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Abstract—Reconstructing the evolutionary history of closely-
related viral strains enables the identification and epidemiological
linkage of infected patients in an outbreak, but phylogenetic
inference is often too computationally time-consuming to be
performed in real-time on large datasets. To combat this,
molecular surveillance methods turn to inferring epidemiological
linkage from pairwise distances computed between sequences
directly. However, during the COVID-19 pandemic, the ultra-
large datasets made available from global viral sequencing and
data sharing efforts render existing CPU implementations of
sequence-based molecular surveillance too slow for real-time
analysis. FPGAs are widely used to accelerate bioinformatics
applications as they are becoming increasingly available either
in local computer systems or in cloud data centers. Providing
high parallelism, FPGAs are well-suited for pairwise distance
computations. In this work, we introduce, FANTAIL, a highly
parallelized FPGA-based Accelerator for computing pairwise
distaNce for viral TrAnsmIssion cLustering based on Tamura-
Nei 93 (TN93) model. Compared to the state-of-the-art multi-
threaded CPU baseline running on an 8-core Intel Core-i7 CPU,
FANTAIL provides 56× speedup and 168.1× energy reduction,
while providing the same results. Moreover, FANTAIL is able to
process a 6.3× larger dataset under 20 minutes compared to the
CPU baseline.

I. INTRODUCTION AND RELATED WORK

During viral epidemics, understanding how the virus is
spreading through a population helps public health officials
to control and limit the spread of the pathogen. Answering
questions such as “Who infected whom?”, “Where do indi-
vidual outbreaks exist within a given community?”, and “How
effective are specific treatments or interventions at slowing the
spread of the disease?” is crucial to help officials to make
critical decisions [1] such as mandating wearing face masks
and prioritizing access to vaccines and treatments.

RNA viruses such as Human Immunodeficiency Virus
(HIV), Hepatitis C Virus (HCV), influenza, and SARS-CoV-
2 (Covid-19) have fast-evolving genomes [2], [3], [4]. The
evolutionary history of the virus is constrained by its trans-
mission history [5]. Thus, phylogenetic reconstruction can be
utilized to retrace the transmission events of an epidemic
[1], [6], [7]. phylogenetic reconstruction is the process of
inferring the evolutionary history of a collection of viral ge-
nomic sequences. The pairwise distance of genomic sequences
increases as the individuals are further apart in the epidemic.
Specifically, for individuals who were members of the same
outbreak, the viral sequences will have low evolutionary dis-
tance. However, for those sequences obtained from individuals
from different outbreaks will have high evolutionary distance.
Individuals with low distance between their viral sequences
are called epidemiologically “linked,” and groups of linked
individuals can be considered to be “transmission clusters”
[1]. Unfortunately, phylogenetic inference is NP-Hard, and

even the fastest heuristic tools such as FastTree [8] are still
computationally complex such that they are the computational
bottlenecks in viral sequence analysis workflows. Therefore, in
large-scale pandemics (e.g. COVID-19), real-time surveillance
of the outbreaks using the evolutionary trees is not feasible due
to the complexity of the problem.

HIV-TRACE is a standard tool for performing real-time
molecular epidemiology of HIV and other rapidly-evolving
pathogens. HIV-TRACE instead of performing phylogenetic
inference, it estimates pairwise evolutionary distances under
the Tamura-Nei 93 (TN93) model of nucleotide evolution
directly from Hamming distances computed from pairs of
sequences [1], [9]. Given a pair of aligned sequences u and v,
HIV-TRACE computes the pairwise Hamming distance (i.e.,
number of mismatches) between u and v. It then estimates
pairwise evolutionary distance from the computed Hamming
distance under the TN93 model of evolution. The TN93
model is the most general nucleotide substitution model and
evolutionary distance under the TN93 model can be estimated
directly from the Hamming distance of a single pair of
sequences [1]. Pairwise TN93 distances are computed for
all pairs of individuals, and a graph is constructed. In the
transmission graph, nodes are individuals and edges connect
pairs of individuals, the TN93 distance of which is less than
a threshold (1.5% is the default selection in HIV-TRACE).
Each connected component of the resulting graph is output as
a transmission cluster.

Monitoring transmission clusters over time can provide
significant insights about changes in properties of an epidemic.
Epidemic properties such as population size, geographical
structure of the population, impacts of a specific treatment
or prevention on the population help public health officials to
make critical decisions[10], [7], [11]. Transmission clustering
has been widely used in various areas, including criminal in-
vestigation [12], [13], [14], [15] and public health investigation
[16], [17].

