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It is possible to implement a certain form of modified gravity inspired by loop quantization through

nonbijective canonical transformations. The canonical nature might suggest that such modifications are

guaranteed to preserve general covariance. Here, however, we show that a dedicated space-time analysis is

still required, even in the case of a bijective canonical transformation. In addition, a complete global

analysis is presented for a recent proposal of a nonbijective transformation, showing that it does not

preserve general covariance and that the only novel physical effect introduced by the modification is the

presence of certain time-reversal hypersurfaces between classical space-time regions. These results provide

further insights into the physical interpretation of modified dynamics in models of loop quantum gravity.
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I. INTRODUCTION

Models of loop quantum gravity attempt to implement

quantum-geometry effects by using certain modifications of

the classical equations of canonical gravity. The canonical

nature, as usual, implies that general covariance is not

manifest and must be tested by dedicated means. Several

no-go results for general covariance and slicing independ-

ence in suchmodels have recently been derived, using setups

relevant for cosmology [1] and black holes [2,3]. The only

known way to realize covariance in models of loop quantum

gravity is through a deformed version [4,5] that implies

signature change at high density or curvaturewhen applied to

modifications commonly used in loop quantum cosmology

or loop quantum black holes [4,6–12]. (Signature change

may be avoided in some cases, but it would require

nonstandard modifications such as complex connections

[13–16], Euclidean-type gravity [17,18] or nonbouncing

background solutions [19].)
It is therefore important to explore possible alternative

modifications. In this context, the recent paper [20]
suggests applying a nonbijective canonical transformation
to the classical theory, hoping that the modified model will
be close enough to the classical system to preserve
covariance, yet different enough to be considered a modi-
fication because the transformation is not bijective. As we
will show in this paper, covariance is a subtle issue even in
this case and must be derived. Once this task has been
completed, it can be seen that the modifications are not
compatible with general covariance or slicing independ-
ence in a global space-time structure. The equations
suggested in [20] therefore do not show how models of
loop quantum gravity could be made consistent with

general covariance, and they do not provide counter

examples to the no-go results of [1,2].

Our analysis of general covariance makes use of effective

line elements, as defined in [21]. A proper effective line

element provides a geometrical interpretation of solutions

of a modified theory of gravity. For the line element to have

a proper geometrical meaning, it must be invariant under

coordinate changes. But modified equations of a model

may well change the gauge transformations imposed on

basic fields, in particular if the model is formulated

canonically and does not make use of space-time tensors.

Therefore, the existence of suitable metric components

constructed from the basic fields of the modified theory

such that they form an invariant line element is, in general,

not guaranteed. Even if metric components exist, their

relationship with the basic fields is usually modified,

compared with the classical relationship, in order to

account for modified gauge transformations.

In [20] and elsewhere in the literature, however, the

simple classical relationship between metric components

and basic fields is mistakenly assumed to hold also in the

presence of modifications. A derivation of proper effective

line elements then corrects the resulting understanding of

space-time structure, and it reveals the global geometry

implied by solutions of the modified theory. As a result, so-

lutions of [20] are simply concatenations of classical space-

time regions, separated by time-reversal hypersurfaces.

These hypersurfaces, derived in more detail in Sec. III B

below, are implicitly defined by time derivatives of cano-

nical fields changing sign in a discontinuous manner. Their

presence makes it possible for extrinsic curvature to re-

main bounded. However, they can be defined only using
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noninvariant quantities, thus violating covariance on a

global level.

In addition to the suggestion made in [20], we will also

consider the case of a bijective canonical transformation.

Such a transformation should, of course, exactly preserve

physical properties of the classical theory, including general

covariance. Nevertheless, we will see that space-time struc-

ture in such a “modified” canonical theory is nontrivial and

requires a dedicated analysis before physical conclusions can

be drawn. The model therefore provides an instructive

example: Even though it is unable to imply new physics,

a careless analysismightwrongly suggest neweffects such as

singularity resolution. These lessons will then be applied to

the model proposed in [20]. They are also relevant more

broadly in a large number of models of loop quantum gravity

in which line elements have been used for modified theories

without confirming their geometrical validity [3].

