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Ground state of nonassociative hydrogen and upper bounds on the magnetic
charge of elementary particles
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Formulations of magnetic monopoles in a Hilbert-space formulation of quantum mechanics require
Dirac’s quantization condition of magnetic charge, which implies a large value that can easily be ruled out
for elementary particles by standard atomic spectroscopy. However, an algebraic formulation of
nonassociative quantum mechanics is mathematically consistent with fractional magnetic charges of
small values. Here, spectral properties in nonassociative quantum mechanics are derived and applied to the
ground state of hydrogen with a magnetically charged nucleus. The resulting energy leads to new strong
upper bounds for the magnetic charge of various elementary particles that can appear as the nucleus of
hydrogenlike atoms, such as the muon or the antiproton.

DOI: 10.1103/PhysRevD.104.105009

I. INTRODUCTION

Eigenvalues and eigenstates can be defined and derived
completely algebraically, without using a Hilbert-space
representation of observables as operators. Such a formu-
lation is important in particular in studies of nonassociative
algebras that cannot be represented on a Hilbert space.
Physical examples can be found mainly in situations in
which fractional magnetic charges may be present that do
not obey Dirac’s quantization condition [1], which can be
defined at the level of a nonassociative algebra of observ-
ables even though no Hilbert-space representation exists
[2-5]. Magnetic monopole charges that obey Dirac’s
quantization condition are so large that they can easily
be ruled out in elementary particles by atomic spectros-
copy. While small nonzero magnetic charges may be
compatible with observational bounds, they cannot obey
the quantization condition and therefore require nonasso-
ciative algebras of observables.

Nonassociative products are obtained for magnetic
monopoles as follows: In the presence of magnetic monop-
oles, the magnetic field has nonzero divergence and
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therefore cannot be described by a vector potential. The
usual canonical momentum 7; = p; + eA,- of a particle
with electric charge e and mass m, where p; = m);c,» is the
kinematical momentum, is then unavailable. However, it
turns out that the commutator of two kinematical momenta,

o (DA, DA,
o=t e~ (T )
3 A
= iheze'jk[Bl, (1)
=1

does not require a vector potential. (The usual bracket
[X;, Px] = ihd;, remains unchanged.) It can therefore be
generalized to a point charge moving in the presence of a
background magnetic charge, but it is not canonical and not
even constant since the magnetic field is position depen-
dent. The Jacobi identity is therefore not guaranteed to
hold, and it is indeed violated as the calculation

[[Pas Byl Do) + [Py Pe)s Pal + ([P P, Py

3 —
=ihe Y [B/. ;] = —h’edivB # 0 (2)
J=1

demonstrates. Since the assumption of an associative
product would imply the Jacobi idenity for the commutator,
magnetic monopoles are seen to require nonassociative
algebras of quantum observables [2—5]. The basic commu-
tators (1) together with an associator determined by (2) can
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be turned into a complete nonassociative algebra by means
of *-products [6—10].

Purely algebraic derivations that do not make use of
specific representations are usually more challenging than
standard quantum mechanics, in particular if associativity
cannot be assumed. As a consequence, such systems
remain incompletely understood, and it remains to be seen
whether they can be viable. Nevertheless, it has recently
become possible to derive potential physical effects [11]
and to use spectral results for new upper bounds on the
possible magnetic charge of elementary particles [12]. The
present paper presents details of the latter derivation as well
as a discussion of new methods that may be useful for
further applications.

II. ASSOCIATIVE ALGEBRA OF THE
STANDARD HYDROGEN ATOM

Modeled by a simple Coulomb potential, the hydrogen
atom has the Hamiltonian

a

(3)

1
H=—|pP-=
2m 7| r
with constant a, where |p|*> = p:+ p3 + p? and r* =
x*> +y? + 2% in Cartesian coordinates. As operators, the
position and momentum components are subject to the
basic commutation relations

%, bs] = [9. byl = 2. B] = in, (4)

and they are self-adjoint. These conditions define a
so-called x-algebra, which, together with a quantum
Hamiltonian A, properties of angular momentum, and
the virial theorem, will be the only ingredient in our
derivation of spectral properties. We will not make use
of operators that represent the observables on a Hilbert
space of wave functions.

An eigenvalue is a property of an observable in the
algebra together with a specific eigenstate. For a derivation
of spectral properties we therefore need a notion of states
on an algebra, bypassing the introduction of wave func-
tions. Given a *-algebra A, a quantum state [13] is defined
as a positive linear functional w: .4 — C from the algebra to
the complex numbers, such that w(a*a) > 0 for all a € A.
In addition, a state obeys the normalization condition
o(l) = 1 where T € A is the unit. The evaluation w(a)
is then the expectation value of a € 4, and moments such
as w(a") for integer n define a probability distribution for
measurements of the observable a if a is self-adjoint,
a* = a. Our aim is to derive properties of eigenvalues 1 of a
quantum Hamiltonian A € A for hydrogen through a
suitable subset of the moment conditions

w(a(H—-2))=0 forall ae A. (5)

We have to find a useful subset of & € A in order to make
this derivation feasible.

A. Subalgebra for spherical symmetry

Instead of applying standard position and momentum
components, spherical symmetry can be used to introduce a
promising subset of algebra elements. A subalgebra of
certain spherically symmetric elements of A is generated
by the three elements

7, P =#pP Q =ip, +9p, +2p, —ih.  (6)

Linear combinations of these generators form a three-
dimensional Lie algebra with basic relations

7, Q] = ih#, [#, P = 2ihQ, (0. P] = inP, (7)
isomorphic to so(2, 1). (Closely related algebras have been
used for derivations of the hydrogen spectrum in deforma-
tion quantization [14—16]. Our application of this algebra
follows different methods, and our extension to nonasso-
ciative hydrogen in the next section is completely new.)
Its Casimir element is given by

A

K=_(#P+P7) - Q% (8)

N =

Using the definitions (6), K turns out to equal the square of
angular momentum.

At this point, we can already see the main features of our
new derivation, which consists of the following steps in the
order of the next three subsections:

(1) A Casimir element such as (8) is a powerful tool
because it takes a constant value in a fixed irreduc-
ible representation. Physically, our Casimir is not
new but identical with the square of angular mo-
mentum. Nevertheless, we will examine angular
momentum in order to determine which of the
standard properties are readily available in a com-
pletely algebraic derivation.

