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It is possible to implement a certain form of modified gravity inspired by loop quantization through
nonbijective canonical transformations. The canonical nature might suggest that such modifications are
guaranteed to preserve general covariance. Here, however, we show that a dedicated space-time analysis is
still required, even in the case of a bijective canonical transformation. In addition, a complete global
analysis is presented for a recent proposal of a nonbijective transformation, showing that it does not
preserve general covariance and that the only novel physical effect introduced by the modification is the
presence of certain time-reversal hypersurfaces between classical space-time regions. These results provide
further insights into the physical interpretation of modified dynamics in models of loop quantum gravity.

DOI: 10.1103/PhysRevD.103.126025

I. INTRODUCTION

Models of loop quantum gravity attempt to implement
quantum-geometry effects by using certain modifications of
the classical equations of canonical gravity. The canonical
nature, as usual, implies that general covariance is not
manifest and must be tested by dedicated means. Several
no-go results for general covariance and slicing independ-
ence in such models have recently been derived, using setups
relevant for cosmology [1] and black holes [2,3]. The only
known way to realize covariance in models of loop quantum
gravity is through a deformed version [4,5] that implies
signature change at high density or curvature when applied to
modifications commonly used in loop quantum cosmology
or loop quantum black holes [4,6—12]. (Signature change
may be avoided in some cases, but it would require
nonstandard modifications such as complex connections
[13-16], Euclidean-type gravity [17,18] or nonbouncing
background solutions [19].)

It is therefore important to explore possible alternative
modifications. In this context, the recent paper [20]
suggests applying a nonbijective canonical transformation
to the classical theory, hoping that the modified model will
be close enough to the classical system to preserve
covariance, yet different enough to be considered a modi-
fication because the transformation is not bijective. As we
will show in this paper, covariance is a subtle issue even in
this case and must be derived. Once this task has been
completed, it can be seen that the modifications are not
compatible with general covariance or slicing independ-
ence in a global space-time structure. The equations
suggested in [20] therefore do not show how models of
loop quantum gravity could be made consistent with
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general covariance, and they do not provide counter
examples to the no-go results of [1,2].

Our analysis of general covariance makes use of effective
line elements, as defined in [21]. A proper effective line
element provides a geometrical interpretation of solutions
of a modified theory of gravity. For the line element to have
a proper geometrical meaning, it must be invariant under
coordinate changes. But modified equations of a model
may well change the gauge transformations imposed on
basic fields, in particular if the model is formulated
canonically and does not make use of space-time tensors.
Therefore, the existence of suitable metric components
constructed from the basic fields of the modified theory
such that they form an invariant line element is, in general,
not guaranteed. Even if metric components exist, their
relationship with the basic fields is usually modified,
compared with the classical relationship, in order to
account for modified gauge transformations.

In [20] and elsewhere in the literature, however, the
simple classical relationship between metric components
and basic fields is mistakenly assumed to hold also in the
presence of modifications. A derivation of proper effective
line elements then corrects the resulting understanding of
space-time structure, and it reveals the global geometry
implied by solutions of the modified theory. As a result, so-
lutions of [20] are simply concatenations of classical space-
time regions, separated by time-reversal hypersurfaces.
These hypersurfaces, derived in more detail in Sec. III B
below, are implicitly defined by time derivatives of cano-
nical fields changing sign in a discontinuous manner. Their
presence makes it possible for extrinsic curvature to re-
main bounded. However, they can be defined only using
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noninvariant quantities, thus violating covariance on a
global level.

In addition to the suggestion made in [20], we will also
consider the case of a bijective canonical transformation.
Such a transformation should, of course, exactly preserve
physical properties of the classical theory, including general
covariance. Nevertheless, we will see that space-time struc-
ture in such a “modified” canonical theory is nontrivial and
requires a dedicated analysis before physical conclusions can
be drawn. The model therefore provides an instructive
example: Even though it is unable to imply new physics,
acareless analysis might wrongly suggest new effects such as
singularity resolution. These lessons will then be applied to
the model proposed in [20]. They are also relevant more
broadly in a large number of models of loop quantum gravity
in which line elements have been used for modified theories
without confirming their geometrical validity [3].