The results of the present paper demonstrate the impor-

tance of considering properly defined effective line ele-

ments to express solutions of equations of motion in

modified canonical theories of gravity. They also underline

the highly nontrivial nature of covariance in models of loop

quantum gravity, which turns out to be violated even by the

minimal modifications suggested in [20], based on a

canonical transformation from the classical theory.

II. SPACE-TIME ANALYSIS

The aim of this paper is to present a detailed space-time

analysis of the model introduced in [20] and related

examples. Since the model is canonical, we use methods

of canonical gravity (see [22,23] for details).

A. Variables and transformations

Canonical gravity of spherically symmetric models is

described by line elements of the form [24]

ds2 ¼ −N2dt2 þ qxxðdxþMdtÞ2 þ qφφðdϑ
2 þ sin2 ϑdφÞ:

ð1Þ

The spatial part is determined by two functions, qxx and

qφφ, depending on the radial position x as well as time t,

while the lapse function N and shift vector M, also

depending on x and t, describe its extension to space-time.

In spherically symmetric models of loop quantum gravity

[25,26], one usually replaces metric components with

components Ex and Eφ of a densitized triad, such that

qxx ¼
ðEφÞ2

jExj
; qφφ ¼ jExj: ð2Þ

In what follows it will be sufficient to assume Ex > 0,

fixing the orientation of space.

The triad components are, up to constant factors,

canonically conjugate to components of extrinsic curvature,

Kx and Kφ, such that

fKxðx1Þ; E
xðx2Þg ¼ 2Gδðx1; x2Þ; ð3Þ

fKφðx1Þ; E
φðx2Þg ¼ Gδðx1; x2Þ; ð4Þ

with Newton’s constant G. Extrinsic curvature depends on
time and space derivatives of the densitized triad (as well as

lapse and shift) in a way that may be modified in models

of loop quantum gravity. We will not need the precise

relationships but only use the canonical structure.

Depending on the time gauge, equations of motion for

the basic phase-space variables are generated by combi-

nations of the Hamiltonian constraint, H½N�, and the

diffeomorphism constraint, D½M�. We will not need the

precise form of these expressions either but only refer to

their nature as gauge generators of deformations of spatial

hypersurfaces in space-time. These transformations corre-

spond to classical space-time [27] provided the constraints

obey Dirac’s hypersurface-deformation brackets [28], in

particular

fH½N1�; H½N2�g ¼ −D½ExðEφÞ−2ðN1N
0
2
− N0

1
N2Þ�: ð5Þ

The presence of a phase-space dependent structure func-

tion, ExðEφÞ−2, implies that the structure of space-time is

sensitive to modifications of the constraints.

As shown in [29], the structure function can be elimi-

nated in an equivalent constrained system obtained by

suitable combinations of H and D. This construction has

also been used in the recent analysis of [20]. However,

based on [27], the behavior of hypersurface deformations

and therefore of general covariance and slicing independ-

ence requires a bracket of the form (5) for the generators of

normal deformations of spatial hypersurfaces. Discussions

of covariance therefore cannot avoid referring to this

relationship, especially in attempted modifications.

The main ingredient in models of loop quantum gravity

is a substitution of (almost) periodic functions of con-

nection or extrinsic-curvature components for the classical

quadratic dependence in the Hamiltonian constraint. If this

substitution is done only in these places, and in a careful

way relating different substitution functions to one another,

the bracket (5) in vacuum is modified by a new factor of the

structure function such that the structure of space-time is

nonclassical [30–32]. (See [33,34] for an analogous result

in the cosmological context.) In the presence of a scalar

field, no such substitution is known that preserves the form

of (5) even if one accepts modifications of the structure

function [35].

The authors of [20] suggest that this difficulty may be

overcome if one uses a canonical transformation instead of

substitution. For the gravitational variables, they propose to

transform from the pair ðKφ; E
φÞ to a new pair ðK̃φ; Ẽ

φÞ
such that
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Kφ ¼
sinðlK̃φÞ

l
; Eφ ¼

Ẽφ

cosðlK̃φÞ
: ð6Þ

The pair ðKx; E
xÞ remains unchanged. There is a similar

transformation for a scalar matter field, which we do not

use explicitly here because (6) is sufficient for a discussion

of space-time structure: The scalar field does not appear in

the structure function of (5).

