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Abstract. Quantization implies independent degrees of freedom that do not appear in the
classical theory, given by fluctuations, correlations, and higher moments of a state. A sys-
tematic derivation of the resulting dynamical systems is presented here in a cosmological
application for near-Gaussian states of a single-field inflation model. As a consequence,
single-field Higgs inflation is made viable observationally by becoming a multi-field model
with a specific potential for a fluctuation field interacting with the inflaton expectation value.
Crucially, non-adiabatic methods of semiclassical quantum dynamics reveal important phases
that can set suitable initial conditions for slow-roll inflation (in combination with the uncer-
tainty relation), and then end inflation after the observationally preferred number of e-folds.
New parameters in the interaction potential are derived from properties of the underlying
background state, demonstrating how background non-Gaussianity can affect observational
features of inflation or, conversely, how observations may be used to understand the quantum
state of the inflaton.
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1 Introduction

It is a natural requirement that self-consistent inflationary models should be largely indepen-
dent of the high energy quantum gravity theory, viewed in an effective field theory framework.
However, an exact decoupling of scales relevant for inflation from high-energy modes can hap-
pen only if the low-energy Lagrangian consists entirely of terms that are renormalizable using
Wilsonian effective actions. This condition restricts single-field models of inflation to be of
chaotic type with quartic potentials.

If the inflationary action contains terms beyond mass-dimension four, then the theory
is liable to be affected by as yet unknown high-energy physics. In fact, one even has to rely
on ultraviolet physics in order to derive a suitable higher-order form of the potential. In
common single-field inflation, this problem can rarely be avoided as the models preferred by
observations [1] depend crucially on non-renormalizable terms in the potential, as for instance
in Starobinsky inflation [2]. Fundamentally, such terms have to be understood as remnants
in an effective description of some underlying theory of gravity and matter, such as quantum
gravity or string theory, but specific top-down justifications of suitable forms of the potential
are usually hard to come by.

Alternatively, if chaotic-type potentials, which have been ruled out by data as single-
field models, can somehow be resurrected, then the burden of explaining these potentials
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does not have to fall on quantum gravity. Motivated by this observation, we begin with a
Higgs-inspired classical potential,

Vcl(ψ) = M4

(

1 − 2
ψ2

v2
+
ψ4

v4

)

(1.1)

with two parameters, M and v, assumed to be positive. While the only known scalar to
have been discovered to date is the standard-model Higgs particle, it is well-known that
this type of an inflaton potential, by itself, is found to be inconsistent with cosmological
observations. To make matters worse, even renormalization-group improvements do not
suffice to make Higgs-like potentials compatible with data [3–5]. The only observationally
consistent formulations proposed up until now have been based on a scalar field non-minimally
coupled to the Ricci scalar [6, 7], modifying the kinetic term of the Higgs field. Non-minimal
coupling terms, however, mean that one is forced to modify the nature of the standard model
at high energies [8], amongst other issues [9].

In the present work, we will preserve the simple nature of a minimally coupled field
with a quartic classical potential (1.1). Applying a canonical formalism of effective theory
which, crucially, remains valid in non-adiabatic regimes. Heuristically, this formalism in-
cludes effects of higher time derivatives in the quantum effective action without requiring a
derivative expansion. We emphasize that this notion of non-adiabatic behavior refers to the
background state of the scalar field, describing its homogeneous contribution, rather than
its inhomogeneous modes which may well remain largely adiabatic if the slow-roll regime
is sufficiently long. By these methods, the classical potential will be quantum extended to
a two-field model with a specific potential derived from (1.1). The second field, ϕ, will be
shown to be an authentic field degree of freedom representing quantum fluctuations of the
background inflaton, ψ. Our application of quantum fluctuations in the context of inflation
is different from the way they appear in stochastic or eternal inflation [10–15]. We are us-
ing back-reaction effects implied by quantum fluctuations in the deterministic evolution of
wave functions, rather than stochastic properties implied by fluctuations for the measure-
ment process. Our model could certainly be extended by including suitable stochastic terms
in the equations of motion [11, 16–19], but we will not attempt to do so in the present paper.
As such, it is subject to uncertainty relations that will be used to obtain important lower
bounds on its initial value. Initial evolution is then non-adiabatic, but it automatically sets
the stage for a long slow-roll phase (in a so-called waterfall regime of the two-field model)
that is consistent with observational constraints. A final non-adiabatic phase automatically
ends inflation with just the right number of e-folds in a large region of the parameter space.

Coefficients of the two-field potential are determined by the same two parameters, M and
v, that appear in the single-field model (1.1). In addition, there are new coefficients derived
from moments of the inflaton state, such as parameters for non-Gaussianity of the background
state. In inflation models, this is a new kind of non-Gaussianity different from what one
usually refers to in primordial fluctuations during inflation. In our case, non-Gaussianity is
present already in the wave function of the homogeneous quantum inflaton field (referred to
here as the background state), and not only in the perturbation spectrum. It is therefore
possible to put constraints on the two-field potential based on known properties of states,
or conversely, to determine conditions on suitable inflaton states based on observational
constraints. An important finding is that constraints on the spectral index, its running, and
the tensor-to-scalar ratio prefer small background non-Gaussianity.
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In section 2, we present a review of relevant methods of non-adiabatic quantum dy-
namics, which have appeared in various forms in fields as diverse as quantum field theory,
quantum chaos, quantum chemistry, and quantum cosmology. The same section presents a
comparison with Gaussian methods and shows how non-adiabatic dynamics can include non-
Gaussian states. These methods are applied to cosmology in section 3, focusing on Higgs-like
inflation. The results are, however, more general and can easily be adapted to any potential.
This section will demonstrate the importance of going beyond Gaussian dynamics, includ-
ing higher-order moments, and maintaining non-adiabatic regimes. A detailed cosmological
analysis, including numerical simulations and analytical approximations, is performed in sec-
tion 4, where observational implications are discussed. The derivations in the present paper
justify the more concise physical discussion presented in [20].

2 Canonical effective potentials

Our construction is based on canonical effective methods for non-adiabatic quantum dynam-
ics, which in a leading-order treatment has appeared several times independently in various
fields [21–26], including quantum chaos, quantum chemistry, and quantum cosmology, but
has only recently been worked out to higher orders using systematic methods of Poisson man-
ifolds [27, 28]. While higher orders go beyond Gaussian dynamics, the leading-order effects
are closely related to Gaussian approximations and can therefore be used for an illustration
of the method.

Throughout this paper, the term “adiabatic” will by default refer to the concepts dis-
cussed in the present section, unless otherwise stated. That is, adiabatic behavior is by
definition realized when it is possible to capture crucial physical phenomena in a derivative
expansion, for instance in a quantum effective action or, as used below, in the equations of
motion for expectation values and moments of a state. The behavior is non-adiabatic when a
derivative expansion does not faithfully capture the dynamics. In this case, new non-classical
degrees of freedom play an important role, which may be given by auxiliary fields in a non-
local effective action, or independent moments of a quantum state. In general, this notion has
no relationship with the concept of adiabatic modes which is often used in cosmology. Later
on, we will however briefly use an adiabatic combination of fields when deriving observables
in the context of multi-field inflation.

2.1 Relation to the time-dependent variational principle

In order to illustrate our claim that quantum fluctuations can provide an independent de-
gree of freedom that can influence the inflationary dynamics, we first consider a canonical
formulation of the time-dependent variational principle for Gaussian states.