The results of the present paper demonstrate the impor-
tance of considering properly defined effective line ele-
ments to express solutions of equations of motion in
modified canonical theories of gravity. They also underline
the highly nontrivial nature of covariance in models of loop
quantum gravity, which turns out to be violated even by the
minimal modifications suggested in [20], based on a
canonical transformation from the classical theory.

II. SPACE-TIME ANALYSIS

The aim of this paper is to present a detailed space-time
analysis of the model introduced in [20] and related
examples. Since the model is canonical, we use methods
of canonical gravity (see [22,23] for details).

A. Variables and transformations

Canonical gravity of spherically symmetric models is
described by line elements of the form [24]

ds? = —=N2dP? + g, (dx + Mdr)> + q,,,,(d9? + sin® 9dp).
(1)

The spatial part is determined by two functions, ¢,, and
d¢y> depending on the radial position x as well as time 7,
while the lapse function N and shift vector M, also
depending on x and ¢, describe its extension to space-time.
In spherically symmetric models of loop quantum gravity
[25,26], one usually replaces metric components with
components E* and E? of a densitized triad, such that

(E(/}>2 X
9xx = |EX , Qo = |E | (2)

In what follows it will be sufficient to assume E* > 0,
fixing the orientation of space.

The triad components are, up to constant factors,
canonically conjugate to components of extrinsic curvature,
K, and Kq,, such that

{K(x1), E¥(x2)} = 2G8(x, x2), (3)

{an(xl)vE(p(xz)} = G&(xy, x2), (4)

with Newton’s constant G. Extrinsic curvature depends on
time and space derivatives of the densitized triad (as well as
lapse and shift) in a way that may be modified in models
of loop quantum gravity. We will not need the precise
relationships but only use the canonical structure.

Depending on the time gauge, equations of motion for
the basic phase-space variables are generated by combi-
nations of the Hamiltonian constraint, H[N], and the
diffeomorphism constraint, D[M]. We will not need the
precise form of these expressions either but only refer to
their nature as gauge generators of deformations of spatial
hypersurfaces in space-time. These transformations corre-
spond to classical space-time [27] provided the constraints
obey Dirac’s hypersurface-deformation brackets [28], in
particular

{H[N\]. H[N|} = =D[E*(E*)2(N Ny = N'N>)]. - (5)

The presence of a phase-space dependent structure func-
tion, E¥(E*)~2, implies that the structure of space-time is
sensitive to modifications of the constraints.

As shown in [29], the structure function can be elimi-
nated in an equivalent constrained system obtained by
suitable combinations of H and D. This construction has
also been used in the recent analysis of [20]. However,
based on [27], the behavior of hypersurface deformations
and therefore of general covariance and slicing independ-
ence requires a bracket of the form (5) for the generators of
normal deformations of spatial hypersurfaces. Discussions
of covariance therefore cannot avoid referring to this
relationship, especially in attempted modifications.

The main ingredient in models of loop quantum gravity
is a substitution of (almost) periodic functions of con-
nection or extrinsic-curvature components for the classical
quadratic dependence in the Hamiltonian constraint. If this
substitution is done only in these places, and in a careful
way relating different substitution functions to one another,
the bracket (5) in vacuum is modified by a new factor of the
structure function such that the structure of space-time is
nonclassical [30-32]. (See [33,34] for an analogous result
in the cosmological context.) In the presence of a scalar
field, no such substitution is known that preserves the form
of (5) even if one accepts modifications of the structure
function [35].

