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Formulations of magnetic monopoles in a Hilbert-space formulation of quantum mechanics require

Dirac’s quantization condition of magnetic charge, which implies a large value that can easily be ruled out

for elementary particles by standard atomic spectroscopy. However, an algebraic formulation of

nonassociative quantum mechanics is mathematically consistent with fractional magnetic charges of

small values. Here, spectral properties in nonassociative quantum mechanics are derived and applied to the

ground state of hydrogen with a magnetically charged nucleus. The resulting energy leads to new strong

upper bounds for the magnetic charge of various elementary particles that can appear as the nucleus of

hydrogenlike atoms, such as the muon or the antiproton.
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I. INTRODUCTION

Eigenvalues and eigenstates can be defined and derived

completely algebraically, without using a Hilbert-space

representation of observables as operators. Such a formu-

lation is important in particular in studies of nonassociative

algebras that cannot be represented on a Hilbert space.

Physical examples can be found mainly in situations in

which fractional magnetic charges may be present that do

not obey Dirac’s quantization condition [1], which can be

defined at the level of a nonassociative algebra of observ-

ables even though no Hilbert-space representation exists

[2–5]. Magnetic monopole charges that obey Dirac’s

quantization condition are so large that they can easily

be ruled out in elementary particles by atomic spectros-

copy. While small nonzero magnetic charges may be

compatible with observational bounds, they cannot obey

the quantization condition and therefore require nonasso-

ciative algebras of observables.

Nonassociative products are obtained for magnetic

monopoles as follows: In the presence of magnetic monop-

oles, the magnetic field has nonzero divergence and

therefore cannot be described by a vector potential. The

usual canonical momentum π̂i ¼ p̂i þ eÂi of a particle

with electric charge e and mass m, where p̂i ¼ m _̂xi is the
kinematical momentum, is then unavailable. However, it

turns out that the commutator of two kinematical momenta,

½p̂j; p̂k� ¼ ½π̂j − eÂj; π̂k − eÂk� ¼ iℏe

�d∂Ak

∂xj
−
d∂Aj

∂xk

�

¼ iℏe
X3

l¼1

ϵjklB̂
l; ð1Þ

does not require a vector potential. (The usual bracket

½x̂j; p̂k� ¼ iℏδjk remains unchanged.) It can therefore be

generalized to a point charge moving in the presence of a

background magnetic charge, but it is not canonical and not

even constant since the magnetic field is position depen-

dent. The Jacobi identity is therefore not guaranteed to

hold, and it is indeed violated as the calculation

½½p̂x; p̂y�; p̂z� þ ½½p̂y; p̂z�; p̂x� þ ½½p̂z; p̂x�; p̂y�

¼ iℏe
X3

j¼1

½B̂j; p̂j� ¼ −ℏ2e
d
divB⃗ ≠ 0 ð2Þ

demonstrates. Since the assumption of an associative

product would imply the Jacobi idenity for the commutator,

magnetic monopoles are seen to require nonassociative

algebras of quantum observables [2–5]. The basic commu-

tators (1) together with an associator determined by (2) can
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be turned into a complete nonassociative algebra by means

of �-products [6–10].
Purely algebraic derivations that do not make use of

specific representations are usually more challenging than

standard quantum mechanics, in particular if associativity

cannot be assumed. As a consequence, such systems

remain incompletely understood, and it remains to be seen

whether they can be viable. Nevertheless, it has recently

become possible to derive potential physical effects [11]

and to use spectral results for new upper bounds on the

possible magnetic charge of elementary particles [12]. The

present paper presents details of the latter derivation as well

as a discussion of new methods that may be useful for

further applications.

II. ASSOCIATIVE ALGEBRA OF THE

STANDARD HYDROGEN ATOM

Modeled by a simple Coulomb potential, the hydrogen

atom has the Hamiltonian

H ¼ 1

2m
jpj2 − α

r
ð3Þ

with constant α, where jpj2 ¼ p2
x þ p2

y þ p2
z and r2 ¼

x2 þ y2 þ z2 in Cartesian coordinates. As operators, the

position and momentum components are subject to the

basic commutation relations

½x̂; p̂x� ¼ ½ŷ; p̂y� ¼ ½ẑ; p̂z� ¼ iℏ; ð4Þ

and they are self-adjoint. These conditions define a

so-called �-algebra, which, together with a quantum

Hamiltonian Ĥ, properties of angular momentum, and

the virial theorem, will be the only ingredient in our

derivation of spectral properties. We will not make use

of operators that represent the observables on a Hilbert

space of wave functions.

An eigenvalue is a property of an observable in the

algebra together with a specific eigenstate. For a derivation

of spectral properties we therefore need a notion of states

on an algebra, bypassing the introduction of wave func-

tions. Given a �-algebra A, a quantum state [13] is defined

as a positive linear functionalω∶A → C from the algebra to

the complex numbers, such that ωðâ�âÞ ≥ 0 for all a ∈ A.

In addition, a state obeys the normalization condition

ωðÎÞ ¼ 1 where Î ∈ A is the unit. The evaluation ωðâÞ
is then the expectation value of â ∈ A, and moments such

as ωðânÞ for integer n define a probability distribution for

measurements of the observable a if â is self-adjoint,

a� ¼ a. Our aim is to derive properties of eigenvalues λ of a

quantum Hamiltonian Ĥ ∈ A for hydrogen through a

suitable subset of the moment conditions

ωðâðĤ − λÞÞ ¼ 0 for all â ∈ A: ð5Þ

We have to find a useful subset of â ∈ A in order to make

this derivation feasible.

A. Subalgebra for spherical symmetry

Instead of applying standard position and momentum

components, spherical symmetry can be used to introduce a

promising subset of algebra elements. A subalgebra of

certain spherically symmetric elements of A is generated

by the three elements

r̂; P̂ ¼ r̂jp̂j2; Q̂ ¼ x̂p̂x þ ŷp̂y þ ẑp̂z − iℏ: ð6Þ

Linear combinations of these generators form a three-

dimensional Lie algebra with basic relations

½r̂; Q̂� ¼ iℏr̂; ½r̂; P̂� ¼ 2iℏQ̂; ½Q̂; P̂� ¼ iℏP̂; ð7Þ

isomorphic to soð2; 1Þ. (Closely related algebras have been

used for derivations of the hydrogen spectrum in deforma-

tion quantization [14–16]. Our application of this algebra

follows different methods, and our extension to nonasso-

ciative hydrogen in the next section is completely new.)

Its Casimir element is given by

K̂ ≔
1

2
ðr̂ P̂þP̂ r̂Þ − Q̂2: ð8Þ

Using the definitions (6), K̂ turns out to equal the square of

angular momentum.

At this point, we can already see the main features of our

new derivation, which consists of the following steps in the

order of the next three subsections:

(1) A Casimir element such as (8) is a powerful tool

because it takes a constant value in a fixed irreduc-

ible representation. Physically, our Casimir is not

new but identical with the square of angular mo-

mentum. Nevertheless, we will examine angular

momentum in order to determine which of the

standard properties are readily available in a com-

pletely algebraic derivation.

(2) The standard hydrogen Hamiltonian Ĥ is not an

element of our linear algebra because the Coulomb

potential requires an inverse of r̂, and P̂ is not the

correct kinetic energy. However, the basic variables

r̂ and P̂ are such that the expression r̂ Ĥ is linear in

our algebra generators. This observation by itself is

not very helpful because r̂ Ĥ and Ĥ do not have the

same eigenvalues. Nevertheless, it is a crucial step in

our new strategy, combined with turning the

Hamiltonian into a constraint equation: If we start

with the constraint Ĥ − λ ¼ 0, encoded by the

algebraic definition (5) of the spectrum, we replace

it with the constraint r̂ Ĥ−λr̂ ¼ 0, which is still

linear in our basic generators. This step gives rise to

several subtleties because we will have to employ
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methods from constrained systems, and even for non-

self-adjoint constraints because we need the non-

symmetric ordering r̂ Ĥ in the constraint in order to

use P̂ in our linear algebra. Once this step is com-

pleted, we gain information about solutions of (5).

(3) In the final step, we have to impose positivity of the

state used in our solutions of (5). Instead of working

directly with the basic positivity condition, we will

evaluate uncertainty relations which are derived

from positivity. In this general form, there are many

different versions of uncertainty relations because

they depend on which basic operators one chooses

as well as on the polynomial order in which they

appear in moments. For our purposes, we do not

need a complete analysis but rather have to find a

suitable version of uncertainty conditions that gives

us useful information about energy eigenvalues. Our

main aim is to rule out a certain range of values that

could be eigenenergies of nonassociative hydrogen.

