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ABSTRACT: Xanthines, such as caffeine and theophylline, are abundant natural products that are often present in foods. Leveraging 
renewable and benign resources for ligand design in organometallic chemistry and catalysis is one of the major missions of green and 
sustainable chemistry. In this Special Issue on Sustainable Organometallic Chemistry, we report the first nickel–N-heterocyclic car-
bene complexes derived from Xanthines. Well-defined, air- and moisture-stable, half-sandwich, cyclopentadienyl [CpNi(NHC)I] 
nickel–NHC complexes are prepared from the natural products caffeine and theophylline. The model complex has been characterized 
by x-ray crystallography. The evaluation of steric, electron-donating and p-accepting properties is presented. High activity in the 
model Suzuki–Miyaura cross-coupling is demonstrated. The data show that nickel–N-heterocyclic carbenes derived from both Earth 
abundant 3d transition metal and renewable natural products represent a sustainable alternative to the classical imidazol-2-ylidenes. 

Introduction  

N-Heterocyclic carbenes (NHCs) represent a tremendously 
important class of ligands in organometallic chemistry and ca-
talysis. 1–3 Over the last 25 years, since the first isolation by Ar-
duengo in 19914 and the first use in catalysis by Herrmann in 
1995,5 different classes of NHC ligands have been extensively 
investigated.6 Principally, NHC ligands have found broad ap-
plication in catalysis7 using transition metals owing to the elec-
tronic8 and steric9 properties that can support various metals at 
different oxidation states.10 In this context, leveraging renewa-
ble and benign resources for ligand design in organometallic 
chemistry and catalysis is one of the major missions of green 
and sustainable chemistry.11 Likewise, the use of nickel as an 
Earth abundant 3d transition metal has recently garnered signif-
icant attention in catalysis owing to low price of Ni as well as a 
potential problem with long-term supply of Pd, which is partic-
ularly important from an industrial standpoint.12–14 

Xanthines, such as caffeine and theophylline (Figure 1), are 
abundant natural products that are often found in foods.15 The 
presence of an imidazole ring renders Xanthines potential pre-
cursors to N-heterocyclic carbenes.16 Xanthines as precursors to 
N-heterocyclic carbenes have been well-explored for medicinal 
chemistry applications.17–21 Seminal studies by Youngs and co-
workers established the potential of Ag(I)–NHC complexes de-
rived from caffeine as antimicrobial agents active against re-
sistant respiratory pathogens.17 Willans and co-workers demon-
strated antiproliferative activity against cancer cell lines of 
Ag(I)–NHC complexes derived from Xanthines.18  

 

Figure 1. Xanthine natural products. 
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Furthermore, Casini and co-workers developed Au(I)–NHC 
complexes derived from caffeine with selective antiprolifera-
tive effects against human ovarian cancer cell lines.19 Antipro-
liferative and cytotoxic activity of Pd(II)–NHC and Pt(II)–NHC 
complexes derived from Xanthines have been reported.20,21 

In contrast, however, the development of Xanthines as NHC 
ligands for transition-metal-catalysis remains unexplored. At 
present, there are only few examples reported, including Pd, Ir, 
Rh and Cu catalysis.22–25 To our knowledge, despite the explo-
sive growth of Ni–NHCs,14,26 there are no examples of Ni–N-
heterocyclic carbene complexes derived from Xanthines. 

As continuation of our interest in NHC ligand development27 
and sustainable chemistry,28 in this Special Issue on Sustainable 

Organometallic Chemistry, we report the first nickel–N-heter-
ocyclic carbene complexes derived from Xanthines. Our data 
show that nickel–N-heterocyclic carbenes derived from both 
Earth abundant 3d transition metal and renewable natural prod-
ucts represent a sustainable alternative to the classical imidazol-
2-ylidenes. 
 

