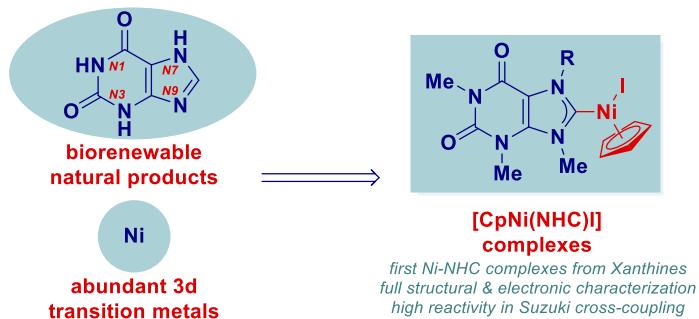


N-Heterocyclic Carbene Complexes of Nickel(II) from Caffeine and Theophylline: Sustainable Alternative to Imidazol-2-ylidenes

Jin Zhang,^{§,†,||} Md. Mahbubur Rahman,^{†,||} Qun Zhao,[†] Jessica Feliciano,[†] Elwira Bisz,[◊] Błażej Dziuk,^Δ Roger Lalancette,[†] Roman Szostak,[‡] and Michał Szostak*,[†]

[†]Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States


[§]College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China

[◊]Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland

^ΔDepartment of Chemistry, University of Science and Technology, Norwida 4/6, Wrocław 50-373, Poland

[‡]Department of Chemistry, Wrocław University, F. Joliot-Curie 14, Wrocław 50-383, Poland

Supporting Information

ABSTRACT: Xanthines, such as caffeine and theophylline, are abundant natural products that are often present in foods. Leveraging renewable and benign resources for ligand design in organometallic chemistry and catalysis is one of the major missions of green and sustainable chemistry. In this Special Issue on *Sustainable Organometallic Chemistry*, we report the first nickel–N-heterocyclic carbene complexes derived from Xanthines. Well-defined, air- and moisture-stable, half-sandwich, cyclopentadienyl [CpNi(NHC)]I nickel–NHC complexes are prepared from the natural products caffeine and theophylline. The model complex has been characterized by x-ray crystallography. The evaluation of steric, electron-donating and π -accepting properties is presented. High activity in the model Suzuki–Miyaura cross-coupling is demonstrated. The data show that nickel–N-heterocyclic carbenes derived from both Earth abundant 3d transition metal and renewable natural products represent a sustainable alternative to the classical imidazol-2-ylidenes.

Introduction

N-Heterocyclic carbenes (NHCs) represent a tremendously important class of ligands in organometallic chemistry and catalysis.^{1–3} Over the last 25 years, since the first isolation by Arduengo in 1991⁴ and the first use in catalysis by Herrmann in 1995,⁵ different classes of NHC ligands have been extensively investigated.⁶ Principally, NHC ligands have found broad application in catalysis⁷ using transition metals owing to the electronic⁸ and steric⁹ properties that can support various metals at different oxidation states.¹⁰ In this context, leveraging renewable and benign resources for ligand design in organometallic chemistry and catalysis is one of the major missions of green and sustainable chemistry.¹¹ Likewise, the use of nickel as an Earth abundant 3d transition metal has recently garnered significant attention in catalysis owing to low price of Ni as well as a potential problem with long-term supply of Pd, which is particularly important from an industrial standpoint.^{12–14}

Xanthines, such as caffeine and theophylline (Figure 1), are abundant natural products that are often found in foods.¹⁵ The presence of an imidazole ring renders Xanthines potential precursors to N-heterocyclic carbenes.¹⁶ Xanthines as precursors to N-heterocyclic carbenes have been well-explored for medicinal chemistry applications.^{17–21} Seminal studies by Youngs and co-workers established the potential of Ag(I)–NHC complexes derived from caffeine as antimicrobial agents active against resistant respiratory pathogens.¹⁷ Willans and co-workers demonstrated antiproliferative activity against cancer cell lines of Ag(I)–NHC complexes derived from Xanthines.¹⁸

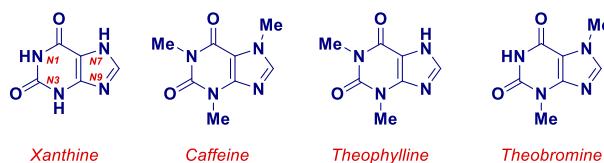
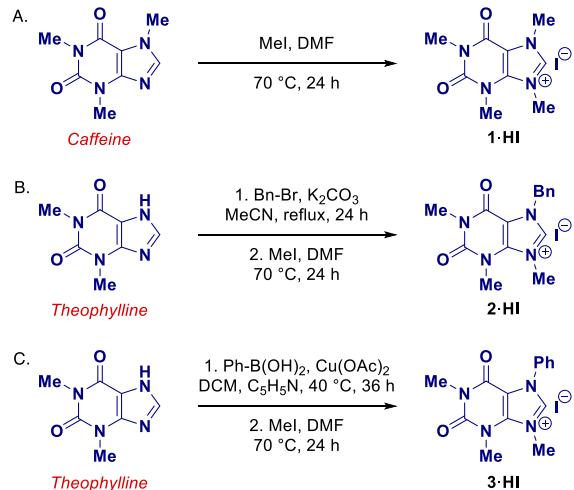


Figure 1. Xanthine natural products.

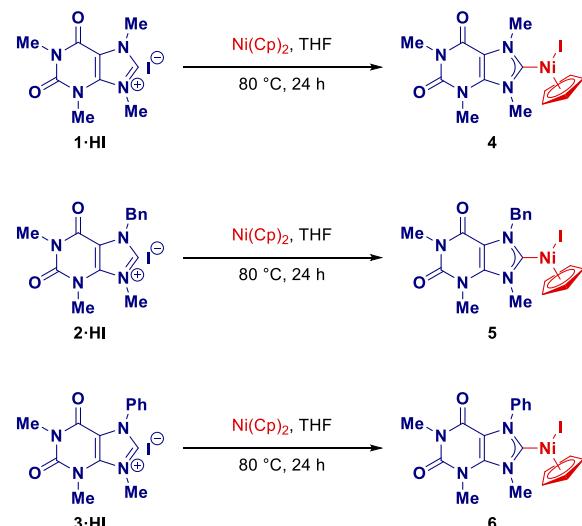
Furthermore, Casini and co-workers developed Au(I)-NHC complexes derived from caffeine with selective antiproliferative effects against human ovarian cancer cell lines.¹⁹ Antiproliferative and cytotoxic activity of Pd(II)-NHC and Pt(II)-NHC complexes derived from Xanthines have been reported.^{20,21}

In contrast, however, the development of Xanthines as NHC ligands for transition-metal-catalysis remains unexplored. At present, there are only few examples reported, including Pd, Ir, Rh and Cu catalysis.²²⁻²⁵ To our knowledge, despite the explosive growth of Ni-NHCs,^{14,26} there are no examples of Ni-N-heterocyclic carbene complexes derived from Xanthines.


As continuation of our interest in NHC ligand development²⁷ and sustainable chemistry,²⁸ in this Special Issue on *Sustainable Organometallic Chemistry*, we report the first nickel-N-heterocyclic carbene complexes derived from Xanthines. Our data show that nickel-N-heterocyclic carbenes derived from both Earth abundant 3d transition metal and renewable natural products represent a sustainable alternative to the classical imidazol-2-ylidene.

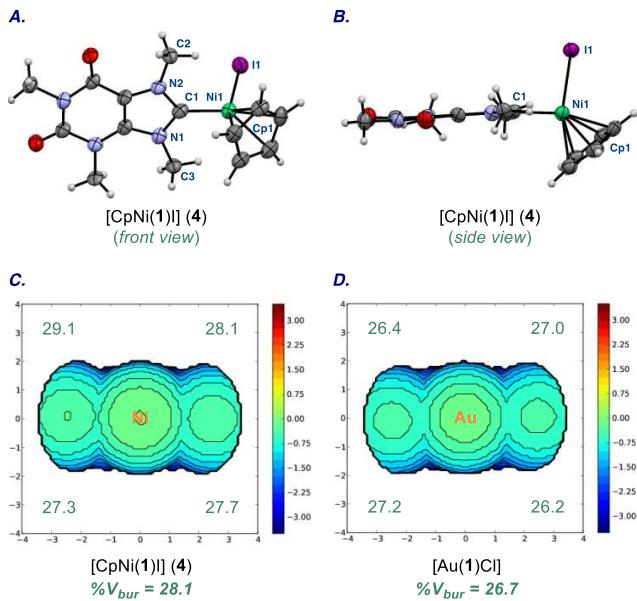
Results and Discussion

Imidazolium salts of **1-3** with different steric and electronic properties at the N7 position of the Xanthine scaffold were selected as NHC precursors for the study (Scheme 1). Salts of **1-3** were prepared from caffeine by methylation at the N9 position (**1-HI**) and from theophylline by a sequence involving N7-benzylation/N9-methylation (**2-HI**) or N7-arylation/N9-methylation (**3-HI**) (Scheme 1).¹⁹ At present, synthetic methods do not permit for an easy access to N-*ortho*-sterically-hindered NHCs in xanthine scaffold. DMF is not required as a solvent and these reactions can also be conducted in the absence of the solvent. Well-defined half-sandwich cyclopentadienyl [CpNi(NHC)I] complexes (**4-6**) were prepared by the reaction of imidazolium salts with NiCp₂ in THF at 80 °C (Scheme 2).²⁶ All complexes were found to be air- and moisture-stable.