The specific uncertainty relations we choose turn out

to give us an interesting restriction by ruling out a

large range of values. If there is another uncertainty

relation that rules out more values, it would only

strengthen our result without removing the bounds

obtained here.

We will first explore the algebra and derive useful

identities within it as well as in an extension that includes

an inverse r̂−1. This inverse does not only appear in the

Coulomb potential, where it can be evaded by using the

constraint just described, but also, as it turns out, appears in

the adjointness relation of P̂. Since adjointness relations are
essential for positivity conditions or uncertainty relations,

we cannot avoid discussing a possible inclusion of r̂−1 in

the algebra. The identities derived now for this purpose will

be used in our main calculation.

The commutators (7) rely on P̂ and Q̂ being defined

in the specific orderings shown in their definition (6),

making them not self-adjoint. Completing the definition of

a �-subalgebra, their adjointness relations can be derived

from the basic commutators of Cartesian position and

momentum components: In addition to r̂� ¼ r̂, we have

Q̂� ¼ Q̂ − iℏÎ ð9Þ

and

P̂� ¼ P̂ − 2iℏr̂−1Q̂ ¼ P̂ − 2iℏQ̂r̂−1 − 2ℏ2r̂−1: ð10Þ

At this point, we assume that the subalgebra generated by r̂,

P̂, and Q̂ is suitably extended such that it includes an

inverse of r̂ which, like r̂, is also self-adjoint. The adjoint-

ness relations imply the conditions

ImωðQ̂Þ ¼ 1

2i
ωðQ̂ − Q̂�Þ ¼ 1

2
ℏ ð11Þ

and

Imωðr̂ P̂Þ ¼ 1

2i
ðωðr̂ P̂Þ − ωðP̂�r̂ÞÞ

¼ 1

2i
ðωðP̂ r̂þ2iℏQ̂Þ − ωðP̂ r̂−2iℏQ̂ − 2ℏ2

ÎÞÞ

¼ ℏωðQ̂þ Q̂�Þ ¼ 2ℏReωðQ̂Þ ð12Þ

for expectation values in any state ω on the algebra, in

addition to Imωðr̂Þ ¼ 0.

In deriving (10), we have made use of the commutator

½r̂; jp̂j2� ¼ 2iℏr̂−1Q̂ ¼ 2iℏðQ̂ − iℏÎÞr̂−1 ð13Þ

which is itself based on the commutator

½r̂−1; Q̂� ¼ −iℏr̂−1 ð14Þ

in the second step. These commutators can be computed

easily in a position representation of momentum compo-

nents in p̂ and Q̂, which then defines the extension of our

algebra to one that includes r̂−1. Related useful commu-

tators are

½Q̂; jp̂j2� ¼ 2iℏr̂−1P̂; ð15Þ

½r̂−1; jp̂j2� ¼ 2iℏr̂−3ðQ̂þ iℏÞ; ð16Þ

½r̂−1; P̂� ¼ 2iℏr̂−2ðQ̂þ iℏÞ; ð17Þ

and

½P̂�; P� ¼ −2iℏr̂−1Q̂P̂� þ 2iℏP̂ðQ̂ − iℏÞr̂−1

þ 4ℏ2r̂−1Q̂ðQ̂ − iℏÞr̂−1; ð18Þ

½P̂�; r̂� ¼ ½r̂; P̂�� ¼ −iℏr̂; ð19Þ

½P̂�; Q̂� ¼ −iℏP̂� ¼ ½P̂�; Q̂��: ð20Þ

Adjointness relations require us to extend the algebra by

an inverse of r̂. Nevertheless, we will see that all moments

required for a derivation of spectral properties can be

derived using relations in the linear algebra because the

expectation value ωðr̂−1Þ is related to moments of poly-

nomial expressions by the virial theorem, which states that

for any quantum Hamiltonian Ĥ ¼ 1

2
m−1p̂2 þ αr̂n with

some integer n, the expectation values of kinetic and

potential energy in a stationary state ω are related by

ωðp̂2Þ ¼ nmαωðr̂nÞ: ð21Þ

Since all energy eigenstates are stationary, the theorem

applies in our case. In addition, the eigenvalue condition
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ωðĤ − λÞ ¼ 0, as a special case of (5), implies a second

condition for the same energy expectation values:

1

2m
ωðp̂2Þ þ αωðr̂nÞ ¼ λ: ð22Þ

Therefore,

ωðp̂2Þ ¼ 2nmλ

nþ 2
; αωðr̂nÞ ¼ 2λ

nþ 2
: ð23Þ

For the Coulomb potential,

ωðr̂−1Þ ¼ 2λ

α
ð24Þ

is strictly determined.

The proof of the virial theorem is brief and standard, but

it is useful to display the key ingredients to demonstrate that

no Hilbert-space representation is required. Since ω is

stationary, we have

0 ¼ dωðQ̂Þ
dt

¼ −iωð½x̂p̂x þ ŷp̂y þ ẑp̂z; Ĥ�Þ

¼ ωðm−1jp̂j2 − nαr̂nÞ ð25Þ

using ½p̂x; r̂� ¼ −i d∂r=∂x ¼ −ix̂r̂−1. This result proves the
virial theorem not only for standard quantummechanics but

also for nonassociative systems in the presence of magnetic

monopoles: While some associativity is applied in comput-

ing the commutator in (25), none of the brackets (2) appear

that would be modified for nonzero magnetic charge.

B. Angular momentum

We will use the familiar eigenvalues of angular momen-

tum squared, which equal the eigenvalues of K̂ defined in

(8). The usual derivation of these eigenvalues is, to a large

degree, algebraic, but it relies on applications of ladder

operators on wave functions representing angular-momen-

tum eigenstates. Such an application will no longer be

available once we turn to nonassociative hydrogen. We

therefore provide here a complete algebraic derivation of

angular-momentum eigenvalues.

The relevant algebra in this derivation is the enveloping

algebra B of the Lie algebra suð2Þ, with self-adjoint

generators Ĵx, Ĵy, and Ĵz such that

½Ĵx; Ĵy� ¼ iℏĴz; ½Ĵy; Ĵz� ¼ iℏĴx; ½Ĵz; Ĵx� ¼ iℏĴy: ð26Þ

An angular-momentum eigenstate ωι;μ with eigenvalue ι of

the square of angular momentum, Ĵ2 ¼ Ĵ2x þ Ĵ2y þ Ĵ2z , and

eigenvalue μ of the z-component Ĵz is a normalized and

positive linear map from B to the complex numbers which

obeys the conditions

ωι;μðâðĴ2 − ιÞÞ ¼ 0 and ωι;μðâðĴz − μÞÞ ¼ 0 ð27Þ

for all â ∈ B.

Although we will not apply the ladder operators Ĵ� to

wave functions, defined as usual as

Ĵ� ¼ Ĵx � Ĵy; ð28Þ

they are still useful because they obey the identity

ĴN− Ĵ
N
þ ¼ ĴN−1

− ðĴ2 − Ĵ2z − ĴzÞĴN−1
þ

¼ ĴN−1
− ĴN−1

þ ðĴ2 − Ĵ2z − ĴzÞ
þ ĴN−1

− ½ðĴ2 − Ĵ2z − ĴzÞ; ĴN−1
þ �

¼ ĴN−1
− ĴN−1

þ ðĴ2 − Ĵ2z − Ĵz − 2ðN − 1ÞĴz
− ðN − 1Þ2 − ðN − 1ÞÞ

on B for any positive integer N. Similarly,

ĴNþĴ
N
− ¼ ĴN−1

þ ĴN−1
− ðĴ2 − Ĵ2z þ Ĵz þ 2ðN − 1ÞĴz

− ðN − 1Þ2 − ðN − 1ÞÞ: ð29Þ

Evaluating these identities in an eigenstate, we find

ωι;μðĴN∓ĴN�Þ ¼ ωι;μðĴN−1
∓ ĴN−1

� Þ
× ðι − ðμ� ðN − 1ÞÞ2 ∓ ðμ� ðN − 1ÞÞÞ

¼
YN−1

n¼0

ðι − ðμ� nÞ2 ∓ ðμ� nÞÞ

by iteration.

Sincewe have ĴN− Ĵ
N
þ¼ðĴNþÞ�ðĴNþÞ and ĴNþĴN− ¼ðĴN−Þ�ðĴN−Þ,

positivity of ωι;μ implies

YN

n¼0

ðι − ðμ� nÞ2 � ðμ� nÞÞ ≥ 0 ð30Þ

for all N ≥ 0. The second term in each factor, −ðμ� nÞ2, is
a negative square which can grow arbitrarily negative.