Results and Discussion 

Imidazolium salts of 1–3 with different steric and electronic 
properties at the N7 position of the Xanthine scaffold were se-
lected as NHC precursors for the study (Scheme 1). Salts of 1–

3 were prepared from caffeine by methylation at the N9 position 
(1·HI) and from theophylline by a sequence involving N7-ben-
zylation/N9-methylation (2·HI) or N7-arylation/N9-methyla-
tion (3·HI) (Scheme 1).19 At present, synthetic methods do not 
permit for an easy access to N-ortho-sterically-hindered NHCs 
in xanthine scaffold. DMF is not required as a solvent and these 
reactions can also be conducted in the absence of the solvent. 
Well-defined half-sandwich cyclopentadienyl [CpNi(NHC)I] 
complexes (4–6) were prepared by the reaction of imidazolium 
salts with NiCp2 in THF at 80 °C (Scheme 2).26 All complexes 
were found to be air- and moisture-stable.  

The model complex 4 (N7-Me) was characterized by X-ray 
crystallography (Figure 2). The single crystals were obtained by 
slow evaporation of dichloromethane. The X-ray crystallo-
graphic analysis of complex [CpNi(1)I] 4 revealed the trigonal 
planar geometry comprised of carbene 1, iodide and Cp(η5) lig-
ands (Figure 2A-B). The Ni–C and Ni–Cp bond lengths of 
1.883(9) Å and 1.748 Å are in the range for standard cyclo-
pentadienyl Ni(II)–NHC type complexes (e.g., 
[CpNi(IPr)Cl], Ni–C, 1.875 Å; Ni–Cp, 1.800 Å; 
[CpNi(IMes)Cl], Ni–C, 1.873, 1.877 Å; Ni–Cp, 1.770, 1.764 
Å).26 The Ni–I bond length of 2.508(2) Å in 4 can be compared 
with the Ni–Cl bond length of standard [CpNi(NHC)Cl] com-
plexes ([CpNi(IPr)Cl], 2.188 Å; [CpNi(IMes)Cl], 2.198, 2.202 
Å), while the C–Ni–I bond angle of 96.9° in complex 4 is in 
same range as for [CpNi(IPr)Cl] (93.9°) and [CpNi(IMes)Cl] 
(96.8°).26 

Scheme 1. Synthesis of Imidazolium Salts 1–3a 

 

aConditions: (A) Caffeine (1.0 equiv), MeI (8.6 equiv), DMF (3.0 M), 70 
°C, 24 h, 81%. (B) (i) Theophylline (1.0 equiv), Bn-Br (5.0 equiv), K2CO3 
(1.1 equiv), reflux, 24 h; (ii) 7-Benzyltheophylline (1.0 equiv), MeI (8.6 
equiv), DMF (3.0 M), 70 °C, 24 h, 74%. (C) (i) Theophylline (1.0 equiv), 
Ph-B(OH)2 (0.60 equiv), Cu(OAc)2 (11.0 mol%), pyridine (5.0 equiv), 
CH2Cl2 (0.20 M), 40 °C, 36 h; (ii) 7-Phenyltheophylline (1.0 equiv), MeI 
(8.6 equiv), DMF (3.0 M), 70 °C, 24 h, 48%. 

Scheme 2. Synthesis of Ni(II)–NHC Complexes 4–6a 

 

aConditions: NHC·HI (1.0 equiv), Ni(Cp)2 (2.0 equiv), THF (0.10 M), 80 
°C, 15 h, 4: 61%; 5: 65%; 6: 69%. 

The bond angles of 4 (C1–Ni1–Cp1, 131.3°; I1–Ni1–Cp1, 
131.7°) are consistent with trigonal planer geometry.  