The authors of [20] suggest that this difficulty may be
overcome if one uses a canonical transformation instead of
substitution. For the gravitational variables, they propose to
transform from the pair (K, E*) to a new pair (K, E?)
such that
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_ M E? — L (6)
’ ¢ cos(¢K,)

The pair (K,, E*) remains unchanged. There is a similar
transformation for a scalar matter field, which we do not
use explicitly here because (6) is sufficient for a discussion
of space-time structure: The scalar field does not appear in
the structure function of (5).

Expressed in terms of the new variables, the Hamiltonian
constraint depends on K, o through a periodic function, as in
standard modifications, while the dependence of E” on K, P
leads to new modifications in metric functions not consid-
ered before. The hope is that these new modifications may
preserve general covariance because the model is obtained
by a canonical transformation from a covariant theory. At
the same time, only a bounded range of K, is realized for an

infinite range of K, »» Which could introduce new physical
effects and help with the resolution of singularities.

B. Bijective canonical transformation

The model of [20] is based on a canonical transformation
of the classical theory which is not bijective, and therefore
need not be completely equivalent to classical gravity. It
may therefore be considered a modified version of spheri-
cally symmetric general relativity. The case of a bijective
canonical transformation, by contrast, could be deemed too
trivial to be worthy of attention because it cannot lead to
new physics. It is nevertheless instructive to see how a
dedicated space-time analysis would proceed if we were
faced with a proposed modified theory without knowing
that it is simply obtained by a bijective canonical trans-
formation from classical general relativity.

The setup is therefore as follows: We are given a
canonical theory with canonical pairs (K,,E?) and
(K,,E*) and perhaps some matter fields, as well as a
consistent set of diffeomorphism and Hamiltonian con-
straints in these variables. The consistent constraints have
been derived by applying a bijective canonical transforma-
tion

E?

K, =f(K,) E? :m

(7)

to the constraints of classical spherically symmetric gravity
in canonical form, where f is a monotonic function such
that f(K,) ~ K, for K, sufficiently small compared with
some reference scale. Given these conditions, f may well
be such that the full range of K, is mapped to a finite range
of K » iIn which case the transformation would be bijective
provided the new variable K, » 18 always restricted to this
finite range. In spite of the underlying equivalence with
classical gravity, one could therefore claim that consistent
constraints imply new physics and that singularities are

resolved because curvature (K ») Tremains bounded, all
while preserving general covariance.

More generally, we could assume a bijective two variable
transformation

K,=/f1(K,E?).  E”=[f,(K, E?) (8
such that {f/, f»} = G. It would not be straightforward to
reconstruct this transformation if we were just given the
resulting constraints. How would we then spot possible
erroneous claims of new physics and show that the theory
is, in fact, completely equivalent to spherically symmetric
general relativity?

To some extent, the situation is comparable to the task of
telling that a “new” solution of general relativity has just
been obtained from a well-known one by a coordinate
transformation. Like a canonical transformation, a coor-
dinate transformation, if incompletely analyzed, could also
suggest bounded curvature if it maps a finite space-time
region that does not include singularities into a full infinite
range of a new coordinate. In this case, there are standard
methods to analyze the global meaning of solutions, for
instance by checking geodesic completeness to determine
whether an infinite range of some coordinate amounts to an
infinite geometric distance, or just to some finite interval.

At this point, however, the two examples of a canonical
transformation and a coordinate transformation start to
differ conceptually. While any coordinate transformation
preserves space-time structure and covariance, a canonical
transformation need not do so. In particular, a coordinate
transformation gives us an unambiguous new metric to be
used for a geometrical derivation. But a canonical trans-
formation, without further analysis, does not tell us whether
some new field E“ can indeed be used in a metric
component just like the original E?, or whether the new
K o 1s indeed a curvature component with the same
geometrical meaning as K,. At this point, at the latest,
we should become suspicious of claims about eliminated
singularities in a bijectively transformed theory because a
bounded K » does not necessarily imply bounded curvature.
How do we turn our suspicion into a proof that the
singularity claims are incorrect?