Expressed in terms of the new variables, the Hamiltonian

constraint depends on K̃φ through a periodic function, as in

standard modifications, while the dependence of Eφ on K̃φ

leads to new modifications in metric functions not consid-

ered before. The hope is that these new modifications may

preserve general covariance because the model is obtained

by a canonical transformation from a covariant theory. At

the same time, only a bounded range ofKφ is realized for an

infinite range of K̃φ, which could introduce new physical

effects and help with the resolution of singularities.

B. Bijective canonical transformation

The model of [20] is based on a canonical transformation

of the classical theory which is not bijective, and therefore

need not be completely equivalent to classical gravity. It

may therefore be considered a modified version of spheri-

cally symmetric general relativity. The case of a bijective

canonical transformation, by contrast, could be deemed too

trivial to be worthy of attention because it cannot lead to

new physics. It is nevertheless instructive to see how a

dedicated space-time analysis would proceed if we were

faced with a proposed modified theory without knowing

that it is simply obtained by a bijective canonical trans-

formation from classical general relativity.

The setup is therefore as follows: We are given a

canonical theory with canonical pairs ðK̃φ; Ẽ
φÞ and

ðKx; E
xÞ and perhaps some matter fields, as well as a

consistent set of diffeomorphism and Hamiltonian con-

straints in these variables. The consistent constraints have

been derived by applying a bijective canonical transforma-

tion

Kφ ¼ fðK̃φÞ; Eφ ¼
Ẽφ

df=dK̃φ

ð7Þ

to the constraints of classical spherically symmetric gravity

in canonical form, where f is a monotonic function such

that fðK̃φÞ ≈ K̃φ for K̃φ sufficiently small compared with

some reference scale. Given these conditions, f may well

be such that the full range of Kφ is mapped to a finite range

of K̃φ in which case the transformation would be bijective

provided the new variable K̃φ is always restricted to this

finite range. In spite of the underlying equivalence with

classical gravity, one could therefore claim that consistent

constraints imply new physics and that singularities are

resolved because curvature (K̃φ) remains bounded, all

while preserving general covariance.

More generally, we could assume a bijective two variable

transformation

Kφ ¼ f1ðK̃φ; Ẽ
φÞ; Eφ ¼ f2ðK̃φ; Ẽ

φÞ ð8Þ

such that ff1; f2g ¼ G. It would not be straightforward to

reconstruct this transformation if we were just given the

resulting constraints. How would we then spot possible

erroneous claims of new physics and show that the theory

is, in fact, completely equivalent to spherically symmetric

general relativity?

To some extent, the situation is comparable to the task of

telling that a “new” solution of general relativity has just

been obtained from a well-known one by a coordinate

transformation. Like a canonical transformation, a coor-

dinate transformation, if incompletely analyzed, could also

suggest bounded curvature if it maps a finite space-time

region that does not include singularities into a full infinite

range of a new coordinate. In this case, there are standard

methods to analyze the global meaning of solutions, for

instance by checking geodesic completeness to determine

whether an infinite range of some coordinate amounts to an

infinite geometric distance, or just to some finite interval.

At this point, however, the two examples of a canonical

transformation and a coordinate transformation start to

differ conceptually. While any coordinate transformation

preserves space-time structure and covariance, a canonical

transformation need not do so. In particular, a coordinate

transformation gives us an unambiguous new metric to be

used for a geometrical derivation. But a canonical trans-

formation, without further analysis, does not tell us whether

some new field Ẽφ can indeed be used in a metric

component just like the original Eφ, or whether the new

K̃φ is indeed a curvature component with the same

geometrical meaning as Kφ. At this point, at the latest,

we should become suspicious of claims about eliminated

singularities in a bijectively transformed theory because a

bounded K̃φ does not necessarily imply bounded curvature.

How do we turn our suspicion into a proof that the

singularity claims are incorrect?

C. Effective line elements

A canonical space-time analysis gives us a clear answer

to the questions posed in the preceding subsection.