Therefore, only finitely many factors in the products (30)

can be nonzero, such that, for some positive integers nþ and

n−, we have

ι − ðμþ nþÞ2 − ðμþ n−Þ ¼ 0 and

ι − ðμ − n−Þ2 þ ðμ − n−Þ ¼ 0: ð31Þ

Solving these two equations implies that the eigenvalues

are of the form

ι¼
�
n−þnþ

2

��
n−þnþ

2
þ1

�
and μ¼ n−−nþ

2
; ð32Þ

which can be recognized as the familiar eigenvalues in

finite-dimensional irreducible representations of suð2Þ.
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C. Eigenvalue constraint

We proceed with our derivation of energy eigenvalues.

The Hamiltonian is not polynomial in basic observables of

the linear algebra. However, some of the conditions (5) are

defined on the linear algebra, provided â has at least one

factor of r̂ on its right. For instance, a single such factor,

â ¼ r̂, replaces the nonpolynomial Ĥ − λ in (5) with the

linear expression

Ĉ ≔ r̂ðĤ − λÞ ¼ 1

2m
P̂ − λr̂ − α: ð33Þ

A subset of the spectrum conditions (5) can therefore be

written in terms of Ĉ as the constraint equations

ωðb̂ ĈÞ ¼ 0 for all b̂ ∈ A: ð34Þ

These constraints might not be sufficient to obtain the full

spectrum based on (5), but any condition on eigenvalues

derived from (A17) also applies to the full eigenvalues.

In what follows, we therefore replace the self-adjoint

Hamiltonian Ĥ with a constraint operator Ĉ that, by

definition, is not self-adjoint. Dealing with constraints that

are not self-adjoint requires some care. In particular, while a

self-adjoint constraint generates a gauge flow in much the

same way as a self-adjoint Hamiltonian generates time

evolution, there are additional terms in the relationship

between the flow and the commutator with Ĉ when the

constraint Ĉ is not self-adjoint.

For a self-adjoint Hamiltonian Ĥ, a time-dependent state

ωt by definition evolves according to

dωtðÔÞ
dt

¼ d

dt
ωtðexpðitĤ=ℏÞÔ expð−itĤ=ℏÞÞ

¼ ωtð½Ô; Ĥ�Þ
iℏ

ð35Þ

for all Ô ∈ A. Similarly, defining the gauge flow generated

by Ĉ through the (nonunitary) operator F̂ϵ ¼ expð−iϵĈ=ℏÞ
a gauge-dependent state ωϵ flows according to

dωϵðÔÞ
dϵ

¼ d

dϵ
ωϵðF̂�

ϵÔF̂ϵÞ ð36Þ

because this condition implies that any state solving the

constraint equation (A17) is preserved by the flow: We then

have

ωðF̂�
ϵÔF̂ϵÞ ¼ ωðÔÞ ð37Þ

for all Ô ∈ A if ωðb̂ ĈÞ ¼ 0 for all b̂ ∈ A. Infinitesimally,

applying the flow operator implies a relationship,

dωϵðÔÞ
dϵ

¼ d

dϵ
ωϵðexpðiϵĈ�=ℏÞÔ expð−iϵĈ=ℏÞÞ

¼ ωϵðÔ Ĉ−Ĉ�ÔÞ
iℏ

; ð38Þ

that is not directly related to the commutator of Ô and Ĉ

because of the presence of a Ĉ�. In our specific case, we

can use

Ĉ� ¼ Ĉ −
iℏ

m
r̂−1Q̂ ¼ Ĉ −

iℏ

m
Q̂r̂−1 −

ℏ
2

m
r̂−1 ð39Þ

and arrive at

dωϵðÔÞ
dϵ

¼ ωϵð½Ô; Ĉ�Þ
iℏ

þ ωϵðQ̂r̂−1ÔÞ
m

−
iℏωϵðr̂−1ÔÞ

m
: ð40Þ

The constraint equations (A17) play the same role as

stationarity of eigenstates. Since every energy eigenstate ω

is gauge invariant under the flow generated by Ĉ, (40)
implies that

ωð½Ô; Ĉ�Þ
iℏ

¼ −
ωððQ̂ − iℏÎÞr̂−1ÔÞ

m
ð41Þ

for any such state. Since r̂−1 appears on the right, these

equations give us another way to derive moments involving

r̂−1. For instance, for Ô ¼ r̂, we obtain

ωðQ̂Þ ¼ ωð½r̂; P̂�Þ
2iℏ

¼ mωð½r̂; Ĉ�Þ
iℏ

¼ −ωðQ̂ − iℏÎÞ ð42Þ

from the basic commutators in the first step, the definition

of Ĉ in the second step, and an application of Eq. (41) in the

last step. Thus,

ωðQ̂Þ ¼ 1

2
iℏ; ð43Þ

which is consistent with the reality condition (11) and in

addition shows that ReωðQ̂Þ ¼ 0 for stationary states.

In another example, choosing Ô ¼ Q̂ and using the basic

commutators, as well as (14), implies

1

2m
ωðP̂Þ þ λωðr̂Þ þ 1

m
ωðQ̂2r̂−1Þ − ℏ

2

m
ωðr̂−1Þ ¼ 0: ð44Þ

In this expression, the first term is given by

1

2m
ωðP̂Þ ¼ λωðr̂Þ þ α ð45Þ

using the constraint ωðĈÞ ¼ 0. The factor of Q̂2 in the

third moment can be eliminated by using the Casimir K̂,
such that
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Q̂2r̂−1 ¼
�
−K̂ þ 1

2
ðr̂ P̂þP̂ r̂Þ

�
r̂−1

¼ −K̂r̂−1 þ 1

2
½r̂; P̂�r̂−1 þ P̂

¼ −K̂r̂−1 þ iℏQ̂r−1 þ P̂: ð46Þ

The final appearance of Q̂ in the second term of this new

expression can be eliminated by applying (41) to Ô ¼ Î:

iℏωðQ̂r̂−1Þ ¼ ℏ
2ωðr̂−1Þ. Thus, Eq. (44) implies

3αþ 4λωðr̂Þ − K

m
ωðr̂−1Þ ¼ 0 ð47Þ

with an eigenvalue K ¼ ℏ
2
lðlþ 1Þ of K̂ if we assume, as

usual, that our eigenstate is simultaneously one of energy

and angular momentum and then use the derivation given

in Sec. II B. Using the virial theorem to replace

ωðr̂−1Þ ¼ 2λ=α, we obtain

ωðr̂Þ ¼ −
1

2
lðlþ 1Þ ℏ

2

mα
−
3

4

α

λ
ð48Þ

for the radius expectation value. This equation gives the

correct expression for the r-expectation value in all energy

eigenstates in terms of the eigenvalue λ.

D. Uncertainty relations

So far, we have not obtained any restriction on the

eigenvalues λ that may appear in (48). Such restrictions

cannot be derived by using only the eigenmoment equa-

tion (5). In addition, we have to impose conditions that

ensure that ω is positive (or “normalizable” in quantum-

mechanics lingo). In order to keep the discussion more

physically intuitive, we implement positivity through the

equivalent conditions implied by uncertainty relations.

1. General derivation

To arrive at uncertainty relations, we follow standard

results that imply the Cauchy-Schwarz inequality

ωðâ�âÞωðb̂�b̂Þ ≥ jωðb̂�âÞj2 ð49Þ

for all â; b̂ ∈ A and any state ω. The proof proceeds by

defining a new algebra element â0 ≔ â expð−i argωðb̂�âÞÞ,
designed such that jωðb̂�âÞj ¼ ωðb̂�â0Þ. This intermediate

step allows us to rewrite the positivity condition as

0 ≤ ω

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðb̂�b̂Þ

q
â0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðâ0�â0Þ

p
b̂

��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðb̂�b̂Þ

q
â0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðâ0�â0Þ

p
b̂

��

¼ 2ωðb̂�b̂Þωðâ0�â0Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðb̂�b̂Þωðâ0�â0Þ

q �
ωðâ0�b̂Þ þ ωðb̂�â0Þ

�

¼ 2ωðb̂�b̂Þωðâ0�â0Þ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðb̂�b̂Þωðâ0�â0Þ

q
jωðb̂�âÞj ð50Þ

and to conclude that

jωðb̂�âÞj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðâ�âÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðâ0�â0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðâ�âÞωðb̂�b̂Þ

q
:

Importantly, the result does not require associativity; see

also [17].

