw Vu)] fort € [k].

We claim that Pr[E;] < q/p = pk? forall t = 0, ..., k. The proof for
Ey follows directly from Claim 3.5. To see why it holds for E; for
t =1,...,k, define u; to be the elements that appear in two sets w;,

excluding w;, namely
(w0 A\ ).

Observe that wy, u; are independent since u; is a subset of \/;4; wi,
that u; is (pk)z-smooth and that w; V u = w; V u;. Thus Claim 3.5
gives that, for any fixing of w;, we have

ur =
i#j, ,j#t

Prf(zvwe) # f(zVwe V) [ we] <
q-FMBS(f,z V wy) < q-EMBS(f) = q/p = pk?.

The claim for E; follows by averaging over w;.

Pick k = 1/(24/p), meaning E; occurs with probability at most
1/4 for each 0 < t < k. Then conditioning on —Eq will increase the
probability of any event by a factor of at most 1/(1 — 1/4) = 4/3.
In particular, because Pr[E;] < pk® = 1/4 for any t, we have
Pr[E¢|=Ep] < 1/3 for any ¢ # 0. This means that we can sample
the w;’s conditioned on —Ey, and still be sure that every —E; occurs
with probability at least 2/3. Averaging, some setting of the {w;}
satisfies —E and at least 2/3 of =E; for 1 < t < k. Fix these {w;}.

Define z’ = zV u and w; = w; \ u. For every 1 < t < k for which
=E; holds, we have

fE@)=f@.  fE&Vvw)=fzVvw).

Thus f(2’) # f(z’ vV w;) for at least 2k/3 choices of w;. Moreover,
2wl ..., Wl/c are pairwise disjoint. Hence MBS(f) > 2k/3. This
completes the proof, by recalling that k = 1/(2+/p) with FMBS(f) =
1/p. ]

A notable feature of this proof is that we need to employ upper
bounds on the fractional block sensitivity for more than one choice
of input. This is actually necessary; there is a function f based on
the projective plane for which MBS(f, z) = 1 and FMBS(f, z) ~ vn
at a point z. See Example 2.17 for details.
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3.3 Hitting Sets from Sparsity

Our final lemma is an upper bound on the hitting set complexity of
any f : {0,1}" — R in terms of FMBS(f) and log(spar(f)). Recall
that FMBS and FHSC are equal, so such an upper bound implies
that FHSC and HSC are polynomially related for sparse boolean
functions.

Lemma 3.3. Forany f:{0,1}" > R,

HSC(f) < EMBS(Y) - log(spar(f)).

We note that the lemma is essentially the integrality gap of set
cover. Before proving it, we need two straightforward claims which
we will use again later on. The first allows us to find (non-uniformly)
indices i € [n] which hit a large fraction of M(f), given that f has
small FMBS/FHSC at 0.

Claim 3.6. Suppose FMBS(f, 0") = FHSC(f,0") = k and this is
witnessed by a distribution D over [n]. Then
(1) Pri.pli € w] > 1/k for every w € M(f). That is, D is also
a fractional hitting set for the monomials of f.

(2) There is some i in the support of D which hits a 1/k-fraction
of M(f).

Proor. Note that the second part of the claim follows from the
first by an averaging argument, so we are contented to prove the
first part of the claim.

Let D, FHSC(f, 0"™) = k be as stated, so that Pr; . [i € w] > 1/k
for all w € W(f,0"). By Claim 2.1, it is the case that Pr;.p|[i €
w] > 1/k for any minimal monomial w. The measure of D on
some w is non-decreasing with respect to taking supersets, meaning
Pr;.pli € w] > 1/k for every monomial w € M(f). o

The second claim says that FHSC(f) is non-increasing under
restrictions. For simplicity, we only consider reductions which set
a single bit (which can be extended to more bits by induction).

Claim 3.7. Let f : {0,1}" — R be a function, i € [n] and b €
{0,1}. Let f’ : {0, 1}["\i} R be the function obtained by
restricting to inputs with x; = b. Then

FHSC(f”) < FHSC(f).

Proor. Fix z € {0, 1}["1\M} We will show that FHSC(f”, z) <
FHSC(f, z*) where z* = zif b = 0 and z* = zU {i} if b = 1. In either
case, FHSC(f”, z) < FHSC(f) and hence FHSC(f’) < FHSC(f).