To evaluate the steric impact of Xanthine-derived NHC lig-
and, the percent buried volume (%Vbur) of [CpNi(1)I] (4) was 
calculated using method by Cavallo (Figure 2C).9 The %Vbur of 
(4) is 28.1% with quadrant distribution og 27.3% (SW), 29.1% 
(NW), 28.1% (NE), 27.7% (SE) for each quadrant, which could 
be compared with the %Vbur of 26.7% for the linear [Au(1)Cl] 
complex with 27.2% (SW), 26.4% (NW), 27.0% (NE), 26.2% 
(SE) for each quadrant reported by Casini (Figure 2D).19 The 
graphical representation of steric maps is shown in Figures 2C-
D. 
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Figure 2. (A-B) X-ray crystal structure of complex [CpNi(1)I] (4) (50% 
ellipsoids), (A) front view; (B) side view. Selected bond lengths [Å], bond 
angle [°] and dihedral angles [°] (4): Ni1–C1, 1.883(9); Ni1–I1, 2.508(2); 
Ni1–Cp1, 1.749; C1–N1, 1.380(1); C1–N2, 1.360(1); C3–N1, 1.450(1); 
C2–N2, 1.450(1); C1–Ni1–I1, 96.90(3); C1–Ni1–Cp1, 131.28; I1–Ni1–
Cp1, 131.70; Ni1–C1–N1, 128.10(7); Ni1–C1–N2, 125.20(7); C1–N1–C3, 
122.10(8); C1–N2–C2, 124.80(8); Ni1–C1–N1–C3, 3.0(1); Ni1–C1–N2–
C2, 9.0(1). (C-D) Topographical steric map of (C) [CpNi(1)I] (4) and (D) 
[Au(1)Cl],19 showing %Vbur per quadrant. 4: CCDC 2141640. 

 

Scheme 3. Synthesis of Selenium Adduct 7a 

 

aConditions: 1·HI (1.0 equiv), Se (2.0 equiv), KHMDS (1.2 equiv), THF 
(0.10 M), -78 °C, then 23 °C, 15 h, 52%. 

We have also prepared the selenium adduct [Se(NHC)] (7) 
by adding the free carbene generated in situ using KHMDS to 
excess of selenium (Scheme 3). This permits to evaluate p-
backbonding from the 77Se NMR spectra.29 The dSe value of 
79.9 ppm for [Se(NHC)] (7) (CDCl3) can be compared with the 
model imidazol-2-ylideneIPr (dSe = 90 ppm). It should be noted 
that 77Se NMR spectroscopy is affected by anisotropic effects 
and the results can only be compared within the same type of 
NHCs. We also note that the Tolman electronic parameter 
(TEP)8,30 of [Rh(1)(CO)2Cl] has been reported;16b the value of 
2055.8 cm-1 as a combined measure of the electronic properties 
can be compared with the model imidazol-2-ylideneIPr (TEP of 
2051.5 cm-1).8,30 Note that TEP is obtained by correlation of the 
known data for Rh and Ni complexes.30a Furthermore, one-bond 
CH coupling (1JCH) constant obtained from 13C satellites of the 
1H NMR spectrum of (1) is 226.95 Hz, providing a good indi-
cation of s-donating properties of this ligand (cf. IPr, 1JCH = 
223.70 Hz).31 

With access to [CpNi(NHC)I] complexes (4–6), we next in-
vestigated the catalytic activity in Suzuki–Miyaura cross-cou-
pling. Selected optimization results are presented in Table 1. 

Our optimization was carried out using the model substrate 
combination for Suzuki–Miyaura cross- 

Table 1. Optimization of the Reaction Conditionsa 

 

entry catalyst R-X solvent base 
T 

(°C) 

yield  

(%)b 

1 4 4-Ac-C6H4-Br toluene K3PO4 90 76 

2 4 4-Ac-C6H4-Br toluene K2CO3 90 35 

3 4 4-Ac-C6H4-Br toluene KOt-Bu 90 13 

4 4 4-Ac-C6H4-Br EtOH K2CO3 90 54 

5 4 4-Ac-C6H4-Br THF K2CO3 90 57 

6c 4 4-Ac-C6H4-Br toluene K3PO4 90 67 

7 4 4-Ac-C6H4-Br toluene K3PO4 120 79 

8d 4 4-Ac-C6H4-Br toluene K3PO4 120 30 

9e 4 4-Ac-C6H4-Br toluene K3PO3 120 94 

10e 4 4-Ac-C6H4-Cl toluene  K3PO4 120 29 

aConditions: 4-Ac-C6H4-X (1.0 equiv), Ph-B(OH)2 (2.0 equiv), catalyst (3 
mol%), base (2.6 equiv), solvent (0.25 M), T, 12 h. bGC/1H NMR yields. 
cbase (4.0 equiv). dtoluene (0.5o M). etoluene (0.10 M).  
 