Choosing â ¼ Ô1 − ωðÔ1ÞÎ and b̂ ¼ Ô2 − ωðÔ2ÞÎ for

self-adjoint Ô1 and Ô2, we compute the variances

ωðâ�âÞ ¼ ðΔO1Þ2, ωðb̂�b̂Þ ¼ ðΔO2Þ2 of O1 and O2,

respectively, and ωðb̂�âÞ ¼ ΔðO1O2Þ þ ωð½Ô1; Ô2�Þ is

related to their covariance ΔðO1O2Þ. In this way, the

Cauchy-Schwarz inequality implies Heisenberg’s uncer-

tainty relation

ðΔO1Þ2ðΔO2Þ2 − ΔðO1O2Þ2 ≥
�X

I

CI
12
ωðÔIÞ

�
2

ð51Þ

for any pair of observales O1 and O2 whose algebra

elements Ô1 and Ô2 are two of the generators of a linear

subalgebra of A with structure constants CK
IJ: ½Ô1; Ô2� ¼P

I C
I
12
ÔI with a summation range equal to the dimension

of the subalgebra. According to (7), we can apply such an

uncertainty relation to any pair of the generators ðr̂; P̂; Q̂Þ.
Some of our generators, P̂ and Q̂, are not self-adjoint. In

such a case, according to the derivation shown here where

ðΔO1Þ2 results from ωðâ�âÞ, any variance of a self-adjoint

expression should be replaced with the covariance of the

algebra element and its adjoint, such as

ΔðP̄PÞ ¼ 1

2
ωðP̂�P̂þ P̂P̂�Þ − jωðP̂Þj2: ð52Þ

2. Relevant moments

Wewill apply these (generalized) uncertainty relations to

pairs of algebra elements given by r̂, P̂, and Q̂. An explicit

evaluation in terms of the energy eigenvalue requires a

derivation of the moments ωðr̂2Þ, ωðP̂�P̂Þ, ωðQ̂�Q̂Þ,
ωðr̂ P̂Þ, ωðr̂ Q̂Þ, and ωðQ̂�P̂Þ. Also here, we can exploit
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(41) for different choices of Ô, as well as (A17) for various

choices of b̂.
We first compute one of the Q̂-related moments. First,

Eq. (41) evaluated for Ô ¼ r̂2 implies

ωðr̂ Q̂þQ̂ r̂Þ
m

¼ ωð½r̂2; Ĉ�Þ
iℏ

¼ −
ωððQ̂ − iℏÎÞr̂Þ

m

¼ ωðr̂ Q̂−2Q̂ r̂Þ
m

ð53Þ

using the basic commutators (7) in the last step. Therefore,

ωðQ̂ r̂Þ ¼ 0 and ωðr̂ Q̂Þ ¼ ωð½r̂; Q̂�Þ ¼ iℏωðr̂Þ: ð54Þ

Together with (43), we arrive at

ΔðrQÞ ¼ 0: ð55Þ

For the P̂-related moments, we apply (A17) with b̂ equal

to the three linear generators r̂, Q̂, and P̂ as well as the

adjoint P̂�, giving us four equations,

ωðr̂2Þ ¼ 1

2mλ
ωðr̂ P̂Þ − α

λ
ωðr̂Þ ð56Þ

from b̂ ¼ r̂,

ωðQ̂ P̂Þ ¼ iℏmα ð57Þ

from b̂ ¼ Q̂ using ωðQ̂ r̂Þ ¼ 0 as just derived,

ωðP̂2Þ ¼ 2mλωðP̂ r̂Þ þ 2mαωðP̂Þ ð58Þ

from b̂ ¼ P̂, and

ωðP̂�P̂Þ ¼ 2mλωðP̂�r̂Þ þ 2mαωðP̂�Þ

¼ 2mλωðP̂ r̂Þ þ 2mαωðP̂Þ − 2mλℏ2 ð59Þ

from b̂ ¼ P̂� using (10) and (43). We apply gauge

invariance (41) to Ô ¼ r̂ Q̂, such that

1

2m
ωðr̂ P̂Þ þ 2

m
ωðQ̂2Þ þ λωðr̂2Þ þ 1

2m
ℏ
2 ¼ 0: ð60Þ

In the last equation, we replace Q̂2 with the square of

angular momentum and therefore K̂, as before. Together

with (56) as well as (48), we obtain

ωðr̂2Þ ¼ 3

4

lðlþ 1Þℏ2

mλ
þ 5

8

α2

λ2
−
1

4

ℏ2

mλ
ð61Þ

which, like (48), is valid for all energy eigenstates in terms

of λ. The remaining equations then allow us to solve for the

P̂-related moments

ωðr̂ P̂Þ ¼ 1

2
lðlþ 1Þℏ2 −

1

4
m
α2

λ
−
1

2
ℏ
2; ð62Þ

ωðP̂ r̂Þ ¼ 1

2
lðlþ 1Þℏ2 −

1

4
m
α2

λ
þ 1

2
ℏ2; ð63Þ

ωðP̂�P̂Þ ¼ −lðlþ 1Þmλℏ2 þ 1

2
m2α2 −mλℏ2: ð64Þ

The Q̂-related moment ωðQ̂ P̂Þ ¼ iℏmα is already

determined by (57), which together with (9), (45), and

(48) gives

ωðQ̂�P̂Þ ¼ iℏðmα − ωðP̂ÞÞ ¼ −iℏmðαþ 2λωðr̂ÞÞ

¼ iℏ

�
1

2
mαþ λlðlþ 1Þℏ2

α

�
; ð65Þ

which is the second Q̂-related moment relevant for uncer-

tainty relations. The final moment, ωðQ̂�Q̂Þ, is related to

the square of angular momentum by

ωðQ̂�Q̂Þ ¼ ωðQ̂2Þ − iℏωðQ̂Þ

¼ −ωðK̂Þ þ 1

2
ωðr̂ P̂þP̂ r̂Þ − iℏωðQ̂Þ

¼ −
1

2
lðlþ 1Þℏ2 −

mα2

4λ
þ 1

2
ℏ
2; ð66Þ

using (62), (63), and (43).

We are now in a position to impose positivity of ω.

Heisenberg’s uncertainty relation for our variables include

ðΔrÞ2ΔðP̄PÞ ≥ jΔðrPÞ þ iℏωðQ̂Þj2 ð67Þ

which is always saturated for our solutions, without

restrictions on λ. In fact, the equality in this statement is

implied by the eigenvalue constraint (A17), such that

ωðb̂ ĈÞ ¼ 0 and ωðĈ�b̂Þ ¼ 0 for any b̂ ∈ A. Since Ĉ is

linear in P̂ and r̂, any P in the moments in (67) can be

replaced by an r as follows:

ΔðrPÞ þ iℏωðQ̂Þ ¼ 1

2
ωððr̂−ωðr̂ÞÞðP̂−ωðP̂ÞÞ

þ ðP̂−ωðP̂ÞÞðr̂−ωðr̂ÞÞÞ þ 1

2
ωð½r̂; P̂�Þ

¼ ωððr̂−ωðr̂ÞÞðP̂−ωðP̂ÞÞÞ
≈ 2mλωððr̂−ωðr̂ÞÞ2Þ
¼ 2mλðΔrÞ2 ð68Þ

and

GROUND STATE OF NONASSOCIATIVE HYDROGEN AND UPPER … PHYS. REV. D 104, 105009 (2021)

105009-7



ΔðP̄PÞ ¼ 1

2
ωððP̂� − ωðr̂ÞÞðP̂ − ωðP̂ÞÞ

þ ðP̂ − ωðP̂ÞÞðP̂� − ωðr̂ÞÞÞ
≈ ð2mλÞ2ðΔrÞ2 ð69Þ

where ≈ indicates equality on states obeying the con-

straint (A17).

The remaining inequalities,

ðΔrÞ2ΔðQ̄QÞ ≥ jΔðrQÞ þ 1

2
iℏωðr̂Þj2 ð70Þ

and

ΔðQ̄QÞΔðP̄PÞ ≥ jΔðQ̄PÞ þ 1

2
iℏωðP̂Þj2; ð71Þ

imply the same condition on solutions of the constraint

(A17), but one that nontrivially restricts the values of λ.