Consider first the case of b = 0, and assume that FHSC(f, z) =
1/p. Recall that f; is the restriction of f to inputs x > z, and that
FHSC(f,z) = FHSC(fz, 0). By definition, there is a distribution D
over [n] such that for every w € M(f;) we have Pr;_p[w; = 1] >
p. Observe that M(f)) c M(f;) since setting a variable to 0 can
only remove monomials. Thus we get FHSC(f”, z) < FHSC(f, z).

Next, consider the case of b = 1. Note that f; = f,,(; and hence
FHSC(f”,z) = FHSC(f, z U {i}). O

Proor oF LEMMA 3.3. Let k = FHSC(f,0) < FHSC(f), Sp = 0,
fo = f and perform the following iterative process. At time ¢t > 1, let
S; = S;—1U{i; } where i; € [n] is the index which hits a 1/k-fraction
of M(f-1), guaranteed to exist by Claim 3.6. Let f; = fi—1lz;,=0. At
each step, the restriction z;, = 0 sets every monomial containing i,
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to zero, causing the sparsity of f;_1 to decrease by a multiplicative
factor (1—1/k). Let r; = |M(f3)|. Since S; is a hitting set for M(f)
when f; has no non-zero monomials, this process terminates with
a hitting set when

re=(1-1/k)ry < e_t/kro <1

Therefore, taking ¢ = klog ry suffices.

4 COROLLARIES IN COMMUNICATION
COMPLEXITY

4.1 Preliminaries

Fix a boolean function f : {0,1}" — {0,1}. Let fo = f o A denote
the AND function corresponding to f, given by fa(x,y) = f(x Ay).
The sparsity of f characterizes the rank of fj.

Claim 4.1 ([3]). Forany f: {0,1}" — {0, 1},
spar(f) = rank(fx).

We assume familiarity with the standard notion of a decision tree.
Our primary interest is in a variant of decision trees called AND
decision trees, which strengthens decision trees by allowing queries
of the conjunction of an arbitrary subset of the variables, namely
queries of the form A;esz; for arbitrary S C [n]. Let PAdt(f)
denote the smallest depth of an AND decision tree computing f.
The following simple connection to the communication complexity
of fy motivates our interest in this model:

Claim 4.2. Forany f:{0,1}" — {0,1},

P(f,) < 2PMU(f).

Proor. Whenever the AND-decision tree queries a set S C [n],
Alice and Bob privately evaluate a Niesxi and b = Ajesyj,
exchange them and continue the evaluation on the sub-tree ob-
tained by following the edge labelled a A b. If the decision tree
height is d, this protocol uses 2d bits of communication. Correct-
ness follows from the observation that A;cg(x; Ayi) = (Njes xi) A
(Njesyj)- o

There is also a simple connection between AND-decision trees
and sparsity:
Claim 4.3. Let f : {0,1}" — {0,1} with d = PA4(f). Then
spar(f) < 3%

PRroOF. Assume that f is computed by a depth-d AND decision
tree, where the first query is Ajeszi, and where fi, f2 are the func-
tions computed by the left and right subtrees, respectively. Note
that both are computed by AND decision trees of depth d — 1. We

have
f@ =[]z A+ (1 - ﬂzl—)fz(z»
ieS ieS
Thus
spar(f) < spar(fi) + 2 - spar(f2).

The claim follows, since in the base case, functions computed by
an AND-decision tree of depth 1 has sparsity at most 2. O
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A related complexity measure introduced in [25], called the
0-decision tree complexity of f, is defined as follows. The 0-depth
of a (standard) decision tree 7" is largest number of 0-edges encoun-
tered on a root-to-leaf path in 7. The 0-decision tree complexity of
f, denoted PO-4t(f), is the smallest 0-depth over all trees 7~ com-
puting f. The following relationship between AND decision trees
and 0-decision tree complexity is from [25]:

Claim 4.4 ([25]). Forany f :{0,1}" — {0, 1},
PO (f) < PAU(F) < POU(f) Tlog(n +1)].

For completeness, we include the short proof.

Proor. The first inequality follows since an AND query can be
simulated by querying the bits in it one at a time, until the first 0 is
queried, or until they are all queried to be 1. In particular, at most a
single 0 query is made. This implies that an AND decision tree of
depth d can be simulated by a standard decision tree of 0-depth d.