The most general parametrization of Gaussian fluctuations around the homogeneous
field ψ can be represented by the wave function [21]

Ψ(ψ′|ψ, πψ, ϕ, πϕ) =
1

(2πϕ2)1/4
exp

(

−1

4
ϕ−2(1 − 2iϕπϕ)(ψ′ − ψ)2

)

× exp(iπψ(ψ′ − ψ)) exp

(

−1

2
iϕπϕ

)

. (2.1)

The notation is such that Ψ is a wave function depending on a free variable ψ′ for any choice
of the parameters ψ, πψ, ϕ and πϕ, which determine a specific ψ′-dependent wave function.
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Despite its lengthy form, this variational wave function has some useful properties: it is
normalized, 〈Ψ|Ψ〉 = 1, and has basic expectation values

〈Ψ|ψ̂|Ψ〉 = ψ , 〈Ψ|π̂ψ|Ψ〉 = πψ (2.2)

and variances

〈Ψ|(ψ̂ − ψ)2|Ψ〉 = ϕ2 , 〈Ψ|(π̂ψ − πψ)2|Ψ〉 = π2
ϕ +

1

4ϕ2
(2.3)

where operators are defined with respect to the dependence of Ψ on ψ′. Moreover, Ψ obeys
the conditions

i〈Ψ|∂/∂ψ|Ψ〉 = πψ, i〈Ψ|∂/∂ϕ|Ψ〉 = πϕ (2.4)

〈Ψ|∂/∂πψ|Ψ〉 = 0, 〈Ψ|∂/∂πϕ|Ψ〉 = 0 . (2.5)

The equations of motion for the variational parameters, ψ, ϕ, πψ and πϕ, are given by
the variation of the action

S =

∫

dt
〈

Ψ
∣

∣

∣

(

i∂t − Ĥ
)∣

∣

∣Ψ
〉

=

∫

dt
(

iψ̇ 〈Ψ|∂/∂ψ|Ψ〉 + iϕ̇ 〈Ψ|∂/∂ϕ|Ψ〉 − 〈Ψ|Ĥ|Ψ〉
)

(2.6)

using the chain rule. The identities obeyed by Ψ therefore allow us to write the action in
canonical form,

S =

∫

dt
(

ψ̇πψ + ϕ̇πϕ −HG

)

(2.7)

where we defined the Gaussian Hamiltonian HG = 〈Ψ|Ĥ|Ψ〉. The variation of this action
gives Hamilton’s equations

ψ̇ =
∂HG

∂πψ
, π̇ψ = −∂HG

∂ψ
, ϕ̇ =

∂HG

∂πϕ
, π̇ϕ = −∂HG

∂ϕ
. (2.8)

For example, if we consider the Hamilton operator

Ĥ =
1

2
π̂2
ψ +M4

(

1 − 2
ψ̂2

v2
+
ψ̂4

v4

)

(2.9)

with the Higgs-like potential, the Gaussian Hamiltonian is

HG =
1

2
π2
ψ +

1

2
π2
ϕ +

1

8ϕ2
+M4

(

1 − 2
ψ2

v2
+
ψ4

v4
+ 6

ψ2ϕ2

v4
− 2

ϕ2

v2
+ 3

ϕ4

v4

)

. (2.10)

2.2 Canonical effective methods

While the Gaussian approximation is useful in a wide range of applications a more general
class of states is relevant for our application to inflation where non-Gaussianities should be
included in the analysis. Canonical effective methods [29, 30] provide a good alternative
because they allow for generally non-Gaussian states while still retaining the canonical struc-
ture that makes Gaussian states attractive. Importantly, it is not required to find a specific
representation of non-Gaussian states as wave functions, which would be much more involved
than (2.1). Instead, one can formulate states of a quantum system in terms of expectation
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values and moments assigned by a generic state to the basic operators ψ̂ and π̂ψ. The evo-
lution of a state is then formulated as a dynamical system for the basic expectation values
ψ = 〈ψ̂〉 and πψ = 〈π̂ψ〉 as well as the moments

∆(ψaπbψ) =
〈

(ψ̂ − 〈ψ̂〉)a(π̂ψ − 〈π̂ψ〉)b
〉

Weyl
, (2.11)

using Weyl (or completely symmetric) ordering in order to avoid overcounting degrees of
freedom.

The basic expectation values and moments inherit a Poisson structure from the com-
mutator,

{

〈Â〉, 〈B̂〉
}

=
1

i~

〈

[Â, B̂]
〉

, (2.12)

augmented by the Leibniz rule in an application to moments. The equations of motion for
some phase space function, F (ψ, πψ,∆(·)), are then given in the form of the usual Hamilton’s
equations,

Ḟ (ψ, πψ,∆(·)) = {F,HQ} (2.13)

with a quantum Hamiltonian HQ = 〈Ĥ〉 defined as the expectation value of the Hamilton

operator Ĥ in a generic (not necessarily Gaussian) state. For a Hamiltonian of the form
Ĥ = 1

2 π̂
2
ψ + V̂ (ψ), this definition implies the quantum Hamiltonian

HQ = 〈Ĥ〉 =
1

2
π2
ψ +

1

2
∆(π2

ψ) + V (ψ) +
∞
∑

n=2

1

n!

∂nV

∂ψn
∆(ψn) . (2.14)

The formulation of the system in terms of expectation values and moments allows for
a systematic canonical analysis at the semiclassical level. Written directly for moments as
coordinates on the quantum phase space, the Poisson structure, based on (2.12) together
with the Leibniz rule, is rather complicated. For instance, one can see that the Poisson
bracket of two moments is not constant and not linear in general [29, 31]. Using moments
as coordinates on a phase space therefore leads to a more complicated inflationary analysis
lacking a clear separation between configuration and momentum variables. It is then unclear
how to determine kinetic and potential energies or a unique relationship between specific
phenomena and individual degrees of freedom.

In order to make the semiclassical analysis more clear, it is preferable to choose a
coordinate system on phase space that puts the Poisson bracket in canonical form as in the
variables used in (2.10), but possibly extended to higher orders in moments. The Darboux
theorem [32] or its extension to Poisson manifolds [33] guarantees the existence of such
coordinates, but explicit constructions are in general difficult. For second-order moments,
the moment phase space is 3-dimensional and can be handled more easily than in the general
context. In this case, a canonical mapping has been found several times independently [21–
24]. It is accomplished by the coordinate transformation

∆(π2
ψ) = π2

φ +
U

ϕ2
, ∆(ψπψ) = ϕπϕ , ∆(ψ2) = ϕ2 (2.15)

where {ϕ, πϕ} = 1. The parameter U = ∆(ψ2)∆(π2
ψ) − ∆(ψπψ)2 is a conserved quantity

(or a Casimir variable of the algebra of second-order moments), restricted by Heisenberg’s
uncertainty relation to obey the inequality U ≥ ~

2/4. Direct calculations show that the
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transformation (2.15) is a canonical realization of the algebra of second-order moments. At
this stage we already have a departure from the Gaussian states, because the uncertainty
for a pure Gaussian equals ~

2/4, while we retain the uncertainty as a free (but bounded)
parameter.