Solutions of a modified canonical theory of gravity are

not necessarily geometrical, that is, one cannot simply

assume that inserting some Ẽφ instead of Eφ in (2) results in

a well-defined space-time line element of the form (1) with

the same lapse N and shift M as used in the relevant

equations of motion. Any line element ds2 ¼ gαβdx
αdxβ,

by definition, has to be invariant with respect to a
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combination of coordinate transformations of dxα and

gauge transformations of the canonical metric components.

While dx and dt in (1) still transform like standard

coordinate differentials after applying a canonical trans-

formation such as (6), (7) or (8), the new field Ẽφ does not

have the same (gauge) transformation behavior as the

classical Eφ because the transformation depends on K̃φ

which, like Kφ, is not a space-time scalar. Therefore, using

a modified Ẽφ in qxx for (1) implies that modified metric

components no longer transform in a way dual to coor-

dinate differentials, and the line element is not invariant.

Geometrical derivations from such an expression are

meaningless because they depend on coordinate choices.

(One could try to modify the transformations of dx and dt to

compensate for the modified gauge transformations of Ẽφ,

for instance by using nonclassical manifolds. However, no

such manifold structure is known for the specific mod-

ifications discussed here. For the example of noncommu-

tative manifolds from the perspective of hypersurface

deformations, see [36].)

As shown in [21], it is sometimes possible to apply a

field redefinition to canonical fields in a modified theory so

as to bring their gauge transformations to a form required

for an invariant effective line element. In the present case,

one can use methods introduced in nnn to find a suitable

field redefinition of Ẽφ, which can be summarized as

follows: A field Eφ that, together with its conjugate Kφ,

appears in the Hamiltonian and diffeomorphism constraints

of a canonical theory plays the role of a metric component

as in (2) if and only if the Poisson bracket of two

Hamiltonian constraints equals (5). In the bijectively trans-

formed theory, however, this bracket is replaced by

fH½N1�; H½N2�g

¼ −D½Exf2ðK̃φ; Ẽ
φÞ−2ðN1N

0
2
− N0

1
N2Þ�; ð9Þ

or

fH½N1�; H½N2�g

¼ −D½ðdf=dK̃φÞ
−2ExðẼφÞ−2ðN1N

0
2
− N0

1
N2Þ� ð10Þ

in the simpler one-variable transformation. Therefore,

using Ẽφ in (2) does not yield a legitimate metric compo-

nent, and K̃φ is not a component of extrinsic curvature.

In order to derive the correct space-time structure and a

meaningful metric, we should find a suitable function ˜̃E
φ
of

Ẽφ and K̃φ in terms of which the Poisson bracket of two

Hamiltonian constraints takes on the classical form (5). It is

easy to see that ˜̃E
φ
¼ Eφ is just the classical field in (9) or

(10). Completing this substitution to a canonical trans-

formation then leads us back to the classical Kφ from K̃φ,

and inserting this transformation in the constraints tells us

that the theory is nothing but classical. [The canonical

conjugate Kφ of some function Eφ on the phase space

ðK̃φ; Ẽ
φÞ is not uniquely determined because any function

of Eφ could be added to Kφ while maintaining the nature of

a canonical conjugate. However, this freedom is eliminated

by the boundary condition that Kφ ≈ K̃φ for K̃φ small with

respect to some scale used in the model.] At this point, we

would have debunked any potential claims of new physics

and singularity resolution.

Our example is artificial and deals with a trivial

modification of classical general relativity. It is nevertheless

instructive because it shows the importance of a dedicated

analysis of space-time structure in canonical terms. It is also

relevant because arguments comparable to some ingre-

dients of our example have often been made in models of

loop quantum gravity. These models deal with actual

modifications of classical gravity and there is a possibility

for new physics to emerge. But also in this case, it is often,

and incorrectly, assumed that some field Ẽφ that shows

some semblance to the classical Eφ can be used to define a

meaningful metric component using (2). This geometrical

interpretation is possible only if Ẽφ is such that the Poisson

bracket of two Hamiltonian constraints equals (5) where Eφ

is simply replaced by Ẽφ, without introducing any multi-

plicative factor or other modifications of the structure

function. Unfortunately, this condition is rarely realized

in models of loop quantum gravity, which often do not even

check that the Poisson bracket of two Hamiltonian con-

straints remains closed after modifications.