For the second inequality, let 7 be a decision tree computing f
with 0-depth d. Consider the subtree which is truncated after the
first 0 is read. We can compute which leaf in the subtree is reached
by doing a binary search on the at most n + 1 options, which can
be implemented using [log(n + 1)] computations of ANDs. Then,
the same process continues on the tree rooted at the node reached,
which has 0-depth at most d — 1. O

The following example shows that this gap of log n cannot be
avoided.

Example 4.5. For z € {0,1}", let ind(z) € [n] denote the first
index i for which z; = 0. Let

fl2) = {1

Zind(z)+1

ifz=1"0orz=1""1p

otherwise

A simple decision tree for f that queries bits of z one after an-
other, will query at most two zeroes, corresponding to zjnq(z)
and Xinq(z)+1, and hence pPO-dt(f) < 2. However, a direct calcu-
lation shows that spar(f) = Q(n) and therefore, by Claim 4.3,
PAAL(f) = Q(logn).

We also use a lemma closely related to Lemma 3.3.
Lemma 4.6. For any f : {0,1}" — {0,1},

P(f) = O(EMBS(f) - log spar(f)).

Proor. Let k = FHSC(f,0) < FHSC(f). By Claim 3.6, there is
an i € [n] that belongs to at least a (1/k)-fraction of M(f). Query
the variable x; and let b; € {0, 1} be the outcome. Let f” : {0,1}" —
{0, 1} be the function f restricted to x; = b;. Consider the sparsity
of f":

o If x; = 0 then IM(f”)| < (1 —1/k)|M(f)|, as setting x; = 0
kills a (1/k)-fraction of the non-constant monomials. Thus,
as long as f is not a constant function, |M(f)| > 1 and we
have

spar(f”) < spar(f) — IM(f)|/k < spar(f)(1 - 1/2k).

e If x; = 1 then spar(f”) < spar(f), since fixing variables to
constants cannot increase the number monomials.



STOC ’21, June 21-25, 2021, Virtual, Italy

Let t the maximum number of 0’s queried along any path in the
obtained decision tree. The sparsity of the subfunction f’ corre-
sponding to a leaf must be 0 or else f” is non-constant. By, Claim 3.7
f” is constant when (1—1/2k)?spar(f) < e_t/stpar(f) < 1, which
occurs when t > 2k - log spar(f). ]

4.2 The Log-Rank Conjecture

A weak version of the log-rank conjecture for AND-functions,
which includes an additional log n factor, now follows quite readily
from the tools we have developed.

Theorem 1.2 (Log-rank Theorem for AND-functions). Let f :
{0,1}" — {0, 1} be a boolean function. Let r = spar(f) = rank(f).
Then f can be computed by an AND-decision tree of depth

PYA(f) = O((logr)® - logn).

In particular, the deterministic communication complexity of fj is
bounded by

P(f) = O((logr)® - log n).

ProOF. By Lemma 3.1, MBS(f) = O((logr)?). By Lemma 3.2,
FMBS(f) = O((logr)*). By Lemma 4.6, po-dt (f) = O((logr)®). By
Claim 4.4 this gives us an AND-decision tree of height O((logr)” -
log n). Finally, we convert the AND-decision tree for f into a proto-
col for f, using Claim 4.2 with complexity O((logr)® -logn). O

In particular, the log-rank conjecture for AND-functions is true
for any f with spar(f) > n¢ for any constant ¢ > 0. In some sense
this is an extremely mild condition, which random f will satisfy
with exceedingly high probability. On the other hand, the log-rank
conjecture is about structured functions; rank and communication
complexity are both maximal for random functions, whereas we are
interested in low-complexity functions/low-rank matrices. It could
very well be the case that the ultra-sparse regime of spar(f) = n°(!)
is precisely where the log-rank conjecture fails. We therefore see
removing the log n factor as an essential problem left open by this
work. See Section 6 for additional discussion.

4.3 Lifting AND-Functions

Since log(spar(f)) lower bounds the deterministic communication
of fx, the log-rank result from the previous section immediately
implies a new upper bound on the AND decision tree complexity of
f. We can prove a better upper bound by making use of our stronger
assumption: instead of only assuming log(spar(f)) is small, we
assume that P°“(f,) is small.