Additional non-Gaussianity parameters, relevant for inflation, are revealed by an exten-
sion of the canonical mapping to higher-order moments. Considering higher order semiclas-
sical corrections implies more canonical degrees of freedom. (For a single classical degree of
freedom, the moments up to order N form a phase space of dimension D =

∑N
j=2(j + 1) =

1
2(N2+3N−4).) A canonical mapping for these higher-order semiclassical degrees of freedom
has only recently been derived in [27, 28] up to the fourth order. For the relevant moments,
the results are

∆(π2
ψ) =

5
∑

i=1

π2
ϕi

+
∑

i>j

U

(ϕi − ϕj)2
(2.16)

∆(ψ2) =
5
∑

i=1

ϕ2
i (2.17)

∆(ψ3) = C
5
∑

i=1

ϕ3
i (2.18)

∆(ψ4) = C2
5
∑

i=1

ϕ4
i +

∑

ϕ2
iϕ

2
j (2.19)

while all other moments up to fourth order can be derived from the relevant ones using
suitable Poisson brackets. There are now five canonical pairs, (ϕi, πϕi

) and two Casimir
variables, U and C, forming a 12-dimensional phase space of moments.

In order to parametrize the entire fourth-order semiclassical phase space we had to
introduce a total of five pairs of canonical degrees of freedom and two Casimir variables, U
and C. In principle, we could consider all ten non-constant semiclassical degrees of freedom,
but in order to keep the analysis simple, we take inspiration from some more terrestrial
applications [28, 34, 35] and choose a moment closure, thereby approximating higher-order
moments in terms of lower-order ones. In particular, we choose ∆(π2

ψ) = π2
ϕ+U/ϕ2, ∆(ψ2) =

ϕ2, ∆(ψ3) = a3 (or, alternatively, a3ϕ
3) and ∆(ψ4) = a4ϕ

4. This closure corresponds
to (2.16) written in higher dimensional spherical coordinates with the assumption that the
angular momenta are small enough to be ignored. The parameter values U = ~

2/4, a3 = 0 and
a4 = 3 correspond to the Gaussian case. We can therefore think of this closure as describing
the non-Gaussianities by three parameters, U , a3 and δ = a4 −3, while maintaining the same
number of degrees of freedom as in the Gaussian case.

Considering a Higgs-inspired matter field coupled to a classical and isotropic space-
time background with spatial metric hij = a(t)2δij in terms of proper time t, the standard
Lagrangian

L =

∫

d3x
√

deth

(

1

2
ψ̇2 − 1

2
hij∂iψ∂jψ − V (ψ)

)

(2.20)

is first reduced to homogeneous form by assuming spatially constant ψ and integrating:

Lhom =
1

2
a(t)3V0ψ̇

2 − a(t)3V0V (ψ) . (2.21)

– 6 –
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The new parameter V0, defined as the coordinate volume of the spatial region in which infla-
tion takes place, does not have physical implications but merely ensures that the combination
a(t)3V0 represents the spatial volume in a coordinate-independent way. (The value of a(t)3V0

would be determined by the maximum length scale on which approximate homogeneity may
be assumed in the early universe just before inflation [36, 37].) This Lagrangian implies the
scalar momentum

πψ =
∂Lhom

∂ψ̇
= a(t)3V0ψ̇ (2.22)

such that the Hamiltonian is given by

H =
1

2a(t)3V0
π2
ψ + a(t)3V0V (ψ) . (2.23)

Quantizing the scalar field, using our explicit potential (1.1), the Hamilton operator is

Ĥ =
1

2a(t)3V0
π̂2
ψ + a(t)3V0M

4

(

1 − ψ̂2

v2

)2

, (2.24)

keeping the background scale factor a(t) classical. The closure we choose here implies the
reduced version

Hclosure
Q =

1

2a(t)3V0
π2
ψ +

1

2a(t)3V0
π2
ϕ +

U

2a(t)3V0ϕ2
(2.25)

+a(t)3V0M
4

(

1 +

(

6ϕ2

v4
− 2

v2

)

ψ2 +
ψ4

v4
− 2

ϕ2

v2
+
a4ϕ

4

v4
+ 4

a3ϕ
3ψ

v4

)

of the quantum Hamiltonian. Hamilton’s equations generated by Hclosure
Q are, as usual,

deterministic, even though here they contain variables representing quantum fluctuations and
higher moments. This dynamics presents an approximation of the deterministic evolution of
a wave function that is implicitly determined by the momemts. We therefore do not include
stochastic effects of fluctuations that would be present if the inflaton were somehow measured
while inflation is still going on.

While parameterizing some higher moments through a moment closure is required for a
tractable model, keeping at least one quantum degree of freedom, ϕ, independent is crucial for
a description of non-adiabatic phases. In this way, our quantum Hamiltonian goes beyond
effective potentials of low-energy type, in particular the Coleman-Weinberg potential [38].
As shown in [39], it is possible to derive the Coleman-Weinberg potential from a field-theory
version of (2.25) if one minimizes the Hamiltonian with respect to ϕ. This step eliminates
all independent quantum degrees of freedom and, in the traditional treatment, is equivalent
to ignoring non-adiabatic effects by using a low-order truncation of the derivative expansion,
in addition to the semiclassical expansion also applied here. In this sense, by including the
new variable ϕ as an authentic degree of freedom we retain non-adiabatic information of our
dynamics.

In our cosmological scenario, this degree of freedom will be relevant at the beginning and
end of inflation. Since the long, intermediate phase of slow-roll inflation remains by necessity
adiabatic, a traditional low-energy effective action or a derivative expansion of a quantum
field theory for the inflaton may be applied. As shown in [29, 30, 40], the background
contribution of such an effective theory [41] is equivalent to an adiabatic approximation

– 7 –
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applied to moment corrections in a quantum Hamiltonian. All relevant phases are therefore
included in our formalism.

The effective Hamiltonian (2.25) is very similar to the Gaussian Hamiltonian (2.10),
which also retains an independent quantum variable, but it is more general because of the
presence of the new parameters U , a3 and a4. As shall be shown later, the characteristics
of our inflationary phase depend crucially on these parameters. In particular for a Gaussian
state, inflation never ends, but if we consider small non-Gaussianities parametrized by U ,
a3 and a4, we can obtain a phenomenologically viable inflationary phase. Moreover, these
parameters are determined by the quantum state of the early universe, and so constraining
them with data would shed light on the character of the quantum state of the early universe.

3 Two-field model

After our transformation to canonical moment variables, we can uniquely extract an effective
potential from (2.25),

1

M4
Veff(ψ,ϕ) = 1 +

U

2M4a6V 2
0 ϕ

2
+

(

6
ϕ2

v4
− 2

v2

)

ψ2 +
ψ4

v4
− 2

ϕ2

v2
+

4a3ψ

v4
+ a4

ϕ4

v4

≈ 1 + 2

(

ϕ2 − ϕ2
c

ϕ2
c

)

ψ2

v2
+

4a3 ψ

v4
+
ψ4

v4
− 2

3

ϕ2

ϕ2
c

+ a4
ϕ4

v4
, (3.1)

where ϕ2
c := v2/3. By construction, the second field, ϕ, represents the quantum fluctuation

associated with the classical field ψ. As explained earlier, the additional parameters, U , a3

and a4 describe a possibly non-Gaussian quantum state of the background inflaton.