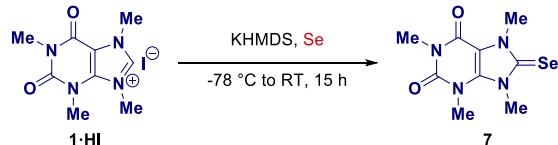

The model complex **4** (N7-Me) was characterized by X-ray crystallography (Figure 2). The single crystals were obtained by slow evaporation of dichloromethane. The X-ray crystallographic analysis of complex [CpNi(**1**)I] **4** revealed the trigonal planar geometry comprised of carbene **1**, iodide and Cp(η^5) ligands (Figure 2A-B). The Ni-C and Ni-Cp bond lengths of 1.883(9) Å and 1.748 Å are in the range for standard cyclopentadienyl Ni(II)-NHC type complexes (e.g., [CpNi(**IPr**)Cl], Ni-C, 1.875 Å; Ni-Cp, 1.800 Å; [CpNi(**IMes**)Cl], Ni-C, 1.873, 1.877 Å; Ni-Cp, 1.770, 1.764 Å).²⁶ The Ni-I bond length of 2.508(2) Å in **4** can be compared with the Ni-Cl bond length of standard [CpNi(NHC)Cl] complexes ([CpNi(**IPr**)Cl], 2.188 Å; [CpNi(**IMes**)Cl], 2.198, 2.202 Å), while the C-Ni-I bond angle of 96.9° in complex **4** is in same range as for [CpNi(**IPr**)Cl] (93.9°) and [CpNi(**IMes**)Cl] (96.8°).²⁶

Scheme 1. Synthesis of Imidazolium Salts **1-3**^a

^aConditions: (A) Caffeine (1.0 equiv), MeI (8.6 equiv), DMF (3.0 M), 70 °C, 24 h, 81%. (B) (i) Theophylline (1.0 equiv), Bn-Br (5.0 equiv), K₂CO₃ (1.1 equiv), reflux, 24 h; (ii) 7-Benzyltheophylline (1.0 equiv), MeI (8.6 equiv), DMF (3.0 M), 70 °C, 24 h, 74%. (C) (i) Theophylline (1.0 equiv), Ph-B(OH)₂ (0.60 equiv), Cu(OAc)₂ (11.0 mol%), pyridine (5.0 equiv), CH₂Cl₂ (0.20 M), 40 °C, 36 h; (ii) 7-Phenyltheophylline (1.0 equiv), MeI (8.6 equiv), DMF (3.0 M), 70 °C, 24 h, 48%.


Scheme 2. Synthesis of Ni(II)-NHC Complexes **4-6**^a

^aConditions: NHC-HI (1.0 equiv), Ni(Cp)₂ (2.0 equiv), THF (0.10 M), 80 °C, 15 h; **4**: 61%; **5**: 65%; **6**: 69%.


The bond angles of **4** (C1-Ni1-Cp1, 131.3°; I1-Ni1-Cp1, 131.7°) are consistent with trigonal planar geometry.

To evaluate the steric impact of Xanthine-derived NHC ligand, the percent buried volume (%V_{bur}) of [CpNi(**1**)I] (**4**) was calculated using method by Cavallo (Figure 2C).⁹ The %V_{bur} of (**4**) is 28.1% with quadrant distribution of 27.3% (SW), 29.1% (NW), 28.1% (NE), 27.7% (SE) for each quadrant, which could be compared with the %V_{bur} of 26.7% for the linear [Au(**1**)Cl] complex with 27.2% (SW), 26.4% (NW), 27.0% (NE), 26.2% (SE) for each quadrant reported by Casini (Figure 2D).¹⁹ The graphical representation of steric maps is shown in Figures 2C-D.

Figure 2. (A-B) X-ray crystal structure of complex **[CpNi(1)I]** (4) (50% ellipsoids). (A) front view; (B) side view. Selected bond lengths [Å], bond angle [°] and dihedral angles [°] (4): Ni1–C1, 1.883(9); Ni1–I1, 2.508(2); Ni1–Cp1, 1.749; C1–N1, 1.380(1); C1–N2, 1.360(1); C3–N1, 1.450(1); C2–N2, 1.450(1); C1–Ni1–I1, 96.90(3); C1–Ni1–Cp1, 131.28; I1–Ni1–Cp1, 131.70; Ni1–C1–N1, 128.10(7); Ni1–C1–N2, 125.20(7); C1–N1–C3, 122.10(8); C1–N2–C2, 124.80(8); Ni1–C1–N1–C3, 3.0(1); Ni1–C1–N2–C2, 9.0(1). (C-D) Topographical steric map of (C) **[CpNi(1)I]** (4) and (D) **[Au(1)Cl]**¹⁹ showing %V_{bur} per quadrant. 4: CCDC 2141640.

Scheme 3. Synthesis of Selenium Adduct 7^a

^aConditions: **1-HI** (1.0 equiv), Se (2.0 equiv), KHMDS (1.2 equiv), THF (0.10 M), -78 °C, then 23 °C, 15 h, 52%.

We have also prepared the selenium adduct **[Se(NHC)]** (7) by adding the free carbene generated in situ using KHMDS to excess of selenium (Scheme 3). This permits to evaluate π -backbonding from the ⁷⁷Se NMR spectra.²⁹ The δ_{Se} value of 79.9 ppm for **[Se(NHC)]** (7) (CDCl_3) can be compared with the model imidazol-2-ylideneIPr ($\delta_{\text{Se}} = 90$ ppm). It should be noted that ⁷⁷Se NMR spectroscopy is affected by anisotropic effects and the results can only be compared within the same type of NHCs. We also note that the Tolman electronic parameter (TEP)^{8,30} of **[Rh(1)(CO)₂Cl]** has been reported;^{16b} the value of 2055.8 cm^{-1} as a combined measure of the electronic properties can be compared with the model imidazol-2-ylideneIPr (TEP of 2051.5 cm^{-1}).^{8,30} Note that TEP is obtained by correlation of the known data for Rh and Ni complexes.^{30a} Furthermore, one-bond CH coupling (¹J_{CH}) constant obtained from ¹³C satellites of the ¹H NMR spectrum of **(1)** is 226.95 Hz, providing a good indication of σ -donating properties of this ligand (cf. IPr, ¹J_{CH} = 223.70 Hz).³¹

With access to **[CpNi(NHC)I]** complexes (**4–6**), we next investigated the catalytic activity in Suzuki–Miyaura cross-coupling. Selected optimization results are presented in Table 1.

Our optimization was carried out using the model substrate combination for Suzuki–Miyaura cross-

Table 1. Optimization of the Reaction Conditions^a

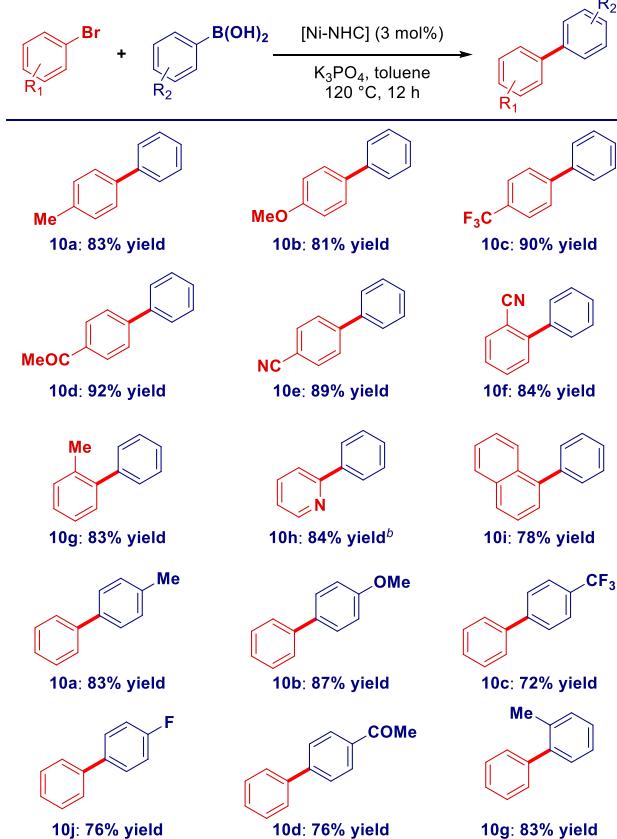
		<chem>Ac-C6H4-Br</chem> + <chem>Ph-B(OH)2</chem> $\xrightarrow{[\text{NHC-Ni}]}$ <chem>Ac-C6H4-Br-Ph</chem>		conditions		
entry	catalyst	R-X	solvent	base	T (°C)	yield (%) ^b
1	4	4-Ac-C ₆ H ₄ -Br	toluene	K ₃ PO ₄	90	76
2	4	4-Ac-C ₆ H ₄ -Br	toluene	K ₂ CO ₃	90	35
3	4	4-Ac-C ₆ H ₄ -Br	toluene	KOt-Bu	90	13
4	4	4-Ac-C ₆ H ₄ -Br	EtOH	K ₂ CO ₃	90	54
5	4	4-Ac-C ₆ H ₄ -Br	THF	K ₂ CO ₃	90	57
6 ^c	4	4-Ac-C ₆ H ₄ -Br	toluene	K ₃ PO ₄	90	67
7	4	4-Ac-C ₆ H ₄ -Br	toluene	K ₃ PO ₄	120	79
8 ^d	4	4-Ac-C ₆ H ₄ -Br	toluene	K ₃ PO ₄	120	30
9 ^e	4	4-Ac-C ₆ H ₄ -Br	toluene	K ₃ PO ₃	120	94
10 ^e	4	4-Ac-C ₆ H ₄ -Cl	toluene	K ₃ PO ₄	120	29

^aConditions: 4-Ac-C₆H₄-X (1.0 equiv), Ph-B(OH)₂ (2.0 equiv), catalyst (3 mol%), base (2.6 equiv), solvent (0.25 M), T, 12 h. ^bGC/¹H NMR yields.

^cbase (4.0 equiv). ^dtoluene (0.50 M). ^etoluene (0.10 M).