C. Effective line elements

A canonical space-time analysis gives us a clear answer
to the questions posed in the preceding subsection.
Solutions of a modified canonical theory of gravity are
not necessarily geometrical, that is, one cannot simply
assume that inserting some E? instead of E in (2) results in
a well-defined space-time line element of the form (1) with
the same lapse N and shift M as used in the relevant
equations of motion. Any line element ds? = g,zdx*dx”,
by definition, has to be invariant with respect to a
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combination of coordinate transformations of dx® and
gauge transformations of the canonical metric components.

While dx and drf in (1) still transform like standard
coordinate differentials after applying a canonical trans-
formation such as (6), (7) or (8), the new field E# does not
have the same (gauge) transformation behavior as the
classical E? because the transformation depends on f(q,
which, like K, is not a space-time scalar. Therefore, using
a modified £ in ¢,, for (1) implies that modified metric
components no longer transform in a way dual to coor-
dinate differentials, and the line element is not invariant.
Geometrical derivations from such an expression are
meaningless because they depend on coordinate choices.
(One could try to modify the transformations of dx and dz to
compensate for the modified gauge transformations of E?,
for instance by using nonclassical manifolds. However, no
such manifold structure is known for the specific mod-
ifications discussed here. For the example of noncommu-
tative manifolds from the perspective of hypersurface
deformations, see [36].)

As shown in [21], it is sometimes possible to apply a
field redefinition to canonical fields in a modified theory so
as to bring their gauge transformations to a form required
for an invariant effective line element. In the present case,
one can use methods introduced in nnn to find a suitable
field redefinition of E?, which can be summarized as
follows: A field E that, together with its conjugate K,
appears in the Hamiltonian and diffeomorphism constraints
of a canonical theory plays the role of a metric component
as in (2) if and only if the Poisson bracket of two
Hamiltonian constraints equals (5). In the bijectively trans-
formed theory, however, this bracket is replaced by

{H[N ], H[N,]}
= —D[E*f,(K,. E*)*(N\N, = N|N>). ~ (9)

or

{H[N1], H[N>]}
= —D|(df/dK,)E*(E”)2(N\Ny = NiN)]  (10)

in the simpler one-variable transformation. Therefore,
using £ in (2) does not yield a legitimate metric compo-
nent, and K » 18 not a component of extrinsic curvature.
In order to derive the correct space-time structure and a
meaningful metric, we should find a suitable function £ of
E” and K, in terms of which the Poisson bracket of two
Hamiltonian constraints takes on the classical form (5). It is
easy to see that EY = E? is just the classical field in (9) or
(10). Completing this substitution to a canonical trans-
formation then leads us back to the classical K, from K pe
and inserting this transformation in the constraints tells us
that the theory is nothing but classical. [The canonical

conjugate K, of some function E? on the phase space
(K, E?) is not uniquely determined because any function
of E¥ could be added to K, while maintaining the nature of
a canonical conjugate. However, this freedom is eliminated
by the boundary condition that K, ~ K o for K » small with
respect to some scale used in the model.] At this point, we
would have debunked any potential claims of new physics
and singularity resolution.

Our example is artificial and deals with a trivial
modification of classical general relativity. It is nevertheless
instructive because it shows the importance of a dedicated
analysis of space-time structure in canonical terms. It is also
relevant because arguments comparable to some ingre-
dients of our example have often been made in models of
loop quantum gravity. These models deal with actual
modifications of classical gravity and there is a possibility
for new physics to emerge. But also in this case, it is often,
and incorrectly, assumed that some field £¢ that shows
some semblance to the classical E¥ can be used to define a
meaningful metric component using (2). This geometrical
interpretation is possible only if E? is such that the Poisson
bracket of two Hamiltonian constraints equals (5) where E¥
is simply replaced by E¥, without introducing any multi-
plicative factor or other modifications of the structure
function. Unfortunately, this condition is rarely realized
in models of loop quantum gravity, which often do not even
check that the Poisson bracket of two Hamiltonian con-
straints remains closed after modifications.