E. Energy eigenvalues

We evaluate the inequality (70) explicitly, using a

simplification implied by (55). For the variances on the

left, we have

ðΔrÞ2 ¼ ωðr̂2Þ − ωðr̂Þ2

¼ 3

4

lðlþ 1Þℏ2

mλ
þ 5

8

α2

λ2
−
1

4

ℏ2

mλ

−

�
1

2
lðlþ 1Þ ℏ

2

mα
þ 3

4

α

λ

�
2

¼ −
l
2ðlþ 1Þ2ℏ4

4m2α2
þ α2

16λ2
−

ℏ
2

4mλ
ð72Þ

from (48) and (61), and

ΔðQ̄QÞ ¼ ωðQ̂�Q̂Þ − jωðQÞj2

¼ −
1

2
lðlþ 1Þℏ2 −

mα2

4λ
þ 1

4
ℏ
2 ð73Þ

combining (66) and (43). Subtracting the right-hand side
1

4
ℏ
2ωðr̂Þ2 off (70), using ΔðrQÞ ¼ 0 according to (55), we

obtain the inequality

l3ðlþ 1Þ3ℏ6

8m2α2
þ l2ðlþ 1Þ2ℏ4

16m2α2

�
mα2

λ
− 2ℏ2

�

−
lðlþ 1Þℏ2

32mλ2
ðmα2 þ 2ℏ2λÞ

−
mα4

64λ3
−
α2ℏ2

16λ2
−

ℏ4

16mλ
≥ 0: ð74Þ

Upon multiplication with the positive λ2, the left-hand side

is given by λ−1 times a polynomial in λ of degree three,

which can be factorized as

ðlþ 1Þ2ℏ6

8m2α2λ

�
l
2λþ 1

2

mα2

ℏ
2

��
λþ 1

2

mα2

ℏ
2ðlþ 1Þ2

�

×

�
ðl2 þ l − 1Þλ − 1

2

mα2

ℏ
2

�
≥ 0: ð75Þ

The central parenthesis demonstrates that the inequality

is saturated for any energy eigenvalue of the hydrogen

problem with maximal angular momentum for a given

quantum number n, such that l ¼ n − 1, using the standard

expression

λn ¼ −
mα2

2ℏ2n2
¼ −

mα2

2ℏ2ðlþ 1Þ2 : ð76Þ

Each degenerate energy level therefore contains a state that

saturates an uncertainty relation, (70), even if it is highly

excited. This surprising result extends an observation made

in [12,18] for the harmonic oscillator to the hydrogen

problem.

F. Spectral conditions from uncertainty relations

The saturation result makes use of the known formula for

energy eigenvalues of the hydrogen problem. Keeping in

mind our aim to apply algebraic methods to the non-

associative generalization of the problem in the presence of

small magnetic charges, we are interested also in an

independent derivation of spectral properties directly from

the inequality (75). To this end, we first note that the left-

hand side of this inequality approaches positive infinity for

λ → −∞, while it has negative roots. In order to demon-

strate this result it is useful to split the discussion into two

case, l ¼ 0 and l > 0. In the first case, we can rewrite the

inequality as

−
ℏ
4

16m2λ

�
λþ 1

2

mα2

ℏ
2

�
2

≥ 0; ð77Þ

which eliminates all positive λ (where we have a continuous

spectrum and therefore no normalizable states ω), and

distinguishes the ground-state energy λ ¼ − 1

2
mα2=ℏ2

through a saturation condition. In the second case, the

inequality written as

l
2ðlþ 1Þ2ℏ6

8m2α2

�
λþ 1

2

mα2

ℏ
2
l
2

��
λþ 1

2

mα2

ℏ
2ðlþ 1Þ2

�

×

�
l
2 þ l − 1 −

1

2

mα2

ℏ2λ

�
≥ 0 ð78Þ
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has a final parenthesis which is always positive for

negative λ. Therefore, it rules out any values of λ between

the two roots given by the first two parentheses,

λ1 ¼ −
1

2

mα2

ℏ
2
l
2

and λ2 ¼ −
1

2

mα2

ℏ
2ðlþ 1Þ2 ð79Þ

where λ1 < λ2. All intervals between the known degenerate

eigenvalues are therefore eliminated. (An alternative der-

ivation of this result not based on uncertainty relations is

given in the Appendix A.)

III. NONASSOCIATIVE HYDROGEN WITH

SMALL MAGNETIC CHARGE

A nonassociative monopole algebra is not uniquely

determined by basic commutators and associators such

as (1) for a monopole system. Different versions can be

classified via suitable star products that determine non-

commutative and nonassociative compositions of the basic

position and momentum variables as formal power series in

ℏ. To leading order, a direct calculation demonstrates that

the commutators within the subset fr̂; P̂; Q̂g remain

unchanged compared with the associative case, provided

the background magnetic field obeys the condition

r⃗ × B⃗ ¼ 0: ð80Þ

In this case, therefore, corrections to our preceding results

are at most perturbative in ℏ multiplied by a number, such

as the magnetic charge, that characterizes the strength of the

magnetic field which appears in nontrivial commutators

and associators of a monopole star product. Since we will

be interested in weak magnetic charges, these corrections

will be small.

In order to determine how the magnetic charge appears,

we further evaluate condition (80). In general, it implies

that B⃗ðr⃗Þ ¼ bðr⃗Þr⃗ with some function bðr⃗Þ. In the static

case, we need ∇ × B⃗ ¼ 0, which is fulfilled if and only if

bðrÞ is spherically symmetric. A monopole density μðrÞ ¼
∇ · B⃗ then requires

bðrÞ ¼ gðrÞ
4πr3

ð81Þ

with the magnetic charge

gðrÞ ¼ 4π

Z
r

μðr̃Þr̃2dr̃ ð82Þ

enclosed in a sphere of radius r. For a single monopole at

r ¼ 0, gðrÞ is constant, while gðrÞ depends on r for a

constant monopole density. We will assume that gðrÞ ¼ g is
constant, which combined with the standard Coulomb

potential implies that the hydrogen nucleus has magnetic

charge g.
Given the magnetic field of a single monopole with

magnetic charge g, according to [19,20] the shifted angular

momentum components L̂j
0 ¼ L̂j þ egx̂jr̂

−1 satisfy the

usual commutators of angular momentum and therefore

have the familiar spectrum. The Casimir of the algebra

generated by r̂, P̂, and Q̂ is still equal to K̂ ¼ L̂2, but in

terms of the modified angular momentum, it has an extra

term:

K̂ ¼ L̂2 ¼ L̂02 − e2g2 Î: ð83Þ

(A monopole density with nonconstant g, K̂, and L̂02 cannot
be diagonalized simultaneously and an independent

method would have to be used to find eigenvalues of K̂.)
For a single monopole at the center, the spectrum of K̂,

according to (83), has a simple constant shift compared

with the spectrum of L̂02, which is known to break the

degeneracy of the energy spectrum for magnetic monopoles

that obey Dirac’s quantization condition [21]. This con-

dition, eg ¼ 1

2
ℏ, implies a large value of the smallest

nonzero magnetic charge because the electric fine structure

constant is small. Dirac monopoles in a hydrogen nucleus

would therefore be large perturbations that strongly modify

the energy spectrum. They can easily be ruled out by

standard spectroscopy. Dirac’s quantization condition can

be violated in nonassociative quantum mechanics.

Magnetic charges can then be small and might modify

the energy spectrum sufficiently weakly to be phenomeno-

logically viable. However, a derivation of eigenvalues in the

nonassociative setting remained impossible for decades.

Our methods from the preceding section can now be

applied to this question.

We will focus on a range of small magnetic charges g

characterized by the condition 0 < eg=ℏ < 1

2
. As already

noted, the commutators (7), the virial theorem, and the

Cauchy–Schwarz inequality all hold for a nonassociative

monopole algebra, at least up to higher-order terms in the

star product. Specifically, corrections from the associator

(2) or the commutator to real quantities are of the order

ℏ
2eg or smaller. Second-order corrections in ℏ and eg are

therefore insensitive to the specific star product. To within

this order, the only assumption that need be modified in our

previous derivation of uncertainty relations is the spectrum

of K̂, which is no longer equal to the square of angular

momentum but instead has the eigenvalues

Kl ¼ lðlþ 1Þℏ2 − e2g2: ð84Þ

It is convenient to parametrize the shift by replacing l with

a noninteger quantum number
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l̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
lþ 1

2

�
2

−
e2g2

ℏ
2

s
−
1

2
: ð85Þ

Substituting l̃ for l in (75) then gives us conditions on

energy eigenvalues of nonassociative hydrogen. (Saturation

conditions indeed give us correct eigenvalues according to

[21], but since the usual degeneracy is broken, they do not

give us the full spectrum.)

The range of l is bounded by the fact that K̂ is a positive

operator (the components L̂i being Hermitian [19,20]),

such that the eigenvalues (84) cannot be negative. This

condition rules out the quantum number l ¼ 0, but for

small magnetic charges the next possible value, l ¼ 1=2, is
allowed. We will assume this value for the ground state

because (75) tells us that the smallest root of this equation is

proportional to −1=l2. The minimum energy eigenvalue is

therefore obtained for the smallest possible l. This value of

l implies

l̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

e2g2

ℏ
2

r
−
1

2
ð86Þ

which lies in the range

1

2
ð

ffiffiffi
3

p
− 1Þ < l̃ <

1

2
: ð87Þ

Since l̃ ¼ 0 is not possible, the uncertainty relation always

rules out a range of energy eigenvalues between

λ1 ¼ −
1

2

mα2

ℏ2l̃
2

ð88Þ

and

λ2 ¼ −
1

2

mα2

ℏ2ðl̃þ 1Þ2
: ð89Þ

For any l̃ in the range (87), l̃ < 1 while l̃þ 1 > 1.