With the increasing accessibility and affordability of high-
throughput sequencing, the number of available viral genome
sequences is growing rapidly, which in turn creates a need for
scalable methods to enable real-time analysis and dissemina-
tion. For instance, so far, there are approximately 2 million
SARS-CoV-2 genome sequences publicly available, and this
number is rapidly increasing every day [18]. Because of the
need to compare all pairs of sequences in a given dataset, the
complexity of viral transmission clustering increases quadrat-
ically with respect to the number of sequences in the database
[19]. Therefore, processing real-world size databases of viral
sequences requires days or even weeks of processing which
makes the real-time surveillance infeasible. The ability to



conduct such analyses in a reasonable time is primarily limited
by the performance of the existing software tools, optimized
for CPUs.

FPGAs have been widely used to accelerate a wide variety
of bioinformatics applications [20], [21], [22], [23]. As the
size of the generated data has drastically increased, general-
purpose processors have had difficulty keeping up. FPGAs
have recently become more prevalent and have been widely
deployed in data centers to provide easier access for users
to implement their accelerators on cloud FPGAs [24], [25],
[26], [27], [28], [29]. FPGAs are well-suited for accelerat-
ing the pairwise distance calculation of genomics sequences
due to their high parallelism. In this paper, we propose an
FPGA-based accelerator, FANTAIL, that computes the pairwise
distances between the viral sequences for viral transmission
clustering. FANTAIL utilized the High Bandwidth Memory
(HBM), available on the FPGA board, to reduce the memory
bottleneck. HBM, available on Xilinx UltraScale+ devices,
provides significantly higher memory bandwidth compared
to conventional DRAMs [30], [31]. The summary of our
contributions is as follows.

• We proposed a novel architecture to calculate the pairwise
distance of viral sequences based on TN93 algorithm [9].
The proposed architecture utilizes the FPGA’s available
resources to parallelize computations.

• FANTAIL utilizes High Bandwidth Memory to provide
faster memory access to maximize the parallelization and
consequently significantly accelerate the entire applica-
tion.

• We evaluated FANTAIL using the available Covid-19
and HIV sequence libraries. FANTAIL is able to process
a 6.3× bigger datasets in under 20 minutes as com-
pared to the state-of-the-art multi-threaded CPU baseline.
FANTAIL also provides 56× speedup and 168× energy
reduction as compared to the CPU baseline.

II. PROPOSED METHOD

Calculating the distance between every pair of viral se-
quences in the database is the computational bottleneck of
transmission clustering. FANTAIL calculates the pairwise dis-
tance on FPGA to parallelize these computations. It goes
through the entire dataset, calculates the pairwise similarity
distances, and transfers the results to the host CPU to perform
the transmission clustering. In the following subsections, we
first introduce the high-level architecture of FANTAIL. Then
we explain the details of each module and the optimizations
we have applied to accelerate the entire application.

A. FANTAIL High-Level Architecture
Algorithm 1 is the simplified algorithm of the main pairwise

distance calculation. First, two sequences (Seq1 and Seq2)
are read from the library. The lengths of both sequences are
defined by the length of the viral sequence, and are provided
as an input to FANTAIL. After reading the sequences, the tool
keeps track of the number of repetitions of corresponding
nucleotides in the sequences in Ncount. Ncount is a two
dimensional array where Ncount[N1][N2], shows the repe-
tition number of N1 nucleotide in the Seq1 sequence when
the corresponding nucleotide in Seq2 is N2. For instance,
after processing a pair of sequences, NCount[A][C] shows

Algorithm 1 Simplified Algorithm of Pairwise Distance Com-
putation

1: procedure PWD(Seq1, Seq2, AmbMode)
2: NCount[4][4]=0
3: MMC=0 . MMC →MismatchCounter
4: for i < len(Seq1) do . len(Seq1) == len(Seq2)
5: NCount[Seq1[i]][Seq2[i]] + +
6: if Compare(Seq1[i], Seq2[i]) then
7: MMC+= Distance(Seq1[i], Seq2[i], AmbMode)
8: end if
9: end for