Table 2. Evaluation of Catalysts 4–6a 

 

entry catalyst R-X solvent base 
T 

(°C) 

yield  

(%)b 

1 4 4-Ac-C6H4-Br toluene K3PO4 120 94 

2 5 4-Ac-C6H4-Br toluene K3PO4 120 91 

3 6 4-Ac-C6H4-Br toluene K3PO4 120 81 

aConditions: 4-Ac-C6H4-Br (1.0 equiv), Ph-B(OH)2 (2.0 equiv), catalyst (3 
mol%), K3PO4(2.6 equiv), toluene (0.10 M), 120°C, 12 h. bGC/1H NMR 
yields. 

couplings using half-sandwich Ni–NHC cyclopentadienyl com-
plexes.26c,14 As shown in Table 1, [CpNi(NHC)I] (4) success-
fully promoted the Suzuki cross-coupling of 4-Ac-C6H4-Br with 
Ph-B(OH)2 under model conditions in the presence of K3PO4 
(2.6 equiv) in toluene at 90 °C in 76% yield (Table 1, entry 1). 
Examination of different bases revealed that K3PO4 is preferred 
over K2CO3 (Table 1, entry 2) and KO-tBu (Table 1, entry 3). 
Likewise, other solvent/base combinations that have been used 
for Ni–NHC-catalyzed Suzuki cross-couplings,32 such as 
EtOH/K2CO3 (Table 1, entry 4) and THF/K2CO3 (Table 1, entry 
5), proved less effective. Interestingly, increasing the amount of 
base was detrimental to the reaction (Table 1, entry 6). In con-
trast, increasing the reaction temperature resulted in a further 
increase in yield (Table 1, entry 7). Finally, we found that 
changes in the reaction concentration have a significant impact 
on the reaction efficiency (Table 1, entries 8). The optimized 
system involves [CpNi(NHC)I] (3 mol%), K3PO4 (2.6 equiv), 
toluene (0.10 M), 120 °C (entry 9). Note that [CpNi(NHC)I] (4) 
gave 82% yield after 15 min. To compare the reactivity with 
[CpNi(IPr)Cl], we have independently prepared [CpNi(IPr)Cl] 
and tested this complex under the same reaction conditions. 
This imidazol-2-ylidene complex [CpNi(IPr)Cl] gave 81% 
yield (15 min), indicating comparable reactivity of (4) to the 
most reactive NHC–Ni systems.14b,c We note that 2 equivalents 
of arylboronic acid are required for the reaction. In general, Ni 
catalysis is still less reactive than Pd catalysis in Suzuki-type 
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couplings. We also note that under the optimized conditions, the 
use of Ar-Cl, 4-Ac-C6H4-Cl is less effective, resulting in a mod-
est yield of cross-coupling (Table 1, entry 10) (vide infra). Both 
methods gave consistent results using [CpNi(NHC)I] (4) as the 
catalyst.  

Furthermore, comparison between [CpNi(NHC)I] complexes 
(4–6) (Table 2) revealed that N7-Me complex 4 is most reactive, 
followed by N7-Bn complex 5, while N7-Ph complex 6 showed 
comparatively lower reactivity, which is consistent with less 
sterically-demanding complexes as  

Scheme 4. Substrate Scope of Ni-NHC-Catalyzed Suzuki–

Miyaura Cross-Couplinga 

 

aConditions: [Ni-NHC] 4 (3 mol%), Ar-Br (1.0 equiv), Ar’-B(OH)2 (2.0 
equiv), K3PO4 (2.6 equiv), toluene (0.10 M), 120 °C, 12 h. bUsing Ar-Cl as 
substrate. See SI for details. 