Therefore, a certain nonempty range around the usual

hydrogen ground-state energy − 1

2
mα2=ℏ2 is ruled out

for any value of a small magnetic charge. We conclude

that even a small magnetic charge would strongly modify

the usual hydrogen spectrum and be incompatible with

spectroscopic data. This strict exclusion is possible because

the positivity of K̂ implies a discontinuity of energy

eigenvalues as functions of the magnetic charge g at g ¼ 0.

IV. CONCLUSIONS

Our derivations have produced the first results about

spectral properties in a system of nonassociative quantum

mechanics. In particular, we have been able to demonstrate

a discontinuity in the ground-state energy of hydrogen as a

function of the magnetic charge of the nucleus. Addressing

this question requires a continuous range of the magnetic

charge around zero, which cannot be modeled by an

associative treatment with Dirac monopoles for which

the magnetic charge is quantized. Nonassociative quantum

mechanics is able to describe fractional magnetic charges

of any value and is therefore a suitable setting for our

question.

A Hilbert-space representation of an algebra by operators

acting on wave functions is by necessity associative

because for any ψ in the Hilbert space and operators Â,

B̂, and C we have

ðÂ B̂ÞĈψ ¼ Â B̂ψ 0 ¼ ÂðB̂ψ 0Þ ¼ ÂðB̂ ĈÞψ ; ð90Þ

defining ψ 0 ¼ Ĉψ in an intermediate step. Nonassociative

quantum mechanics can therefore not be represented on a

Hilbert space, necessitating a purely algebraic derivation of

properties of expectation values, moments, and eigenval-

ues. That such an algebraic treatment can indeed be used to

derive a complete spectrum is demonstrated in [12,18], in

this case for the (associative) harmonic oscillator as a proof

of principle. The algebraic treatment relies on uncertainty

relations in order to impose positivity of states, replacing

the more common normalizability conditions of Hilbert-

space treatments. The new methods are therefore well

suited to finding unexpected saturation properties of

eigenstates, even excited ones. As a new result of

[12,18], every eigenstate of the harmonic oscillator satu-

rates a suitable uncertainty relation. Saturation results even

extend to eigenstates of anharmonic systems in perturbative

treatments.

Our application of related methods to nonassociative

hydrogen in the present paper have not resulted yet in a full

energy spectrum because we focused on the ground

state, deriving only one uncertainty relation explicitly.

Nevertheless, a saturation result has been found for this

state, indicating that the behavior seen in harmonic models

might be extendable also to excited states of hydrogen.

However, the dynamical algebra of hydrogen is more

involved than the canonical algebra applicable to the

harmonic oscillator, making a generic treatment of satu-

ration results for hydrogen more complicated.

Our extension to nonassociative hydrogen relied on

several fortuitous algebraic properties of standard hydrogen

that are not affected by introducing nonassociativity of

monopole type, given by a commutator (1) of kinematical

momentum components with a magnetic field generated by

a pointlike magnetic charge. For other nonassociative

algebras, or even a monopole algebra with a continuous

magnetic charge distribution, the eigenvalue problem

cannot yet be solved, presenting a challenging mathemati-

cal problem.

Our specific physical result demonstrates that the pursuit

of these mathematical questions is worthwhile. We have

found that the ground-state energy of hydrogen with a small
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magnetic nuclear charge g is significantly displaced from

the usual value due to a discontinuity, even for infinitesi-

mally small magnetic charge. Spectroscopy is therefore

very sensitive to introducing a magnetic charge. In order to

produce an upper bound on g consistent with observational

data, we may, following [12], wash out the discontinuity

implied by positivity of the nonassociative angular momen-

tum K because the eigenvalues of angular momentum

squared are determined only within some δL2 from a purely

phenomenological viewpoint. In addition, a fundamental

uncertainty in angular momentum could also be caused by

an extended magnetic charge distribution in the nucleus,

which would imply that K̂ and L̂02 no longer commute.

As an estimate of this uncertainty, we may use the value

5 × 10−19 given as the accuracy of recent atomic clocks

[22], which rely on sharp spectral lines that would be

affected by the same uncertainty δL2 if angular momentum

is not sharp. The inequality K ≥ 0 for eigenvalues of K̂,

which must always hold because K̂ is defined as a positive

operator, then implies an upper bound

g ≤
4πϵ0

ffiffiffiffiffiffiffiffi
δL2

p
c2

e
≈ 4.7 × 10−18 Am

¼ 1.4 × 10−9gDirac ð91Þ

for the magnetic charge, written here in SI units. This upper

bound is a small fraction of gDirac, the smallest nonzero

magnetic charge allowed by Dirac’s quantization condition

in an associative treatment.

Magnetic charges of elementary particles have been

bounded by various means. Using the proton as an

example, interpreted here as the nucleus of hydrogen,

our bound is not as strong as those found based on the

total magnetic charge of a large number of nucleons in

macroscopic objects [23,24]. The large number of nucleons

in macroscopic objects implies a strong magnification

factor in the latter studies if their magnetic charges add

up. However, this method is not available for those

elementary particles that cannot be combined in stable

macroscopic objects, such as unstable particles or anti-

matter. Some of them can nevertheless be used as sub-

stitutes of the nuclear proton in hydrogenlike atoms, with

precision spectroscopic data being available in some cases

such as muonium [25] or antihydrogen [26,27]. For

instance, muonium spectroscopy with a current accuracy

of about 10−9 gives us an upper bound on the muon’s

magnetic charge of gmuon ≤ 4.5 × 10−5gDirac, which is

better than available upper bounds based on other methods.
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APPENDIX A: ALGEBRAIC DERIVATION OF

THE ASSOCIATIVE HYDROGEN SPECTRUM

It is instructive to derive the standard energy spectrum of

an electric charge in a Coulomb potential by algebraic

means, using the same subalgebra of observables generated

by (6) as employed in the main text but imposing positivity

of states not through uncertainty relations but, more

indirectly, through convergence properties of certain

expectation values expressed as power series. This deriva-

tion more closely resembles the standard derivation based

on convergence properties of norms of wave functions, but

it is still fully algebraic. However, it does not give rise to

new saturation conditions of uncertainty relations, and it is

more difficult to extend it to nonassociative systems.

In addition to the basic commutators (7), we will make

use of

½r̂; Ĉ� ¼ iℏ

m
Q and ½Q̂; Ĉ� ¼ iℏ

�
1

2m
P̂þ λr̂

�
ðA1Þ

with the constraint Ĉ defined in (33), as well as the

expectation-value equation

ωðb̂ P̂Þ ¼ 2mωðb̂ðλr̂þ αÞÞ ðA2Þ

for any b̂ ∈ A, implied by the eigenvalue constraint (A17).

We will apply the invariance condition (41) in various

ways, and use the operator (8) in the form

K̂ ¼ r̂ P̂−iℏQ̂ − Q̂2: ðA3Þ

1. Kramer’s relation

Our first step is the algebraic derivation of a recurrence

relation for expectation values of integer powers of r̂ in

energy eigenstates of hydrogen, known as Kramer’s rela-

tion. To this end, we derive the commutators

½r̂n; Q̂� ¼ iℏnr̂n;

½r̂n; P̂� ¼ 2inℏr̂n−1Q̂þ ℏ2nðn − 1Þr̂n−1 ðA4Þ

for integer n, using induction and being careful with taking

commutators of powers because ½â; ½â; b̂�� ¼ 0 does not

always hold for â; b̂ ∈ A.
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Second, invariance applied to Ô ¼ mr̂s takes the form