10: CalculateDistance(NCount, MMC)
11: end procedure
12: procedure FANTAIL(SeqLibrary, AmbMode)
13: D=[] . Calculated Pairwise Distances
14: for i = 0 : i < len(SeqLibrary) do
15: Seq1 = read ith sequence in the library
16: for j = i : j < len(Seq1) do
17: Seq2 = read jth sequence in the library
18: {t1, t2} = PWD(Seq1, Seq2, AmbMode)
19: D.append(t1); NCount.append(t2)
20: end for
21: end for
22: return D, NCount
23: end procedure
24: procedure DISTANCECALCULATION(D, NCount)
25: for e doach element in D
26: Score = TN93(D, NCount)
27: end for
28: return D
29: end procedure

the repetition number of A nucleotides in the first sequence
where their corresponding nucleotide in the other sequence is
C. To calculate the NCount values, for ith nucleotides of both
sequences, Ncount[Seq1[i]][Seq2[i]] is incremented.

The number of mismatches between the corresponding
nucleotides of two sequences, D, has to also be calculated for
finding the genomic distance of two sequences. For each pair
of sequences, the NCount and D are used in the TN93 model
(line 26 in Algorithm 1) to calculate the final genomic distance
[9]. The TN93 model consists of logarithmic operations which
can be executed more efficiently on CPUs. Since the pairwise
distance calculations are independent, they can be parallelized
and executed in different threads. Thus, FANTAIL calculates D
and NCount on FPGA and sends them to the host CPU, and
the CPU calculates the final distance. However, in many cases,
D and NCount can be directly used to infer the transmission
clusters without calculating the genomic distances.

Characters A, C, G, and T (U in RNA sequences) are
being used to represent the four nucleotides of a DNA/RNA
molecule. However, due to the lack of precision, the im-
perfections in sequencing machines, and the experimental
challenges, the sequencing machines cannot precisely detect
all nucleotides. Table I shows the ambiguity characters and
their corresponding nucleotides. Ambiguity characters W, S,
M, K, R, Y are used to represent positions when there
is some uncertainty between two nucleotides. For instance,



TABLE I: Ambiguous character table, their corresponding
nucleotides and FANTAIL encoding.

Symbol Description Encoding Symbol Description Encoding
A Adenine 0001 M A or C 0011
C Cytosine 0010 R A or G 0101
G Guanine 0100 W A or T 1001
T Thymine 1000 S C or G 0110
B C, G, or T 1110 Y C or T 1010
D A, G, or T 1101 K G or T 1010
H A, C, or T 1011 N A, C, G, or T 1111
V A, C, or G 0111 - Gap 0000

the R nucleotide represents that the nucleotide is either A
or G. Characters B, D, H, V are used when there is only
confidence that a position is not one of the four nucleotides.
For instance, character B presents C, G, and T nucleotides (i.e.
the nucleotide is not A). There are 16 primary and ambiguous
nucleotides that can be represented by 4 bits. In FANTAIL
we encode each nucleotide to a 4-bit binary number to be
processed in the FPGA for pairwise distance calculation. Thus,
we take into account the ambiguous nucleotides into account
during the sequence matching.

To support a wider variety of biological studies, FAN-
TAIL supports different modes, dubbed AmbMode, to deal
with ambiguous nucleotides in sequence matching. User can
select AmbMode from the following list {Exact, Resolve,
and Average}. In the Exact mode, two nucleotides are
matched only if they are represented with the same character
(Distance(A,R,Exact) = 1). Resolve mode resolves the
ambiguous nucleotide to minimize the distance; thus, am-
biguous nucleotides are matched with any primary nucleotide
in its ambiguity list. For instance, A and R nucleotides
are matched in Resolve mode (Distance(A,R,Resolve) =
0). In Average mode, the distance of ambiguous nu-
cleotide with its building primary nucleotide is half of that
with other nucleotides (Distance(A,R,Average) = 0.5,
Distance(C,R,Average) = 1).

FANTAIL adopts two levels of parallelism, enabled by FPGA
abundant resources, to calculate the pairwise distance. It reads
multiple sequences and calculates the pairwise distance of
one of the sequences against each of the other sequences.
To calculate a single pairwise distance, FANTAIL parallelizes
the sequence matching and comparing multiple nucleotides
at every clock cycle to calculating MMC, and Ncount. Due
to the large size of the viral sequence library, FANTAIL stores
the library into the FPGA off-chip memory (DRAM or HBM).
Then it loads multiple sequences to the FPGA on-chip memory
to provide significantly higher bandwidth to calculate the
pairwise distance more efficiently. Reading the sequences from
DRAM limits the performance of pairwise calculation due to
the long access time to the FPGA DRAM.