more effective in [Ni–NHC] promoted Suzuki cross-coupling 
reactions.33 

With the optimal conditions in hand, the scope of the Suzuki–
Miyaura cross-coupling using complex 4 was investigated 
(Scheme 4). As shown, the half-sandwich, cyclopentadienyl 
complex (4) is effective in promoting the Suzuki cross-coupling 
of a range of aryl bromides, including electron-neutral (10a), 
challenging electron-rich (10b) as well as electron-deficient 
(10c–10f) substrates. Importantly, sensitive electrophilic func-
tional groups, such as ketone (10d) and cyano (10e–10f) are 
readily tolerated under these mild base conditions. Importantly, 
challenging ortho-sterically-hindered substrates can also be 
used under these conditions (10g). It is notable that catalyst (4) 
tolerates both electron-rich and sterically-hindered aryl bro-
mides, which are comparatively difficult substrates for related 

half-sandwich, cyclopentadienyl [Ni–NHC] complexes.14,26 
Furthermore, heterocyclic aryl halides are compatible as exem-
plified by the cross-coupling of 2-Cl-pyridine (10h). In this 
case, it is possible to use aryl chloride because of the conjuga-
tion with the electron-deficient heterocycle. Finally, polycyclic 
hydrocarbons, such as sterically-hindered 1-napthyl, also are 
compatible with this cross-coupling (10i).  

Next, the scope of boronic acids was briefly investigated us-
ing electronically-unbiased bromobenzene (Scheme 4).  

Table 3. Cross-Coupling of Aryl Chlorides Catalyzed by a 

Mixed Ni–NHC/Phosphine System.a 

 

en-

try 

cata-

lyst 
R-X 

PPh3 

(mol%) 
solvent base 

T 

(°C) 

yield  

(%)b 

1 4 4-Ac-C6H4-Cl - toluene K3PO4 120 29 

2 4 4-Ac-C6H4-Cl 5 toluene K3PO4 120 98 

aConditions: 4-Ac-C6H4-Cl (1.0 equiv), Ph-B(OH)2 (2.0 equiv), catalyst (3 
mol%), PPh3 (0-5 mol%), K3PO4 (2.6 equiv), toluene (0.10 M), 120 °C, 12 
h. bGC/1H NMR yields. 
 

Scheme 5. Late-Stage Modification by Ni-NHC/PPh3-

Catalyzed Suzuki–Miyaura Cross-Couplinga 

 

aConditions: [Ni-NHC] 4 (3 mol%), PPh3 (5 mol%), Ar-Cl (1.0 equiv), Ar’-
B(OH)2 (2.0 equiv), K3PO4 (2.6 equiv), toluene (0.10 M), 120 °C, 12 h. See 
SI for details. 

As shown, electron-neutral (10a), electron-rich (10b), elec-
tron-deficient (10c, 10j, 10d) arylboronic acids are competent 
substrates for the reaction. Furthermore, we were pleased to find 
that sterically-hindered boronic acids also well-tolerated (10g). 
Importantly, these boronic acids delivered the cross-coupling 
products in high yields irrespective of electronic and steric 
properties of the boronic acid, which compares favorably with 
related half-sandwich, cyclopentadienyl [Ni–NHC] complexes 
based on imidazol-2-ylidenes.14,26 

At this point, we became intrigued by the recent reports on 
using catalytic amounts of phosphanes to increase the reactivity 
of Ni–NHC complexes in the Suzuki–Miyaura cross-coupling 
of aryl chlorides.34 These systems are proposed to operate 
through mixed NHC/PR3 coordination to nickel(II), resulting in 
stable and catalytically-active precursors. Gratifyingly, we 
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found that addition of catalytic PPh3 (5 mol%) to the present 
system resulted in a significant enhancement of the reactivity in 
cross-coupling of aryl chlorides (Table 3).  

Pleasingly, this Ni–NHC/PR3 system is highly efficient and 
could be applied to the direct late-state derivatization of phar-
maceuticals (Scheme 5).35 The cross-coupling of chloroproma-

zine (antipsychotic), indomethacin (anti- 

Scheme 6. Competition Experimentsa 

 

aConditions: (A) Ar-Br (2.0 equiv each)/Ph-B(OH)2 (1.0 equiv). (B) Ar-
B(OH)2 (2.0 equiv each)/Ph-Br (1.0 equiv), [Ni-NHC] 4 (3 mol%), K3PO4 
(2.6 equiv), toluene (0.10 M), 120 °C, 12 h. 

inflammatory) and fenofibrate (antihypercholesterolemic) de-
livered biaryl products in high yields. While our focus was on 
aryl bromides because these reactions do not require phosphine 
additives, the cross-couplings in Scheme 5 highlight the poten-
tial of nickel catalysis in medicinal chemistry research. Studies 
on the development of related Ni–NHC/phosphine catalysts are 
ongoing in our laboratory. 