III. POLYMERIZED MODELS

In the case of [20], it is clear that the bracket of two
Hamiltonian constraints remains closed after applying a
nonbijective canonical transformation. Moreover, the
modification is nontrivial because the canonical trans-
formation used in this case, given by (6), is not bijective.
As seen in the preceding subsection, however, a dedicated
space-time analysis is necessary to interpret the theory even
in the case of a bijective transformation. It should then
certainly be performed also in the nonbijective case, but this
has not been attempted in [20]. It is therefore unclear
whether physical statements suggested there are correct.

The modified theory has Hamiltonian constraints such
that

{H[N\], H[N,]}
= —D[cos*(¢K,)E*(E?)™>(N\N5 — N\N,)], (11)

with a modified structure function, obtained by simply
applying the canonical transformation to (5). Since the
modification introduces new zeros of the structure function
at K, =1(2n+ 1)z with integer n, it eliminates some
contributions of the diffeomorphism constraint from the
right-hand side. The presence of structure functions implies
that generators of hypersurface deformations form a Lie
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algebroid [37-39] over phase space, labeling independent
contributions from the constraints. New zeros in the
structure function introduced by the transformation mean
that the algebroid gains new Abelian subalgebroids by
restriction to the zero-level sets of the structure function.
The algebraic structure is therefore inequivalent to its
classical form. (The authors of [20] claim that the modi-
fication “preserves the constraint algebra,” which presum-
ably refers to a partial Abelianization of the generators as in
[29]. However, as shown in [35], such a reformulation of
the constraints is not sufficient for a discussion of general
covariance and space-time structure.)

An algebraic structure inequivalent to that determined by
the classical constraints implies that its relationship to
standard hypersurface deformations is not obvious.
Covariance is therefore nontrivial in the modified system.
The nonbijective nature of the canonical transformation
employed now to obtain the modification is precisely the
reason why there are additional zeros in the modified
structure function of hypersurface-deformation brackets.
According to [20], the nonbijective nature of the trans-
formation might provide a chance for the modified theory
to describe new physical effects, but it is also the reason
why covariance is no longer obvious even though the
modification has been obtained by canonically transform-
ing a covariant theory. (The claim “It has the advantage that
it is a canonical transformation from the original variables.
That means that it preserves the constraint algebra and the
covariance of the theory, which previous choices did not.”
of [20] is therefore unjustified.) In the presence of modified
hypersurface deformations with an inequivalent algebraic
structure, covariance has to be derived by a careful analysis
of generic solutions and their geometrical meaning, using
effective line elements.

A. Local solutions

Local solutions for E” and K, can be derived without
explicitly solving modified equations of motion because
they can simply be obtained by applying a local (in phase
space) inverse of the canonical transformation (6) to a
classical solution in canonical form. Starting at small K,
for the classical solution, any modified local solution K 0
remains valid until £K, reaches the values +1, the local
extrema of sin(ZK ») Where the canonical transformation is
no longer invertible.

If one were to solve modified equations directly for
(K, E?), starting with some initial values, it would be
possible to cross regions where 7K. 0= :E%ﬂ', again corre-
sponding to the first local extrema of sin(ff(q,) close to
small ZK,. Such an extension of the local solution is no
longer a simple local inverse of the canonical transforma-
tion, and presumably gives rise to “novel phenomena” that
are, according to [20], introduced by the modification.

However, a solution in the range where £K 0> %7[ (the
case of ff(,p < —%7[ being analogous) and ff(q, < %ﬂ', can
again be interpreted as a local inverse of (6), but one that
makes use of a different branch of the arcsine compared
with the initial region at |£K,| <%z The canonical
transformation therefore provides a classical analog in
any range of #K, that excludes the values 1(2n+ 1)z
with integer n. While the analogous K, is always bounded
thanks to (6), there is no upper limit on K » beyond which
classical analogs would no longer exist.