FANTAIL utilizes HBM available on the FPGA board to
reduce memory access time as HBM provides significantly
higher bandwidth than DRAM. The achieved memory band-
width during the runtime depends on the data access pattern.
Random memory accesses take much longer time than the
sequential accesses. Although the bandwidth of each HBM
channel is sometimes even less than that of DRAM, as HBM
has a significantly higher number of channels, it provide signif-
icantly higher bandwidth. Fully utilizing the HBM bandwidth
requires simultaneous memory access to each HBM channel.
FANTAIL takes advantage of independent pairwise calculation

of different sequences to fully utilize the available HBM
bandwidth.

Figure 1 shows the high-level architecture of FANTAIL
optimized for maximizing the memory bandwidth available
on FPGA boards. To take advantage of all the memory
bandwidths available for the FPGA (both DRAM and HBM),
it stores a copy of the viral sequence library on both FPGA
DRAM and HBM. Assuming the FPGA board has CDRAM

DRAM channels, and CHBM HBM channels, FANTAIL loads
a single viral sequence from DRAM and then streams in
CHBM different sequences from HBM. FANTAIL consists of
CHBM PWD engines, each of which calculates the pairwise
distance between a sequence, read from HBM, and the se-
quence read from DRAM. Each PWD engine calculates the
pairwise distance independent of the other engines and writes
the calculated distance into the output buffer. Then the output
buffer module transfers the calculated distances to the FPGA
DRAM.

Each PWD engine consists of an AXI interface to stream
in a sequence from HBM. Reading a stream requires
SequenceSize

AXIDataWidth read transactions. Since these data read re-
quests are sequential, the AXI interface can use burst trans-
actions to minimize the data transfer latency. In FANTAIL the
AXI interface reads 512 bits in every transaction. The PWD
engine reads 512 bits of a viral sequence from the library
every clock cycle (if the data is not available in a clock
cycle for any reason, the engine halts) and then it executes
the similarity matching between the 512 bits of the sequence
and the corresponding nucleotides of the shared sequence.
The parallel comparator module performs the element-wise
comparison between 512bit

4bit = 128 nucleotides. The output of
each element-wise comparison is the distance of the nucleotide
pair. If the nucleotides are matched, the output is 0; if they
are partially matched, and the mode is “average” the output is
1; when they are not matched, the output distance is 2.

In addition to outputting the 128 2-bit parallel distances,
the parallel comparator module counts the nucleotides and
calculates the NCount as explained in the algorithm 1. The
128-input tree-adder module consists of 7 pipelined layers
of adders. The first layer compromises 64 adders that add
128 2-bit inputs and outputs 64 3-bit results, which are then
aggregated in the next layers of adders; eventually, after 7
layers of adders, the output shows the partial distance between
128 nucleotides of the global sequence and the local sequence.
To calculate the pairwise distance between the local sequence
and the global sequence, the partial distances in each iteration
accumulates in an adder. After processing all the nucleotides of
the sequences, each PWD engine writes the pairwise distance
to the output buffer, which will then be transmitted to the
FPGA DRAM.

B. Module Details
The viral sequence library is usually in FASTA format,

which is a text file representing nucleotides with characters.
Even though text files can be efficiently processed in CPUs,
this file format is not optimal for FPGAs . FANTAIL converts
the FASTA library file to binary representation suitable for
processing in FPGAs. To convert the FASTA file to binary, we
use an encoding approach where each nucleotide is mapped
to a 4-bit binary number. The encoding process considers



Global Sequence

Local Sequence
Stream Buffer

Parallel 
Comparator

+

+

+

+

+

+
+

+

+

+

+ +

PWD Engine 0

PWD Engine C-1

PWD Engine 1

Sequence 0

Sequence C

Sequence 2C

Sequence 1

Sequence C+1

Sequence 2C+1

Sequence C-1

Sequence 2C-1

Sequence 3C-1

HBM

DRAM

Sequence 0

Sequence 1

Sequence 2

Sequence 3

Sequence L-1

A
X

I
A

X
I

A
X

I
A

X
I

Pairwise 
Distance

O
u

tp
u

t 
B

u
ff

er

Output 
Controller

Pairwise
Distances

Fig. 1: Overview of the proposed FANTAIL architecture.

the pairwise distance operations to minimize the hardware
complexity of the operations. FANTAIL encoding keeps the
information of the corresponding nucleotides in the binary
representation of the ambiguous nucleotides.