If f has large monotone block sensitivity, then its AND-function
embeds unique disjointness as a sub-function. The unique dis-
jointness function on k bits, denoted UDIS]Jy, takes two inputs
a,b € {0, l}k , and is defined as the partial function:

0 iflanb|=1
UDISJi(a,b) =41 iflanbl=0,
undefined otherwise
where | - | is the Hamming weight.

Claim 4.7 (c.f. [36]). Let f:{0,1}" — {0, 1} be a boolean func-
tion with MBS(f) = k. Then f5 contains as a sub-matrix UDIS].
That is, there are maps x,y : {0, 1}* 5 {0,1}" and ¢ € {0, 1} such
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that the following holds. For any a, b € {0, l}k which satisfy that
la A b| € {0, 1}, it holds that

UDISJi(a,b) = fa(x(a),y (b)) & c.

ProOF. Let z, wy, ..., wg € {0,1}" be pairwise disjoint such that
f(z) # f(z vV w;) for all i € [k]. We may assume without loss of
generality that f(z) = 1, otherwise replace f with its negation, and
setc=1.

Assume that Alice and Bob want to solve unique-disjointness on
inputs a, b € {0, 1}*, which we identify with subsets of [k]. Define

x(a)=zv\/wi, y(b)=zv\/w]~.
i€a jeb
Observe that
z ifanb=0
x(a) Ay(b) = ‘ .
zVw; ifaAb={i}.

Thus we get that UDIS]J (a,b) = f(x(a) A y(b)) for all a, b. O

It is well known that UDIS]J}. is hard with respect to several com-
munication complexity measures such as deterministic, randomized
and nondeterministic.

Theorem 4.8 ([16, 29]). For any communication complexity mea-
sure A € {P¢, BPP, NP},

A(UDIS];) = Q(k).

We immediately get the following corollary:

Corollary 4.9. Let f : {0,1}" — {0, 1} be a boolean function and
A € {P°, BPP‘,NP‘} be a communication complexity measure.

Then MBS(f) = O(A(f))).

ProoF. Assume that MBS(f) = k. Claim 4.7 shows that any
protocol for f, also solves UDISJ;. Hence by Theorem 4.8 we have

k= O(A(fA))- o
Taking A = P, we obtain the main theorem of this section:
Theorem 1.3 (Lifting Theorem for AND-functions). Let f be a

boolean function from {0, 1}" to {0, 1}, and let C = P“(f) denote
the deterministic communication complexity of its corresponding
AND-function. Then f can be computed by an AND-decision tree
of depth

PN () = 0(C® - logn).

Proor. Claim 4.1 gives that logspar(f) = logrank(fy) < C.
By Claim 4.7, MBS(f) = O(C). By Lemma 3.2, FMBS(f) = O(C?).
Combining this with the fact that log spar(f) < C, we see, by
Lemma 4.6, that PO-dt(f) = O(C?). Finally, by Claim 4.4, we get
that PAdt(£) = O(C? - log n). o

5 GENERALIZATIONS TO NON-BOOLEAN
FUNCTIONS
In this section, we extend our conclusion to general multilinear

polynomials and set systems. The main observation is that all mea-
sures introduced in Section 2 are defined for general real-valued
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functions. In addition, both Lemma 3.2 and Lemma 3.3 are estab-
lished for real-valued functions. The following theorem holds true
as the joint result of these two lemmas.

Theorem 1.4. Let f : {0,1}" — R be a multlinear polynomial
with sparsity r. Suppose MBS(f) = m. Then the hitting set com-
plexity of f is bounded by

HSC(f) = O(m?logr).

PrOOF. By Lemma 3.2, FHSC(f) = O(m?). Then by Lemma 3.3,
we obtain the claimed bound. ]

5.1 Finite-Range Functions

Lemma 3.1 is not true for general multilinear polynomials. Never-
theless, if we make the assumption that the multilinear polynomial’s
range is finite, denote its size by s, then we can bound the monotone
block sensitivity by a polynomial of log-sparsity and s.

Lemma 5.1. Let f : {0,1}" — S be a multilinear polynomial
where spar(f) = r and |S| = s. Then MBS(f) = O(s?log? r).