III. POLYMERIZED MODELS

In the case of [20], it is clear that the bracket of two

Hamiltonian constraints remains closed after applying a

nonbijective canonical transformation. Moreover, the

modification is nontrivial because the canonical trans-

formation used in this case, given by (6), is not bijective.

As seen in the preceding subsection, however, a dedicated

space-time analysis is necessary to interpret the theory even

in the case of a bijective transformation. It should then

certainly be performed also in the nonbijective case, but this

has not been attempted in [20]. It is therefore unclear

whether physical statements suggested there are correct.

The modified theory has Hamiltonian constraints such

that

fH½N1�; H½N2�g

¼ −D½cos2ðlK̃φÞE
xðẼφÞ−2ðN1N

0
2
− N0

1
N2Þ�; ð11Þ

with a modified structure function, obtained by simply

applying the canonical transformation to (5). Since the

modification introduces new zeros of the structure function

at lK̃φ ¼ 1

2
ð2nþ 1Þπ with integer n, it eliminates some

contributions of the diffeomorphism constraint from the

right-hand side. The presence of structure functions implies

that generators of hypersurface deformations form a Lie
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algebroid [37–39] over phase space, labeling independent

contributions from the constraints. New zeros in the

structure function introduced by the transformation mean

that the algebroid gains new Abelian subalgebroids by

restriction to the zero-level sets of the structure function.

The algebraic structure is therefore inequivalent to its

classical form. (The authors of [20] claim that the modi-

fication “preserves the constraint algebra,” which presum-

ably refers to a partial Abelianization of the generators as in

[29]. However, as shown in [35], such a reformulation of

the constraints is not sufficient for a discussion of general

covariance and space-time structure.)

An algebraic structure inequivalent to that determined by

the classical constraints implies that its relationship to

standard hypersurface deformations is not obvious.

Covariance is therefore nontrivial in the modified system.

The nonbijective nature of the canonical transformation

employed now to obtain the modification is precisely the

reason why there are additional zeros in the modified

structure function of hypersurface-deformation brackets.

According to [20], the nonbijective nature of the trans-

formation might provide a chance for the modified theory

to describe new physical effects, but it is also the reason

why covariance is no longer obvious even though the

modification has been obtained by canonically transform-

ing a covariant theory. (The claim “It has the advantage that

it is a canonical transformation from the original variables.

That means that it preserves the constraint algebra and the

covariance of the theory, which previous choices did not.”

of [20] is therefore unjustified.) In the presence of modified

hypersurface deformations with an inequivalent algebraic

structure, covariance has to be derived by a careful analysis

of generic solutions and their geometrical meaning, using

effective line elements.

A. Local solutions

Local solutions for Ẽφ and K̃φ can be derived without

explicitly solving modified equations of motion because

they can simply be obtained by applying a local (in phase

space) inverse of the canonical transformation (6) to a

classical solution in canonical form. Starting at small lKφ

for the classical solution, any modified local solution K̃φ

remains valid until lKφ reaches the values �1, the local

extrema of sinðlK̃φÞ where the canonical transformation is

no longer invertible.

If one were to solve modified equations directly for

ðK̃φ; Ẽ
φÞ, starting with some initial values, it would be

possible to cross regions where lK̃φ ¼ � 1

2
π, again corre-

sponding to the first local extrema of sinðlK̃φÞ close to

small lKφ. Such an extension of the local solution is no

longer a simple local inverse of the canonical transforma-

tion, and presumably gives rise to “novel phenomena” that

are, according to [20], introduced by the modification.

However, a solution in the range where lK̃φ > 1

2
π (the

case of lK̃φ < −
1

2
π being analogous) and lK̃φ < 3

2
π, can

again be interpreted as a local inverse of (6), but one that

makes use of a different branch of the arcsine compared

with the initial region at jlK̃φj <
1

2
π. The canonical

transformation therefore provides a classical analog in

any range of lK̃φ that excludes the values 1

2
ð2nþ 1Þπ

with integer n. While the analogous Kφ is always bounded

thanks to (6), there is no upper limit on lK̃φ beyond which

classical analogs would no longer exist.