(2) The standard hydrogen Hamiltonian A is not an
element of our linear algebra because the Coulomb
potential requires an inverse of 7, and P is not the
correct kinetic energy. However, the basic variables
7 and P are such that the expression # A is linear in
our algebra generators. This observation by itself is
not very helpful because # A and A do not have the
same eigenvalues. Nevertheless, it is a crucial step in
our new strategy, combined with turning the
Hamiltonian into a constraint equation: If we start
with the constraint A — 1 = 0, encoded by the
algebraic definition (5) of the spectrum, we replace
it with the constraint 7 H —1f = 0, which is still
linear in our basic generators. This step gives rise to
several subtleties because we will have to employ
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methods from constrained systems, and even for non-
self-adjoint constraints because we need the non-
symmetric ordering # A in the constraint in order to
use P in our linear algebra. Once this step is com-
pleted, we gain information about solutions of (5).

(3) In the final step, we have to impose positivity of the
state used in our solutions of (5). Instead of working
directly with the basic positivity condition, we will
evaluate uncertainty relations which are derived
from positivity. In this general form, there are many
different versions of uncertainty relations because
they depend on which basic operators one chooses
as well as on the polynomial order in which they
appear in moments. For our purposes, we do not
need a complete analysis but rather have to find a
suitable version of uncertainty conditions that gives
us useful information about energy eigenvalues. Our
main aim is to rule out a certain range of values that
could be eigenenergies of nonassociative hydrogen.
The specific uncertainty relations we choose turn out
to give us an interesting restriction by ruling out a
large range of values. If there is another uncertainty
relation that rules out more values, it would only
strengthen our result without removing the bounds
obtained here.

We will first explore the algebra and derive useful
identities within it as well as in an extension that includes
an inverse 7~!. This inverse does not only appear in the
Coulomb potential, where it can be evaded by using the
constraint just described, but also, as it turns out, appears in
the adjointness relation of P. Since adjointness relations are
essential for positivity conditions or uncertainty relations,
we cannot avoid discussing a possible inclusion of 77! in
the algebra. The identities derived now for this purpose will
be used in our main calculation.

The commutators (7) rely on P and 0 being defined
in the specific orderings shown in their definition (6),
making them not self-adjoint. Completing the definition of
a x-subalgebra, their adjointness relations can be derived
from the basic commutators of Cartesian position and
momentum components: In addition to 7* = 7, we have

0" =Q—inl 9)
and
P =P =2in?'Q = P —2inQi" =202, (10)

At this point, we assume that the subalgebra generated by 7,

P, and Q is suitably extended such that it includes an
inverse of 7 which, like 7, is also self-adjoint. The adjoint-
ness relations imply the conditions

N 1 N N 1
ma(0) = 500~ 07) = 3 (1)

and

Imo (7 P) = %(a)(?i’) — w(P7)
= zli(w(ia F42ihQ) — w(P ¥ —2ihQ — 2h71))
= ho(Q + Q") = 2hRew(Q) (12)

for expectation values in any state @ on the algebra, in
addition to Imw(#) = 0.
In deriving (10), we have made use of the commutator

(7, |p[}] = 2iAF~'Q = 2in(Q — inl)?~"  (13)

which is itself based on the commutator
[+, 0] = —i! (14)
in the second step. These commutators can be computed
easily in a position representation of momentum compo-
nents in p and Q, which then defines the extension of our

algebra to one that includes 7#~'. Related useful commu-
tators are

[0.|p] = 2int'P, (15)
[+ |p[2] = 2in3(Q + in), (16)
[+, P] = 2ih?2(Q + ih), (17)

and

[P*, P = —2in#~' QP* + 2inP(Q — ih)?™!

+4n*'Q(Q — ih)i", (18)
[P*, 7] = [, P]* = —iht, (19)
[P*, Q] = —inP* = [P*, 0] (20)

Adjointness relations require us to extend the algebra by
an inverse of 7. Nevertheless, we will see that all moments
required for a derivation of spectral properties can be
derived using relations in the linear algebra because the
expectation value @(?7!) is related to moments of poly-
nomial expressions by the virial theorem, which states that
for any quantum Hamiltonian 4 = 1m™' p? + ai" with
some integer n, the expectation values of kinetic and
potential energy in a stationary state @ are related by

o(p?) = nmaw(i"). (21)

Since all energy eigenstates are stationary, the theorem
applies in our case. In addition, the eigenvalue condition
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w(H — 1) =0, as a special case of (5), implies a second
condition for the same energy expectation values:

1
Therefore,
2nmi 22

p?) = —rx, M) = 23
() =T () = (23)

For the Coulomb potential,

24

) == 24
(i) == (24)

is strictly determined.

The proof of the virial theorem is brief and standard, but
it is useful to display the key ingredients to demonstrate that
no Hilbert-space representation is required. Since @ is
stationary, we have

do(Q TN O
0=D _ _io(ip, + 5, +2p..H)
= w(m ™ p|* - nai") (25)
using [p,, 7] = —iar//\ax = —ix?~!. This result proves the

virial theorem not only for standard quantum mechanics but
also for nonassociative systems in the presence of magnetic
monopoles: While some associativity is applied in comput-
ing the commutator in (25), none of the brackets (2) appear
that would be modified for nonzero magnetic charge.

B. Angular momentum

We will use the familiar eigenvalues of angular momen-
tum squared, which equal the eigenvalues of K defined in
(8). The usual derivation of these eigenvalues is, to a large
degree, algebraic, but it relies on applications of ladder
operators on wave functions representing angular-momen-
tum eigenstates. Such an application will no longer be
available once we turn to nonassociative hydrogen. We
therefore provide here a complete algebraic derivation of
angular-momentum eigenvalues.

The relevant algebra in this derivation is the enveloping
algebra B of the Lie algebra su(2), with self-adjoint
generators jx, jy, and J . such that
0.0, =ind..