3.1 Initial conditions and the trans-Planckian problem

In the second line of the equation, we ignored the U -term U/(2M4a6V 2
0 ϕ

2) in an approxima-
tion valid for sufficiently large scale factors (or, rather, averaging volumes a3V0). The origin
of this term is purely quantum and represents a potential barrier that enforces Heisenberg’s
uncertainty relation for the fluctuation variable ϕ. This term can be easily ignored after a
few e-folds of inflation, but at early times its presence necessitates ϕ to start out at large
values. The subsequent non-adiabatic phase will be crucial for our model, and therefore this
term alleviates our need to fine-tune the initial condition for ϕ.

The main effect of this repulsive term in the potential is to push out ϕ to large values
to begin with, after which we are always able to neglect it throughout inflation. The initial ϕ
obtained in this way is indeed consistent with requirements on inflation models. In particular,
we can easily obtain the initial condition ϕ > ϕc of hybrid inflation [42]: we expect the initial
ϕ to be large and can therefore restrict the effective potential (3.1) to the term quartic in
ϕ, together with the U -term relevant at early times. This restricted potential has a local
minimum at

ϕ =
6

√

Uv4

4a6V 2
0 M

4a4
. (3.2)

We do not know much about the volume a3V0 of the initial spatial region that was meant to
expand in an inflationary way. But in order to avoid the trans-Planckian problem [43–45],
we should require that a3V0 > ℓ3P. This lower bound implies the upper bound

ϕini <
1

ℓP

6

√

Uv4

4a4M4
(3.3)
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for (3.2). For parameters of the order v ∼ O(MP) and M4 ≪ M4
P, as common in hybrid

models and used in our analysis to follow, the upper bound on ϕini is much greater than ϕc.

3.2 Waterfall: phase transitions

Our effective potential (3.1), depending on the classical field ψ and its fluctuation, ϕ is of the
hybrid-inflation type. These models typically produce a blue-shifted tilt when one starts with
a large ϕ and small ψ [42]. Inflation in this scenario essentially relies on the near-constant
vacuum energy of ψ. However, there is an alternative scenario in the same model, the so-
called waterfall regime [46, 47], realized at a later stage in our model in which ϕ has moved
to and stays close to a minimum while ψ gradually inches away from its vacuum value that
has by then become an unstable equilibrium position.

As we will show, initial conditions for the waterfall regime to take place are generated in
our extension of the model by a non-adiabatic phase in which ϕ is still large. The subsequent
waterfall regime then generates a significant number of e-folds and leads to a red-shifted
tilt for a wide range of parameters. For this scenario to take place, it is important that our
effective potential differs from the traditional hybrid one in that we have an a4ϕ

4 term as well
as a Z2-breaking term a3ψ, which is assumed to be small but not exactly zero. The latter term
relieves us of the burden of supplying a non-zero initial value for ψ, which is required to start
the dynamics of the waterfall regime, as we shall demonstrate later. Because both new terms
depend on state parameters in our semiclassical approximation, the resulting description of
inflation is characterized by an intimate link between observational features and properties
of quantum states.

Another difference with the traditional hybrid model is that the hierarchy between our
set of parameters is more rigid, leaving less room for tuning and ambiguity and making our
results more robust. The traditional potential has three parameters which can be adjusted
independently, while in our case only two (non-state) parameters are independent. This is so
because we do not have a generic two-field model but rather a single-field model accentuated
by its quantum fluctuation. As opposed to the traditional hybrid model [46], we have two
phase transitions characterized by non-adiabatic behavior, and the majority of e-folds are
created in between.

As in the original hybrid model, we start with some ϕ > ϕc with ϕ quickly rolling down
to its minima under an effective ϕ4 term. This phase is driven by a simplified potential of
the form

V ϕ
eff

M4
= 1 − 2

3

ϕ2

ϕ2
c

+ a4
ϕ4

v4
(3.4)

since ψ sits in its local minimum at the origin during this time and therefore all ψ-terms can
be ignored. Once ϕ crosses ϕc, the new true minima of ψ are displaced from the origin due
to a tachyonic term in its effective potential, of the form

V ψ
eff

M4
= 1 + 2

(

ϕ2 − ϕ2
c

ϕ2
c

)

ψ2

v2
+

4a3ψ

v4
+
ψ4

v4
− 2

3

ϕ2

ϕ2
c

+ a4
ϕ4

v4
. (3.5)

Due to the a3 term, the Z2 symmetry of ψ is broken and the field starts slowly rolling
away from the origin. This gradual change enables ϕ to closely follow its vacuum expec-
tation value, ϕ∗. (Its gradual nature also means that the back-reaction of homogeneous
fluctuations ϕ on the homogeneous expectation value ψ is small, justifying our semiclassical
approximation. The combined system of ψ and ϕ has a pronounced effect on the back-
ground space-time, driving its expansion. However, since energy densities always remain
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Figure 1. Shape of the potential V (ψ) for constant ϕ at early (top) and late times (bottom), defined
relative to the time when ϕ crosses ϕc.

sub-Planckian, our model is semiclassical also in the sense of quantum gravity and we are
justified in keeping the scale factor a unquantized.) Eventually, ϕ∗ approaches zero but never
reaches it due the uncertainty principle, thereby almost restoring the symmetry for ϕ; this
is the second phase transition mentioned above. As shown in figures 1 and 2, ϕ causes the
traditional phase transition when it crosses ϕc, and then the slow roll of ψ down its tachy-
onic hilltop will end in a second phase transition. The whole process is clarified further by
examining how the effective potential changes in time, shown in figures 3 and 4.

The hilltop phase generates the dominant number of e-folds, and it ends automatically
when ψ reaches its new minimum. This is a new feature compared to the traditional hybrid
inflation and relies on the existence of a ϕ4 term in our effective potential. Our model is
not a variant of the original hybrid model [48], such as the inverted-hybrid model [49] or a
modified hilltop model [50], or having corrections to the potential coming from supergravity-
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Figure 2. Shape of the potential V (ϕ) for constant ψ at early (top) and late times (bottom), defined
relative to the time when ϕ crosses ϕc.

embedding of the model [51]; rather, we start with a Higgs-like model and include effects
from an initial quantum state that turn it into a hybrid model with some additional terms.

3.3 UV-completion and the swampland

One of the conceptual requirements for inflation models is that they should have a well-defined
quantum completion. One way to implement this is to derive specific forms of inflationary
potentials from string theory constructions as was done, for instance, in the case of natural
inflation. Another recent idea has been that of the swampland, a complement of the string
landscape, which stems from the fact that not all low-energy effective field theories can be
consistently completed in the ultraviolet into a quantum theory of gravity [52, 53]. In order for
an effective field theory to be consistent, it would have to satisfy the eponymous swampland
constraints. This is a much more general way in which quantum gravity may restrict the
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Figure 3. After a brief non-adiabatic phase when it rolls down a steep potential wall, ϕ traces
its minimum for the majority of inflation. The growth of ψ2 moves the ϕ-minima closer to zero,
causing another non-adiabatic phase that ends with an approximate symmetry restoration for ϕ. The
parameters used are v = 3, a3 = 0.05 and δ = 0.1.