Table I shows the unique mapping of nucleotides (pri-
mary and ambiguous) to 4-bit binary numbers. The primary
nucleotides (A, C, G, and T) are represented using one-
hot encoding. The binary representation of each primary
nucleotide has only one 1 digit. A, C, G, and T nucleotides are
represented as 0001, 0010, 0100, and 1000 binary numbers,
respectively. The binary representation of each ambiguous
nucleotide is selected by ORing their corresponding primary
nucleotides. Therefore, in the binary representation of am-
biguous nucleotides, 1 digits show the corresponding primary
nucleotides. For instance, nucleotide W corresponds to A and
T nucleotides; thus, encoded representation of nucleotide W
is achieved by ORing the binary representation of A and T
(W → 0001&1000 = 1001).

The main advantage of the proposed encoding approach is
the simple similarity comparison. If two nucleotides have digit
1 in the same position, they are partially matched, and if they
are equal, they are exactly matched. The parallel comparator
module takes advantage of simplified nucleotide comparison
to provide a fast and energy-efficient pairwise comparison.
Figure 2(a) shows the detailed architecture of the parallel
comparator module. The parallel comparator module consists
of 128 comparator modules, in addition to a series of adders to
count the number of nucleotides in parallel. Figure 2(b) shows
the architecture of the comparator module. The comparator
module gets two nucleotides along with the AmbMode, which
instructs how to resolve the ambiguous nucleotides and calcu-
lates the distance between two nucleotides. The comparator
module first ANDs both nucleotides; if the outputs of the
AND gates are equal to zero, it means the nucleotides have no
primary nucleotide in common. However, if the output of the
AND gates is non-zero, the nucleotides are partially/exactly
matched. To distinguish if the nucleotides are partially or
exactly matched, the comparator module XORs the inputs,
and if the outputs of the XORs are zero and the output of
ANDs is non-zero, the nucleotides are exactly matched. Then
the output of the comparators is connected to a multiplexer
that selects the appropriate distance based on AmbMode.

Figure 2(c) shows the architecture of the Nucleotide counter
module. The PWD engine streams in 128 nucleotides of the

local sequence every cycle. The nucleotides pass through the
Nucleotide counter module, where the module counts the
number of nucleotides in the local and global sequence as
explained in Algorithm 1. The Nucleotide counter module
comprises eight series of comparators. All the nucleotides of
both sequences are compared to A, C, G, and T nucleotides.
Each series of comparator output represents which elements
of the input sequence are equal to a specific nucleotide.
For instance, the first series of comparators in Figure 2(c)
compares 128 elements of the global sequence with the A
nucleotide and outputs a 128-bit number where each bit shows
whether the corresponding nucleotide in the global sequence is
A or not. The outputs of the series of the comparators are then
passed through 16 series of AND gates. The outputs of each
AND series are then aggregated together and accumulated in
adders to compute the number of each nucleotide combination.

III. EXPERIMENTAL RESULTS

A. Experimental Setup
FANTAIL accelerates the pairwise distance calculation for

viral transmission clustering using TN93 algorithm [9] on
FPGA. FANTAIL is implemented in C++ and synthesized using
the Vivado High-Level Synthesis tool (HLS) and integrated
with the host code using Xilinx Vitis Accel 2019.2 [33].
FANTAIL runs on U280 FPGA board with 32 GB of DRAM
and 8 GB of HBM [34]. The host code is written in OpenCL,
which is responsible for transferring the viral library from the
storage device to the FPGA off-chip memory (DRAM and
HBM). The host code also initiates the kernel and transfers
the calculated results back to the host memory to further
process the data. To measure the performance of calculating
the pairwise distance for the entire viral sequence library, we
used OpenCL event profiling.

We report end-to-end execution time of FANTAIL, includ-
ing reading the data from the FPGA off-chip memory, the
computation time, and writing the results to the FPGA off-
chip memory, then calculating the actual pairwise distances on
the host CPU by using the output of the FPGA. To evaluate
the energy efficiency of FANTAIL, we measure the power
consumption of the FPGA (including its off-chip memory)
by using the provided API by Xilinx Runtime Library (XRT)
[35]. We compare the performance and energy efficiency of
FANTAIL with the state-of-the-art TN93 tool [32] optimized
for multi-thread execution running on Intel i7-8700K CPU
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with 16GB memory. FANTAIL provides the same results as
the CPU baseline. For our evaluation, we used the publicly
available datasets for HIV [36] and Covid-19 sequences from
NIH [18] and City of San Diego [37].