Uy J)=ind,, [J.J]=ih],. (26)

An angular-momentum eigenstate o, , with eigenvalue ¢ of
the square of angular momentum, J? = jﬁ + jﬁ + j?, and

eigenvalue u of the z-component J, is a normalized and
positive linear map from B to the complex numbers which
obeys the conditions

w,,ﬂ(&(jz —1))=0 and a),,ﬂ(fz(jz —u)=0 (27)

for all a € B. .
Although we will not apply the ladder operators J to
wave functions, defined as usual as

Jo=1J,£17, (28)
they are still useful because they obey the identity

INTY = N1 =72 = T,) I
= NN -T2 =T,
+ IV -T2 =T,), T
= JNNN =T =T, - 2(N - 1)J,
~(N=1?=(N-1))

on B for any positive integer N. Similarly,

ININ = NN (222 4 T 42N = 1),
- (N=1)2=(N-1)). (29)

Evaluating these identities in an eigenstate, we find
TN §N FN-1FN-1
wt,/;(]$‘]i) = wl,ﬂ(‘]:F Ji )

((=uE(N=-1)F u+(N-1))
(t=(uEn) F (utn))

by iteration. o A . o A .
Since we have JNJY = (J7)* (%) and JY TN = (IN)*(JV),
positivity of w, , implies

N

[[e=(tn?+@+n) =0 (30)
n=0

for all N > 0. The second term in each factor, —(u + n)?, is
a negative square which can grow arbitrarily negative.
Therefore, only finitely many factors in the products (30)
can be nonzero, such that, for some positive integers n, and
n_, we have

i—(u+n,)*—(u+n)=0 and
(= =)+ (= n) =0, G1)

Solving these two equations implies that the eigenvalues
are of the form

= (I’l_—fz'n-i,-) <n_‘;n++1> and ”:n_;n-s-’ (32)

which can be recognized as the familiar eigenvalues in
finite-dimensional irreducible representations of su(2).
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C. Eigenvalue constraint

We proceed with our derivation of energy eigenvalues.
The Hamiltonian is not polynomial in basic observables of
the linear algebra. However, some of the conditions (5) are
defined on the linear algebra, provided a has at least one
factor of 7 on its right. For instance, a single such factor,
a = 7, replaces the nonpolynomial H — 2 in (5) with the
linear expression

C=tH-2)=—P-li-a. (33)

A subset of the spectrum conditions (5) can therefore be
written in terms of C as the constraint equations

w(bC)=0 forall be A (34)

These constraints might not be sufficient to obtain the full
spectrum based on (5), but any condition on eigenvalues
derived from (A17) also applies to the full eigenvalues.

In what follows, we therefore replace the self-adjoint
Hamiltonian A with a constraint operator C that, by
definition, is not self-adjoint. Dealing with constraints that
are not self-adjoint requires some care. In particular, while a
self-adjoint constraint generates a gauge flow in much the
same way as a self-adjoint Hamiltonian generates time
evolution, there are additional terms in the relationship
between the flow and the commutator with C when the
constraint C is not self-adjoint.

For a self-adjoint Hamiltonian A, a time-dependent state
, by definition evolves according to

dwé(;O) c?t (exp(itH /h)O exp(—itH /h))
7wt([0’ﬁ])
- in -

forall O € A. Similarly, defining the gauge flow generated
by C through the (nonunitary) operator ¥, = exp(—ieC/h)
a gauge-dependent state w, flows according to

do (0) d . s
= — o (F:OF 36
G = g @e(FeOF) (36)

because this condition implies that any state solving the
constraint equation (A17) is preserved by the flow: We then
have

o(F:0F,) = 0(0) (37)

for all O € Aif w(bC) = 0 for all b € A. Infinitesimally,
applying the flow operator implies a relationship,

do.(0) d
% = 5, @e(exp(ieC” /)0 exp(~ieC/h))
w.(0C~C*0)
0, (08-C"0) 38
- , (38)

that is not directly related to the commutator of O and C

because of the presence of a C*. In our specific case, we
can use

. A R A A 0B 4 2
o =C-"10 = -0 - (39)
m m
and arrive at
dw (O 0,C (0F10)  ihw (71O
2(0) _0([0.€)  00F10) _ino70)
de ih m m

The constraint equations (A17) play the same role as
stationarity of eigenstates. Since every energy eigenstate @
is gauge invariant under the flow generated by C, (40)
implies that

A A SO
o(0.C) __o(@-inl)i10)
in m

for any such state. Since #~! appears on the right, these

equations give us another way to derive moments involving
#1. For instance, for O = #, we obtain

o(@) =20 M) o ity ()

from the basic commutators in the first step, the definition
of C in the second step, and an application of Eq. (41) in the
last step. Thus,

(@) = 5ih. 3)

which is consistent with the reality condition (11) and in
addition shows that Rew(Q) = 0 for stationary states.

In another example, choosing O = Q and using the basic
commutators, as well as (14), implies

Lap) +200) + L@ - Lo <0, @)

In this expression, the first term is given by

ﬁw(i’) —Jo(P) +a (45)

using the constraint w(C) = 0. The factor of Q? in the

third moment can be eliminated by using the Casimir K,
such that
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inQr' + P. (46)

The final appearance of Q in the second term of this new
expression can be eliminated by applying (41) to O = I:
ihw(Q?") = A2w(#"). Thus, Eq. (44) implies

K
3a+ 4lo(7) — — o

i

=0 (47)

3

with an eigenvalue K = h?£(£ + 1) of K if we assume, as
usual, that our eigenstate is simultaneously one of energy
and angular momentum and then use the derivation given
in Sec. IIB. Using the virial theorem to replace
w(?7') = 21/a, we obtain

for the radius expectation value. This equation gives the
correct expression for the r-expectation value in all energy
eigenstates in terms of the eigenvalue 4.

D. Uncertainty relations

So far, we have not obtained any restriction on the
eigenvalues A that may appear in (48). Such restrictions
cannot be derived by using only the eigenmoment equa-
tion (5). In addition, we have to impose conditions that
ensure that @ is positive (or “normalizable” in quantum-
mechanics lingo). In order to keep the discussion more
physically intuitive, we implement positivity through the
equivalent conditions implied by uncertainty relations.

1. General derivation

To arrive at uncertainty relations, we follow standard
results that imply the Cauchy-Schwarz inequality

o(&a)w(b'b) > |w(b*a)|? (49)
for all a,b € A and any state . The proof proceeds by
defining a new algebra element &' = a exp(—i argw(b*a)),

designed such that |w(b*a)| = w(b*@'). This intermediate
step allows us to rewrite the positivity condition as

= 20(b* D) (a*d) — 2y w(b*D)w(a" &) |w(5a)] (50)

and to conclude that

b*a)| < o(ara)/w(@*a) =

Importantly, the result does not require associativity; see
also [17].

Choosing & = O
self-adjoint O,

w(a*a)w(b*b).