0 ¼ m

iℏ
ωð½r̂s; Ĉ� þ ðQ̂ − iℏÞr̂s−1Þ

¼ 1

2iℏ
ωð½r̂s; P̂� þ ½ðQ̂ − iℏÞ; r̂s−1� þ r̂s−1ðQ̂ − iℏÞÞ

¼ sωðr̂s−1Q̂Þ − iℏ

2
sðs − 1Þωðr̂n−1Þ − ðs − 1Þiℏωðr̂s−1Þ þ ωðr̂s−1ðQ̂ − iℏÞÞ

¼ sþ 1

2
ωðr̂s−1ð2Q̂ − isℏÞÞ;

such that

ωðr̂s−1Q̂Þ ¼ 1

2
iℏsωðr̂s−1Þ: ðA5Þ

Using this result, invariance applied to Ô ¼ mr̂sQ̂ leads to

0 ¼ m

iℏ
ωð½r̂sQ̂; Ĉ� þ ðQ̂ − iℏÞr̂s−1Q̂Þ

¼ 1

2iℏ
ωð½r̂s; P̂�Q̂Þ þ m

iℏ
ωðr̂s½Q̂; Ĉ�Þ þ ωð½ðQ̂ − iℏÞ; r̂s−1�Q̂Þ þ ωðr̂s−1ðQ̂ − iℏÞQ̂Þ

¼ sωðr̂s−1Q̂2Þ − iℏ

2
sðs − 1Þωðr̂s−1Q̂Þ þ 1

2
ωðr̂sðP̂þ 2mλr̂ÞÞ − iℏðs − 1Þωðr̂s−1Q̂Þ þ ωðr̂s−1ðQ̂ − iℏÞQ̂Þ

¼ ðsþ 1Þωðr̂s−1Q̂2Þ þ 1

2
ωðr̂sP̂Þ þmλωðr̂sþ1Þ − iℏ

sðsþ 1Þ
2

ωðr̂s−1Q̂Þ

¼ −ðsþ 1ÞωðK̂r̂s−1Þ þ ðsþ 3=2Þωðr̂sP̂Þ þmλωðr̂sþ1Þ − iℏ
ðsþ 2Þðsþ 1Þ

2
ωðr̂s−1Q̂Þ

¼ −ðsþ 1ÞωðK̂r̂s−1Þ þ ðsþ 3=2Þωðr̂sP̂Þ þmλωðr̂sþ1Þ þ ℏ
2
ðsþ 2Þðsþ 1Þs

4
ωðr̂s−1Þ: ðA6Þ

Equation (A2) then implies Kramer’s relation

0 ¼ ℏ
2ðsþ 1Þ

�
sðsþ 2Þ

4
− lðlþ 1Þ

�
ωðr̂s−1Þ þ ð2sþ 3Þmαωðr̂sÞ þ 2ðsþ 2Þmλωðr̂sþ1Þ ðA7Þ

after inserting the standard angular-momentum eigenvalues of K̂. Incidentally, invariance applied to Ô ¼ r̂sP̂ results in an

identity:

m

iℏ
ωð½r̂sP̂; Ĉ�Þ þ ωððQ̂ − iℏÞr̂s−1P̂Þ ¼ 1

2iℏ
ωð½r̂s; P̂�P̂Þ þ m

iℏ
ωðr̂s½P̂; Ĉ�Þ þ ωð½ðQ̂ − iℏÞ; r̂s−1�P̂Þ þ ωðr̂s−1ðQ̂ − iℏÞP̂Þ

¼ 2mðsþ 1Þωðr̂s−1Q̂ðλr̂þ αÞÞ − iℏmsðsþ 1Þωðr̂s−1ðλr̂þ αÞÞ þ ωðr̂sð2mλQ̂ÞÞ
¼ 2mαðsþ 1Þωðr̂s−1Q̂Þ þ 2mλðsþ 1Þωðr̂sðQ̂ − iℏÞÞ − iℏmsðsþ 1Þλωðr̂sÞ
− iℏmαsðsþ 1Þωðr̂s−1Þ þ 2mλωðr̂sQ̂Þ ¼ 0

upon using (A5).

2. Spectrum

Equipped with Kramer’s relation, which we first shift down by one unit in s,

0 ¼ ℏ
2s

�
s2 − 1

4
− lðlþ 1Þ

�
ωðr̂s−2Þ þ ð2sþ 1Þmαωðr̂s−1Þ þ 2ðsþ 1Þmλωðr̂sÞ; ðA8Þ
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we can now set up a new recurrence relation. We first

generalize Kramer’s relation to

0 ¼ ℏ
2

4
ωððr̂fðr̂ÞÞ000Þ − ℏ2lðlþ 1Þωðr̂−1f0ðr̂ÞÞ

þmαωð2f0ðr̂Þ þ r̂−1fðr̂ÞÞ þ 2mλωððr̂fðr̂ÞÞ0Þ ðA9Þ

for any analytic function f, where derivatives of analytic

functions of r̂ are interpreted in the sense of formal power

series.

Specializing fðr̂Þ to fs;kðr̂Þ ¼ r̂se−kr̂ and defining

κsðk; λÞ ¼ ωðr̂se−kr̂Þ ðA10Þ

then gives

0 ¼ ℏ2sð−1 − 4lð1þ lÞ þ s2Þκs−2ðk; λÞ
þ ðh2kð4lð1þ lÞ − 3sð1þ sÞÞ
þ 4mð1þ 2sÞαÞκs−1ðk; λÞ
þ ð3ℏ2k2ð1þ sÞ þ 8mðλð1þ sÞ − kαÞÞκsðk; λÞ
− kð8mλþ k2ℏ2Þκsþ1ðk; λÞ:

Again shifting s by defining Lsðk; λÞ ¼ κs−2ðk; λÞ, we

rewrite the previous relation as the third-order linear

differential equation

0 ¼ ðℏ2sð−1 − 4lð1þ lÞ þ s2Þ
− ðh2kð4lð1þ lÞ − 3sð1þ sÞÞ þ 4mð1þ 2sÞαÞ∂k

þ ð3ℏ2k2ð1þ sÞ þ 8mðλð1þ sÞ − kαÞÞ∂2

k

þ kð8mλþ k2ℏ2Þ∂3

kÞLsðk; λÞ: ðA11Þ

Since our fs;kðr̂Þ is a bounded operator for k > 0 and

s ≥ 0 with limk→∞ fðr̂Þ ¼ 0̂, any state should be such that

Lsðk; λÞ is well defined for all k > 0 and s ≥ 0 with

limk→∞ Lsðk; λÞ ¼ 0 for all λ. We also know that

Lsðk; λÞ is well defined for energy eigenstates at k ¼ 0

as long as s ≥ 0 is integer, because Kramer’s relation

together with the virial theorem provides finite numbers for

expectation values of positive integer powers of r̂. Under
these conditions, we can perform a Laplace-like trans-

formation and write

Lsðk;λÞ¼
Z

∞

0

as;λðb;dÞðkþdðs;λÞÞ−bdb

¼
X∞

n¼0

Z
1

0

as;λðbþn;dÞðkþdðs;λÞÞ−n−bdb: ðA12Þ

In the first line, as;λðb; dÞ may be seen as the inverse

Laplace transform of Lsðet − dðs; λÞÞ with respect to t. As
wewill see, it is convenient to introduce a free displacement

dðs; λÞ on which the coefficients an;λ will in general

depend.

For further convenience, we now drop the explicit

dependences on s and λ from our notation. Comparing

coefficients of the expansion (A12) inserted in (A11), we

obtain the recurrence relation

C3aðbþ n − 3Þ þ C2aðbþ n − 2Þ þ C1aðbþ n − 1Þ
þ C0aðbþ nÞ ¼ 0 ðA13Þ

with

C3 ¼ dðbþ n − 3Þðbþ n − 2Þðbþ n − 1Þðd2ℏ2 þ 8mλÞ;
ðA14Þ

C2 ¼ ðbþ n − 2Þðbþ n − 1Þð−3d2ℏ2ðbþ n − 1 − sÞ
þ 8dmα − 8mðbþ n − 1 − sÞλÞ; ðA15Þ

C1 ¼ ðbþ n − 1Þð3dℏ2ðbþ nÞðbþ nþ 1Þ
þ dℏ2ð−4lð1þ lÞ þ 3sð1þ sÞÞ;
þ ðbþ nÞð−6dℏ2ð1þ sÞ − 8mαÞ þ 4mαð1þ 2sÞÞ;

ðA16Þ

C0 ¼ −h2ðbþ n − sÞððbþ n − sÞ2 − ð2lþ 1Þ2Þ: ðA17Þ

By definition, the support of a as a function of b is

bounded from below. If for a given solution nmin is

the smallest integer such that aðbþ nminÞ ≠ 0 while

aðbþ nÞ ¼ 0 for n < nmin, the expression (A17) shows

that nmin þ b − s ¼ 0 or jnmin þ b − sj − j2lþ 1j ¼ 0.

Using the fact that l is an integer (since we are for now

assuming the absence of a magnetic charge), b must be an

integer. This result shows that Lsðk; λÞ allows an expansion
as a Laurent series of the form

Lsðk; λÞ ¼
X∞

n¼0

As;λðnÞðkþ dðs; λÞÞ−n: ðA18Þ

[The original coefficients as;λðb; dÞ introduced in (A12) are
proportional to a Dirac comb of delta functions of b
supported on the integers.]