Table 2. Evaluation of Catalysts 4–6^a

		<chem>Ac-C6H4-Br</chem> + <chem>Ph-B(OH)2</chem> $\xrightarrow{[\text{NHC-Ni}]}$ <chem>Ac-C6H4-Br-Ph</chem>		conditions		
entry	catalyst	R-X	solvent	base	T (°C)	yield (%) ^b
1	4	4-Ac-C ₆ H ₄ -Br	toluene	K ₃ PO ₄	120	94
2	5	4-Ac-C ₆ H ₄ -Br	toluene	K ₃ PO ₄	120	91
3	6	4-Ac-C ₆ H ₄ -Br	toluene	K ₃ PO ₄	120	81


^aConditions: 4-Ac-C₆H₄-Br (1.0 equiv), Ph-B(OH)₂ (2.0 equiv), catalyst (3 mol%), K₃PO₄ (2.6 equiv), toluene (0.10 M), 120 °C, 12 h. ^bGC/¹H NMR yields.

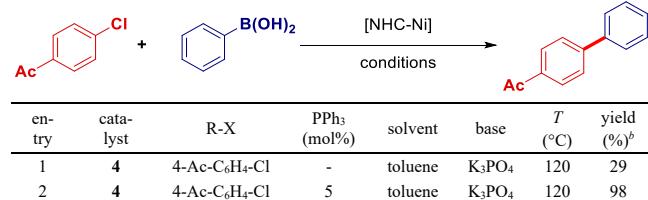
couplings using half-sandwich Ni–NHC cyclopentadienyl complexes.^{26c,14} As shown in Table 1, **[CpNi(NHC)I]** (4) successfully promoted the Suzuki cross-coupling of 4-Ac-C₆H₄-Br with Ph-B(OH)₂ under model conditions in the presence of K₃PO₄ (2.6 equiv) in toluene at 90 °C in 76% yield (Table 1, entry 1). Examination of different bases revealed that K₃PO₄ is preferred over K₂CO₃ (Table 1, entry 2) and KO-*t*Bu (Table 1, entry 3). Likewise, other solvent/base combinations that have been used for Ni–NHC-catalyzed Suzuki cross-couplings,³² such as EtOH/K₂CO₃ (Table 1, entry 4) and THF/K₂CO₃ (Table 1, entry 5), proved less effective. Interestingly, increasing the amount of base was detrimental to the reaction (Table 1, entry 6). In contrast, increasing the reaction temperature resulted in a further increase in yield (Table 1, entry 7). Finally, we found that changes in the reaction concentration have a significant impact on the reaction efficiency (Table 1, entries 8). The optimized system involves **[CpNi(NHC)I]** (3 mol%), K₃PO₄ (2.6 equiv), toluene (0.10 M), 120 °C (entry 9). Note that **[CpNi(NHC)I]** (4) gave 82% yield after 15 min. To compare the reactivity with **[CpNi(IPr)Cl]**, we have independently prepared **[CpNi(IPr)Cl]** and tested this complex under the same reaction conditions. This imidazol-2-ylidene complex **[CpNi(IPr)Cl]** gave 81% yield (15 min), indicating comparable reactivity of (4) to the most reactive NHC–Ni systems.^{14b,c} We note that 2 equivalents of arylboronic acid are required for the reaction. In general, Ni catalysis is still less reactive than Pd catalysis in Suzuki-type

couplings. We also note that under the optimized conditions, the use of Ar-Cl, 4-Ac-C₆H₄-Cl is less effective, resulting in a modest yield of cross-coupling (Table 1, entry 10) (*vide infra*). Both methods gave consistent results using [CpNi(NHC)I] (**4**) as the catalyst.

Furthermore, comparison between $[\text{CpNi}(\text{NHC})\text{I}]$ complexes (4–6) (Table 2) revealed that N7-Me complex 4 is most reactive, followed by N7-Bn complex 5, while N7-Ph complex 6 showed comparatively lower reactivity, which is consistent with less sterically-demanding complexes as

Scheme 4. Substrate Scope of Ni-NHC-Catalyzed Suzuki–Miyaura Cross-Coupling^a

^aConditions: [Ni-NHC] 4 (3 mol%), Ar-Br (1.0 equiv), Ar'-B(OH)₂ (2.0 equiv), K₃PO₄ (2.6 equiv), toluene (0.10 M), 120 °C, 12 h. ^bUsing Ar-Cl as substrate. See SI for details.


more effective in [Ni–NHC] promoted Suzuki cross-coupling reactions.³³

With the optimal conditions in hand, the scope of the Suzuki–Miyaura cross-coupling using complex **4** was investigated (Scheme 4). As shown, the half-sandwich, cyclopentadienyl complex (**4**) is effective in promoting the Suzuki cross-coupling of a range of aryl bromides, including electron-neutral (**10a**), challenging electron-rich (**10b**) as well as electron-deficient (**10c–10f**) substrates. Importantly, sensitive electrophilic functional groups, such as ketone (**10d**) and cyano (**10e–10f**) are readily tolerated under these mild base conditions. Importantly, challenging ortho-sterically-hindered substrates can also be used under these conditions (**10g**). It is notable that catalyst (**4**) tolerates both electron-rich and sterically-hindered aryl bromides, which are comparatively difficult substrates for related

half-sandwich, cyclopentadienyl [Ni–NHC] complexes.^{14,26} Furthermore, heterocyclic aryl halides are compatible as exemplified by the cross-coupling of 2-Cl-pyridine (**10h**). In this case, it is possible to use aryl chloride because of the conjugation with the electron-deficient heterocycle. Finally, polycyclic hydrocarbons, such as sterically-hindered 1-naphthyl, also are compatible with this cross-coupling (**10i**).

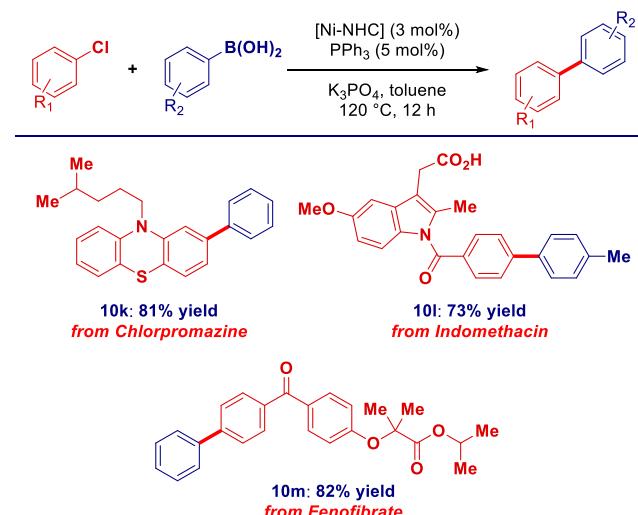
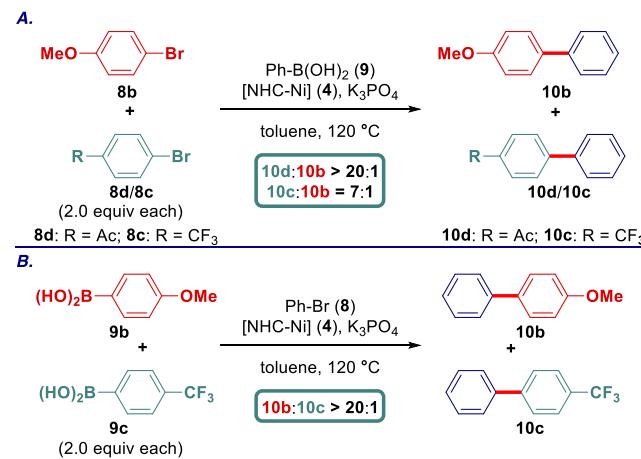

Next, the scope of boronic acids was briefly investigated using electronically-unbiased bromobenzene (Scheme 4).

Table 3. Cross-Coupling of Aryl Chlorides Catalyzed by a Mixed Ni–NHC/Phosphine System.^a

^aConditions: 4-Ac-C₆H₄-Cl (1.0 equiv), Ph-B(OH)₂ (2.0 equiv), catalyst (3 mol%), PPh₃ (0-5 mol%), K₃PO₄ (2.6 equiv), toluene (0.10 M), 120 °C, 12 h. ^bGC/¹H NMR yields.

Scheme 5. Late-Stage Modification by Ni-NHC/PPh₃-Catalyzed Suzuki–Miyaura Cross-Coupling^a

^aConditions: [Ni-NHC] 4 (3 mol%), PPh₃ (5 mol%), Ar-Cl (1.0 equiv), Ar'-B(OH)₂ (2.0 equiv), K₃PO₄ (2.6 equiv), toluene (0.10 M), 120 °C, 12 h. See SI for details.


As shown, electron-neutral (**10a**), electron-rich (**10b**), electron-deficient (**10c**, **10j**, **10d**) arylboronic acids are competent substrates for the reaction. Furthermore, we were pleased to find that sterically-hindered boronic acids also well-tolerated (**10g**). Importantly, these boronic acids delivered the cross-coupling products in high yields irrespective of electronic and steric properties of the boronic acid, which compares favorably with related half-sandwich, cyclopentadienyl [Ni–NHC] complexes based on imidazol-2-ylidenes.^{14,26}

At this point, we became intrigued by the recent reports on using catalytic amounts of phosphanes to increase the reactivity of Ni–NHC complexes in the Suzuki–Miyaura cross-coupling of aryl chlorides.³⁴ These systems are proposed to operate through mixed NHC/PR₃ coordination to nickel(II), resulting in stable and catalytically-active precursors. Gratifyingly, we

found that addition of catalytic PPh_3 (5 mol%) to the present system resulted in a significant enhancement of the reactivity in cross-coupling of aryl chlorides (Table 3).