—w(0))f and b= 0, — w(0,)i for

and 0,, we compute the variances
w(a*a) = (A0,)%, w(b*b) = (A0,)? of O, and O,,
respectively, and w(h*a) = A(0,0,) + ([0, D,]) is
related to their covariance A(0,0,). In this way, the
Cauchy-Schwarz inequality implies Heisenberg’s uncer-
tainty relation

(A0))2(A0,)? — A(0,0,)? <chw ) (51)

for any pair of observales O; and O, whose algebra
elements (51 and 02 are two of the generators of a linear

|
subalgebra of A with structure constants CK: [0, 0,] =
3, €L, 0, with a summation range equal to the dimension
of the subalgebra. According to (7), we can apply such an
uncertainty relation to any pair of the generators (7, P, Q)
Some of our generators, P and 0, are not self-adjoint. In
such a case, according to the derivation shown here where
(AO))? results from w(a*a), any variance of a self-adjoint
expression should be replaced with the covariance of the
algebra element and its adjoint, such as

_ 1 A ~n
A(PP) = —w(P*P + PP*) -

: PP (52)

2. Relevant moments

We will apply these (generalized) uIAlcertainAty relations to
pairs of algebra elements given by 7, P, and Q. An explicit
evaluation in terms of the energy eigenvalue requires a
derivation of the moments w(7?), w(P*P), o(Q*Q),
(7 P), o(#Q), and w(Q*P). Also here, we can exploit
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(41) for different choices of O, as well as (A17) for various
choices of b. .

We first compute one of the Q-related moments. First,
Eq. (41) evaluated for O = #* implies

0(?Q+07) _w(P.C) (- i)
m ih - m
= M (53)
m

using the basic commutators (7) in the last step. Therefore,
0(Q#) =0 and o(7Q)=w([t,Q]) = ito(7). (54)
Together with (43), we arrive at

A(rQ) = 0. (55)

For the P-related moments, we apply (A17) with b equal
to the three linear generators 7, 0, and P as well as the
adjoint P*, giving us four equations,

1 A
w(i?) = 3 — (i P) - Zo(#) (56)
from b = 7,
(Q P) = ihma (57)

from b = O using w(Q #) = 0 as just derived,
o(P?) = 2miw(P #) + 2maw(P) (58)

from b = P, and

miw(P #) + 2maw(P) — 2min*  (59)
from b= P* using (10) and (43). We apply gauge
invariance (41) to O = # 0, such that

1

A 2 2
o w(#P)+= w(Q2)+/1a;( )+2—h =0. (60)

In the last equation, we replace O with the square of

angular momentum and therefore K, as before. Together
with (56) as well as (48), we obtain

34(¢+ )R> S5a> 1R
P2 T S /A 61

o) =3 TsZ am OV
which, like (48), is valid for all energy eigenstates in terms
of 1. The remaining equations then allow us to solve for the

P-related moments

. 1 , 1 a1,
aL 1 1 o 2
m(Pr):EK(erl)h —Zm7—|- h (63)
S 1
o(P"P) = ~£(¢ + 1)mih® + S m*a® —min®. (64)

The Q-related moment w(Q P) = ihma is already
determined by (57), which together with (9), (45), and
(48) gives

= ih(ma — w(P)) = —ihm(a + 22w (7))
2
— mem(w@), (65)

o(Q"P)

which is the second Q-related moment relevant for uncer-

tainty relations. The final moment, a)(Q* Q) is related to
the square of angular momentum by

@(0%) - ihw(Q)

. 1 PN
~w(K) +50(FP+P7) -

»(0°0) =
ihw(Q)

ma* 1

1 2
AR L ear

h?, (66)
using (62), (63), and (43).

We are now in a position to impose positivity of .
Heisenberg’s uncertainty relation for our variables include

(Ar)2A(PP) > |A(rP) + ihw(Q)[? (67)

which is always saturated for our solutions, without
restrictions on A. In fact, the equality in this statement is
implied by the eigenvalue constraint (A17), such that
w(bC) =0 and w(C*b) =0 for any b € A. Since C is
linear in P and #, any P in the moments in (67) can be
replaced by an r as follows:

A(rP) + ihw(Q) = =

+ (P = o(P))(7 = (7)) +5 ([ P))
= o((F = o(?) (P~ o(P)))
~2mlo((7 — o(#))?)

=2mA(Ar)? (68)

and
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APP) = Sal(P* —(7)(P — o(P)
+ (= a(P)(P* — ()
~ (2mA)?(Ar)? (69)

where = indicates equality on states obeying the con-
straint (A17).
The remaining inequalities,

(ArPAQQ) 2 1A(r0) + 5 iho(DE (70)

and
A(QQ)A(PP) > |A(QP) + < ihw(P)?,  (71)

imply the same condition on solutions of the constraint
(A17), but one that nontrivially restricts the values of A.

E. Energy eigenvalues

We evaluate the inequality (70) explicitly, using a
simplification implied by (55). For the variances on the
left, we have

(Ar)? =

e+ 1) o R
N 4m>a? 164> 4ml

from (48) and (61), and

6+ 1) ———+-n>  (73)

combining (66) and (43). Subtracting the right-hand side
12w (?)? off (70), using A(rQ) = 0 according to (55), we
obtain the inequality

B+ 1) 20+ 1)%n <m0{2 2h2>
A

8m2a? 16m2a?
(¢ + 1)h?
- % (ma® 4 2h%2)

ma*  a*h? n*
- - - >
6423 1642 16mA —

0. (74)

Upon multiplication with the positive A%, the left-hand side
is given by 17! times a polynomial in A of degree three,
which can be factorized as

£+1)*n8 1 ma? 1 2
8ma 2 h 2r*(€+1)

2
x <(f2+f—1)/1—%n;—02l> > 0. (75)

The central parenthesis demonstrates that the inequality
is saturated for any energy eigenvalue of the hydrogen
problem with maximal angular momentum for a given
quantum number n, such that # = n — 1, using the standard
expression

ma> ma>

Tt T 2R+ 1)

Ay = (76)

Each degenerate energy level therefore contains a state that
saturates an uncertainty relation, (70), even if it is highly
excited. This surprising result extends an observation made
in [12,18] for the harmonic oscillator to the hydrogen
problem.