Figure 4. During the initial non-adiabatic phase, a phase transition akin to traditional hybrid models
occurs. Reflection symmetry in the potential is slightly broken by the a3-term (which is not apparent
in the figure due to its smallness). This non-Gaussianity term drives ψ to its new stable point where
ψ2 approaches v2. The parameters are the same as figure 3.

form of the potential, amongst other things, in the low-energy effective field theory used as
the starting point for inflation. More specifically, it has been argued that many models of (at
least) single-field inflation are not consistent with the swampland conjectures since the latter
require either a large value for the slope of the potential, |V ′|/V > O(1), or large tachyonic
directions, V ′′/V < −O(1) [54, 55].
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Taken together, these conjectures severely restrict the lifetime of metastable (quasi-)
de Sitter spacetimes that can be built from string theory. In order to obtain an estimate for
the numbers of order one that appear in one of them, the so-called de-Sitter conjecture, one
has to resort to fundamental properties of quantum gravity such as the absence of eternal
inflation [56, 57] or the trans-Planckian censorship conjecture [58, 59]. The latter has put a
more concrete bound on the duration of inflation which, when combined with the observed
power spectrum, imposes severe constraints on the allowed models for inflation. It has been
shown that only hilltop type of models, which generically allow for a small slow-roll parameter
ǫ but a big η, are the ones that survive amongst all single-field models unless one invokes
additional degrees of freedom as in non-Bunch Davies initial states or warm inflation. Even
for hilltop potentials, which seem to be the most compatible with the swampland, one has
to resort to an arbitrary steepening of the potential to end inflation so as not to have too
many e-folds since that would once again make the model incompatible with the constraints.
To date, there are no string theory realizations of any such single-field potential that can
abruptly stop inflation after a finite amount of time.

The remarkable feature of our new model is that it is able to give a viable inflationary
cosmology as well as a graceful exit with a tachyonic (p)reheating, all starting from a Higgs-
like single-field potential as the main input. We are using only standard quantum mechanics
in a non-adiabatic semiclassical approximation and do not have to rely on unknown features
of quantum gravity. In addition, by virtue of the fact that the classical field ψ plays the
role of the inflaton relevant for observable scales, this model is essentially of the hilltop type
which has recently been shown to be preferred by the swampland and to be able to ameliorate
the η-problem [60]. Quantum effects imply that the single-field classical potential is, upon
quantization, no longer a single-field model that would have to be tuned in order to avoid
having too many e-folds of inflation or require any additional mechanism to achieve stability
against radiative corrections [61]. Moreover, our detailed derivations below reveal that the
model maintains a large value of the slow-roll parameter η throughout inflation (in addition
to a small ǫ, as is usually the case for a prototype hilltop model). Indeed, it is when the
value of η becomes too large that inflation ends in this model, once again thanks to effects
of quantum fluctuations of the classical field (as opposed to a generic second field). All of
this is possible even though we start with a single-field model with a monomial potential,
but then take into account the effects of quantum fluctuations in a systematical manner.

4 Analysis

The effective Hamiltonian (2.25) describes a two-field model with standard kinetic terms in an
expanding universe and an interaction potential similar to hybrid models. A numerical anal-
ysis can be applied directly to Hamilton’s equations for ψ and φ generated by Hclosure

Q , (2.25),
using suitable initial values. We will present such solutions in comparison with a slow-roll
approximation to be developed first.

4.1 Slow-roll approximation

For inflationary applications of (2.25), we are interested in a long phase of slow roll that can
be generated by ψ staying near its initially stable and then metastable equilibrium position at
ψ = 0. As long as ψ2 ≪ v2 and ϕ2 ≈ ϕ2

∗ is near a local minimum, the slow-roll approximation
can be used and evaluated analytically. This phase is adiabatic and therefore does not require
all terms in (2.25) that are implied by semiclassical methods for non-adiabatic quantum
dynamics. However, as we have already seen, the remaining terms are essential in achieving
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suitable initial values for the slow-roll phase and to end it early enough. Throughout this
analysis, we will also assume small background non-Gaussianity. As our results will show,
this assumption is justified by observational constraints on the spectral index.

Given these conditions, the slow-roll parameters can be approximated as

ǫϕ ≡ 1

2
M2

P

(

Vϕ
V

)2

≈ 1

2
M2

P

(

M4

P

)2(
4ϕ

3ϕ2
c

(

1 − 3ψ2

v2

)

− 4a4ϕ
3

v4

)2

(4.1)

ǫψ ≡ 1

2
M2

P

(

Vψ
V

)2

≈ 1

2
M2

P

(

M4

P

)2(
4ψ

v2

(

ϕ2

ϕ2
c

+
ψ2

v2
− 1

)

+
4a3

v4

)2

(4.2)

ηϕϕ ≡ M2
P

Vϕϕ
V

= −M4

P

(

4

3ϕ2
c

(

1 − 3ψ2

v2

)

− 12a4ϕ
2

v2

)

(4.3)

ηψψ ≡ M2
P

Vψψ
V

=
M4

P

4

v2

(

ϕ2 − ϕ2
c

ϕ2
c

+
3ψ2

v2

)

(4.4)

ηψϕ ≡ M2
P

Vϕψ
V

=
M4

P

8ψϕ

v2ϕ2
c

, (4.5)

where Vϕ = ∂V/∂ϕ and Vψ = ∂V/∂ψ, iterated for higher derivatives. The constant P is the
initial potential energy, evaluated when ϕ ≈ ϕc and ψ ≈ 0. In the following we set MP = 1.
We will see later that small background non-Gaussianity ensures that ϕ2/ϕ2

c − 1 ≪ 1. Along
with the adiabatic approximation for ϕ, this inequality can ensure that ǫψ and ηψψ are very
small. However, ηϕϕ is not necessarily small, even though ϕ̈ ≪ 3Hϕ̇ and ϕ̇2 ≪ V .

Our equations of motion, under slow roll, then read

3Hϕ̇

M4
=

4ϕ

3ϕ2
c

(

1 − 3ψ2

v2

)

− 4a4ϕ
3

v4
(4.6)

3Hψ̇

M4
= −4ψ

v2

(

ϕ2 − ϕ2
c

ϕ2
c

+
ψ2

v2

)

− 4a3

v4
. (4.7)

where we can make M implicit by rescaling t → t/M2. The regime covered by our approxi-
mations can be split into two phases followed by an end phase.

4.1.1 Phase 1

In early stages, we have ψ2 ≪ v2 and can thus ignore the term 3ψ2/v2 in (4.6). Therefore,
the constant ϕ2 ≈ ϕ2

∗ ≈ 3ϕ2
c/a4 is a solution. Adiabaticity ensures that we can expand the

equation of motion around the critical point ϕ∗ where Vϕ(ϕ∗) = 0:

ϕ̇ ≈ − 1

3H
Vϕϕ(ϕ∗)(ϕ− ϕ∗) . (4.8)

Defining ϕ′ := dϕ/dN where N is the number of e-folds, we obtain

ϕ′ ≈ −ηϕϕ(ϕ = ϕ∗, ψ ≈ 0)(ϕ− ϕ∗) . (4.9)

For small background non-Gaussianity, we have a4 = 3 + δ with δ ≪ 1. Choosing the initial
value ϕ(0) = ϕc for Phase 1 therefore implies

ϕ1(N) ≈ ϕcδ

2a4
exp(−ηϕϕ(ϕ∗, 0)N) + ϕ∗ . (4.10)

Note that small non-Gaussianity also implies ϕ2
∗ = ϕ2

c +O(δ) +O(ψ2).
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We can expect ϕ2/ϕ2
c − 1 ≈ −δ/a4 to be much bigger than ψ2/v2 at early times. This

reduces the second equation of motion, (4.7), to

ψ′ ≈ 1

P

4

v2

(

δ

a4
ψ − a3

v2

)

(4.11)

which is solved by

ψ1(N) ≈ −a3a4

δv2

(

exp

(

4δ

v2a4P
N

)

− 1

)

(4.12)

for an initial ψ1 at the origin. To summarize, Phase 1 is characterized mathematically by
the possibility to ignore the ψ2/v2 terms in (4.6) and (4.7).