Pleasingly, this Ni–NHC/PR₃ system is highly efficient and could be applied to the direct late-state derivatization of pharmaceuticals (Scheme 5).³⁵ The cross-coupling of *chloropromazine* (antipsychotic), *indomethacin* (anti-

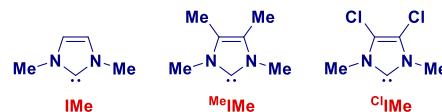
Scheme 6. Competition Experiments^a

^aConditions: (A) Ar-Br (2.0 equiv each)/Ph-B(OH)₂ (1.0 equiv). (B) Ar-B(OH)₂ (2.0 equiv each)/Ph-Br (1.0 equiv), [Ni–NHC] 4 (3 mol%), K₃PO₄ (2.6 equiv), toluene (0.10 M), 120 °C, 12 h.

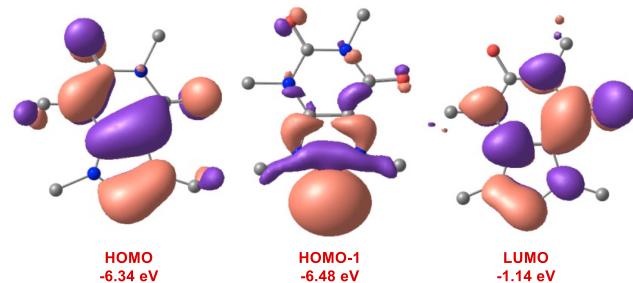
inflammatory) and *fenofibrate* (antihypercholesterolemic) delivered biaryl products in high yields. While our focus was on aryl bromides because these reactions do not require phosphine additives, the cross-couplings in Scheme 5 highlight the potential of nickel catalysis in medicinal chemistry research. Studies on the development of related Ni–NHC/phosphine catalysts are ongoing in our laboratory.

Next, we conducted intermolecular competition experiments to gain preliminary insight into the reaction selectivity (Scheme 6). Competition experiments revealed that electron-deficient aryl bromides are significantly more reactive than electron-rich counterparts (Ac:MeO > 95:5) (Scheme 6A). Furthermore, electron-rich boronic acids are inherently more reactive than electron-deficient boronic acids (MeO:CF₃ > 95:5) (Scheme 6B). Note that ketones can coordinate to Ni(0) complexes, which may affect the selectivity. Thus, we conducted competition experiments using the 4-CF₃ analogue (CF₃:MeO = 7:1) (Scheme 6A), which is in agreement with the reaction strongly favoring electron-deficient substrates. The electronic effect is supported by the scope studies (**10b** vs. **10c-d**, Scheme 4). This data is consistent with oxidative addition and transmetalation as kinetically relevant steps in the cross-coupling.^{14,26}

To further characterize the effect of Xanthine scaffold on electronic properties of carbenes, HOMO and LUMO energy levels of NHCs derived from **1–3** were determined at the B3LYP 6-311++g(d,p) level (Table 4, Figures 3–4 and SI). For comparison, orbital energy levels of reference imidazol-2-ylidenes **IMe**, **MeIMe** and **ClIMe** were determined. It is now well accepted that computation of HOMO and LUMO energy levels provides the most accurate evaluation of nucleophilicity and electrophilicity of N-heterocyclic carbenes with the proviso that the comparison must be available at the same level of


theory.^{30,10} Higher HOMO corresponds to more σ -donating, while lower LUMO to more π -accepting NHC ligands. In select cases, π -donation should also be considered.

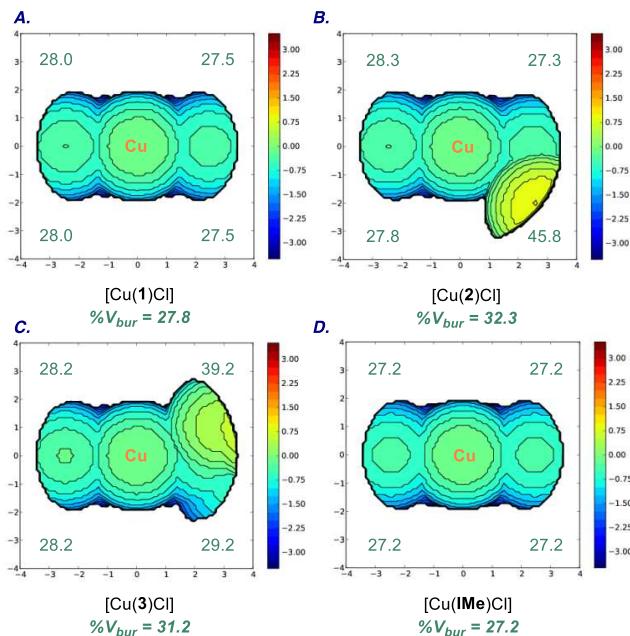
The HOMO-1 of carbenes **1–3** (in-plane σ -orbital, N7-Me, N7-Bn and N7-Ph, in the Xanthine scaffold, respectively) of -6.48 eV, -6.50 eV and -6.52 eV can be compared with HOMO of **IMe** (-5.89 eV), **MeIMe** (-5.66 eV), and **ClIMe** (-6.38 eV). In the case of carbenes **1–3**, the HOMO is π -donor orbital (-6.34 eV, -6.35 eV and -6.29 eV, respectively), which can be compared with the corresponding π -donor orbitals (HOMO-1) of **IMe**, **MeIMe** and **ClIMe** of -6.37 eV, -5.81 eV and -6.41 eV. Furthermore, the LUMO of carbenes **1–3** (π -acceptance) of -1.14 eV, -1.18 eV and -1.28 eV


Table 4. HOMO and LUMO Energy Levels (eV) of Xanthine Derived NHCs Calculated at the B3LYP 6-311++g(d,p) Level^a

entry	NHC	HOMO [eV]	LUMO [eV]
1	1	-6.48 ^b	-1.14
2	2	-6.50 ^b	-1.18
3	3	-6.52 ^b	-1.28
4	IMe	-5.89	0.40 ^c
5	MeIMe	-5.66	0.49 ^c
6	ClIMe	-6.38	0.20 ^c
7	IPr	-6.01	-0.48

^aSee SI for details. ^bHOMO-1, in-plane σ -orbital. HOMO: π -donor orbital, 1: -6.34 eV, 2: -6.35 eV, 3: -6.29 eV. ^cLUMO+4, LUMO+3, LUMO+4 due to required symmetry.

Figure 3. Structures of reference imidazol-2-ylidenes.


Figure 4. HOMO (π -donating orbital), HOMO-1 (σ -donating orbital) and LUMO (π -accepting orbital) of caffeine derived carbene 4 calculated at B3LYP 6-311++g(d,p) level. See SI for details.

can be compared with **IMe**, **MeIMe** and **ClIMe** of 0.40 eV, 0.49 eV and 0.20 eV (LUMO+4, LUMO+3, LUMO+4 due to required symmetry, respectively). It should be noted that in xanthine-8-ylidenes π -acceptor is asymmetrical with respect to metal–carbene axis due to the presence of the fused tetrahydro-pyrimidine-2,4-dione. For comparison, the values for a model N-Aryl imidazol-2-ylidene, **IPr**, are HOMO: -6.01 eV, LUMO: -0.48 eV. Thus, electronically, carbenes **1–3** can be described as moderately strongly σ -donating and strongly π -accepting NHC ligands. To our knowledge, this study provides the first

quantification of the frontier orbitals of NHCs derived from Xanthines.¹⁵⁻²⁵

We have also evaluated the steric effect of the Xanthine NHC ligands derived from **1-3** by calculating the percent buried volume (%V_{bur}) for the linear [Cu(NHC)Cl] complexes at the B3LYP 6-311++g(d,p) level (Figure 5 and Table 5). It is now well accepted that the accurate determination of %V_{bur} of NHC ligands should be made for the linear geometry of NHC–metal complexes.⁹ To eliminate packing effects from the crystallographic studies, optimum results are obtained by comparing a series of ligands calculated at the same level of theory. For this study, we selected Cu(I)–NHC complexes to facilitate computations.

Thus, Xanthine ligands **1-3** feature %V_{bur} = 27.8%, %V_{bur} = 32.3%, and %V_{bur} = 31.2%, respectively, which can be compared with **IMe**, **Me^{Me}IMe** and **C¹IMe** of 27.2%, 27.3%

Figure 5. (A-D) Topographical steric maps of [Cu(NHC)Cl] (**4-6** and **IMe**) showing %V_{bur} per quadrant calculated at B3LYP 6-311++g(d,p) level.

Table 5. %V_{bur} of Xanthine Derived NHCs in [Cu(NHC)Cl] Complexes Calculated at the B3LYP 6-311++g(d,p) Level^a

entry	NHC	%V _{bur}
1	1	27.8
2	2	32.3
3	3	31.2
4	IMe	27.2
5	Me^{Me}IMe	27.3
6	C¹IMe	27.3
7	IMes	36.4

^aSee SI for details.

and 27.3% as well as [Cu(IMes)Cl], %V_{bur}=36.4%, determined at the same level of theory. Interestingly, ligand derived from **1** features symmetrical quadrant distribution (28.0%, 28.0%, 27.5%, 27.5%), while ligands **2** and **3** feature differentiated steric impact with 27.8%, 28.3%, 27.3%, 45.8% and 28.2%, 28.2%, 39.2%, 29.2% for each quadrant. Thus, in terms of sterics ligands **2** and **3** feature unsymmetrical quadrant distribution, while Xanthine ligand **1** is similar to the smallest **IMe** and

Me^{Me}IMe imidazol-2-ylidene ligands, which have found numerous applications in transition-metal-catalysis.^{1-3,36}

3. Conclusions

In summary, there is a major economic and societal drive to use renewable resources for sustainable chemical synthesis. In this respect, it is particularly attractive to merge the abundance of 3d transition metals and bio-renewable sources of ligands. In this study, we have reported the first nickel–N-heterocyclic carbene complexes derived from Xanthines. We demonstrated the synthesis of well-defined, air- and moisture-stable, half-sandwich, cyclopentadienyl nickel–NHC complexes from the natural products caffeine and theophylline. Complex **4** has been characterized by x-ray crystallography. The high activity in Suzuki–Miyaura cross-coupling has been demonstrated. The use of phosphine additive enabled to engage aryl chlorides, including late-stage derivatization of pharmaceuticals. Finally, full evaluation of steric, electron-donating and π -accepting properties of this class of ligands has been presented. We anticipate that Xanthine derived N-heterocyclic carbenes offer a plethora of exciting applications as a sustainable alternative to the classical imidazol-2-ylidene.