F. Spectral conditions from uncertainty relations

The saturation result makes use of the known formula for
energy eigenvalues of the hydrogen problem. Keeping in
mind our aim to apply algebraic methods to the non-
associative generalization of the problem in the presence of
small magnetic charges, we are interested also in an
independent derivation of spectral properties directly from
the inequality (75). To this end, we first note that the left-
hand side of this inequality approaches positive infinity for
A — —oo, while it has negative roots. In order to demon-
strate this result it is useful to split the discussion into two
case, Z = 0 and Z > 0. In the first case, we can rewrite the
inequality as

n 1 ma?\ 2
———(A+=—] >0, 77
16m2/1< T ) - (77)

which eliminates all positive 4 (where we have a continuous
spectrum and therefore no normalizable states w), and
distinguishes the ground-state energy A= —ima*/h?
through a saturation condition. In the second case, the
inequality written as

¢+ 1)*h¢ 1 ma? 1 ma?
2.2 At 2.2 At 2 2
8ma 2nt 2h*(€+1)

1 2
x<f2+f—1——ma>zo (78)

2 ")
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has a final parenthesis which is always positive for
negative A. Therefore, it rules out any values of 1 between
the two roots given by the first two parentheses,

2 1 ma?

=—==—- (79

2n2(¢ +1)? (79)
where 1; < 4,. All intervals between the known degenerate
eigenvalues are therefore eliminated. (An alternative der-
ivation of this result not based on uncertainty relations is
given in the Appendix A.)

ITII. NONASSOCIATIVE HYDROGEN WITH
SMALL MAGNETIC CHARGE

A nonassociative monopole algebra is not uniquely
determined by basic commutators and associators such
as (1) for a monopole system. Different versions can be
classified via suitable star products that determine non-
commutative and nonassociative compositions of the basic
position and momentum variables as formal power series in
h. To leading order, a direct calculation demonstrates that
the commutators within the subset {7, P, Q} remain
unchanged compared with the associative case, provided
the background magnetic field obeys the condition

Fx B =0. (80)

In this case, therefore, corrections to our preceding results
are at most perturbative in # multiplied by a number, such
as the magnetic charge, that characterizes the strength of the
magnetic field which appears in nontrivial commutators
and associators of a monopole star product. Since we will
be interested in weak magnetic charges, these corrections
will be small.

In order to determine how the magnetic charge appears,
we further evaluate condition (80). In general, it implies
that B(7) = b(7)7 with some function b(7). In the static

case, we need V x B = 0, which is fulfilled if and only if
b(r) is spherically symmetric. A monopole density u(r) =
V - B then requires

b(r) = I 81)

 Anr?

with the magnetic charge
g(r) = 4z / u(F)Pdr (82)

enclosed in a sphere of radius r. For a single monopole at
r=0, g(r) is constant, while g(r) depends on r for a
constant monopole density. We will assume that g(r) = gis
constant, which combined with the standard Coulomb

potential implies that the hydrogen nucleus has magnetic
charge g.

Given the magnetic field of a single monopole with
magnetic charge g, according to [19,20] the shifted angular
momentum components I:j’ :f,j+eg)€j?" satisfy the
usual commutators of angular momentum and therefore
have the familiar spectrum. The Casimir of the algebra
generated by 7, fJ, and Q is still equal to K = I:z, but in
terms of the modified angular momentum, it has an extra
term:

K=1%=1"-e g1 (83)

(A monopole density with nonconstant g, K, and L”? cannot
be diagonalized simultaneously and an independent
method would have to be used to find eigenvalues of K.)

For a single monopole at the center, the spectrum of K,
according to (83), has a simple constant shift compared
with the spectrum of L'?, which is known to break the
degeneracy of the energy spectrum for magnetic monopoles
that obey Dirac’s quantization condition [21]. This con-
dition, eg:%h, implies a large value of the smallest
nonzero magnetic charge because the electric fine structure
constant is small. Dirac monopoles in a hydrogen nucleus
would therefore be large perturbations that strongly modify
the energy spectrum. They can easily be ruled out by
standard spectroscopy. Dirac’s quantization condition can
be violated in nonassociative quantum mechanics.
Magnetic charges can then be small and might modify
the energy spectrum sufficiently weakly to be phenomeno-
logically viable. However, a derivation of eigenvalues in the
nonassociative setting remained impossible for decades.
Our methods from the preceding section can now be
applied to this question.

We will focus on a range of small magnetic charges g
characterized by the condition 0 < eg/h < % As already
noted, the commutators (7), the virial theorem, and the
Cauchy—Schwarz inequality all hold for a nonassociative
monopole algebra, at least up to higher-order terms in the
star product. Specifically, corrections from the associator
(2) or the commutator to real quantities are of the order
h?eg or smaller. Second-order corrections in # and eg are
therefore insensitive to the specific star product. To within
this order, the only assumption that need be modified in our
previous derivation of uncertainty relations is the spectrum
of K, which is no longer equal to the square of angular
momentum but instead has the eigenvalues

K, =¢(¢ + 1)h* - &g’ (84)

It is convenient to parametrize the shift by replacing £ with
a noninteger quantum number
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2—\/(f+%>2—i—22—%. (85)

Substituting ¢ for ¢ in (75) then gives us conditions on
energy eigenvalues of nonassociative hydrogen. (Saturation
conditions indeed give us correct eigenvalues according to
[21], but since the usual degeneracy is broken, they do not
give us the full spectrum.)

The range of # is bounded by the fact that K is a positive
operator (the components L being Hermitian [19,20]),
such that the eigenvalues (84) cannot be negative. This
condition rules out the quantum number # = 0, but for
small magnetic charges the next possible value, £ = 1/2, is
allowed. We will assume this value for the ground state
because (75) tells us that the smallest root of this equation is
proportional to —1/#2. The minimum energy eigenvalue is
therefore obtained for the smallest possible #. This value of

¢ implies
~ [ e*g 1
C=\1-——= 86
n 2 (86)

which lies in the range

—(ﬂ—1)<?<%. (87)

Since # = 0 is not possible, the uncertainty relation always
rules out a range of energy eigenvalues between

1 ma?

S Yy (88)
and
1 ma?
j, = —— = =. 89
2T U2R2(Z 4 1) (89)

For any 7 in the range (87), Z <1 while Z+ 1> 1.
Therefore, a certain nonempty range around the usual
hydrogen ground-state energy —%maz/ h? is ruled out
for any value of a small magnetic charge. We conclude
that even a small magnetic charge would strongly modify
the usual hydrogen spectrum and be incompatible with
spectroscopic data. This strict exclusion is possible because
the positivity of K implies a discontinuity of energy
eigenvalues as functions of the magnetic charge g at g = 0.

IV. CONCLUSIONS

Our derivations have produced the first results about
spectral properties in a system of nonassociative quantum
mechanics. In particular, we have been able to demonstrate
a discontinuity in the ground-state energy of hydrogen as a
function of the magnetic charge of the nucleus. Addressing

this question requires a continuous range of the magnetic
charge around zero, which cannot be modeled by an
associative treatment with Dirac monopoles for which
the magnetic charge is quantized. Nonassociative quantum
mechanics is able to describe fractional magnetic charges
of any value and is therefore a suitable setting for our
question.