4.1.2 Phase 2

As ψ moves away from its metastable position at ψ = 0, the terms ψ2/v2 in the equations
of motion will eventually have noticeable effects even while they may still be small. In
particular, the local minimum of ϕ at

ϕ∗(ψ(t))2 =
v4

3ϕ2
ca4

(

1 − 3ψ(t)2

v2

)

(4.13)

is then time-dependent. The solution for ϕ in Phase 2 can therefore be obtained directly
from (4.10) by inserting the time-dependent ψ and ϕ∗,

ϕ2(N) = ϕ1(N)|ψ→ψ(N) , (4.14)

using the solution for ψ(N) ≡ ψ2(N) to be derived now. As implied by adiabaticity, we still
have ϕ2 ≈ ϕ2

∗, tracking the local minimum.

Our phase now is described by the first two terms of (4.7) dominating over the a3-term.
Therefore,

ψ′ ≈ − 1

P

4ψ

v2

(

ϕ∗(ψ(t))2 − ϕ2
c

ϕ2
c

+
ψ2

v2

)

=
1

P

4ψ

v2

(

δ

a4
+

2ψ2

v2
+O(δψ2/v2)

)

. (4.15)

which is solved by

ψ2(N) ≈ −sgn(a3)

√

δ

(2a4/v2 + δ/ψ2
g) exp(−8δ(N −Ng)/(v2Pa4)) − 2a4/v2

. (4.16)

(Although a3 does not appear in our approximate equation (4.15), its sign determines the
direction in which ψ starts moving as a consequence of reflection symmetry breaking.) Here,
the subscript “g” denotes the value of solutions at the “gluing” point of the two phases,
defined as the point where the cubic term in (4.7) is on the order of the a3-term; see figure 6
below for an illustration.
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4.1.3 End phase

Even though Phase 1 and Phase 2 are sufficient to describe the majority of inflation, finding
the point at which inflation ends requires a qualitatively different approximation compared
with the above two phases. The physics is also quite different. To see this, note that if we
extend the approximations of Phase 2 too far, we arrive at two wrong conclusions. First,
ψ will eventually cross the point ψ2 = v2/3, such that the two minima of Veff(ϕ) meet at
ϕ∗ = 0. Second, this behavior causes ϕ to approach zero, such that the field ψ ends up
at its new Veff(ψ)-minimum, ψmin = −v (assuming a3 is positive). The former (ϕ → 0) is
forbidden by the uncertainty principle, embodied in our U -term in Veff neglected so far in
the slow-roll analysis, and the latter is erroneous since it implies that once everything has
settled, H2, which is proportional to Veff during slow roll, would seem to approach a negative
value 4a3ψ/v

4 < 0.
However, this last conclusion certainly cannot be correct because our classical poten-

tial (1.1), a complete square Vcl(ψ) = M4(1 − ψ2/v2)2, is positive semidefinite. Therefore,
it is quantized to a positive, self-adjoint operator V̂ which cannot possibly have a nega-
tive expectation value Veff = 〈V̂ 〉 in any admissible state. In terms of moments used in
our canonical effective description, after ψ crosses the value v2/3, the fluctuation variable ϕ
shrinks. Therefore, according to our moment closure introduced after equation (2.16), the
variance ∆(ψ2) = ϕ2 as well as the fourth-order moment ∆(ψ4) = a4ϕ

4 approach zero, while
∆(ψ3) = a3 has so far been assumed constant. This latter assumption violates higher-order
uncertainty relations for small ϕ.

We will not require a precise form of such higher-order uncertainty relations, or a specific
decreasing behavior of ∆(ψ3) because, referring to positivity, we know that the magnitude of
the a3-term in the potential is not allowed to be larger than the sum of the rest of the terms
in Veff . (But see the next subsection for numerical examples with decreasing ∆(ψ3).) This
observation places an implicit bound on non-Gaussianity parameters when our potential
energy decreases at the end of inflation. Taking this outcome into account, our effective
potential eventually becomes

Veff

M4
≈
(

1 − ψ2

v2

)2

+
2

3

ϕ2

ϕ2
c

(

3ψ2

v2
− 1

)

+
U

2M4a6V 2
0 ϕ

2
, (4.17)

where we have neglected the ϕ4 and a3 terms for small fluctuations. The corrected values ϕ∗

of the two ϕ-minima are now

ϕ∗ ≈ ±
(

u

K(ψ2)
ϕ2
c

)1/4

(4.18)

where

u =
U

M4a6V 2
0

and K(ψ2) =
4

3

(

3ψ2

v2
− 1

)

. (4.19)

Since u is extremely small after 60 e-folds, we have |ϕ∗| ≪ 1. The symmetry restoration
for ϕ is therefore only an approximate one. In addition, we neglected the O(δψ2/v2)-term
in (4.15), but kept δ/a3. These two terms become comparable around ψ2 = v2/3 for our
chosen parameters. However, as we will see later in a comparison with numerical solutions,
setting ϕ = 0 and using the ψ(N) expression of Phase 2 during the end phase gives a
sufficiently accurate number of e-folds. This also means that only a negligible amount of
e-folds forms in the non-adiabatic phases of our evolution, and while non-adiabatic effects
are crucial for the beginning and end of inflation, they do not affect observations directly.
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Figure 5. Overview of full numerical evolution. The field ψ remains small during inflation while ϕ
follows its vacuum expectation value ϕ∗ very closely throughout the whole evolution. After inflation
ends, ψ2 approaches v2, a value cut off in this presentation. While the fields may take Planckian values,
of the order one in natural units, except for very early times they hover near their potential minima
where they imply sub-Planckian energy densities. Quantum-gravity effects are therefore negligible
during inflation. The field ψ2 increases at the end of inflation, but it merely approaches its new
minimum seen in figure 4 and is not a run-away solution.

4.2 Comparison of analytical and numerical solutions

Our analytical solutions were obtained with certain approximations, but they generally agree
well with numerical solutions of the full equations,

ϕ̈+ 3Hϕ̇ =
4ϕ

3ϕ2
c

(

1 − 3ψ2

v2

)

− 4a4ϕ
3

v4
(4.20)

ψ̈ + 3Hψ̇ = −4ψ

v2

(

ϕ2 − ϕ2
c

ϕ2
c

+
ψ2

v2

)

− 4a3

v4
, (4.21)

in situations relevant for inflation. To be specific, we choose parameters v = 3, δ = 0.1
and a3 = 0.05 in our numerical solutions. Figure 5 shows a representative example of full
numerical evolution. To test our analytical assumptions, figure 6 shows the magnitudes of
individual terms that contribute to the equation of motion (4.21) for ψ, while figures 7 and 8
compare analytical and numerical solutions of both equations.

Cosmological parameters relevant for inflation are shown in the next figures, figure 9 for
the slow-roll parameter ηψψ which eventually ends inflation, figure 10 for the spectral index
according to both analytical and numerical solutions, as well as its running in figure 11. As
shown by these figures, the paramaters easily imply solutions compatible with observational
constraints. It is also shown how ηψψ increases at an opportune time to end inflation with
just the right number of e-folds in order to avoid the trans-Planckian problem.
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Figure 6. The magnitudes of individual terms in (4.7) as functions of N . The term ψ3/v4 in (4.7)
approaches the order of a3/v

4 around N = 50, marking the transition point to Phase 2.