Next, we conducted intermolecular competition experiments 
to gain preliminary insight into the reaction selectivity (Scheme 
6). Competition experiments revealed that electron-deficient 
aryl bromides are significantly more reactive than electron-rich 
counterparts (Ac:MeO > 95:5) (Scheme 6A). Furthermore, 
electron-rich boronic acids are inherently more reactive than 
electron-deficient boronic acids (MeO:CF3> 95:5) (Scheme 
6B). Note that ketones can coordinate to Ni(0) complexes, 
which may affect the selectivity. Thus, we conducted competi-
tion experiments using the 4-CF3 analogue (CF3:MeO = 7:1) 
(Scheme 6A), which is in agreement with the reaction strongly 
favoring electron-deficient substrates. The electronic effect is 
supported by the scope studies (10b vs. 10c-d, Scheme 4). This 
data is consistent with oxidative addition and transmetallation 
as kinetically relevant steps in the cross-coupling.14,26  

To further characterize the effect of Xanthine scaffold on 
electronic properties of carbenes, HOMO and LUMO energy 
levels of NHCs derived from 1–3 were determined at the 
B3LYP 6-311++g(d,p) level (Table 4, Figures 3-4 and SI). For 
comparison, orbital energy levels of reference imidazol-2-yli-
denes IMe, MeIMe and ClIMe were determined. It is now well 
accepted that computation of HOMO and LUMO energy levels 
provides the most accurate evaluation of nucleophilicity and 
electrophilicity of N-heterocyclic carbenes with the proviso that 
the comparison must be available at the same level of 

theory.30,10 Higher HOMO corresponds to more s-donating, 
while lower LUMO to more p-accepting NHC ligands. In select 
cases, p-donation should also be considered. 

The HOMO-1 of carbenes 1–3 (in-plane s-orbital, N7-Me, 
N7-Bn and N7-Ph, in the Xanthine scaffold, respectively) of -
6.48 eV, -6.50 eV and -6.52 eV can be compared with HOMO 
of IMe (-5.89 eV), MeIMe (-5.66 eV), and ClIMe (-6.38 eV). In 
the case of carbenes 1–3, the HOMO is p-donor orbital (-6.34 
eV, -6.35 eV and -6.29 eV, respectively), which can be com-
pared with the corresponding p-donor orbitals (HOMO-1) of 
IMe, MeMe and ClMe of -6.37 eV, -5.81 eV and -6.41 eV. Fur-
thermore, the LUMO of carbenes 1–3 (p-acceptance) of -1.14 
eV, -1.18 eV and -1.28 eV  

Table 4. HOMO and LUMO Energy Levels (eV) of Xan-

thine Derived NHCsCalculated at the B3LYP 6-311++g(d,p) 

Levela
 

entry NHC 
HOMO  

[eV] 

LUMO  

[eV] 

1 1 -6.48b -1.14 

2 2 -6.50b -1.18 

3 3 -6.52b -1.28 

4 IMe -5.89 0.40c 

5 Me
IMe -5.66 0.49c 

6 Cl
IMe -6.38 0.20c 

7 IPr -6.01 -0.48 

aSee SI for details. bHOMO-1, in-plane s-orbital. HOMO: p-donor orbital, 
1: -6.34 eV, 2: -6.35 eV, 3: -6.29 eV. cLUMO+4, LUMO+3, LUMO+4 due 
to required symmetry.  

 

 

Figure 3. Structures of reference imidazol-2-ylidenes. 