A Hilbert-space representation of an algebra by operators
acting on wave functions is by necessity associative
because for any y in the Hilbert space and operators A,
B, and C we have

N

(AB)Cy =ABy' = A(By) = A(BC)y.  (90)

defining y’ = Cy in an intermediate step. Nonassociative
quantum mechanics can therefore not be represented on a
Hilbert space, necessitating a purely algebraic derivation of
properties of expectation values, moments, and eigenval-
ues. That such an algebraic treatment can indeed be used to
derive a complete spectrum is demonstrated in [12,18], in
this case for the (associative) harmonic oscillator as a proof
of principle. The algebraic treatment relies on uncertainty
relations in order to impose positivity of states, replacing
the more common normalizability conditions of Hilbert-
space treatments. The new methods are therefore well
suited to finding unexpected saturation properties of
eigenstates, even excited ones. As a new result of
[12,18], every eigenstate of the harmonic oscillator satu-
rates a suitable uncertainty relation. Saturation results even
extend to eigenstates of anharmonic systems in perturbative
treatments.

Our application of related methods to nonassociative
hydrogen in the present paper have not resulted yet in a full
energy spectrum because we focused on the ground
state, deriving only one uncertainty relation explicitly.
Nevertheless, a saturation result has been found for this
state, indicating that the behavior seen in harmonic models
might be extendable also to excited states of hydrogen.
However, the dynamical algebra of hydrogen is more
involved than the canonical algebra applicable to the
harmonic oscillator, making a generic treatment of satu-
ration results for hydrogen more complicated.

Our extension to nonassociative hydrogen relied on
several fortuitous algebraic properties of standard hydrogen
that are not affected by introducing nonassociativity of
monopole type, given by a commutator (1) of kinematical
momentum components with a magnetic field generated by
a pointlike magnetic charge. For other nonassociative
algebras, or even a monopole algebra with a continuous
magnetic charge distribution, the eigenvalue problem
cannot yet be solved, presenting a challenging mathemati-
cal problem.

Our specific physical result demonstrates that the pursuit
of these mathematical questions is worthwhile. We have
found that the ground-state energy of hydrogen with a small
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magnetic nuclear charge ¢ is significantly displaced from
the usual value due to a discontinuity, even for infinitesi-
mally small magnetic charge. Spectroscopy is therefore
very sensitive to introducing a magnetic charge. In order to
produce an upper bound on g consistent with observational
data, we may, following [12], wash out the discontinuity
implied by positivity of the nonassociative angular momen-
tum K because the eigenvalues of angular momentum
squared are determined only within some 5L from a purely
phenomenological viewpoint. In addition, a fundamental
uncertainty in angular momentum could also be caused by
an extended magnetic charge distribution in the nucleus,
which would imply that K and L> no longer commute.

As an estimate of this uncertainty, we may use the value
5 x 107! given as the accuracy of recent atomic clocks
[22], which rely on sharp spectral lines that would be
affected by the same uncertainty 6L? if angular momentum
is not sharp. The inequality K > 0 for eigenvalues of K,
which must always hold because K is defined as a positive
operator, then implies an upper bound

4reyV SL*c?
< -

~4.7x 10718 Am
e

=14x 10_9.9Dirac (91)

for the magnetic charge, written here in SI units. This upper
bound is a small fraction of gp;,., the smallest nonzero
magnetic charge allowed by Dirac’s quantization condition
in an associative treatment.

Magnetic charges of elementary particles have been
bounded by various means. Using the proton as an
example, interpreted here as the nucleus of hydrogen,
our bound is not as strong as those found based on the
total magnetic charge of a large number of nucleons in
macroscopic objects [23,24]. The large number of nucleons
in macroscopic objects implies a strong magnification
factor in the latter studies if their magnetic charges add
up. However, this method is not available for those
elementary particles that cannot be combined in stable
macroscopic objects, such as unstable particles or anti-
matter. Some of them can nevertheless be used as sub-
stitutes of the nuclear proton in hydrogenlike atoms, with
precision spectroscopic data being available in some cases
such as muonium [25] or antihydrogen [26,27]. For
instance, muonium spectroscopy with a current accuracy
of about 10~ gives us an upper bound on the muon’s
magnetic charge of gunuon < 4.5 X 107 gpirae, Which is
better than available upper bounds based on other methods.
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APPENDIX A: ALGEBRAIC DERIVATION OF
THE ASSOCIATIVE HYDROGEN SPECTRUM

It is instructive to derive the standard energy spectrum of
an electric charge in a Coulomb potential by algebraic
means, using the same subalgebra of observables generated
by (6) as employed in the main text but imposing positivity
of states not through uncertainty relations but, more
indirectly, through convergence properties of certain
expectation values expressed as power series. This deriva-
tion more closely resembles the standard derivation based
on convergence properties of norms of wave functions, but
it is still fully algebraic. However, it does not give rise to
new saturation conditions of uncertainty relations, and it is
more difficult to extend it to nonassociative systems.

In addition to the basic commutators (7), we will make
use of

with the constraint C defined in (33), as well as the
expectation-value equation

w(b P) = 2mw(b(27 + a)) (A2)

for any b € A, implied by the eigenvalue constraint (A17).
We will apply the invariance condition (41) in various
ways, and use the operator (8) in the form

(A3)

1. Kramer’s relation

Our first step is the algebraic derivation of a recurrence
relation for expectation values of integer powers of 7 in
energy eigenstates of hydrogen, known as Kramer’s rela-
tion. To this end, we derive the commutators

n
’

>

[ | = ihni",

[, P = 2inh#"~' Q + h?n(n — 1)

>

(A4)

for integer n, using induction and being careful with taking
commutators of powers because [a, [@,b]] =0 does not
always hold for abe A
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Second, invariance applied to O = m#* takes the form

0= 2o ([, &) + (0 - in)P)

ih
_L As D A _ As—1 ss=1(0) _ 5
557 @ P14 [(Q = i), P + #°7H(Q — if))
= s(P10) = (5 = o) - (5 = Vi) + o (0 - i)
s+1 (#1(2Q — ish))
2
such that
o(#710) :%Zhsa)( s=1), (A5)