The role of non-Gaussianity parameters can also be studied. For instance, parameter-
izing a3 = 0.01ϕ3 instead of a constant a3 = 0.05 leads to comparable results, as shown
for the number of e-folds in figure 12. The effects of different choices of δ = a4 − 3 on the
spectral index and the tensor-to-scalar ratio (computed as r ≈ 16ǫσ, σ being the effective
adiabatic field [46]) are shown in figures 13 and 14. An important new result is that the
non-Gaussianity parameters effectively control the onset and duration of inflation, such that
observationally preferred numbers of e-folds can be obtained for reasonable choices of back-
ground non-Gaussianity. In particular, only small deviations from a nearly Gaussian ground
state are required.

4.3 Analytical results for cosmological observables

As we have argued previously, our system is essentially a two-field model, such that we may
directly apply tools from multi-field inflation to predict the number of e-folds N (starting
from the crossing of φ = φc) and the spectral index. Using our analytical solutions for the
background variables, we may obtain approximate analytical expressions for the observables,
which are based on perturbative inhomogeneity. The standard treatment of inflation quan-
tizes the inflaton fields, subject to a given potential, on an exanding space-time and computes
power spectra from correlation functions of inhomogeneous modes. Here, we have already
used quantum properties to generate our extended 2-field potential. As a consequence, the
variable ϕ, derived from quantum fluctuations of ψ, cannot give rise to a quantum field that
could imply correlation functions to be used in a multi-field calculation of power spectra. In
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Figure 7. Comparison of analytical and numerical solutions for ϕ(N). Our analytical solution for
ϕ(N) agrees well with the full numerical one, justifying the adiabatic approximation during inflation.

a field quantization of our model, there would be only one field operator, ψ̂, rather than two
quantum fields.

Nevertheless, we are able to formulate our model in a multi-field manner even for per-
turbative inhomogeneity. In our formalism, we would describe the full system of background
variables and perturbative modes within the same setting of canonical effective theory. As
before, such a framework would be based on moments which, now, also include the sought-
after correlation functions of modes. While a complete treatment is well beyond the scope of
the present paper, it is not difficult to see that the correct field degrees of freedom would be
present. In particular, instead of deriving correlation functions for a quantized fluctuation
field ϕ, which does not exist in our model, we can describe relevant correlation functions
through higher moments: standard correlation functions are quadratic expressions in modes
of ϕ, which as a fluctuation is itself quadratic in the original field ψ. Suitable fourth-order
moments of modes of the field ψ, which is associated with a quantum field, can therefore be
used as correlation functions for the derived field ϕ. Since higher-order moments are sub-
dominant for near-Gaussian states, as encountered here, the mode dynamics does not include
terms beyond those relevant for the required correlation functions. We are therefore able to
apply standard methods from multi-field inflation.

4.3.1 Perturbation modes

In our model, both the classical background variable ψ and its quantum fluctuation ϕ un-
dergo slow-roll evolution in different phases of the dynamics. Therefore, they should both
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Figure 8. Comparison of analytical and numerical solutions for ψ(N). The analytical solution agrees
extremely well with the exact one in Phase 1 (before N = 50), while small deviations occur in ψ2

occur Phase 2 (after about N = 50).

contribute to the curvature perturbation once inhomogeneous modes are included and one
can write down the effective adiabatic field σ as a combination of both these fields, ψ and φ.
(Here, we use the term “adiabatic” in its standard meaning applied to modes of perturbative
inhomogeneity.)

In terms of the adiabatic field σ, consider the spectral index at around horizon exit,

ns = 1 − 6ǫσ + 2ησσ . (4.22)

At early times, using the slow-roll approximation for φ and small ψ, we have

ǫσ = ǫψ + ǫϕ ≈ 0 +O(ψ2, δ2, a2
3) . (4.23)

For ησσ we have [46]

ησσ = ηϕϕ cos2 θ + ηψψ sin2 θ + 2ηϕψ sin θ cos θ (4.24)

where θ is defined such that

cos θ =
ϕ̇

√

ϕ̇2 + ψ̇2
, sin θ =

ψ̇
√

ϕ̇2 + ψ̇2
. (4.25)
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7Figure 9. Late time behavior (Phase 2) of ηψψ(N) obtained from analytical solutions for ψ(N) and

ϕ(N). The slow-roll assumption starts being violated around N ∼ 70, effectively ending inflation.

Based on the slow roll equations of motion for ψ and ϕ̇ ≈ ϕ̇∗ = −3ψ(a4ϕ∗)−1ψ̇ we obtain

cos θ ≈ − 3ψ

a4ϕ∗
sin θ , sin θ ≈ 1 , (4.26)

where we used Vψ ≫ Vϕ ≈ 0. To leading order of ψ, we therefore have

ηϕϕ cos2 θ ≈ 0 +O(δ2, α2
3, ψ

2) (4.27)

ηϕψ sin θ cos θ ≈ 0 +O(ψ2) (4.28)

ηψψ sin2 θ ≈ − 4δ

a4Pv2
+O(ψ2) , (4.29)

such that

ns ≈ 1 − 8δ

a4Pv2
. (4.30)

Evaluating

P ≡ V (ϕ∗(ψ = 0), ψ = 0) = 1 − 1

a4
≈ 2

3
+
δ

9
+O(δ2) (4.31)

– 21 –



J
C
A
P
0
8
(
2
0
2
1
)
0
4
7

Figure 10. Analytical and numerical solutions for the spectral index ns(N) in Phase 1. Since
Hubble exit takes place at least a ∆N ∼ 60 prior to the end of inflation, it can only occur in Phase
1. Importantly, ns ≈ 0.96 at ∆N ∼ 60.

Figure 11. Analytical solution for the running αs ≈ dns/dN [62] at early times, using a non-
Gaussianity parameter a3 = 0.05. Estimating Hubble exit at N ∼ 10, αs is well within Planck’s
upper bound on the magnitude (∼ 10−3).
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Figure 12. Evolution of ϕ(N)2, from numerical solutions using a3 = 0.01ϕ3. Inflation ends at
Ne where ϕ(Ne) ≈ 0. Different curves correspond to different values of a4, or δ = a4 − 3, where
δ = 0.05, 0.1, 0.15, 0.2, 0.25, 3. Smaller δ increase the duration of inflation.

Figure 13. Spectral index ns(N) as a function of e-folds N at Hubble exit from numerical solutions,
using a3 = 0.01ϕ3. Different curves correspond to different values of a4, or δ = a4 − 3, where
δ = 0.05, 0.1, 0.15, 0.2, 0.25, 3. Smaller δ brings the spectral index closer to one.

leads to the final expression

ns ≈ 1 − 12
δ

a4v2
+O(δ2) . (4.32)

Imposing a slow-roll condition such as ηψψ ∼ 10−2 requires v2/δ ∼ O(102), which implies
typical values of ns in the range 0.9 < ns < 1.
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Figure 14. Tensor-to-scalar ratio r(N) as a function of e-folds at Hubble exit from numerical solu-
tions, using a3 = 0.01ϕ3. Different curves correspond to different values of a4, or δ = a4 − 3, where
δ = 0.05, 0.1, 0.15, 0.2, 0.25, 3. Smaller δ decrease r.