ASSOCIATED CONTENT

Supporting Information

Procedures and analytical data. This material is available free of charge via the Internet at <http://pubs.acs.org>.

AUTHOR INFORMATION

Corresponding Author

michał.szostak@rutgers.edu

||These authors contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We gratefully acknowledge Rutgers University (M.S.), the NIH (R35GM133326, M.S.), the NSF (CAREER CHE-1650766, M.S.) and the ACS PRF (DNI-55549) for generous financial support. The Bruker 500 MHz spectrometer used in this study was supported by the NSF-MRI grant (CHE-1229030). This material is based upon work supported by the National Science Foundation under Grant No. 2018753. Additional support was provided by the Rutgers Graduate School in the form of Dean's Dissertation Fellowship (M.R.). Supplement funding for this project was provided by the Rutgers University–Newark Chancellor's Research Office. J.F. gratefully acknowledges receiving a research stipend from the NSF through the Garden State–LSAMP (NSF-1909824). J.Z. thanks the China Scholarship Council (No. 201808610096) and the National Natural Science Foundation of China (22179075). E.B. acknowledges Narodowe Centrum Nauki (grant no. 2019/35/D/ST4/00806, E.B.) for generous financial support. We thank the Wrocław Center for Networking and Supercomputing (grant number WCSS159).

REFERENCES

- (a) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. *Nature* **2014**, *510*, 485-496. (b) Bellotti, P.; Koy, M.; Hopkinson, M. N.; Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. *Nat. Rev. Chem.* **2021**, *5*, 711-725. (c) *N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis*, Nolan, S. P., Ed.; Wiley: Weinheim,

2014. (d) *N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools*, Diez-Gonzalez, S., Ed.; RSC: Cambridge, 2016. (e) *Science of Synthesis: N-Heterocyclic Carbenes in Catalytic Organic Synthesis*, Nolan, S. P.; Cazin, C. S. J., Eds.; Thieme: Stuttgart, 2017. (f) Huynh, H. V. *The Organometallic Chemistry of N-Heterocyclic Carbenes*, Wiley: Hoboken, 2017.

(2) (a) Koy, M.; Bellotti, P.; Das, M.; Glorius, F. N-Heterocyclic carbenes as tunable ligands for catalytic metal surfaces. *Nature Catal.* **2021**, *4*, 352-363. (b) Boydston, A. J.; Williams, K. A.; Bielawski, C. W. A Modular Approach to Main-Chain Organometallic Polymers. *J. Am. Chem. Soc.* **2005**, *127*, 12496-12497. (c) Hindi, K. M.; Panzner, M. J.; Tessier, C. A.; Cannon, C. L.; Youngs, W. J. The Medicinal Applications of Imidazolium Carbene-Metal Complexes. *Chem. Rev.* **2009**, *109*, 3859-3884. (d) Mercs, L.; Albrecht, M. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. *Chem. Soc. Rev.* **2010**, *39*, 1903-1912. (e) Oisaki, K.; Li, Q.; Furukawa, H.; Czaja, A. U.; Yaghi, O. M. A. A Metal-Organic Framework with Covalently Bound Organometallic Complexes. *J. Am. Chem. Soc.* **2010**, *132*, 9262-9264. (f) Ranganath, K. V. S.; Kloesges, J.; Schafer, A. H.; Glorius, F. Asymmetric Nanocatalysis: N-Heterocyclic Carbenes as Chiral Modifiers of $\text{Fe}_3\text{O}_4/\text{Pd}$ nanoparticles. *Angew. Chem., Int. Ed.* **2010**, *49*, 7786-7789. (g) Lara, P.; Rivada-Wheelaghan, O.; Conejero, S.; Poteau, R.; Phillipot, K.; Chaudret, B. Ruthenium Nanoparticles Stabilized by N-Heterocyclic Carbenes: Ligand Location and Influence on Reactivity. *Angew. Chem., Int. Ed.* **2011**, *50*, 12080-12084. (h) Zhukhovitskiy, A. V.; Mavros, M. G.; Van Voorhis, T.; Johnson, J. A. Addressable Carbene Anchors for Gold Surfaces. *J. Am. Chem. Soc.* **2013**, *135*, 7418-7421. (i) Visbal, R.; Gimeno, M. C. N-heterocyclic carbene metal complexes: photoluminescence and applications. *Chem. Soc. Rev.* **2014**, *43*, 3551-3574.

(3) (a) Hermann, W. A. N-Heterocyclic Carbenes: A New Concept in Organometallic Catalysis. *Angew. Chem., Int. Ed.* **2002**, *41*, 1290-1309. (b) Glorius, F. N-Heterocyclic Carbenes in Transition Metal Catalysis. *Top. Organomet. Chem.* **2007**, *21*, 1-231. (c) Kantchev, E. A. B.; O'Brien, C. J. O.; Organ, M. G. Palladium Complexes of N-Heterocyclic Carbenes as Catalysts for Cross-Coupling Reactions: A Synthetic Chemist's Perspective. *Angew. Chem., Int. Ed.* **2007**, *46*, 2768-2813. (d) Würtz, S.; Glorius, F. Surveying Sterically Demanding N-Heterocyclic Carbene Ligands with Restricted Flexibility for Palladium-catalyzed Cross-Coupling Reactions. *Acc. Chem. Res.* **2008**, *41*, 1523-1533. (e) Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. N-Heterocyclic Carbenes in Late Transition Metal Catalysis. *Chem. Rev.* **2009**, *109*, 3612-3676. (f) Fortman, G. C.; Nolan, S. P. N-Heterocyclic carbene (NHC) ligands and palladium in homogeneous cross-coupling catalysis: a perfect union. *Chem. Soc. Rev.* **2011**, *40*, 5151-5169. (g) *N-Heterocyclic Carbenes in Transition Metal Catalysis*, Cazin, C. S. J., Ed.; Springer: New York, 2011. (h) Peris, E. Smart N-Heterocyclic Carbene Ligands in Catalysis. *Chem. Rev.* **2018**, *118*, 9988-10031. (i) Sipos, G.; Dorta, R. Iridium complexes with monodentate N-heterocyclic carbene ligands. *Coord. Chem. Rev.* **2018**, *375*, 13-68. (j) Iglesias, M.; Oro, L. A. A leap forward in iridium-NHC catalysis: new horizons and mechanistic insights. *Chem. Soc. Rev.* **2018**, *47*, 2772-2808. (k) Zhao, Q.; Meng, G.; Nolan, S. P.; Szostak, M. N-Heterocyclic Carbene Complexes in C-H Activation Reactions. *Chem. Rev.* **2020**, *120*, 1981-2048. (l) Chen, C.; Liu, F. S.; Szostak, M. BIAN-NHC Ligands in Transition-Metal-Catalysis: A Perfect Union of Sterically Encumbered, Electronically Tunable N-Heterocyclic Carbenes? *Chem. Eur. J.* **2021**, *27*, 4478-4499.

(4) (a) Arduengo, A. J.; Harlow, R. L.; Kline, M. A stable crystalline carbene. *J. Am. Chem. Soc.* **1991**, *113*, 361-363. (b) Arduengo, A. J.; Goerlich, J. R.; Marshall, W. J. A stable diaminocarbene. *J. Am. Chem. Soc.* **1995**, *117*, 11027-11028.

(5) Herrmann, W. A.; Elison, M.; Fischer, J.; Kocher, C.; Artus, G. R. J. Metal Complexes of N-Heterocyclic Carbenes – A New Structural Principle for Catalysts in Homogeneous Catalysis. *Angew. Chem., Int. Ed.* **1995**, *34*, 2371-2374.

(6) (a) Arduengo, A. J.; Dias, R. H. V.; Harlow, R. L.; Kline, M. Electronic stabilization of nucleophilic carbenes. *J. Am. Chem. Soc.* **1992**, *114*, 5530-5534. (b) Heinemann, C.; Muller, T.; Apeloig, Y.; Schwarz, H. On the Question of Stability, Conjugation, and “Aromaticity” in Imidazol-2-ylidene and Their Silicon Analogs. *J. Am. Chem. Soc.* **1996**, *118*, 2023-2038. (c) Herrmann, W. A. N-Heterocyclic Carbene: A New Concept in Organometallic Catalysis. *Angew. Chem., Int. Ed.* **2002**, *41*, 1290-1309. (d) Lavallo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.; Bertrand, G. Stable Cyclic (Alkyl)(Amino)Carbenes as Rigid or Flexible, Bulky, Electron-Rich Ligands for Transition-Metal Catalysts: A Quaternary Carbon Atom Makes the Difference. *Angew. Chem., Int. Ed.* **2005**, *44*, 5705-5709. (e) Aldeco-Perez, E.; Rosenthal, A. J.; Donnadieu, B.; Parameswaran, P.; Frenking, G.; Bertrand, G. Isolation of a C5-Deprotected Imidazolium, a Crystalline “Abnormal” N-Heterocyclic Carbene. *Science* **2009**, *326*, 556-559. (f) Schuster, O.; Yang, L.; Raubenheimer, H. G.; Albrecht, M. Beyond Conventional N-Heterocyclic Carbenes: Abnormal, Remote, and Other Classes of NHC Ligands with Reduced Heteroatom Stabilization. *Chem. Rev.* **2009**, *109*, 3445-3478. (g) Muskawar, P. N.; Karthikeyan, P.; Aswar, S. A. Bhagat, P. R.; Kumar, S. S. NHC–metal complexes based on benzimidazolium moiety for chemical transformation: 1st Cancer Update. *Arabian J. Chem.* **2016**, *9*, 1765-1778. (h) Nahra, F.; Nelson, D. J.; Nolan, S. P. Design Concepts for N-Heterocyclic Carbene Ligands. *Trends Chem.* **2020**, *2*, 1096-1113. (i) Jalal, M.; Hammouti, B.; Touzani, R.; Aouniti, A.; Azdemir, I. Metal-NHC heterocycle complexes in catalysis and biological applications: Systematic review. *Mater. Today: Proc.* **2020**, *31*, 122-129.