Using this result, invariance applied to O = m#Q leads to

0= (0, + (0 -in)F0)
= z%hw([?s, P10) + %a)(?s[Q, ) + w([(Q — ih). #110) + w(#~1(0 — ih) )
= 50(*710%) = (s = Da*"10) + 30 (P-+ 2mir) - in(s = V(1 0) + w(* (0 = im)D)
= (s + Do(P'0%) + %w(wﬁ) + miw (51 — ihww(?s—lé)

2
(s+2)(s+1)

= —(s + Do(K#*) + (s + 3/2)w(*P) + miw(P+!) — in w(#710)
A . 2 1

—(s+ Do(RF) + (s + 3/2)w(FP) + mio(P+) + hZWw(?H ). (A6)

Equation (A2) then implies Kramer’s relation
5 s(s+2) sl s+1
0="n*(s+1) 1 =+ 1) o) + (25 + 3)maw(?) + 2(s + 2)miw(F1) (A7)

after inserting the standard angular-momentum eigenvalues of K. Incidentally, invariance applied to O = # P results in an
identity:

A A 1 A PN A A

Zo([PP.C) +w((Q - )P P) = o[ PIP) + 2 o(FP. 1) + o(((Q - ih). #|P) + w(#(Q = in)P)

=2m(s + Do(# ' Q4 + @) — itms(s + Do (#~' (A7 + ) + o7 (2mi0))
=2ma(s + Do(#7'0) 4 2mA(s + D (7 (Q — ih)) — ihms(s + 1) Ao ()
— ifimas(s + Do(#~) + 2mlo(#Q) = 0

upon using (AS5).

2. Spectrum

Equipped with Kramer’s relation, which we first shift down by one unit in s,

0= n’s <SQ4_ L (¢ + 1))0)(?"“‘2) + (25 + Dmaw(#7') + 2(s + 1) miw(#), (AB)
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we can now set up a new recurrence relation. We first
generalize Kramer’s relation to

0 = T ol(Hf(9)") = WA + Dol (7)

+ maw(2f'(#) + F L f(7) + 2miw((Ff (7)) (A9)

for any analytic function f, where derivatives of analytic
functions of 7 are interpreted in the sense of formal power
series.

Specializing f(#) to f(#) = #e7 and defining

Kks(k, ) = w(Pe™) (A10)

then gives

0=n2s(—1 —42(1 + £) + s*),_» (k. )
+ (WPk(4¢(1 +¢) = 3s(1 +5))
+4m(1 + 2s)a)k,_;(k,A)
+ (32K (1 + ) + 8m(A(1 + 5) — ka))x, (k, A)
— k(8mA + K*h?)k,y (K, A).

Again shifting s by defining Lg(k, 1) = k,_»(k, 1), we
rewrite the previous relation as the third-order linear
differential equation

0= (R2s(=1—=4£(1 +¢) + 5?)
— (Rk(4£(1 +¢) =3s(1 +5)) + 4m(1 + 25)a)0y
+ (3A2K2(1 + 5) + 8m(A(1 + 5) — ka))9?

+ k(8mA + kK*h*)03)Lg(k, A). (A11)

Since our f;(7) is a bounded operator for k > 0 and
s > 0 with lim,_,., f(#) = 0, any state should be such that
Ly(k,4) is well defined for all k >0 and s >0 with
lim_ o Ly(k,A) =0 for all A We also know that
L(k,2) is well defined for energy eigenstates at k = 0
as long as s >0 is integer, because Kramer’s relation
together with the virial theorem provides finite numbers for
expectation values of positive integer powers of 7. Under
these conditions, we can perform a Laplace-like trans-
formation and write

L(k2) = A 4, (b, d)(k+d(s,2))db
-y / "y (b4nd)(k+d(s.2) " Pdb. (A12)
n=0+0

In the first line, a,,(b,d) may be seen as the inverse
Laplace transform of L (e’ — d(s,)) with respect to ¢. As
we will see, it is convenient to introduce a free displacement

d(s,A) on which the coefficients a,, will in general
depend.

For further convenience, we now drop the explicit
dependences on s and A from our notation. Comparing
coefficients of the expansion (A12) inserted in (Al1), we
obtain the recurrence relation

Cya(b+n—-3)+Cua(b+n—-2)+Cialb+n-1)
+ Coa(b+n) =0 (A13)

with

Cy=db+n-=3)(b+n-2)(b+n—1)(d*r*>+8ml),
(A14)

Co=0B+n=-2)(b+n-1)(=3n*(b+n—-1-5)
+ 8dma —8m(b+n—1-1s)1), (A15)

Ci=(b+n-1)3dr*(b+n)(b+n+1)
+dh*(—4¢(1 4+ ¢) 4+ 3s(1 + 5)),
+ (b + n)(=6dh*(1 + 5) — 8ma) + 4ma(1 + 2s)),
(A16)

Co=—h2(b+n—s)((b+n—s?—2¢+1)). (Al7)

By definition, the support of a as a function of b is
bounded from below. If for a given solution n.;, is
the smallest integer such that a(b+ ny,) #0 while
a(b+n) =0 for n < ngyy,, the expression (A17) shows
that npy, +b—s=0 or |np, +b—s|—[2¢+1]=0.
Using the fact that Z is an integer (since we are for now
assuming the absence of a magnetic charge), » must be an
integer. This result shows that L (k, 4) allows an expansion
as a Laurent series of the form

(o]

Ly(k,2) =Y Aga(n)(k+d(s, )"

n=0

(A18)

[The original coefficients a; (b, d) introduced in (A12) are
proportional to a Dirac comb of delta functions of b
supported on the integers.]

The recurrence relation for A (n) can easily be obtained
from (A13) by absorbing b in n, ignoring the shift by b.
The relation can be simplified further by making the choice
d =+/—8ml/h for a given A, such that the lowest-order
term (at order n — 3) drops out of the recurrence. We also
choose s = 27 + 2 and obtain
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0 =2d(n—-2)(dh*(3 4+ 2¢ — n) +4ma)A(n - 2)
+ (dR2(8¢2 + £(26 — 12n) + 3(n = 3)(n — 2))
+4ma(5 4+ 4¢ —2n))A(n — 1)

—n*(n—=3-4¢)(n—-2-20)A(n) (A19)
after factoring out b 4+ n — 1. For very large n of either
sign, this recursion takes the form A(n) —3dA(n—1)+
2d*A(n —2) =0, such that any nonzero asymptotic A,
behaves either as d" or (2d)". However, these options
would introduce a pole for Lg(k, 1), either at k =0 or
k = d > 0, which cannot happen for well-defined states.
Therefore, only finitely many A(n) can be nonzero.
According to the A(n)-term in (A19), there is an N, such
that A(n) = 0 for n < N because ¢ is an integer.