We have obtained a direct correspondence between local

solutions in the classical and modified theories. The next

question we have to address is whether physics or geometry

in the modified theory should be based on the field K̃φ and

its conjugate Ẽφ, or on their local classical analogs Kφ and

Eφ. This question is relevant for the application presented

in [20], in which critical collapse is studied numerically by

evaluating a “black hole mass.” Unfortunately, [20] does

not specify how this mass is obtained, but presumably it

refers to a mass parameter extracted in the usual way from a

line element, constructed from Ẽφ rather than Eφ in the

modified theory. We therefore have to analyze how a

meaningful line element can be obtained in the modified

theory. As discussed in Sec. II C, a meaningful effective

line element requires specific transformation properties to

hold for its coefficients.

B. Global structure

Using local inverses of the canonical transformation, we

have obtained local solutions in canonical form, resulting in

evolutions of K̃φ and Ẽφ depending on some time coor-

dinate implicitly determined by lapse and shift. Such a

solution of equations of motion in a modified theory is not

necessarily geometrical. As in our example of a bijective

canonical transformation, using methods of [40], a field

redefinition of Ẽφ is necessary before we can apply

effective line elements. Not surprisingly, this field redefi-

nition is again an application of the canonical transforma-

tion (6), mapping Ẽφ back to Eφ which clearly has the

correct transformation behavior for a well-defined line

element to result from (2) and (1).

Methods of effective line elements therefore show that

physics and geometry in the modified theory should be

based on the classical analogs found in the previous

subsection, and not on the modified solutions K̃φ and

Ẽφ. In any region in which (6) is locally invertible, the

modified theory simply describes a transformed version of

classical gravity. Any potential for new physical effects is

restricted to subsets of measure zero in phase space and

(generically) space-time. In order to understand their

meaning, we have to determine how different regions of

classical analogs may be connected in an effective space-

time picture of global form.
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So far, we have obtained formal piecewise solutions for

the canonical fields K̃φ and Ẽφ as well as effective line

elements that faithfully describe their geometrical meaning,

based on field redefinitions. The final question is how these

piecewise solutions can be glued back together to obtain a

global space-time picture. Such a gluing cannot be based on

classical matching conditions because they would simply

lead to a global classical solution that does not respect the

boundedness of Kφ implied by (6).

Given a solution for K̃φ and Ẽ
φ, a classical analog and an

effective line element is obtained by applying the canonical

transformation (6). Since the transformation is not bijective,

different ranges of K̃φ may correspond to the same classical

geometry. If we first restrict ourselves to ranges of K̃φ in

which the transformation is invertible, the corresponding

phase-space region corresponds, via the effective line

element, to a region in space-time which generically is

incomplete because it is cut off at fixed values of Kφ. A

global solution therefore requires an extension through the

hypersurfaces on which lK̃φ ¼ 1

2
ð2nþ 1Þπ with integer n.

It is easy to see how different regions are connected if we

first focus on two neighbors, such as the low-curvature

region, called region I where jlK̃φj <
1

2
π, and a region II

where 1

2
π < lK̃φ < 3

2
π. For a transition from region I to

region II to happen, _̃Kφ > 0 when lK̃φ ¼ 1

2
π, which by

continuity extends to a region around the transition hyper-

surface. Since Kφ is a continuous function of K̃φ, it

approaches the same value at the transition hypersurface

from both regions, given by lKφ ¼ 1. Applying (6), we see

that the corresponding analog solutions Kφ behave like

time reversed versions in a neighborhood of the transition

hypersurface; _Kφ ¼ l cosðlK̃φÞ
_̃Kφ has opposite signs on

the two sides of the transition hypersurface because

cosðlK̃φÞ has opposite signs in the two regions while

_̃Kφ > 0 as we already saw.