4.3.2 Number of e-folds

Now, for total number of e-folds Ne we first need to find the value ψe of ψ at which inflation
ends. Approximately, this stage occurs when

ηψψ(ϕ∗, ψe) =
Vψψ
V

|ϕ=ϕ∗,ψ=ψe
≈ 1 (4.33)

during the end phase. Under the approximation ϕ ≈ 0, we have

Vψψ
V

≈ 4

v2

3ψ2/v2 − 1

(1 − ψ2/v2)2
. (4.34)

Then Vψψ ≈ V (ϕ∗, ψ) gives

ψ2
e

v2
≈ 1 +

6

v2
± 2

√

9

v4
+

2

v2
(4.35)

= 1 +
6

v2



1 −
√

1 +
2v2

9



 , (4.36)

where we chose the minus sign in the second line. From the above expression we see that
typically ψ2

e/v
2 − 1/3 ∼ O(10−1). Then using

∆ψ ∼ −Vψ
V

∆N ∼ O(1)∆N , (4.37)

we see that beyond ψ2/v2 = 1/3, we do not get many e-folds before reaching the point
ηψψ ≈ 1, effectively ending inflation. In terms of the total number of e-folds, it is therefore
justified to approximate

ψ2(N)2 ≈ v2/3 such that ϕ2
∗ = 0 (4.38)

as the end point of inflation.
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Since our analytical solution consists of ψ1 and ψ2, to find the total number of e-folds Ne

at ψ2
2 = v2/3, we must first find the number of e-folds Ng at the gluing point. By definition

of the latter,
ψ3

g ≡ ψ1(Ng)3 = −a3 . (4.39)

Denoting

η ≡ |ηψψ(ϕ1, ψ1)| ≈ 4δ

a4Pv2
≈ 6δ

a4v2
+O(δ2) , (4.40)

we have
2η = 1 − ns . (4.41)

Using (4.12),

exp(ηNg) =
v2

ψ2
g

δ

a4
+ 1 (4.42)

which, inserted in (4.16), using (4.41) and setting ψ2(Ne)
2 = v2/3, implies

Ne =
1

1 − ns

(

log

(

2

v2
+

1 − ns

12
χ

)

+ 2 log

(

1 − ns

12
χv2 + 1

)

− log

(

2

v2
+

1 − ns
4

))

, (4.43)

where χ ≡ v2/ψ2
g . The relationship (4.43) is illustrated in figure 15.

Aside from the parameter v that appears in common Higgs-like or hybrid models, our
observables depend on two new parameters a3 and δ which describe the non-Gaussianity
of the background state. Background non-Gaussianity effectively controls the amount of
non-adiabatic evolution due to its modulation on the shifting of local ϕ-minima at ϕ∗. The
dependence of the number of e-folds on the non-Gaussianity parameter a3 is shown in fig-
ure 16, using the analytical solutions.

The dependence (4.43) of Ne on ns is more complicated than in non-minimal Higgs
models, but it is nevertheless related. To facilitate a comparison, we rewrite the expression as

Ne ≈ f(1 − ns, v, a3)

1 − ns
(4.44)

where the function f describes a weak, logarithmic dependence on 1 − ns. In non-minimal
Higgs inflation, the analog of the function f(1 − ns, v, α3) is constant (f = 2) [6]. Here,
the function increases logarithmically with growing 1 − ns, taking values in the range 1 .

f(1 − ns, v, a3) . 5 for typical parameter values considered in our analysis. (An abbreviated
derivation of (4.44) can be found in [20].)

5 Conclusions

Typically, potentials for the inflaton field are postulated so as to match existing observations.
On the other hand, one of the most remarkable successes of inflation is that it explains
the large-scale structure of the universe as originating from quantum vacuum fluctuations.
It is inconceivable to quantize the fluctuations of the inflaton field alone without taking
into account the quantum corrections to the background field potential. In other words,
one cannot simply express the inflationary potential in terms of expectation values of the
homogeneous background field, but should also take fluctuations and higher moments of
the quantum state into account. It is customary to express the resulting effective potential
in a derivative expansion (of the Coleman-Weinberg type); however, this method is not
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Figure 15. The number of e-folds, Ne, increases as a function of the spectral index ns, using the
approximate relation (4.43). The function is shown for varying parameters v in the potential, while
a3 = 0.05. As a function of the non-Gaussianity parameters, the number of e-folds decreases; see
figure 16. (Note that in the analytical relation (4.32), the variation of ns mirrors the non-Gaussianity
ratio δ/(a4v

2).)

Figure 16. The number of e-folds, Ne, decreases with the amount of non-Gaussianity, parameterized
by a3, shown here for fixed ns ≈ 0.96, δ = 0.1 and using (4.43). Background non-Gaussianities
increases the departure from adiabatic evolution, effectively ending inflation earlier than desired.

sufficient if one has to consider non-adiabatic evolution of quantum fluctuations. An adiabatic
approximation is certainly valid during a slow-roll regime, but, as shown here, it can miss
important features at the beginning and the end of slow-roll. Non-adiabaticity can play a
crucial role setting up the initial conditions for a slow roll phase as well as help ending it
at the right time. We have presented a more general procedure for calculating the effects of
such non-adiabatic evolution in the context of early-universe cosmology.
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Using non-adiabatic effective methods, we have constructed an observationally con-
sistent extension of Higgs-like inflation by introducing non-adiabatic quantum effects in a
semiclassical approximation, although our formalism is applicable more generally for any
inflationary potential. As shown, these effects imply that the classical potential is not only
corrected in its coefficients but is also amended by new terms for independent quantum
degrees of freedom, in particular the quantum fluctuation of the Higgs field. The original
single-field model is therefore turned into a multi-field model. The multi-field terms incorpo-
rate quantum corrections of the background field, corresponding to backreaction of radiative
corrections. Since the single-field potential is renormalizable, our quantum scenario is robust
from the perspective of quantum field theory.

New interaction terms in the multi-field potential have coupling constants that depend
on the background state, parameterizing its non-Gaussianity. They imply two new non-
adiabatic phases that cannot be seen in low-energy potentials or in cosmological studies
based completely on slow-roll approximations. In particular, an initial non-adiabatic phase,
combined with the uncertainty relation for the fluctuation degree of freedom, sets successful
initial conditions for inflation to take place, and a second non-adiabatic phase ends inflation
after the right number of e-folds. In an indirect way, observational constraints show that
background non-Gaussianity should be small, but it must be non-zero for the non-adiabatic
phases to be realized. (The observational input we use here is not a limit on statistical non-
Gaussianity in the inhomogeneity spectrum. Rather, the new link between the number of
e-folds and background non-Gaussianity, shown in figure 16, makes it possible to use readily
available limits on the number of e-folds and, in conjunction with figure 15, the spectral
index in order to limit quantum non-Gaussianity of the background state of the inflaton.)
Our model is highly constrained because this non-Gaussianity is bounded from below, but
we are nevertheless able to derive successful inflation in the range of parameters available
to us.

Our model presents a new picture on the role of the quantum state in inflationary cos-
mology. Quantum fluctuations do not only provide the seeds of structure as initial conditions
for perturbative inhomogeneity, they also play a crucial role in guiding the inflationary dy-
namics of the background state. With further analysis and observations, it may be possible
to further constrain the quantum state of the inflaton based on cosmological investigations.
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