 

 

Figure 4. HOMO (p-donating orbital), HOMO-1 (s-donating orbital) and 
LUMO (p-accepting orbital) of caffeine derived carbene 4 calculated at 
B3LYP 6-311++g(d,p) level. See SI for details.  
 

can be compared with IMe, MeMe and ClMe of 0.40 eV, 0.49 
eVand 0.20 eV (LUMO+4, LUMO+3, LUMO+4 due to re-
quired symmetry, respectively). It should be noted that in xan-
thine-8-ylidenes p-acceptor is asymmetrical with respect to 
metal-carbene axis due to the presence of the fused tetrahydro-
pyrimidine-2,4-dione. For comparison, the values for a model 
N-Aryl imidazol-2-ylidene, IPr, are HOMO: -6.01 eV, LUMO: 
-0.48 eV. Thus, electronically, carbenes 1–3 can be described 
as moderately strongly s-donating and strongly p-accepting 
NHC ligands. To our knowledge, this study provides the first 
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quantification of the frontier orbitals of NHCs derived from 
Xanthines.15–25  

We have also evaluated the steric effect of the Xanthine NHC 
ligands derived from 1–3 by calculating the percent buried vol-
ume (%Vbur) for the linear [Cu(NHC)Cl] complexes at the 
B3LYP 6-311++g(d,p) level (Figure 5 and Table 5). It is now 
well accepted that the accurate determination of %Vbur of NHC 
ligands should be made for the linear geometry of NHC–metal 
complexes.9 To eliminate packing effects from the crystallo-
graphic studies, optimum results are obtained by comparing a 
series of ligands calculated at the same level of theory. For this 
study, we selected Cu(I)–NHC complexes to facilitate compu-
tations. 

Thus, Xanthine ligands 1–3 feature %Vbur = 27.8%, %Vbur = 
32.3%, and %Vbur = 31.2%, respectively, which can be com-
pared with IMe, MeIMe and ClIMe of 27.2%, 27.3%  

 

Figure 5. (A-D) Topographical steric maps of [Cu(NHC)Cl] (4–6 and IMe) 
showing % Vbur per quadrant calculated at B3LYP 6-311++g(d,p) level.  

Table 5. %Vbur of Xanthine Derived NHCs in [Cu(NHC)Cl] 

Complexes Calculated at the B3LYP 6-311++g(d,p) Levela
 

entry NHC %Vbur 

1 1 27.8 

2 2 32.3 

3 3 31.2 

4 IMe 27.2 

5 Me
IMe 27.3 

6 Cl
IMe 27.3 

7 IMes 36.4 

aSee SI for details.  

and 27.3% as well as [Cu(IMes)Cl], %Vbur =36.4%, determined 
at the same level of theory. Interestingly, ligand derived from 1 
features symmetrical quadrant distribution (28.0%, 28.0%, 
27.5%, 27.5%), while ligands 2 and 3 feature differentiated ste-
ric impact with 27.8%, 28.3%, 27.3%, 45.8% and 28.2%, 
28.2%, 39.2%, 29.2% for each quadrant. Thus, in terms of 
sterics ligands 2 and 3 feature unsymmetrical quadrant distribu-
tion, while Xanthine ligand 1 is similar to the smallest IMe and 

MeIMe imidazol-2-ylidene ligands, which have found numerous 
applications in transition-metal-catalysis.1–3,36 

 
3. Conclusions 

In summary, there is a major economic and societal drive to 
use renewable resources for sustainable chemical synthesis. In 
this respect, it is particularly attractive to merge the abundance 
of 3d transition metals and bio-renewable sources of ligands. In 
this study, we have reported the first nickel–N-heterocyclic car-
bene complexes derived from Xanthines. We demonstrated the 
synthesis of well-defined, air- and moisture-stable, half-sand-
wich, cyclopentadienyl nickel–NHC complexes from the natu-
ral products caffeine and theophylline. Complex 4 has been 
characterized by x-ray crystallography. The high activity in Su-
zuki–Miyaura cross-coupling has been demonstrated. The use 
of phosphine additive enabled to engage aryl chlorides, includ-
ing late-stage derivatization of pharmaceuticals. Finally, full 
evaluation of steric, electron-donating and p-accepting proper-
ties of this class of ligands has been presented. We anticipate 
that Xanthine derived N-heterocyclic carbenes offer a plethora 
of exciting applications as a sustainable alternative to the clas-
sical imidazol-2-ylidenes. 
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