We have obtained a direct correspondence between local
solutions in the classical and modified theories. The next
question we have to address is whether physics or geometry
in the modified theory should be based on the field K » and
its conjugate £, or on their local classical analogs K. o and
E?. This question is relevant for the application presented
in [20], in which critical collapse is studied numerically by
evaluating a “black hole mass.” Unfortunately, [20] does
not specify how this mass is obtained, but presumably it
refers to a mass parameter extracted in the usual way from a
line element, constructed from E? rather than E? in the
modified theory. We therefore have to analyze how a
meaningful line element can be obtained in the modified
theory. As discussed in Sec. II C, a meaningful effective
line element requires specific transformation properties to
hold for its coefficients.

B. Global structure

Using local inverses of the canonical transformation, we
have obtained local solutions in canonical form, resulting in
evolutions of K » and E? depending on some time coor-
dinate implicitly determined by lapse and shift. Such a
solution of equations of motion in a modified theory is not
necessarily geometrical. As in our example of a bijective
canonical transformation, using methods of [40], a field
redefinition of E? is necessary before we can apply
effective line elements. Not surprisingly, this field redefi-
nition is again an application of the canonical transforma-
tion (6), mapping E? back to E¥ which clearly has the
correct transformation behavior for a well-defined line
element to result from (2) and (1).

Methods of effective line elements therefore show that
physics and geometry in the modified theory should be
based on the classical analogs found in the previous
subsection, and not on the modified solutions I~((/, and
E?. In any region in which (6) is locally invertible, the
modified theory simply describes a transformed version of
classical gravity. Any potential for new physical effects is
restricted to subsets of measure zero in phase space and
(generically) space-time. In order to understand their
meaning, we have to determine how different regions of
classical analogs may be connected in an effective space-
time picture of global form.
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So far, we have obtained formal piecewise solutions for
the canonical fields I~{q, and E? as well as effective line
elements that faithfully describe their geometrical meaning,
based on field redefinitions. The final question is how these
piecewise solutions can be glued back together to obtain a
global space-time picture. Such a gluing cannot be based on
classical matching conditions because they would simply
lead to a global classical solution that does not respect the
boundedness of K, implied by (6).

Given a solution for K » and E?, a classical analog and an
effective line element is obtained by applying the canonical
transformation (6). Since the transformation is not bijective,
different ranges of K », may correspond to the same classical
geometry. If we first restrict ourselves to ranges of i(w in
which the transformation is invertible, the corresponding
phase-space region corresponds, via the effective line
element, to a region in space-time which generically is
incomplete because it is cut off at fixed values of K. A
global solution therefore requires an extension through the
hypersurfaces on which #K,, = 1 (2n + 1)z with integer n.

It is easy to see how different regions are connected if we
first focus on two neighbors, such as the low-curvature
region, called region I where |/K »| <3, and a region II

where %ﬂ' <?K, < %ﬂ'. For a transition from region I to

region II to happen, f(q, > (0 when ff(q, = %ﬂ.’, which by
continuity extends to a region around the transition hyper-
surface. Since K, is a continuous function of f{(p, it
approaches the same value at the transition hypersurface
from both regions, given by K, = 1. Applying (6), we see
that the corresponding analog solutions K, behave like
time reversed versions in a neighborhood of the transition

hypersurface; f(¢ =7 cos(ff((/,)f((/, has opposite signs on
the two sides of the transition hypersurface because
cos(ff(,p) has opposite signs in the two regions while

K, > 0 as we already saw.