(7) For Pd-catalyzed cross-coupling reactions, see: (a) *Metal-Catalyzed Cross-Coupling Reactions and More*, de Meijere, A.; Bräse, S.; Oestreich, M., Eds.; Wiley: New York, 2014. (b) *Science of Synthesis: Cross-Coupling and Heck-Type Reactions*, Molander, G. A.; Wolfe, J. P.; Larhed, M., Eds.; Thieme: Stuttgart, 2013. (c) Colacot, T. J. *New Trends in Cross-Coupling: Theory and Applications*, RSC: Cambridge, 2015. For Ru-catalyzed olefin metathesis, see: (d) Samojlowicz, C.; Bieniek, M.; Grela, K. Ruthenium-Based Olefin Metathesis Catalysts Bearing N-Heterocyclic Carbene Ligands. *Chem. Rev.* **2009**, *109*, 3708-3742. (e) Vougioukalakis, G. C.; Grubbs, R. H. Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts. *Chem. Rev.* **2010**, *110*, 1746-1787. (f) Ogba, O. M.; Warner, N. C.; O’Leary, D. J.; Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. *Chem. Soc. Rev.* **2018**, *47*, 4510-4544.

(8) (a) Diez-Gonzalez, S.; Nolan, S. P. Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: A quest for understanding. *Coord. Chem. Rev.* **2007**, *251*, 874-883. (b) Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L. Understanding the M-(NHC) (NHC = N-heterocyclic carbene) bond. *Coord. Chem. Rev.* **2009**, *293*, 687-703. (c) Dröge, T.; Glorius, F. The Measure of All Rings: N-Heterocyclic Carbene Ligands. *Angew. Chem., Int. Ed.* **2010**, *49*, 6940-6952. (d) Nelson, D. J.; Nolan, S. P. Quantifying and understanding the electronic properties of N-heterocyclic carbenes. *Chem. Soc. Rev.* **2013**, *42*, 6723-6753.

(9) (a) Clavier, H.; Nolan, S. P. Percent buried volume for phosphine and N-heterocyclic carbene ligands: steric properties in organometallic chemistry. *Chem. Commun.* **2010**, *46*, 841-861. (b) Falivene, L.; Cao, Z.; Petta, A.; Serra, L.; Poater, A.; Oliva, R.; Scarano, V.; Cavallo, L. Towards the Online Computer-Aided Design of Catalytic Pockets. *Nat. Chem.* **2019**, *11*, 872-879.

(10) (a) Martin, D.; Melaimi, M.; Soleilhavoup, M.; Bertrand, G. A Brief Survey of Our Contribution to Stable Carbene Chemistry. *Organometallics* **2011**, *30*, 5304-5313. (b) Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Stable cyclic carbenes and related species beyond diaminocarbenes. *Angew. Chem., Int. Ed.* **2010**, *49*, 8810-8849. (c) Soleilhavoup, M.; Bertrand, G. Cyclic (Alkyl)(Amino) Carbenes (CAACs): Stable Carbenes on the Rise. *Acc. Chem. Res.* **2015**, *48*, 256-266. (e) Paul, U. S. D.; Radius, U. What Wanzlick Did Not Dare to Dream: Cyclic(Alkyl)(amino)carbenes (cAACs) as New Key Players in Transition-Metal Chemistry. *Eur. J. Inorg. Chem.* **2017**, *3362-3375*. (d) Cheng, J.; Wang, L.; Deng, L. High-Oxidation-State 3d Metal (Ti-Cu)

Complexes with N-Heterocyclic Carbene Ligation. *Chem. Rev.* **2018**, *118*, 9930-9987.

(11) Zimmerman, J. B.; Anastas, P. T.; Erythropel, H. C.; Leitner, W. Designing for a green chemistry future. *Science* **2020**, *367*, 397-400.

(12) *Nickel Catalysis in Organic Synthesis: Methods and Reactions*, Ogoshi, S., Ed.; Wiley-VCH, 2020.

(13) (a) Ikeda, S.-I. Nickel-Catalyzed Intermolecular Domino Reactions. *Acc. Chem. Res.* **2000**, *33*, 511-519. (b) Everson, D. A.; Shrestha, R.; Weix, D. J. Nickel-Catalyzed Reductive Cross-Coupling of Aryl Halides with Alkyl Halides. *J. Am. Chem. Soc.* **2010**, *132*, 920-921. (c) Muto, K.; Yamaguchi, J.; Itami, K. Nickel-Catalyzed C-H/C=O Coupling of Azoles with Phenol Derivatives. *J. Am. Chem. Soc.* **2012**, *134*, 169-172. (d) Everson, D. A.; Jones, B. A.; Weix, D. J. Replacing Conventional Carbon Nucleophiles with Electrophiles: Nickel-Catalyzed Reductive Alkylation of Aryl Bromides and Chlorides. *J. Am. Chem. Soc.* **2012**, *134*, 6146-6159. (e) Ge, S.; Hartwig, J. F. Highly Reactive, Single-Component Nickel Catalyst Precursor for Suzuki-Miyaura Cross-Coupling of Heteroaryl Boronic Acids with Heteroaryl Halides. *Angew. Chem., Int. Ed.* **2012**, *51*, 12837-12841. (f) Standley, E. A.; Jamison, T. F. Simplifying Nickel(0) Catalysis: An Air-Stable Nickel Precatalyst for the Internally Selective Benzylation of Terminal Alkenes. *J. Am. Chem. Soc.* **2013**, *135*, 1585-1592. (g) Aihara, Y.; Chatani, N. Nickel-Catalyzed Direct Alkylation of C-H Bonds in Benzamides and Acrylamides with Functionalized Alkyl Halides via Bidentate-Chelation Assistance. *J. Am. Chem. Soc.* **2013**, *135*, 5308-5311. (h) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Recent advances in homogeneous nickel catalysis. *Nature* **2014**, *509*, 299-309. (i) Cherneny, A. H.; Reisman, S. E. Nickel-Catalyzed Asymmetric Reductive Cross-Coupling Between Vinyl and Benzyl Electrophiles. *J. Am. Chem. Soc.* **2014**, *136*, 14365-14368. (j) Murphy, J. J.; Melchiorre, P. Light opens pathways for nickel catalysis. *Nature* **2015**, *524*, 297-298. (k) Cornell, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D. Baran, S. P. Practical Ni-Catalyzed Aryl-Alkyl Cross-Coupling of Secondary Redox-Active Esters. *J. Am. Chem. Soc.* **2016**, *138*, 2174-2177. (l) Konev, M. O.; Hanna, L. E.; Jarvo, E. R. Intra- and Intermolecular Nickel-Catalyzed Reductive Cross-Electrophile Coupling Reactions of Benzylic Esters with Aryl Halides. *Angew. Chem., Int. Ed.* **2016**, *55*, 6730-6733. (m) Saper, N. I.; Ohgi, A.; Small, D. W.; Semba, K.; Nakao, Y.; Hartwig, J. F. Nickel-catalysed anti-Markovnikov hydroarylation of unactivated alkenes with unactivated arenes facilitated by non-covalent interactions. *Nat. Chem.* **2020**, *12*, 276-283.

(14) (a) Kelly, R. A.; Scott, N. M.; Díez-González, S.; Stevens, E.D.; Nolan, S.P. Simple Synthesis of CpNi(NHC)Cl Complexes (Cp = Cyclopentadienyl; NHC = N-Heterocyclic Carbene). *Organometallics* **2005**, *24*, 3442-3447. (b) Henrion, M.; Riteng, V.; Chetcuti, M.J. Nickel N-Heterocyclic Carbene-Catalyzed C-C Bond Formation: Reactions and Mechanistic Aspects. *ACS Catal.* **2015**, *5*, 1283-1302. (c) Riteng, V.; Henrion, M.; Chetcuti, M.J. Nickel N-Heterocyclic Carbene-Catalyzed C-Heteroatom Bond Formation, Reduction, and Oxidation: Reactions and Mechanistic Aspects. *ACS Catal.* **2016**, *6*, 890-906. (d) Danopoulos, A.A.; Simler, T.; Braunstein, P. N-Heterocyclic Carbene Complexes of Copper, Nickel, and Cobalt. *Chem. Rev.* **2019**, *119*, 3730-3961. (e) Banach, L.; Gu' nka, P.A.; Zachara, J.; Buchowicz, W. Half-sandwich Ni(II) complexes [Ni(Cp)(X)(NHC)]: From an underestimated discovery to a new chapter in organonickel chemistry. *Coord. Chem. Rev.* **2019**, *389*, 19-58.

(15) (a) *Caffeine: The chemical components of coffee*, Spiller, M. A., Eds.; Boca Raton: CRC Press., 1998, pp. 97-161. (b) Srdjenovic, B.; Djordjevic-Milic, V.; Grujic, N.; Injac, R.; Lepojevic, Z. Simultaneous HPLC Determination of Caffeine, Theobromine, and Theophylline in Food, Drinks, and Herbal Products. *J. Chromatogr. Sci.* **2008**, *46*, 144-149.