PrOOF. Suppose MBS(f) = MBS(f,z) = k for z € {0,1}", and
let a = f(z) € S. Define a polynomial p : R — {0, 1} such that
p(a) =1and p(b) = 0for b € S\ {a}. There exist such a polynomial
of degree deg(p) = |S| — 1. Define a boolean function g : {0,1}" —
{0,1} by g(2) = p(f(z)). Note that MBS(g, z) = k and spar(g) <
rs71. Then by Lemma 3.1, we have

k = O(log?(spar(g))) = O(s* log? r).
O

Combining it with Theorem 1.4, one can bound the hitting set
complexity of finite-range functions.

Theorem 1.5. Let f : {0,1}" — S for S c R. Assume that
spar(f) = r and |S| = s. Then the hitting set complexity of f is
bounded by

HSC(f) = O(s*(log r)°).

The following example shows that a polynomial dependency on
the range size is necessary in Theorem 1.5.

Example 5.2. Let f(x) = x1 + --- + x5. Then spar(f) = s, the
range of f has size s + 1, and HSC(f) =s.

6 DISCUSSION
6.1 Ruling out the logn Factor

Both results about communication complexities of AND-functions
(Theorems 1.2 and 1.3) are not “tight” in the sense that both of them
have a log n factor in the right side of the inequality. Unfortunately,
n can be exponential in sparsity (see Example 2.20).

It is easy to see that if the log n factor is truly necessary in these
theorems we are very close to refuting the log-rank conjecture.
Hence, we believe that a “tighter” version of the log-rank theorem
(Theorem 1.2) is true.

Conjecture 6.1. Let f: {0,1}" — {0,1} be a boolean function,
where spar(f) = r. Then

PN f) < poly(logr).
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Note that this conjecture would imply a “tighter” version of the
lifting theorem as well.

6.2 Randomized Complexity

The main results of this paper are concerned with the deterministic
communication complexity of AND-functions. However, Corol-
lary 4.9 says that the randomized communication complexity of an
AND-function is lower bounded by its monotone block sensitivity.
The relation between randomized communication complexity and
sparsity remains unclear. We conjecture that the relation between
these two measures is the same as the proved relation (Theorem 1.3)
between sparsity and deterministic communication complexity.

Conjecture 6.2. Let f : {0,1}" — {0, 1} be a boolean function.
Suppose that BPP‘(f,) = C. Then

log(spar(f)) < poly(C) - logn.

In particular, f can be computed by an AND-decision tree of depth
P“(fp) < poly(C) - logn.

Observe that Conjecture 6.2 implies that randomness does not
significantly help to compute AND-functions. Concretely, it implies
that

P“(fp) < poly (BPPCC (f/\)) -logn.

Interestingly, the log n factor in this conjecture is necessary as
shown by the following example.

Example 6.3 (Threshold Functions).
the threshold function such that

Let f: {0,1}" — {0, 1} be

f(x)=1 & |x|>2n-1

It is clear that spar(f) = n + 1; however, BPP°(f) = O(1). Indeed,
let us consider the following randomized AND-decision tree for f:
it samples a subset S C [n] uniformly at random, then output the

value of
gs(x) = (Axi) v (Axi).
ieS i¢S
Note that if |[x| > n — 1 then gs(x) = 1 with probability 1. If
|x| < n—2,leti, jbe such that x; = x; = 0. With probability 1/2 we
havei e S,j¢Sori ¢S, j€S,inboth cases gs(x) = 0. In order to
reduce the error, repeat this for a few random sets S.

6.3 Sparsity vs. Coeflicients Size

Let f : {0,1}" — {0, 1} and consider the multi-linear polynomial
computing f, namely f(x) = 35 fs [1;es xi. It is well known that
the coefficients f; take integer values. In particular, if we denote
by [Ifll1 = 2 |fs| the L1 norm of the coefficients, then we get the
obvious inequality

spar(f) < [|f]l1.
We note the following corollary of Theorem 1.2, which shows that
[[f1l1 cannot be much larger than spar(f).

Claim 6.4. Let f: {0,1}" — {0,1} and assume that spar(f) = r.
Then ||f]l1 < nOUog")”.
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PrOOF. By Theorem 1.2, PA*4(f) = d for d = O((logr)® log n).
By a similar proof to Claim 4.3, any function f computed by an
AND-decision tree of depth d has || f||1 < 39, The claim follows. O

We conjecture that the gap between sparsity and L; is at most
polynomial.

Conjecture 6.5.

For any f : {0,1}" — {0,1},
/11 < poly(spar(f)).
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