For the same reason, E” has opposite signs on the two
sides and, unlike K, is not continuous because it goes
through infinity if £ remains finite. (The classical equa-
tions of motion imply that K, is proportional to E* rather
than E?, such that it may remain regular while £ grows
without bounds.) Therefore, the time derivative of the
absolute value |E?|, which is relevant for ¢, in (2), has
opposite signs on the two sides; The second term in

qu o~
E? N
E?|" = E? —+7 ——sin(ZK,)K
(7" = sen( )<cos(fK,/,) cos?(¢K,,) sin(¢K,) q’)
E?) - 2
e SE) pug k, (12)
cos*(ZK,,)

is dominant near the hypersurface and enjoys the required
sign property. The geometry in region II can therefore be

interpreted as a time-reversed classical solution compared
with the time direction in region I. (It is not necessarily a
time reversal of the same solution as in region I because E?
is not continuous across the transition hypersurface.)

Applying this result to all transitions, we see that a global
solution of the modified theory is a concatenation of
infinitely many classical regions with alternating orienta-
tions of time. In each region, the geometry is indistingui-
shable from a classical solution. The only new physics
therefore resides in the time reversals, which make it
possible for K, to remain bounded.

C. Noncovariance

In each local region, the geometry is coordinate and
slicing independent provided the changes of coordinates
and slicings are sufficiently “small” such that they do not
leave the range of K, relevant for the region. (We can apply
slicing independence only in the classical analogs, where
the correct version (5) of hypersurface deformations holds.)
Globally, space-time in this model could be covariant only
if the reversal surfaces were covariantly defined, but this is
not the case; They refer to fixed values of #K, = +1, and
K, is not a space-time scalar.

Choosing a different slicing in a classical analog in
general shifts the positions of time reversal surfaces. A
complete solution for K » and E? therefore violates slicing
independence, even after it has locally been mapped to a
suitable effective line element. For instance, in a vacuum
solution there would be no time reversals outside the
horizon in a Schwarzschild slicing, but there are other
exterior slicings in which K, can be large and trigger time
reversal in the modified geometry. Even with minimal
modifications introduced by the model, general covariance
is violated.

IV. CONCLUSIONS

We have presented a detailed analysis of space-time
structure in models obtained by bijective or nonbijective
canonical transformations of classical gravity. Although the
bijective case is completely equivalent to classical gravity, a
space-time analysis is nontrivial because the equivalence
may be hidden if complicated canonical transformations are
applied. Our discussion showed that basic fields of a
modified theory, in general, cannot be identified directly
with metric components that play the same role as their
classical counterparts.

While such a model would be considered trivial from the
perspective of modified gravity, it is nevertheless instruc-
tive because it highlights the subtle nature of space-time
structure in canonical theories. In particular, the importance
of identifying suitable metric components or effective
line elements constructed from the basic fields of a
canonical modified theory remains highly relevant if the
theory is genuinely modified. The nontrivial nature of such
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identifications has often been overlooked in models of loop
quantum gravity.

We applied our detailed construction of effective line
elements that consistently describe the space-time geom-
etry of solutions to the modified theory introduced in [20].
This model uses a nonbijective canonical transformation
and is therefore inequivalent to classical gravity. However,
we have shown that the only new physical effect is the
introduction of time-reversal surfaces connecting classical
space-time regions. This observation corrects the claim “As
the canonical transformation is not invertible in the whole
of phase space it still allows to have the usual novel
phenomena that loop quantizations introduce in regions
where one expects general relativity not to be valid, like
close to singularities.” made in [20]. Locally, general
relativity is valid in all regions of the modified theory,
without any novel phenomena that have been claimed
previously in loop quantizations. Our constructions also
show that effective geometries described by the model

depend only on the local extrema of the function K (p(f( o)
The specific sine function, usually motivated by expres-
sions of holonomies used in loop quantum gravity, does not
matter at all.

Even though the modifications are obtained by a canonical
transformation of a covariant theory, their global solutions
violate covariance precisely at those places where “novel
phenomena’ happen. This outcome heightens the covariance
crisis of loop quantum gravity; Even a minor modification of
the classical equations, inspired by loop quantum gravity but
implemented by a canonical transformation, is in conflict
with the requirement of general covariance.
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