(16) For a recent review of Xanthine-based NHCs in catalysis, see: (a) Valdés, H.; Canseco-González, D.; Germán-Acacio, J. M.; Morales-Morales, D. Xanthine based N-heterocyclic carbene (NHC) complexes. *J. Organomet. Chem.* **2018**, *867*, 51-54. For complexation studies, see:

(b) Herrmann, W. A.; Schütz, J.; Frey, G. D.; Herdtweck, E. N-Heterocyclic Carbene: Synthesis, Structures, and Electronic Ligand Properties. *Organometallics* **2006**, *25*, 2437-2448. (c) Landaeta, V. R.; Rodríguez-Lugo, R. E.; Rodríguez-Arias, E. N.; Coll-Gómez, D. S.; González, T. Studies on the coordination chemistry of methylated xanthines and their imidazolium salts. Part 1: benzyl derivatives. *Transit. Met. Chem.* **2010**, *35*, 165-175. (d) Makhloufi, A.; Frank, W.; Ganter, C. Converting Caffeine to Electronically Different N-Heterocyclic Carbene with a Hypoxanthine Backbone. *Organometallics* **2012**, *31*, 7272-7277.

(17) (a) Kascatan-Nebioglu, A.; Panzner, M. J.; Garrison, J. C.; Tessier, C. A.; and Youngs, W. J. Synthesis and Structural Characterization of N-Heterocyclic Carbene Complexes of Silver(I) and Rhodium(I) from Caffeine. *Organometallics* **2004**, *23*, 1928-1931. (b) Kascatan-Nebioglu, A.; Melaiye, A.; Hindi, K.; Durmus, S.; Panzner, M. J.; Hogue, L. A.; Mallett, R. J.; Hovis, C. E.; Coughenour, M.; Crosby, S. D.; Milsted, A.; Ely, D. L.; Tessier, C. A.; Cannon, C. L.; Youngs, W. J. Synthesis from Caffeine of a Mixed N-Heterocyclic Carbene-Silver Acetate Complex Active against Resistant Respiratory Pathogens. *J. Med. Chem.* **2006**, *49*, 6811-6818. (c) Panzner, M. J.; Hindi, K. M.; Wright, B. D.; Taylor, J. B.; Han, D. S.; Youngs, W. J.; Cannon, C. L. A theobromine derived silver N-heterocyclic carbene: synthesis, characterization, and antimicrobial efficacy studies on cystic fibrosis relevant pathogens. *Dalton Trans.* **2009**, *7308-7313*. (d) Knapp, A. R.; Panzner, M. J.; Medvetz, D. A.; Wright, B. D.; Tessier, C. A.; Youngs, W. J. Synthesis and antimicrobial studies of silver N-heterocyclic carbene complexes bearing a methyl benzoate substituent. *Inorganica Chim. Acta* **2010**, *364*, 125-131.

(18) Mohamed, H. A.; Lake, B. R. M.; Laing, T.; Phillips, R. M.; Willans, C. W. Synthesis and anticancer activity of silver(I)-N-heterocyclic carbene complexes derived from the natural xanthine products caffeine, theophylline and theobromine. *Dalton Trans.* **2015**, *44*, 7563-7569.

(19) Bertrand, B.; Stefan, L.; Pirrotta, M.; Monchaud, D.; Bodio, E.; Richard, P.; Gendre, P. L.; Warmerdam, E.; de Jager, M. H.; Groothuis, G. M. M.; Piequet, M.; Casini, A. Caffeine-Based Gold(I) N-Heterocyclic Carbene as Possible Anticancer Agents: Synthesis and Biological Properties. *Inorg. Chem.* **2014**, *53*, 2296-2303.

(20) Scattolin, T.; Caligiuri, I.; Canovese, L.; Demitri, N.; Gambari, R.; Lampronti, I.; Rizzolio, F.; Santo, C.; Visentin, F. Synthesis of new allyl palladium complexes bearing purine-based NHC ligands with anti-proliferative and proapoptotic activities on human ovarian cancer cell lines. *Dalton Trans.* **2018**, *47*, 13616-13630.

(21) Skander, M.; Retailleau, P.; Bourrié, B.; Schio, L.; Mailliet, P.; Marinetti, A. N-Heterocyclic Carbene-Amine Pt(II) Complexes, a New Chemical Space for the Development of Platinum-Based Anticancer Drugs. *J. Med. Chem.* **2010**, *53*, 2146-2154.

(22) (a) Frey, G. D.; Schütz, J.; Herrmann, W. A. A straight forward in situ preparation of NHC-substituted Phosphapalladacycles. *J. Organomet. Chem.* **2006**, *691*, 2403-2408. (b) Luo, F.-T.; Lo, H.-K. Short synthesis of bis-NHC-Pd catalyst derived from caffeine and its applications to Suzuki, Heck, and Sonogashira reactions in aqueous solution. *J. Organomet. Chem.* **2011**, *696*, 1262-1265. (c) Lo, H.-K.; Luo, F.-T. Synthesis of PS-supported NHC-Pd Catalyst Derived from Theobromine and its Applications in Suzuki-Miyaura Reaction. *J. Chin. Chem. Soc.* **2012**, *59*, 394-398. (d) Mohammadi, E.; Movassagh, B. Polystyrene-resin supported N-heterocyclic carbene-Pd(II) complex based on plant-derived theophylline: A reusable and effective catalyst for the Suzuki-Miyaura cross-coupling reaction of arenediazonium tetrafluoroborate salts with arylboronic acids. *J. Organomet. Chem.* **2016**, *822*, 62-66. (e) Mohammadi, E.; Movassagh, B. Synthesis of polystyrene-supported Pd(II)-NHC complex derived from theophylline as an efficient and reusable heterogeneous catalyst for the Heck-Matsuda cross-coupling reaction. *J. Mol. Catal. A Chem.* **2016**, *418-419*, 158-167. (f) Scattolin, T.; Canovese, L.; Visentin, F.; Paganelli, S.; Canton, P.; Demitri, N. Synthesis of novel allyl palladium complexes bearing purine based NHC and a water soluble phosphine and their catalytic

activity in the Suzuki-Miyaura coupling in water. *Appl. Organometal. Chem.* **2018**, *32*, 4034-4043.

(23) (a) Zinner, S. C.; Rentzsch, C. F.; Herdtweck, E.; Herrmann, W. A.; Kühn, F. E. *N*-heterocyclic carbenes of iridium(I): ligand effects on the catalytic activity in transfer hydrogenation. *Dalton Trans.* **2009**, *7055-7062*. (b) Rentzsch, C. F.; Tosh, E.; Herrmann, W. A.; Kühn, F. E. Iridium complexes of *N*-heterocyclic carbenes in C–H borylation using energy efficient microwave technology: influence of structure, ligand and donor strength and counter ion on catalytic activity. *Green Chem.* **2009**, *11*, 1610–1617.

(24) Bortenschlager, M.; Schütz, J.; von Preysing, D.; Nuyken, O.; Herrmann, W. A. Weberskirch, R. Rhodium–NHC-complexes as potential catalysts in the hydroformylation of 1-octene. *J. Organomet. Chem.* **2005**, *690*, 6233-6237.

(25) Szadkowska, A.; Staszko, S.; Zaorska, E.; Pawłowski, R. A theophylline based copper *N*-heterocyclic carbene complex: synthesis and activity studies in green media. *RSC Adv.* **2016**, *6*, 44248-44253.

(26) (a) Abernethy, C. D.; Cowley, A. H.; Jones, R. A. Reaction of nickelocene with 1,3-dimesitylimidazolium chloride. *J. Organomet. Chem.* **2000**, *596*, 3-5. (b) Kelly, R. A.; Scott, N. M.; Díez-González, S.; Stevens, E. D.; Nolan, S. P. Simple Synthesis of CpNi(NHC)Cl Complexes (Cp = Cyclopentadienyl; NHC = *N*-Heterocyclic Carbene). *Organometallics* **2005**, *24*, 3442-3447. (c) Ritleng, V.; Oertel, A. M.; Chetcuti, M. J. Half-sandwich NHC-nickel(II) complexes as pre-catalysts for the fast Suzuki coupling of aryl halides: a comparative study. *Dalton Trans.* **2010**, *39*, 8153-8160. (d) Oertel, A. M.; Ritleng, V.; Burr, L.; Chetcuti, M. J. Synthesis and structural characterization of half-sandwich nickel complexes bearing two different *N*-heterocyclic carbene ligands. *Organometallics* **2011**, *30*, 6685-6691. (e) Oertel, A. M.; Ritleng, V.; Chetcuti, M. J. Synthesis and Catalytic Activity in Suzuki Coupling of Nickel Complexes Bearing n-Butyl- and Triethoxysilylpropyl-Substituted NHC Ligands: Toward the Heterogenization of Molecular Catalysts. *Organometallics* **2012**, *31*, 2829-2840. (f) Henrion, M.; Chetcuti, M. J.; Ritleng, V. From acetone metathesis to the catalytic α -arylation of acyclic ketones with NHC–nickel(II) complexes. *Chem. Commun.* **2014**, *50*, 4624-4627.