B. FANTAIL Results

Figure 3 shows the execution time of FANTAIL and the
multi-threaded CPU-based TN93 tool [32] for different viral
sequence libraries. The figure also shows the performance
improvement and energy reduction of FANTAIL compared to
the TN93 baseline. The left Y-axis, which is in logarithmic
scale, shows the execution time of the CPU baseline and
FANTAIL for different viral sequence libraries. The right Y-
axis shows the speedup and energy reduction of FANTAIL
compared to the CPU baseline. We tested the performance
of FANTAIL for the San Diego Covid-19 library (SD Covid-
19) with 7813 sequences as well as randomly selecting 1000
(1K), 3K, 6K, 12K, and 50K sequences from the NIH Covid-
19 library. We also performed the pairwise distance calculation
for the Los Alamos National Laboratory HIV library (LA HIV)
with 4362 sequences. For Covid-19 sequence libraries, the
TN93 tool [9] is unable to calculate all the pairwise distances
in 20 minutes. Therefore, the execution time for NIH 50K and

NIH 12K is not available. The biggest dataset that the TN93
tool [9] can process is the SD Covid-19 library, which took 16
minutes and 50 seconds. However, FANTAIL is able to process
50k Covid-19 sequences in less than 20 minutes.

FANTAIL shows 56× speedup and 168.1× energy reduction,
on average for all the libraries, compared to the CPU-based
TN93 [9] baseline; note that for NIH 12k and NIH 50K
we used the average speedup and energy reduction since the
execution time of TN93 was not available (N/A). FANTAIL
uses 54% of the FPGA LUTs and 36% of FPGA on-chip mem-
ories (BRAMs and URAMs). Thus, FANTAIL performance is
limited by the FPGA off-chip memory bandwidth. Although
FANTAIL is compatible with FPGA boards without HBM, it
provides significantly higher performance ( HBMBW

DRAMBW×) on a
system with HBM compared to a system with only DRAMs.

For the smaller number of sequences, 1k, FANTAIL shows
less performance improvement compared to larger libraries
(38× compared to 59.5× for SD Covid-19), since TN93
is more efficient when the size of the library is smaller.
However, FANTAIL has a regular data access pattern that is
independent of the database size as long as it fits into the
FPGA off-chip memory (8 GB). For larger viral libraries, data
should be divided into smaller batches so that the pairwise
distances can be calculated over multiple iterations. In pairwise
calculation of the HIV dataset (LA HIV), FANTAIL shows
63.8× speedup and 191.7× energy reduction compared to the
CPU baseline. For calculating the pairwise distance of HIV
sequence, FANTAIL uses the same hardware as the one used
for Covid-19 sequences, as the length of the viral sequences
can be set during the runtime.

C. Covid-19 Transmission Clustering using FANTAIL

Figure 4 shows the transmission graph of the San Diego
Covid-19 sequence library. FANTAIL calculates the pairwise
distance, and any pair of sequences with a distance less than a
threshold are connected to each other. In Figure 4 we used
0.0001 as the threshold. The right figure shows the entire
transmission clusters, where there are a few huge clusters
where each person infects many people; additionally, there are
many small clusters in which each person infects only a few
people. Therefore, understanding the demographics of people
in the huge clusters where they infect many people helps health
officials to control the pandemics.



IV. CONCLUSION

Clustering the transmission history of pathogens helps
health officials to make critical decisions to limit the spread of
diseases. By pairwise comparison of viral sequences, we can
reconstruct the transmission events, as members of the same
local outbreak will have low evolutionary distance. However,
as the number of viral genome sequences grows rapidly, it is
impossible to perform real time inference on large datasets.
Our FANTAIL is a high-performance and energy-efficient
FPGA-based accelerator for pairwise distance calculation for
viral transmission clustering. FANTAIL provides 56× speedup
and 168× energy reduction compared to the state-of-the-art
multi-threaded CPU baseline running on an 8-core Intel Core-
i7 CPU. In other words, FANTAIL is able to process a 6.3×
larger dataset than the CPU baseline with the same execution
time, while providing equally accurate results.
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