The recurrence relation for As;λðnÞ can easily be obtained
from (A13) by absorbing b in n, ignoring the shift by b.
The relation can be simplified further by making the choice

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−8mλ

p
=ℏ for a given λ, such that the lowest-order

term (at order n − 3) drops out of the recurrence. We also

choose s ¼ 2lþ 2 and obtain
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0 ¼ 2dðn − 2Þðdℏ2ð3þ 2l − nÞ þ 4mαÞAðn − 2Þ
þ ðdℏ2ð8l2 þ lð26 − 12nÞ þ 3ðn − 3Þðn − 2ÞÞ
þ 4mαð5þ 4l − 2nÞÞAðn − 1Þ
− ℏ2ðn − 3 − 4lÞðn − 2 − 2lÞAðnÞ ðA19Þ

after factoring out bþ n − 1. For very large n of either

sign, this recursion takes the form AðnÞ − 3dAðn − 1Þþ
2d2Aðn − 2Þ ¼ 0, such that any nonzero asymptotic An

behaves either as dn or ð2dÞn. However, these options

would introduce a pole for Lsðk; λÞ, either at k ¼ 0 or

k ¼ d > 0, which cannot happen for well-defined states.

Therefore, only finitely many AðnÞ can be nonzero.

According to the AðnÞ-term in (A19), there is an N1 such

that AðnÞ ¼ 0 for n < N1 because l is an integer.

For the range of n where AðnÞ ≠ 0 to be bounded from

above, the first coefficient in (A19) requires

d ¼ 4mα

ℏ
2ν

ðA20Þ

with some positive integer ν. Inserting this expression, we

obtain

0 ¼ 2ðnþ 2lÞðn − 1 − νÞcn−2
− ðnð3n − 3 − 2νÞ þ ν − 4lð1þ lÞÞcn−1
þ nðn − 1 − 2lÞcn ðA21Þ

where

cn ¼ d−nAnþ2lþ2: ðA22Þ

There is one final condition: as all these sequences are

linear with recurrence relations that have integer coeffi-

cients (since l is known to be an integer) we infer that, up

to n-independent rescalings, for a given solution all the

coefficients cn are integer multiples of the same basic

quantity, γ. Dividing the recurrence relation by γ, we have

0 ¼ νcn−1=γ mod 2 for all n, because only a single term in

the coefficients of (A21) is not guaranteed to be even. As an

overall factor of two could be absorbed into the definition

of γ (and therefore cn−1=γ may well be odd), we conclude

that ν ¼ 2N, giving

δ ¼ 2mα

ℏ2N
ðA23Þ

and

λ ¼ −
mα

2ℏ2N
; ðA24Þ

which is the known energy spectrum of hydrogen.

It is instructive to look at the detailed recurrence for the

case of l ¼ 0, which includes the ground state, such that

s ¼ 2. For n ¼ 0 in (A21), we obtain c−1 ¼ 0. Choosing

n ¼ 1 in (A21) then shows that c0 ¼ 0. For n ¼ 2, we

obtain a nontrivial relation that determines c2 in terms of a

free c1:

c2 ¼ 3ð1 − ν=2Þc1: ðA25Þ

For ν ¼ 2, the smallest allowed value is c2 ¼ 0, which then

implies c3 ¼ 0 at n ¼ 3. With two successive vanishing cn,
all the following cn are zero. Since c1 may be nonzero,

there is a nonzero solution, as required for a nonzero

expectation value of the positive operator r̂2e−kr̂. A

nonzero c1 implies through (A22) that A3 is the only

nonzero coefficient, such that

L2ðk; λ0Þ ∝
�
kþ 2mα

ℏ
2

�
−3

ðA26Þ

using (A18). According to its definition (A10) as an

expectation value, L2ðk; λ0Þ ¼ κ0ðk; λ0Þ ¼ ω0ðe−kr̂Þ should
be the ground-state expectation value of e−kr̂, which can

easily be confirmed to be of the form (A26) using the

known ground-state wave function ψ0ðrÞ ∝ e−r=a with the

Bohr radius a ¼ ℏ
2=ðmαÞ.

APPENDIX B: GENERALIZATION TO

HYDROGEN WITH A MAGNETIC

NUCLEAR CHARGE

Since most of the identities used in our new derivation of

Kramer’s relation hold true in the nonassociative case with

a pointlike magnetic monopole at the center, we can easily

generalize this relation. We only have to adjust the

spectrum of K̂ using (84) in (A6) and obtain

0 ¼ ℏ
2ðsþ 1Þ

�
sðsþ 2Þ

4
− lðlþ 1Þ þ e2g2=ℏ2

�
ωðr̂s−1Þ

þ ð2sþ 3Þmαωðr̂sÞ þ 2ðsþ 2Þmλωðr̂sþ1Þ ðB1Þ

as a generalization of (A7).

This equation takes the form

0 ¼ ℏ
2

4
ωððr̂fðr̂ÞÞ000Þ − ℏ

2ðlðlþ 1Þ − e2g2Þωðr̂−1f0ðr̂ÞÞ

þmαωð2f0ðr̂Þ þ r̂−1fðr̂ÞÞ þ 2mλωððr̂fðr̂ÞÞ0Þ ðB2Þ

as a differential equation replacing (B2), which in turn

implies the equation
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0 ¼ ðℏ2sðs2 − 1 − 4ðlðlþ 1Þ − e2g2=ℏ2ÞÞ
− ð4mαð2sþ 1Þ þ kð4lðlþ 1Þ − 4e2g2=ℏ2 − 3sðsþ 1ÞÞÞ∂k

þ ð8mðsþ 1Þ − 8kmαþ 3k2ð1þ sÞℏ2Þ∂2

k þ kð8mλþ k2Þℏ2∂3

kÞLsðk; λÞ

instead of (A11).

The recurrence relation (A13) still holds with the same C3 and C2, while C1 and C0 are replaced by

C0
1
¼ ðbþ n − 1Þð3dℏ2ðbþ nÞðbþ nþ 1Þ þ dℏ2ð−4lð1þ lÞ þ −4e2g2=ℏ2 þ 3sð1þ sÞÞ
þ ðbþ nÞð−6dℏ2ð1þ sÞ − 8mαÞ þ 4mαð1þ 2sÞÞ

C0
0
¼ −h2ðbþ n − sÞððbþ n − sÞ2 − ð2lþ 1Þ2 þ 4e2g2=ℏ2Þ:

The same choice d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−8mλ

p
=ℏ as in the derivation of (A19) can be used to reduce the equation to second order, and it has

the same large-n behavior as before. The sequence of an therefore still has only finitely many nonzero elements, which is

again the case if b − s is an integer because the coefficient bþ n − s in the last term of the recurrence relation has not

changed. However, there is now a second possibility if b and s are such that ðbþ n − sÞ2 ¼ ð2lþ 1Þ2 − 4e2g2=ℏ2 for some

integer n. This condition can provide new solutions and a more complicated spectrum.

The last coefficient, ðbþ n − sÞ2 − ð2lþ 1Þ2 þ 4e2g2=ℏ2, no longer factorizes. Setting b ¼ 0 as before, we therefore

obtain a relation,

0 ¼ 2dðn− 2Þðn− 1Þð−4mαþ dð−1þ n − sÞℏ2Þan−2
þ ðn− 1Þð−4mαð2sþ 1Þ − 3dnð1þ nÞℏ2 þ dð4lðlþ 1Þ − 4e2g2=ℏ2 − 3sð1þ sÞÞℏ2 þ nð8mαþ 6dð1þ sÞℏ2ÞÞan−1
þ ðn− sÞððn − sÞ2 − ð2lþ 1Þ2 þ 4e2g2=ℏ2Þℏ2an;

in which the coefficient n − 1 does not cancel out as

before (for s ¼ 2lþ 2) because the last coefficient no

longer factorizes in the same way. In the previous section

we have already indicated several steps in the derivation

of the standard hydrogen spectrum that would no longer

hold if l [or the effective l̃ in (86) if g ≠ 0] is not an

integer.

More specifically, we again now look at the case of

l ¼ 0 or s ¼ 2, comparing with the discussion at the end of

the preceding section. Now, choosing n ¼ 1 implies a

nontrivial condition, given by a1 ¼ 0, because we are no

longer able to factor out n − 1. With this value, n ¼ 2 is

then identically satisfied. At this stage, we have the same

behavior as before, with a single coefficient (a1 here

corresponding to c−1 before) required to be zero. At

n ¼ 3, we obtain a linear relationship between a2 and

a3, specifically

2ðmα − de2g2Þa2 ¼ e2g2a3: ðB3Þ

The previous equation, c0 ¼ 0, would correspond to

a2 ¼ 0, which is implied only if g ¼ 0, while a3 ¼ 0

may be implied for suitable quantized charges such that

e2g2 is an integer, given the value of d. For generic

magnetic charges g, and in particular for small ones such

that 0 ≠ e2g2=ℏ2 ≪ 1, a2 and a3 are not independent. It is
then impossible to make the recurrence end with a nonzero

expectation value of e−kr̂, which is a contradiction. As in

the main text, we see that the quantum number l ¼ 0 is

ruled out for weak magnetic charges.
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