For the same reason, Eφ has opposite signs on the two

sides and, unlike Kφ, is not continuous because it goes

through infinity if Ẽφ remains finite. (The classical equa-

tions of motion imply that Kφ is proportional to _Ex rather

than _Eφ, such that it may remain regular while Eφ grows

without bounds.) Therefore, the time derivative of the

absolute value jEφj, which is relevant for qxx in (2), has

opposite signs on the two sides; The second term in

jEφj• ¼ sgnðEφÞ

� _̃E
φ

cosðlK̃φÞ
þ l

Ẽφ

cos2ðlK̃φÞ
sinðlK̃φÞ

_̃Kφ

�

∼ l
sgnðEφÞ

cos2ðlK̃φÞ
ẼφKφ

_̃Kφ; ð12Þ

is dominant near the hypersurface and enjoys the required

sign property. The geometry in region II can therefore be

interpreted as a time-reversed classical solution compared

with the time direction in region I. (It is not necessarily a

time reversal of the same solution as in region I because Eφ

is not continuous across the transition hypersurface.)

Applying this result to all transitions, we see that a global

solution of the modified theory is a concatenation of

infinitely many classical regions with alternating orienta-

tions of time. In each region, the geometry is indistingui-

shable from a classical solution. The only new physics

therefore resides in the time reversals, which make it

possible for Kφ to remain bounded.

C. Noncovariance

In each local region, the geometry is coordinate and

slicing independent provided the changes of coordinates

and slicings are sufficiently “small” such that they do not

leave the range of Kφ relevant for the region. (We can apply

slicing independence only in the classical analogs, where

the correct version (5) of hypersurface deformations holds.)

Globally, space-time in this model could be covariant only

if the reversal surfaces were covariantly defined, but this is

not the case; They refer to fixed values of lKφ ¼ �1, and

Kφ is not a space-time scalar.

Choosing a different slicing in a classical analog in

general shifts the positions of time reversal surfaces. A

complete solution for K̃φ and Ẽφ therefore violates slicing

independence, even after it has locally been mapped to a

suitable effective line element. For instance, in a vacuum

solution there would be no time reversals outside the

horizon in a Schwarzschild slicing, but there are other

exterior slicings in which lKφ can be large and trigger time

reversal in the modified geometry. Even with minimal

modifications introduced by the model, general covariance

is violated.

IV. CONCLUSIONS

We have presented a detailed analysis of space-time

structure in models obtained by bijective or nonbijective

canonical transformations of classical gravity. Although the

bijective case is completely equivalent to classical gravity, a

space-time analysis is nontrivial because the equivalence

may be hidden if complicated canonical transformations are

applied. Our discussion showed that basic fields of a

modified theory, in general, cannot be identified directly

with metric components that play the same role as their

classical counterparts.

While such a model would be considered trivial from the

perspective of modified gravity, it is nevertheless instruc-

tive because it highlights the subtle nature of space-time

structure in canonical theories. In particular, the importance

of identifying suitable metric components or effective

line elements constructed from the basic fields of a

canonical modified theory remains highly relevant if the

theory is genuinely modified. The nontrivial nature of such
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identifications has often been overlooked in models of loop

quantum gravity.

We applied our detailed construction of effective line

elements that consistently describe the space-time geom-

etry of solutions to the modified theory introduced in [20].

This model uses a nonbijective canonical transformation

and is therefore inequivalent to classical gravity. However,

we have shown that the only new physical effect is the

introduction of time-reversal surfaces connecting classical

space-time regions. This observation corrects the claim “As

the canonical transformation is not invertible in the whole

of phase space it still allows to have the usual novel

phenomena that loop quantizations introduce in regions

where one expects general relativity not to be valid, like

close to singularities.” made in [20]. Locally, general

relativity is valid in all regions of the modified theory,

without any novel phenomena that have been claimed

previously in loop quantizations. Our constructions also

show that effective geometries described by the model

depend only on the local extrema of the function KφðK̃φÞ.
The specific sine function, usually motivated by expres-

sions of holonomies used in loop quantum gravity, does not

matter at all.

Even though themodifications are obtained by a canonical

transformation of a covariant theory, their global solutions

violate covariance precisely at those places where “novel

phenomena” happen. This outcome heightens the covariance

crisis of loop quantum gravity; Even aminor modification of

the classical equations, inspired by loop quantum gravity but

implemented by a canonical transformation, is in conflict

with the requirement of general covariance.
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