(27) (a) Zhao, Q.; Meng, G.; Li, G.; Flach, C.; Mendelsohn, R.; Lalancette, R.; Szostak, M. IPr#–Highly Hindered, Broadly Applicable *N*-Heterocyclic Carbenes. *Chem. Sci.* **2021**, *12*, 10583-10589. (b) Xia, Q.; Shi, S.; Gao, P.; Lalancette, R.; Szostak, M. [(NHC)PdCl₂(Aniline)] Complexes: Easily Synthesized, Highly Active Pd(II)–NHC Precatalysts for Cross-Coupling Reactions. *J. Org. Chem.* **2021**, *86*, 15648-15657. (c) For the availability of IPr# NHC ligands developed in our laboratory, see: www.sigmaldrich.com/catalog/product/aldrich/915653 (accessed on Jan 11, 2022). (d) For the availability of [Pd(IPr)(AN)Cl₂] catalysts developed in our laboratory, (AN = aniline), www.sigmaldrich.com/catalog/product/aldrich/916161 (accessed on Jan 11, 2022). For further examples, see: (e) Li, D. H.; Lan, X. B.; Song, A. X.; Rahman, M. M.; Xu, C.; Huang, F. D.; Szostak, R.; Szostak, M.; Liu, F. S. Buchwald–Hartwig Amination of Coordinating Heterocycles Enabled by Large-but-Flexible Pd–BIAN–NHC Catalysts. *Chem. Eur. J.* **2022**, *28*, e202103341. (f) Zhou, T.; Ma, S.; Nahra, F.; Obled, A. M. C.; Poater, A.; Cavallo, L.; Cazin, C. S. J.; Nolan, S. P.; Szostak, M. [Pd(NHC)(μ -Cl)Cl]₂: Versatile and Highly Reactive Complexes for Cross-Coupling Reactions that Avoid Formation of Inactive Pd(I) Off-Cycle Products. *iScience* **2020**, *23*, 101377. (g) Yang, S.; Zhou, T.; Poater, A.; Cavallo, L.; Nolan, S. P.; Szostak, M. Suzuki–Miyaura Cross-Coupling of Esters by Selective O–C(O) Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(μ -Cl)Cl]₂ Precatalysts: Catalyst Evaluation and Mechanism. *Catal. Sci. Technol.* **2021**, *11*, 3189-3197. (h) Zhou, T.; Li, G.; Nolan, S. P.; Szostak, M. [Pd(NHC)(acac)Cl]: Well-Defined, Air-Stable, and Readily Available Precatalysts for Suzuki and Buchwald–Hartwig Cross-coupling (Transamidation) of Amides and Esters by N–C/O–C Activation. *Org. Lett.* **2019**, *21*, 3304-3309.

(28) (a) Zhang, J.; Zhang, P.; Shao, L.; Wang, R.; Ma, Y.; Szostak, M. Mechanochemical Solvent-Free Suzuki–Miyaura Cross-Coupling

of Amides via Highly Chemoselective N–C Cleavage. *Angew. Chem. Int. Ed.* **2022**, *61*, e202114146. (b) Lei, P.; Wang, Y.; Mu, Y.; Wang, Y.; Ma, Z.; Feng, J.; Liu, X.; Szostak, M. Green-Solvent Selection for Acyl Buchwald–Hartwig Cross-Coupling of Amides (Transamidation). *ACS Sustainable Chem. Eng.* **2021**, *9*, 14937-14945. (c) Lei, P.; Mu, Y.; Wang, Y.; Wang, Y.; Ma, Z.; Feng, J.; Liu, X.; Szostak, M. Green Solvent Selection for Suzuki–Miyaura Coupling of Amides. *ACS Sustainable Chem. Eng.* **2021**, *9*, 552-559. (d) Bisz, E.; Koston, M.; Szostak, M. N-Butylpyrrolidone (NBP) as a Non-Toxic Substitute for NMP in Iron-Catalyzed C(sp²)–C(sp³) Cross-Coupling of Aryl Chlorides. *Green Chem.* **2021**, *23*, 7515-7521. (e) Bisz, E.; Szostak, M. Cyclic Ureas (DMI, DMPU) as Efficient, Sustainable Ligands in Iron-Catalyzed C(sp²)–C(sp³) Coupling of Aryl Chlorides and Tosylates. *Green Chem.* **2017**, *19*, 5361-5366. (f) Piontek, A.; Bisz, E.; Szostak, M. Iron-Catalyzed Cross-Coupling in the Synthesis of Pharmaceuticals: In Pursuit of Sustainability. *Angew. Chem. Int. Ed.* **2018**, *57*, 11116-11128. (g) Lei, P.; Ling, Y.; An, J.; Nolan, S. P.; Szostak, M. 2-Methyltetrahydrofuran (2-MeTHF): A Green Solvent for Pd–NHC-Catalyzed Amide and Ester Suzuki–Miyaura Cross-Coupling by N–C/O–C Cleavage. *Adv. Synth. Catal.* **2019**, *361*, 5654-5660.

(29) (a) Liske, A.; Verlinden, K.; Buhl, H.; Schaper, K.; Ganter, C. Determining the π -Acceptor Properties of N-Heterocyclic Carbenes by Measuring the ⁷⁷Se NMR Chemical Shifts of Their Selenium Adducts. *Organometallics* **2013**, *32*, 5269-5272. (b) Vummala, S. V. C.; Nelson, D. J.; Poater, A.; Gomez-Suarez, A.; Cordes, D. B.; Slawin, A. M. Z.; Nolan, S. P.; Cavallo, L. What can NMR spectroscopy of selenoureas and phosphinidenes teach us about the π -accepting abilities of N-heterocyclic carbenes? *Chem. Sci.* **2015**, *6*, 1895-1904. (c) Verlinden, K.; Buhl, H.; Frank, W.; Ganter, C. Determining the Ligand Properties of N-Heterocyclic Carbenes from ⁷⁷Se NMR Parameters. *Eur. J. Inorg. Chem.* **2015**, 2416-2425. (d) Back, O.; Henry-Ellinger, M.; Martin, C. D.; Martin, D.; Bertrand, G. ³¹P NMR Chemical Shifts of Carbene–Phosphinidene Adducts as an Indicator of the π -Accepting Properties of Carbenes. *Angew. Chem. Int. Ed.* **2013**, *52*, 2939-2943.

(30) (a) Huynh, H. V. Electronic Properties of N-Heterocyclic Carbenes and Their Experimental Determination. *Chem. Rev.* **2018**, *118*, 9457-9492. (b) Munz, D. Pushing Electrons – Which Carbene Ligand for Which Application? *Organometallics* **2018**, *37*, 275-289. (c) Andrade, D. M.; Holzmann, N.; Hamadi, T.; Frenking, G. Direct estimate of the internal π -donation to the carbene centre within N-heterocyclic carbenes and related molecules. *Beilstein J. Org. Chem.* **2015**, *11*, 2727-2736.

(31) Meng, G.; Kakalis, L.; Nolan, S. P.; Szostak, M. A Simple ¹H NMR Method for Determining the σ -Donor Properties of N-Heterocyclic Carbenes. *Tetrahedron Lett.* **2019**, *60*, 378-381.

(32) (a) Nazari, S. H.; Bourreau, J. E.; Talley, M. R.; Valdivia-Berroeta, G. A.; Smith, S. J.; Michaelis, D. J. Nickel-Catalyzed Suzuki Cross Couplings with Unprotected Allylic Alcohols Enabled by Bidentate N-Heterocyclic Carbene (NHC)/Phosphine Ligands. *ACS Catal.* **2018**, *8*, 86-89. (b) Buchspies, J.; Rahman, M. M.; Szostak, M. Suzuki–Miyaura Cross-Coupling of Amides using Well-Defined, Air- and Moisture-Stable Nickel/NHC (NHC = N-Heterocyclic Carbene) Complexes. *Catalysts* **2020**, *10*, 172-182.

(33) (a) Şahin, N.; Sémeril, D.; Brenner, E.; Matt, D.; Özdemir, İ.; Kaya, C.; Toupet, L. Subtle Steric Effects in Nickel-Catalysed Kumada–Tamao–Corriu Cross-Coupling Using Resorcinarenyl-Imidazolium Salts. *Eur. J. Org. Chem.* **2013**, 4443-4449. (b) Talukder, M. M.; Cue, J. M. O.; Miller, J. T.; Gamage, P. L.; Aslam, A.; McCandless, G. T.; Biewer, M. C.; Stefan, M. C. Ligand Steric Effects of α -Diimine Nickel(II) and Palladium(II) Complexes in the Suzuki–Miyaura Cross-Coupling Reaction. *ACS Omega* **2020**, *5*, 24018-24032.

(34) (a) Xi, Z.; Zhang, X.; Chen, W.; Fu, S.; Wang, D. Synthesis and Structural Characterization of Nickel(II) Complexes Supported by Pyridine-Functionalized N-Heterocyclic Carbene Ligands and Their Catalytic Activities for Suzuki Coupling. *Organometallics* **2007**, *26*, 6636-6642. (b) Lee, C.-C.; Ke, W.-C.; Chan, K.-T.; Lai, C.-L.; Hu, C. H.; Lee, H. M. Nickel(II) Complexes of Bidentate N-Heterocyclic

Carbene/Phosphine Ligands: Efficient Catalysts for Suzuki Coupling of Aryl Chlorides. *Chem. Eur. J.* **2007**, *13*, 582-591.

(35) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.; Wilson, D. M.; Wood, A. Organic Synthesis Provides Opportunities to Transform Drug Discovery. *Nat. Chem.* **2018**, *10*, 383-394.

(36) (a) Arduengo, A. J.; Dias, V. R.; Harlow, R. L.; Kline, M. Electronic Stabilization of Nucleophilic Carbenes. *J. Am. Chem. Soc.* **1992**, *114*, 5530-5534. (b) Abernethy, C. D.; Clyburne, J. A. C.; Cowley, A. H.; Jones, R. A. Reactions of Transition-Metal Metallocenes with Stable Carbenes. *J. Am. Chem. Soc.* **1999**, *121*, 2329-2330. (c) Annen, S.; Zweifel, T.; Ricatto, F.; Grützmacher, H. Catalytic Aerobic Dehydrogenative Coupling of Primary Alcohols and Water to Acids Promoted by a Rhodium(I) Amido N-Heterocyclic Carbene Complex. *ChemCatChem* **2010**, *2*, 1286-1295.