For the range of n where A(n) # 0 to be bounded from
above, the first coefficient in (A19) requires

dma
d=—— A20
A2y ( )

with some positive integer v. Inserting this expression, we
obtain

0=2n+20)(n=1-v)c,_»
—(n(Bn=3-2v) +v—-40(1+7¢))c,—

+n(n—-1-2¢)c, (A21)

where

Cp =d"A o0 (A22)

There is one final condition: as all these sequences are
linear with recurrence relations that have integer coeffi-
cients (since ¢ is known to be an integer) we infer that, up
to n-independent rescalings, for a given solution all the
coefficients ¢, are integer multiples of the same basic
quantity, y. Dividing the recurrence relation by y, we have
0 = vc,_;/y mod 2 for all n, because only a single term in
the coefficients of (A21) is not guaranteed to be even. As an
overall factor of two could be absorbed into the definition
of y (and therefore c¢,_; /y may well be odd), we conclude
that v = 2N, giving

2ma
0= —— A23
and
ma
A=——u—, A24
2n°N (A24)

which is the known energy spectrum of hydrogen.

It is instructive to look at the detailed recurrence for the
case of £ = 0, which includes the ground state, such that
s = 2. For n =0 in (A21), we obtain c_; = 0. Choosing
n =1 in (A21) then shows that ¢y = 0. For n =2, we
obtain a nontrivial relation that determines ¢, in terms of a
free c;:

¢, =3(1=v/2)c. (A25)

For v = 2, the smallest allowed value is ¢, = 0, which then
implies c; = 0 at n = 3. With two successive vanishing c,,
all the following ¢, are zero. Since ¢; may be nonzero,
there is a nonzero solution, as required for a nonzero
expectation value of the positive operator 72e~%". A
nonzero c; implies through (A22) that A5 is the only
nonzero coefficient, such that

Lo(k, 2) (k n 2’"—“) - (A26)

h2

using (A18). According to its definition (A10) as an
expectation value, L, (k, 1y) = ko(k, Ay) = wo(e*") should
be the ground-state expectation value of =¥, which can
easily be confirmed to be of the form (A26) using the
known ground-state wave function y(r) « e™’/¢ with the
Bohr radius a = #%/(ma).

APPENDIX B: GENERALIZATION TO
HYDROGEN WITH A MAGNETIC
NUCLEAR CHARGE

Since most of the identities used in our new derivation of
Kramer’s relation hold true in the nonassociative case with
a pointlike magnetic monopole at the center, we can easily
generalize this relation. We only have to adjust the
spectrum of K using (84) in (A6) and obtain

0= #2(s + 1) (S(s: 2)

+ (25 4 3)maw(#*) + 2(s + 2)miw ()

-0(C+1)+ ezgz/fﬂ)a)(?s‘l)
(BI)

as a generalization of (A7).
This equation takes the form

2

h -, A\\/!
0 =" al(f(7)")

+ maw(2f'(#) + #Lf (7)) + 2miw((Ff(7))")

-2 ((¢+1) =P o7 f(7))
(82)

as a differential equation replacing (B2), which in turn
implies the equation
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0= (A*s(s*> = 1=4(£(¢ +1) — 2F*/h?))
— (4ma(2s + 1) + k(42(¢ + 1) —4e*g? /h?> — 3s(s + 1)))0y
+ (8m(s + 1) — 8kma + 3k*(1 + $)1*)0% + k(8mA + k*)h*03) Ly (k, 2)

instead of (All).
The recurrence relation (A13) still holds with the same C5 and C,, while C; and C, are replaced by

Ci=(b+n=-1)3dn*(b+n)(b+n+ 1)+ dh*(-4¢(1 + ¢) + —4e*g*/h* + 3s(1 +5))
+ (b + n)(—=6dh*(1 + s) — 8ma) + 4ma(1 + 2s))
Co=-hb+n-s5)((b+n—1s)—(20+1)*+4e*g*/h?).

The same choice d = v/—8mA/h as in the derivation of (A19) can be used to reduce the equation to second order, and it has
the same large-n behavior as before. The sequence of a,, therefore still has only finitely many nonzero elements, which is
again the case if b — s is an integer because the coefficient b 4+ n — s in the last term of the recurrence relation has not
changed. However, there is now a second possibility if » and s are such that (b + n — 5)? = (2 + 1)* — 4e*¢?> / h? for some
integer n. This condition can provide new solutions and a more complicated spectrum.

The last coefficient, (b + n — s)* — (2¢ + 1)> + 4e*¢? /2, no longer factorizes. Setting b = 0 as before, we therefore

obtain a relation,

0=2d(n-2)(n—1)(-4ma+d(-1+n—s)h*)a,_,

+ (n=1)(=4ma(2s + 1) = 3dn(1 + n)h> + d(4¢(¢ + 1) — 4e*g*/h* = 35(1 + 5))h*> + n(8ma + 6d(1 + s)h?))a,_,

+(n=s5)((n—s5)>—=(2¢ +1)* + 4e>g*/n*)A*a,,

in which the coefficient n — 1 does not cancel out as
before (for s =27 + 2) because the last coefficient no
longer factorizes in the same way. In the previous section
we have already indicated several steps in the derivation
of the standard hydrogen spectrum that would no longer
hold if # [or the effective Z in (86) if g # 0] is not an
integer.

More specifically, we again now look at the case of
¢ = 0ors = 2, comparing with the discussion at the end of
the preceding section. Now, choosing n =1 implies a
nontrivial condition, given by a; = 0, because we are no
longer able to factor out n — 1. With this value, n =2 is
then identically satisfied. At this stage, we have the same
behavior as before, with a single coefficient (a; here
corresponding to c_; before) required to be zero. At

|
n =3, we obtain a linear relationship between a, and
as, specifically

2(ma —de*q?)a, = e*¢*as. (B3)
The previous equation, ¢y =0, would correspond to
a, =0, which is implied only if ¢ =0, while a3 =0
may be implied for suitable quantized charges such that
e’g’ is an integer, given the value of d. For generic
magnetic charges g, and in particular for small ones such
that 0 # e?g?>/h?> < 1, a, and as are not independent. It is
then impossible to make the recurrence end with a nonzero
expectation value of e~*, which is a contradiction. As in
the main text, we see that the quantum number £ = 0 is
ruled out for weak magnetic charges.
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